JP4267936B2 - Hydrocracking catalyst and method for producing liquid hydrocarbon - Google Patents

Hydrocracking catalyst and method for producing liquid hydrocarbon Download PDF

Info

Publication number
JP4267936B2
JP4267936B2 JP2003046313A JP2003046313A JP4267936B2 JP 4267936 B2 JP4267936 B2 JP 4267936B2 JP 2003046313 A JP2003046313 A JP 2003046313A JP 2003046313 A JP2003046313 A JP 2003046313A JP 4267936 B2 JP4267936 B2 JP 4267936B2
Authority
JP
Japan
Prior art keywords
catalyst
present
hydrocracking
mass
yield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003046313A
Other languages
Japanese (ja)
Other versions
JP2004255241A (en
Inventor
信雄 青木
浩幸 関
行寛 杉浦
雅一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2003046313A priority Critical patent/JP4267936B2/en
Publication of JP2004255241A publication Critical patent/JP2004255241A/en
Application granted granted Critical
Publication of JP4267936B2 publication Critical patent/JP4267936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、水素の存在下でパラフィン系炭化水素から液状炭化水素を製造するための水素化分解触媒およびこの触媒を使用した液状炭化水素の製造方法に関する。
【0002】
【従来の技術】
近年、硫黄分および芳香族炭化水素の含有量が低いクリーンな液体燃料への要求が急速に高まってきている。これに呼応して燃料油製造業界においても既に種々のクリーン燃料製造法が検討されている。その中でワックス等のパラフィン系炭化水素を触媒存在下で水素化分解するプロセスの期待が大きい。
パラフィン系炭化水素の水素化分解プロセスにおいては、有用な中間留分を高収率で得ることがプロセスの経済性向上のために特に重要な課題である。
【0003】
減圧軽油の水素化分解は過去数十年の歴史を有する確立した技術であり、既に商業化されている。しかし、パラフィン系炭化水素の反応性は減圧軽油とは大きく異なるため、減圧軽油の触媒をそのまま転用することが難しく、パラフィン系炭化水素の水素化分解のための高性能触媒の研究開発が現在精力的に続けられている。少数ではあるが、既にいくつかの報告がなされている。例えば、非晶性アルミノシリケートを含有した担体に白金を担持した触媒が提案されている(例えば、特許文献1参照。)。
【0004】
結晶性アルミノシリケートと非晶性アルミノシリケートを比較すると、結晶性アルミノシリケートの方が高い触媒活性が得られることが知られている。このため近年は結晶性アルミノシリケートを用いた触媒開発が主流となりつつある。しかしながら、結晶性アルミノシリケートは粉体であるため、これを実用に供するためにはバインダーを用いて成型後、これを焼成する必要がある。しかし、結晶性アルミノシリケートを用いた触媒は、粉体の状態と比較して、成型・焼成することにより中間留分の収率が大きく低下し、十分な収率が得られないという大きな欠点があり、これが結晶性アルミノシリケートを用いたパラフィン系炭化水素用水素化分解触媒の実用化の最大の障害となっている。
【0005】
【特許文献1】
特開平6−41549号公報
【0006】
【発明が解決しようとする課題】
本発明の目的は、成型・焼成後も高い中間留分収率が得られる結晶性アルミノシリケート含有触媒を開発し、実用化の障害を取り除くことにある。
【0007】
【課題を解決するための手段】
本発明者らは鋭意検討した結果、結晶性アルミノシリケートをバインダーを用いて成型した後、得られる成型体を極めて限られた特定の温度範囲にて焼成することにより上述の課題が解決できることを見いだし、本発明を完成するに至ったものである。
すなわち、本発明は、平均粒子径が0.5μm以下のUSY型ゼオライトアルミナを含む混合物を成型後430〜470℃の温度範囲で焼成することにより得られる成型体に、白金を担持してなることを特徴とするパラフィン系炭化水素用水素化分解触媒に関する。
また本発明は、前記触媒を用いて、パラフィン系炭化水素を水素化分解することを特徴とする液状炭化水素の製造方法に関する。
【0008】
【発明の実施の形態】
以下に本発明を詳述する。
本発明においてアルミノシリケートとは、アルミニウム、珪素および酸素の3元素で構成される金属酸化物をいう。また本発明の効果を妨げない範囲で他の金属元素を共存させることもできる。この場合、他の金属元素の量はその酸化物としてアルミナとシリカの合計量の5質量%以下、好ましくは3質量%以下であることが望ましい。共存可能な金属元素としては、例えばチタン、ランタン、マンガン等を挙げることができる。
【0009】
アルミノシリケートの結晶性は、全アルミニウム原子中の4配位のアルミニウム原子の割合で見積もることができ、この割合は27Al固体NMRにより測定可能である。本発明において結晶性アルミノシリケートとは、アルミニウム全量に対する4配位アルミニウムの比率が50質量%以上のアルミノシリケートをいう。4配位アルミニウムの比率が50質量%以上であれば本発明の結晶性アルミノシリケートとして使用できるが、70質量%以上のものがより好ましく、80質量%以上のものが特に好ましい。
【0010】
本発明の結晶性アルミノシリケートとして、いわゆるゼオライトを使用することができる。好ましい結晶性アルミノシリケートとしては、Y型ゼオライト、USY型ゼオライト、ベータ型ゼオライト、モルデナイト、ZSM−5などを挙げることができ、最も好ましい結晶性アルミノシリケートとしてはUSY型ゼオライトを挙げることができる。また必要により2種以上の結晶性アルミノシリケートを使用することもできる。
また本発明で使用する結晶性アルミノシリケートの平均粒子径は、0.5μm以下が特に好ましい。
【0011】
本発明で結晶性アルミノシリケートを成型する際に使用されるバインダーについては特に制限は無いが、アルミナ、シリカ、シリカアルミナ、チタニア、マグネシアが好ましく、最も好ましくはアルミナである。
バインダーの使用割合は特に制限されるものではないが、通常、成型体全量基準で5〜99質量%であることが好ましく、より好ましくは20〜99質量%である。
【0012】
本発明で触媒担体として用いられる成型体は、結晶性アルミノシリケートとバインダーを含む混合物を成型した後、430〜470℃の温度範囲で焼成して得られるものであることが特徴である。焼成温度は、好ましくは440〜460℃であり、特に好ましくは445〜455℃である。焼成温度が430℃より低い場合または470℃より高い場合のいずれでも中間留分収率は大きく低下する。
本発明において、430〜470℃という極めて限定された温度範囲において焼成されたときにのみ高い中間留分収率が得られるというのは全く予期し得ない知見であり、本発明者らはその原因を鋭意検討中であるが、未だ解明するに至っていない。
【0013】
なお、焼成時間については特に制限はないが、通常、1分〜24時間、好ましくは10分〜20時間、より好ましくは30分〜10時間である。焼成雰囲気については酸素が含まれていれば特に制限はなく、通常、空気雰囲気下で行われる。
【0014】
本発明の触媒は、前述の成型体に、活性金属成分として白金を担持してなるものである。白金を、前述の成型体に含浸やイオン交換等の常法によって担持することにより本発明の触媒を製造することができる。
担持する白金金属の量は、必要に応じて適宜選択することができるが、触媒全量基準で、通常、0.05〜2質量%であり、好ましくは0.1〜1質量%である。
【0015】
本発明においては、前述の触媒を用いて、パラフィン系炭化水素を水素化分解して液状炭化水素を製造する。
本発明においてパラフィン系炭化水素とは、パラフィン分子の含有率が70質量%以上の炭化水素をいう。炭化水素分子の炭素数については特に制限はないが、通常、10〜100程度のものが用いられる。本発明の触媒は、通常ワックスと称される炭素数20以上のパラフィン系炭化水素の水素化分解に特に有効である。
原料となるパラフィン系炭化水素の製法については特に制限はなく、本発明の触媒は石油系および合成系の各種パラフィン系炭化水素に適用することができる。特に好ましいパラフィン系炭化水素としては、フィッシャー・トロプシュ合成により製造されるいわゆるFTワックスを挙げることができる。
【0016】
本発明の触媒を用いてパラフィン系炭化水素を水素化分解する方法としては、公知の方法を用いることができ、例えば従来の固定床反応装置を使用する方法が挙げられる。
本発明における水素化分解の反応条件としては、例えば、温度は250〜400℃、水素圧は0.5〜10MPa、パラフィン系炭化水素原料の液空間速度は0.5〜10/hを挙げることができる。
【0017】
【発明の効果】
以上のように、平均粒子径が0.5μm以下のUSY型ゼオライトアルミナを含む混合物を成型後430〜470℃の温度範囲で焼成することにより得られる成型体に、白金を担持してなる触媒を用いることにより、パラフィン系炭化水素の水素化分解による中間留分の収率を高めることができる。
【0018】
【実施例】
以下に実施例及び比較例を挙げ本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0019】
参考例1]
平均粒子径1.0μmのUSY型ゼオライト800gとアルミナバインダー200gを混合混練し、直径1/16インチ(約1.6mm)、高さ6mmの円柱状に成型したのち、450℃で3時間焼成して担体を得た。
この担体に、白金として担体の0.8質量%となる量のジクロロテトラアンミン白金(II)の水溶液を含浸し、さらにこれを120℃で3時間乾燥および500℃で1時間焼成することにより、触媒を調製した。
上記のように調製された触媒(200ml)を固定床の流通式反応器に充填し、パラフィン系炭化水素の水素化分解に用いた。ここではパラフィン含量が95質量%で20から80までの炭素数分布を有するFTワックスを原料とした。この時の水素圧は3MPa、原料の液空間速度は2.0/hであった。沸点360℃以下の留分を分解生成物とし、原料に対して80質量%の分解生成物が得られる時の中間留分(沸点が145〜360℃)収率を求めた。その結果を表1に示した。
【0020】
参考例2]
成型後の焼成温度が465℃であること以外は、参考例1と同様の触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の中間留分(沸点が145〜360℃)収率を求めた。その結果を表1に示した。
【0021】
[実施例
平均粒子径0.4μmのUSY型ゼオライトを用いたこと以外は参考例1と同様の触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の中間留分(沸点が145〜360℃)収率を求めた。その結果を表1に示した。
【0022】
[比較例1]
成型後の焼成温度が420℃であること以外は参考例1と同様の触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の中間留分(沸点が145〜360℃)収率を求めた。その結果を表1に示した。
【0023】
[比較例2]
成型後の焼成温度が500℃であること以外は参考例1と同様の触媒調製および水素化分解反応を行い、80質量%の分解生成物が得られる時の中間留分(沸点が145〜360℃)収率を求めた。その結果を表1に示した。
【0024】
表1から明らかなように、成型後の焼成温度範囲が430〜470℃の場合にのみ、パラフィン系炭化水素の水素化分解において高い中間留分収率が得られることが分かる。
また、平均粒子径が0.4μmのUSY型ゼオライトを用いた実施例1は、平均粒子径が1.0μmのUSY型ゼオライトを用いた参考例1,2に比べて、より一層高い中間留分収率が得られることが分かる。
【0025】
【表1】

Figure 0004267936
[0001]
[Industrial application fields]
The present invention relates to a hydrocracking catalyst for producing liquid hydrocarbons from paraffinic hydrocarbons in the presence of hydrogen and a method for producing liquid hydrocarbons using this catalyst.
[0002]
[Prior art]
In recent years, there has been a rapid increase in demand for clean liquid fuels with low sulfur and aromatic hydrocarbon content. In response to this, various clean fuel production methods have already been studied in the fuel oil production industry. Among them, expectations are high for a process for hydrocracking paraffinic hydrocarbons such as wax in the presence of a catalyst.
In the hydrocracking process of paraffinic hydrocarbons, obtaining a useful middle distillate in a high yield is a particularly important issue for improving the economics of the process.
[0003]
Hydrocracking of vacuum gas oil is an established technology with a history of several decades and has already been commercialized. However, since the reactivity of paraffinic hydrocarbons is significantly different from that of vacuum gas oil, it is difficult to divert the catalyst of vacuum gas oil as it is, and research and development of high-performance catalysts for hydrocracking of paraffinic hydrocarbons are currently vigorous. Has been continued. A few reports have already been made. For example, a catalyst in which platinum is supported on a carrier containing amorphous aluminosilicate has been proposed (see, for example, Patent Document 1).
[0004]
When crystalline aluminosilicate and amorphous aluminosilicate are compared, it is known that crystalline aluminosilicate has higher catalytic activity. For this reason, in recent years, catalyst development using crystalline aluminosilicate is becoming mainstream. However, since crystalline aluminosilicate is a powder, in order to put it into practical use, it is necessary to fire it after molding using a binder. However, the catalyst using crystalline aluminosilicate has a major drawback in that the yield of middle distillate is greatly reduced by molding and firing, and sufficient yield cannot be obtained compared to the powder state. This is the biggest obstacle to the practical application of hydrocracking catalysts for paraffinic hydrocarbons using crystalline aluminosilicate.
[0005]
[Patent Document 1]
JP-A-6-41549 [0006]
[Problems to be solved by the invention]
An object of the present invention is to develop a crystalline aluminosilicate-containing catalyst that can provide a high middle distillate yield even after molding and calcination, and to eliminate obstacles to practical use.
[0007]
[Means for Solving the Problems]
As a result of intensive studies, the present inventors have found that the above-mentioned problems can be solved by firing a crystalline aluminosilicate using a binder and then firing the resulting molded body in a very limited specific temperature range. The present invention has been completed.
That is, the present invention is such that platinum is supported on a molded body obtained by firing a mixture containing USY zeolite having an average particle size of 0.5 μm or less and alumina in a temperature range of 430 to 470 ° C. after molding. The present invention relates to a hydrocracking catalyst for paraffinic hydrocarbons.
The present invention also relates to a method for producing liquid hydrocarbons characterized in that paraffinic hydrocarbons are hydrocracked using the catalyst.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
In the present invention, aluminosilicate refers to a metal oxide composed of three elements of aluminum, silicon and oxygen. Further, other metal elements can be allowed to coexist within a range not impeding the effects of the present invention. In this case, the amount of the other metal element is 5% by mass or less, preferably 3% by mass or less of the total amount of alumina and silica as oxides. Examples of metal elements that can coexist include titanium, lanthanum, manganese, and the like.
[0009]
The crystallinity of aluminosilicate can be estimated by the ratio of tetracoordinate aluminum atoms in all aluminum atoms, and this ratio can be measured by 27 Al solid state NMR. In the present invention, crystalline aluminosilicate refers to an aluminosilicate in which the ratio of tetracoordinated aluminum to the total amount of aluminum is 50% by mass or more. If the ratio of tetracoordinated aluminum is 50% by mass or more, it can be used as the crystalline aluminosilicate of the present invention, but 70% by mass or more is more preferable, and 80% by mass or more is particularly preferable.
[0010]
As the crystalline aluminosilicate of the present invention, so-called zeolite can be used. Preferred crystalline aluminosilicates include Y-type zeolite, USY-type zeolite, beta-type zeolite, mordenite, ZSM-5, etc., and most preferred crystalline aluminosilicates include USY-type zeolite. If necessary, two or more crystalline aluminosilicates can be used.
The average particle diameter of the crystalline aluminosilicate to be used in the present invention, the following are particularly preferred 0.5 [mu] m.
[0011]
There is no particular limitation on the binder used in molding the crystalline aluminosilicate in the present invention, but alumina, silica, silica alumina, titania and magnesia are preferred, and alumina is most preferred.
The use ratio of the binder is not particularly limited, but it is usually preferably 5 to 99 mass%, more preferably 20 to 99 mass%, based on the total amount of the molded body.
[0012]
The molded body used as a catalyst carrier in the present invention is characterized in that it is obtained by molding a mixture containing crystalline aluminosilicate and a binder and then firing it in a temperature range of 430 to 470 ° C. The firing temperature is preferably 440 to 460 ° C, particularly preferably 445 to 455 ° C. The middle distillate yield is greatly reduced whether the calcination temperature is lower than 430 ° C or higher than 470 ° C.
In the present invention, it is completely unexpected knowledge that a high middle distillate yield can be obtained only when calcination is performed in a very limited temperature range of 430 to 470 ° C. However, it has not been elucidated yet.
[0013]
In addition, although there is no restriction | limiting in particular about baking time, Usually, 1 minute-24 hours, Preferably it is 10 minutes-20 hours, More preferably, it is 30 minutes-10 hours. The firing atmosphere is not particularly limited as long as it contains oxygen, and is usually performed in an air atmosphere.
[0014]
The catalyst of the present invention is obtained by supporting platinum as an active metal component on the above-described molded body. The catalyst of the present invention can be produced by supporting platinum on the aforementioned molded body by a conventional method such as impregnation or ion exchange.
The amount of platinum metal to be supported can be appropriately selected as necessary, but is usually 0.05 to 2% by mass, preferably 0.1 to 1% by mass based on the total amount of the catalyst.
[0015]
In the present invention, liquid hydrocarbons are produced by hydrocracking paraffinic hydrocarbons using the aforementioned catalyst.
In the present invention, the paraffinic hydrocarbon means a hydrocarbon having a paraffin molecule content of 70% by mass or more. Although there is no restriction | limiting in particular about carbon number of a hydrocarbon molecule, Usually, a thing of about 10-100 is used. The catalyst of the present invention is particularly effective for the hydrocracking of paraffinic hydrocarbons having 20 or more carbon atoms, usually called wax.
There is no restriction | limiting in particular about the manufacturing method of the paraffinic hydrocarbon used as a raw material, The catalyst of this invention is applicable to various paraffinic hydrocarbons of petroleum type and a synthetic type. Particularly preferred paraffinic hydrocarbons include so-called FT waxes produced by Fischer-Tropsch synthesis.
[0016]
As a method for hydrocracking a paraffinic hydrocarbon using the catalyst of the present invention, a known method can be used, for example, a method using a conventional fixed bed reactor.
Examples of the hydrocracking reaction conditions in the present invention include a temperature of 250 to 400 ° C., a hydrogen pressure of 0.5 to 10 MPa, and a liquid space velocity of the paraffinic hydrocarbon raw material of 0.5 to 10 / h. Can do.
[0017]
【The invention's effect】
As mentioned above, the catalyst which carries | supports platinum on the molded object obtained by baking in the temperature range of 430-470 degreeC after shaping | molding the mixture containing the USY-type zeolite whose average particle diameter is 0.5 micrometer or less, and an alumina. By using this, the yield of middle distillate by hydrocracking of paraffinic hydrocarbons can be increased.
[0018]
【Example】
EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.
[0019]
[ Reference Example 1]
800 g of USY zeolite with an average particle size of 1.0 μm and 200 g of alumina binder are mixed and kneaded and formed into a cylindrical shape having a diameter of 1/16 inch (about 1.6 mm) and a height of 6 mm, and then calcined at 450 ° C. for 3 hours. To obtain a carrier.
The carrier was impregnated with an aqueous solution of dichlorotetraammineplatinum (II) in an amount of 0.8% by mass of the carrier as platinum, and further dried at 120 ° C. for 3 hours and calcined at 500 ° C. for 1 hour, whereby a catalyst was obtained. Was prepared.
The catalyst (200 ml) prepared as described above was charged into a fixed bed flow reactor and used for hydrocracking of paraffinic hydrocarbons. Here, FT wax having a paraffin content of 95% by mass and a carbon number distribution of 20 to 80 was used as a raw material. The hydrogen pressure at this time was 3 MPa, and the liquid space velocity of the raw material was 2.0 / h. The fraction having a boiling point of 360 ° C. or lower was determined as the decomposition product, and the yield of the middle fraction (boiling point: 145 to 360 ° C.) when 80% by mass of the decomposition product with respect to the raw material was obtained was determined. The results are shown in Table 1.
[0020]
[ Reference Example 2]
Except that the firing temperature after molding is 465 ° C., the same catalyst preparation and hydrocracking reaction as in Reference Example 1 are carried out, and an intermediate fraction (boiling point is 145 to 145%) when an 80% by mass decomposition product is obtained. 360 ° C.) The yield was determined. The results are shown in Table 1.
[0021]
[Example 1 ]
The middle distillate (boiling point is 0%) when the catalyst preparation and hydrocracking reaction are carried out in the same manner as in Reference Example 1 except that USY-type zeolite having an average particle size of 0.4 μm is used and a cracked product of 80% by mass is obtained. 145-360 ° C.) The yield was determined. The results are shown in Table 1.
[0022]
[Comparative Example 1]
The middle distillate (boiling point is 145 to 360) when a catalyst preparation and hydrocracking reaction similar to Reference Example 1 are performed except that the firing temperature after molding is 420 ° C., and a cracked product of 80% by mass is obtained. ° C) The yield was determined. The results are shown in Table 1.
[0023]
[Comparative Example 2]
The middle fraction (boiling point is 145 to 360) when the catalyst preparation and hydrocracking reaction similar to those of Reference Example 1 are performed except that the firing temperature after molding is 500 ° C., and a decomposition product of 80% by mass is obtained. ° C) The yield was determined. The results are shown in Table 1.
[0024]
As can be seen from Table 1, a high middle distillate yield is obtained in the hydrocracking of paraffinic hydrocarbons only when the calcining temperature range after molding is 430 to 470 ° C.
In addition, Example 1 using USY-type zeolite having an average particle size of 0.4 μm is a higher middle distillate than Reference Examples 1 and 2 using USY-type zeolite having an average particle size of 1.0 μm. It can be seen that the yield is obtained.
[0025]
[Table 1]
Figure 0004267936

Claims (2)

平均粒子径が0.5μm以下のUSY型ゼオライトアルミナを含む混合物を成型後430〜470℃の温度範囲で焼成することにより得られる成型体に、白金を担持してなることを特徴とするパラフィン系炭化水素用水素化分解触媒。Paraffin characterized in that platinum is supported on a molded product obtained by firing a mixture containing USY zeolite having an average particle size of 0.5 μm or less and alumina in a temperature range of 430 to 470 ° C. after molding. Hydrocracking catalyst for hydrocarbons. 請求項1記載の触媒を用いて、パラフィン系炭化水素を水素化分解することを特徴とする液状炭化水素の製造方法。  A method for producing liquid hydrocarbons, comprising hydrocracking paraffinic hydrocarbons using the catalyst according to claim 1.
JP2003046313A 2003-02-24 2003-02-24 Hydrocracking catalyst and method for producing liquid hydrocarbon Expired - Fee Related JP4267936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003046313A JP4267936B2 (en) 2003-02-24 2003-02-24 Hydrocracking catalyst and method for producing liquid hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003046313A JP4267936B2 (en) 2003-02-24 2003-02-24 Hydrocracking catalyst and method for producing liquid hydrocarbon

Publications (2)

Publication Number Publication Date
JP2004255241A JP2004255241A (en) 2004-09-16
JP4267936B2 true JP4267936B2 (en) 2009-05-27

Family

ID=33112891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003046313A Expired - Fee Related JP4267936B2 (en) 2003-02-24 2003-02-24 Hydrocracking catalyst and method for producing liquid hydrocarbon

Country Status (1)

Country Link
JP (1) JP4267936B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101410182A (en) 2006-03-30 2009-04-15 新日本石油株式会社 Hydrocracking catalyst, and method for production of fuel base material
JP4808172B2 (en) * 2006-03-30 2011-11-02 Jx日鉱日石エネルギー株式会社 Hydrocracking catalyst and fuel substrate production method
JP5925406B2 (en) 2006-03-31 2016-06-01 Jxエネルギー株式会社 Method for producing hydrocracking catalyst and method for producing fuel substrate
US8366911B2 (en) 2007-05-01 2013-02-05 Nippon Oil Corporation Method of producing liquid fuel
JP5419672B2 (en) * 2009-12-14 2014-02-19 Jx日鉱日石エネルギー株式会社 Hydrorefining method of hydrocarbon oil
KR101743293B1 (en) * 2010-10-22 2017-06-05 에스케이이노베이션 주식회사 Hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500417A (en) * 1982-12-28 1985-02-19 Mobil Oil Corporation Conversion of Fischer-Tropsch products
JP2547115B2 (en) * 1990-03-30 1996-10-23 財団法人石油産業活性化センター Hydrotreating catalyst composition for hydrocarbon oil and hydrotreating method using the same
JP3906366B2 (en) * 1996-11-27 2007-04-18 アンスティテュ フランセ デュ ペトロール Method for improving pour point of paraffin feedstock using catalyst based on zeolite NU-86
US6133186A (en) * 1997-03-06 2000-10-17 Shell Oil Company Process for the preparation of a catalyst composition
DE69910278T8 (en) * 1998-02-26 2004-11-11 Institut Français du Pétrole, Rueil-Malmaison Catalyst containing a zeolite from the group NU-85, NU-86 and NU-87 and its use for the hydrogenation conversion of hydrocarbon inserts
US7638037B2 (en) * 2002-12-09 2009-12-29 Shell Oil Company Process for the preparation of a lubricant

Also Published As

Publication number Publication date
JP2004255241A (en) 2004-09-16

Similar Documents

Publication Publication Date Title
JP4313237B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
JP4418368B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
RU2749402C1 (en) Desulphurisation catalyst, synthesis and application thereof
CN103732537A (en) Mesoporous framework-modified zeolites
WO2014122620A1 (en) Hydroprocessing catalyst composition and process thereof
KR20160098247A (en) Fcc catalyst compositions containing boron oxide
TW202200502A (en) ZSM-5/[beta] core-shell molecular sieve and synthesis and applications thereof including a core phase composed of at least two ZSM-5 molecular sieve grains and a shell layer composed of a plurality of [beta] molecular sieve grains
TW201138954A (en) Process for making improved zeolite catalysts from peptized aluminas
RU2621345C1 (en) Method of preparation of craking catalyst with alkaline earth elements
JP6404352B2 (en) Composite catalyst, method for producing composite catalyst, method for producing lower olefin, and method for regenerating composite catalyst
KR102104139B1 (en) A titania-bound zeolite eu-2 catalyst composition and method of making and using such composition
JP4267936B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
AU2007233022B2 (en) Hydrocracking catalyst and process for producing fuel substrate
KR20160100962A (en) Boron oxide in fcc processes
JP6046776B2 (en) Hydrocracking catalyst and fuel substrate production method
JP4267937B2 (en) Hydrocracking catalyst and method for producing liquid hydrocarbon
JP2023523468A (en) Modified Beta Zeolites, Catalytic Cracking Catalysts and Methods of Making and Using Them
CN108463285B (en) Fluid catalytic cracking catalyst for increasing butene yield
JP4808172B2 (en) Hydrocracking catalyst and fuel substrate production method
JP5408879B2 (en) Method for producing liquid fuel
CN103894222A (en) Modified zeolite catalyst for preparing propylene through methanol dehydration and preparation method of modified zeolite catalyst
CN102875316A (en) Method for preparing ethylbenzene by alkylation of dry gas and benzene
JP2008169356A (en) Method for producing liquid fuel
JP3908390B2 (en) Catalyst and method for conversion of aromatic hydrocarbons
Zhao Solid acidic catalysts for the production of bio-substitutes for petrochemical intermediates

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees