JP2995081B2 - Gas oil deep desulfurization method - Google Patents

Gas oil deep desulfurization method

Info

Publication number
JP2995081B2
JP2995081B2 JP2311514A JP31151490A JP2995081B2 JP 2995081 B2 JP2995081 B2 JP 2995081B2 JP 2311514 A JP2311514 A JP 2311514A JP 31151490 A JP31151490 A JP 31151490A JP 2995081 B2 JP2995081 B2 JP 2995081B2
Authority
JP
Japan
Prior art keywords
catalyst
reaction
gas oil
reference example
desulfurization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2311514A
Other languages
Japanese (ja)
Other versions
JPH04183786A (en
Inventor
勲 持田
輝男 鈴鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18018154&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2995081(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP2311514A priority Critical patent/JP2995081B2/en
Publication of JPH04183786A publication Critical patent/JPH04183786A/en
Application granted granted Critical
Publication of JP2995081B2 publication Critical patent/JP2995081B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軽油留分中の硫黄濃度を著しく低減させる
ための深度脱硫方法に関する。
Description: TECHNICAL FIELD The present invention relates to a deep desulfurization method for remarkably reducing the sulfur concentration in a gas oil fraction.

[従来の技術] 軽油留分の脱硫は、工業的には、アルミナ担体上に、
コバルト、ニッケル、モリブデン或いはタングステンを
組合せて担持した触媒を用い、330〜400℃の温度、30〜
60kg/cm2・Gの水素圧力、2〜10hr-1の液空間速度の条
件下にもっぱら行われ、軽油留分中の硫黄分を0.1重量
%程度まで低減させている。
[Prior art] Desulfurization of a gas oil fraction is industrially performed on an alumina carrier.
Using a catalyst supported in combination with cobalt, nickel, molybdenum or tungsten, at a temperature of 330-400 ° C, 30-
It is carried out exclusively under the conditions of a hydrogen pressure of 60 kg / cm 2 · G and a liquid hourly space velocity of 2 to 10 hr −1 , and reduces the sulfur content in the gas oil fraction to about 0.1% by weight.

しかし、最近環境保護の観点からディーゼル軽油中の
硫黄分を大幅に低下させることが要請されている。
However, recently, from the viewpoint of environmental protection, it has been required to greatly reduce the sulfur content in diesel gas oil.

ところで、軽油中の硫黄分をさらに低減させる手段と
して、上記従来の脱硫方法において反応条件を過酷にす
る方法があるが、水素圧を上昇させずに反応温度等を過
酷にすると脱硫された軽油に着色、特に蛍光色が生じ、
またカーボンの沈積による触媒寿命の短縮等の問題があ
った。
By the way, as a means for further reducing the sulfur content in the gas oil, there is a method of making the reaction conditions severe in the above-mentioned conventional desulfurization method.However, if the reaction temperature and the like are made severe without increasing the hydrogen pressure, the desulfurized gas oil is reduced. Coloring, especially fluorescent color,
Further, there is a problem that the catalyst life is shortened due to deposition of carbon.

[発明が解決しようとする課題] 本発明は上記問題点を解決することを課題とするもの
で、本発明の目的は、軽油留分を現行のマイルドな条件
下に深度脱硫する方法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to solve the above problems, and an object of the present invention is to provide a method for deep desulfurizing a gas oil fraction under current mild conditions. It is in.

[課題を解決するための手段] 本発明の軽油の深度脱硫方法は、軽油留分を、先にニ
ッケルとモリブデンを担持した触媒(以下「Ni−Mo触
媒」という)の存在下に30〜60kg/cm2・Gの水素圧力、
280〜400℃の温度で水素化脱硫し、次いでコバルトとモ
リブデンを担持した触媒(以下「Co−Mo触媒」という)
の存在下に30〜60kg/cm2・Gの水素圧力、280〜400℃の
温度で水素化脱硫する脱硫方法であり、硫黄分0.05wt%
以下の軽油留分が得られる水素圧力及び温度において水
素化脱硫を行うことを特徴とするものである。
[Means for Solving the Problems] In the method for deep-desulfurizing gas oil of the present invention, the gas oil fraction is subjected to 30 to 60 kg in the presence of a catalyst previously supporting nickel and molybdenum (hereinafter referred to as “Ni-Mo catalyst”). / cm 2 · G hydrogen pressure,
Hydrodesulfurization at a temperature of 280 to 400 ° C, followed by a catalyst supporting cobalt and molybdenum (hereinafter referred to as “Co-Mo catalyst”)
Is a desulfurization method in which hydrogen desulfurization is performed at a hydrogen pressure of 30 to 60 kg / cm 2 · G and a temperature of 280 to 400 ° C. in the presence of sulfur.
Hydrodesulfurization is carried out at a hydrogen pressure and a temperature at which the following gas oil fraction is obtained.

本発明にいう軽油留分とは、ディーゼル機関などの内
燃機関の燃料として適切な品質を有する軽油の調合に適
した沸点範囲を有する留分をいい、直留油にも分解油に
も、さらには石炭液化油等にも本発明を適用することが
できる。
The gas oil fraction referred to in the present invention refers to a fraction having a boiling range suitable for blending light oil having a quality suitable as a fuel for an internal combustion engine such as a diesel engine. The present invention can be applied to coal liquefied oil and the like.

本発明は、軽油留分を先にNi−Mo触媒、そして次にCo
−Mo触媒を二段に用いて水素化脱硫するもので、後述す
る比較例に示したように、担体にニッケル、コバルト及
びモリブデンを同時に担持した触媒(以下「Ni−Co−Mo
触媒」という)を用いても同様な効果は得られない。
The present invention relates to a gas oil fraction with Ni-Mo catalyst first, and then with Co
-Hydrogen desulfurization using a -Mo catalyst in two stages, as shown in a comparative example described later, a catalyst in which nickel, cobalt and molybdenum are simultaneously supported on a carrier (hereinafter referred to as "Ni-Co-Mo
A similar effect cannot be obtained by using a catalyst.

上記Ni−Mo触媒は、例えば、アルミナ、シリカ、アル
ミナ−シリカ、アルミナ−ボリア、シリカ−アルミナ−
マグネシア、シリカ−アルミナ−チタニア等の耐火性で
多孔質無機担体上にニッケル及びモリブデンを、NiOと
して0.5〜10重量%、MoO3として5〜30重量%担持した
ものが好適に用いられ、特にはアルミナ担体に、NiOと
して1〜6重量%、MoO3として10〜20重量%担持したも
のが好ましい。
The Ni-Mo catalyst is, for example, alumina, silica, alumina-silica, alumina-boria, silica-alumina-
Magnesia, silica - alumina - nickel and molybdenum on a porous inorganic support with a refractory, such as titania, 0.5 to 10% by weight NiO, is suitably used those 5 to 30 wt% carried as MoO 3, particularly It is preferable that 1 to 6% by weight of NiO and 10 to 20% by weight of MoO 3 are supported on an alumina carrier.

また、Co−Mo触媒もNi−Mo触媒と同様の無機担体上
に、コバルト及びモリブデンを、CoOとして0.5〜10重量
%、MoO3として5〜30重量%担持したものが好適であ
り、特にはアルミナ担体に、CoOとして1〜7重量%、M
oO3として10〜20重量%担持したものが好ましい。
Further, on the same inorganic support and Co-Mo catalysts Ni-Mo catalyst, cobalt and molybdenum, 0.5 to 10 wt% as CoO, is preferably those carrying 5-30% by weight MoO 3, particularly 1-7% by weight as CoO on alumina carrier, M
those 10 to 20 wt% on a oO 3 are preferred.

このNi−Mo触媒及びCo−Mo触媒は、一つの反応容器に
上層下層として充填しても良く、別々の反応容器にそれ
ぞれ充填し、両器を連結する方法で反応させる方法でも
良い。Ni−Mo触媒及びCo−Mo触媒はそれぞれ同量程度づ
つ反応容器に充填することが好ましいが、20/80〜80/20
(Ni−Mo触媒/Co−Mo触媒、容量比)の範囲内であれば
本発明の目的を達成することができる。
The Ni-Mo catalyst and the Co-Mo catalyst may be filled in one reaction vessel as upper and lower layers, or may be filled in separate reaction vessels and reacted by a method of connecting both vessels. It is preferable that the Ni-Mo catalyst and the Co-Mo catalyst are each filled into the reaction vessel by the same amount, but 20/80 to 80/20
(Ni-Mo catalyst / Co-Mo catalyst, volume ratio), the object of the present invention can be achieved.

本発明の脱硫条件は、特に過酷な条件とする必要はな
く、軽油留分に用いられている通常の脱硫条件、或いは
これよりマイルドな条件、すなわち、280〜400℃の温
度、30〜60kg/cm2・Gの水素圧力、1〜15hr-1の液空間
速度、50〜1000L/Lの水素−油比等の条件下に行うこと
ができる。この脱硫条件は、Ni−Mo触媒での反応の時と
Co−Mo触媒の時と同じでも良いが、触媒の種類によって
最適反応条件が異なるので、それぞれ最適な条件を適宜
選定して行うことが望ましい。一般的にはCo−Mo触媒は
Ni−Mo触媒よりも高い温度で行うと良い。
The desulfurization conditions of the present invention do not need to be particularly severe conditions, and are usually the desulfurization conditions used for gas oil fractions or milder conditions, that is, a temperature of 280 to 400 ° C and a temperature of 30 to 60 kg /. It can be carried out under conditions such as a hydrogen pressure of cm 2 · G, a liquid hourly space velocity of 1 to 15 hr −1 , and a hydrogen-oil ratio of 50 to 1000 L / L. The desulfurization conditions were the same as for the reaction with the Ni-Mo catalyst.
It may be the same as that of the Co-Mo catalyst, but the optimum reaction conditions differ depending on the type of the catalyst. Generally, a Co-Mo catalyst is
It is better to carry out at a higher temperature than the Ni-Mo catalyst.

また、本発明においては前の触媒と後の触媒との間
に、気液分離装置を設けて反応に使用された水素を分離
し、次いでフレッシユな水素を添加して、後の触媒で脱
硫反応を行うと、さらに脱硫効果を挙げることができ
る。
Further, in the present invention, a gas-liquid separator is provided between the preceding catalyst and the subsequent catalyst to separate hydrogen used for the reaction, and then fresh hydrogen is added, and the desulfurization reaction is performed with the subsequent catalyst. , The desulfurization effect can be further improved.

[作用] 本発明の深度脱硫作用は、Ni−Mo触媒とCo−Mo触媒の
触媒機能の違いにより脱硫される硫黄のタイプが異なる
ために生じると推測される。すなわち、Co−Mo触媒は、
炭素−硫黄結合の開裂作用が強く、立体障害等がないた
め硫黄−炭素結合が当該触媒と直接接触する分子(易脱
硫化合物)を簡単に脱硫するが、立体障害のため炭素−
硫黄結合が触媒と接触できない分子(難脱硫化合物)
は、この触媒によっては脱硫されないと推定される。但
し、高温で反応を行えば、立体障害が激しい分子運動の
ため緩和され、脱硫が進むと考えられる。一方、Ni−Mo
触媒は水素化能が高く、炭素−炭素の開裂作用が強いた
め、立体障害のため難脱硫である化合物の構造を変化さ
せ、硫黄−炭素結合を触媒と接触可能とし、次いで脱硫
するものと推定される。従って、Ni−Mo触媒で水素化し
た後、Co−Mo触媒と接触させれば、立体障害が緩和され
ているので脱硫反応が容易に進行するものと考えられ
る。また、Ni−Mo触媒は水素化能が高いため、先にCo−
Mo触媒を用いて高温で水素化脱硫した場合でも、生成す
る着色物質を水素化により除去できるものと推測され
る。
[Action] It is presumed that the deep desulfurization action of the present invention occurs because the type of sulfur to be desulfurized is different due to the difference in catalytic function between the Ni-Mo catalyst and the Co-Mo catalyst. That is, the Co-Mo catalyst is
Since the carbon-sulfur bond has a strong cleaving action and there is no steric hindrance, the sulfur-carbon bond easily desulfurizes a molecule (easy desulfurization compound) that comes into direct contact with the catalyst.
Molecules whose sulfur bonds cannot contact the catalyst (refractory compounds)
Is not expected to be desulfurized by this catalyst. However, if the reaction is performed at a high temperature, it is considered that steric hindrance is alleviated due to severe molecular motion, and desulfurization proceeds. On the other hand, Ni-Mo
It is presumed that the catalyst has a high hydrogenation ability and has a strong carbon-carbon cleavage effect, so that the structure of the compound, which is difficult to desulfurize due to steric hindrance, is changed, the sulfur-carbon bond can be brought into contact with the catalyst, and then desulfurization occurs Is done. Therefore, if hydrogenation is carried out with a Ni-Mo catalyst and then contact with a Co-Mo catalyst, the steric hindrance is alleviated and the desulfurization reaction is considered to proceed easily. In addition, Ni-Mo catalysts have high hydrogenation ability, so Co-
It is presumed that even when hydrodesulfurization is performed at a high temperature using a Mo catalyst, the generated coloring substance can be removed by hydrogenation.

[実施例] (参考例1) 軽油留分(密度0.84g/cm3、硫黄分0.70重量%、初留
点232℃、50%留出点291℃、90%留出点321℃)10gを予
備硫化処理したCo−Mo触媒(アルミナ担体にコバルトを
CoOとして4重量%、モリブデンをMoO3として15重量%
担持したもの)1gとともに50ccのオートクレーブに張り
込み、反応温度320℃、反応水素圧50気圧で1時間反応
させた。反応終了後、反応物から触媒を分離して得られ
た処理油を、予備硫化処理したNi−Mo触媒(アルミナ担
体にニツケルをNiOとして3重量%、モリブデンをMoO3
として15重量%担持したもの)1gとともに、再度50ccの
オートクレーブに張り込み、反応温度320℃、反応水素
圧50気圧で1時間反応させた。得られた処理油中の硫黄
分を燃焼管式硫黄分試験器(吉田科学器械、QS−A2)を
用いて定量した。この結果を第1表に示した。尚、本処
理油は蛍光色は全く見られなかった。
[Example] (Reference Example 1) 10 g of a gas oil fraction (density 0.84 g / cm 3 , sulfur content 0.70 wt%, initial distillation point 232 ° C, 50% distillation point 291 ° C, 90% distillation point 321 ° C) Pre-sulfurized Co-Mo catalyst (Cobalt on alumina support
4% by weight as CoO, 15% by weight of molybdenum as MoO 3
The mixture was loaded into a 50 cc autoclave together with 1 g, and reacted at a reaction temperature of 320 ° C. and a reaction hydrogen pressure of 50 atm for 1 hour. After completion of the reaction, the treated oil obtained by separating the catalyst from the reaction product was treated with a pre-sulfurized Ni-Mo catalyst (3% by weight of nickel as NiO on an alumina carrier and MoO 3 on molybdenum).
Was loaded again into a 50 cc autoclave and reacted for 1 hour at a reaction temperature of 320 ° C. and a reaction hydrogen pressure of 50 atm. The sulfur content in the obtained treated oil was quantified using a combustion tube type sulfur content tester (Yoshida Kagaku Kikai, QS-A2). The results are shown in Table 1. The treated oil did not show any fluorescent color.

(参考例2) 参考例1において、最初のCo−Mo触媒での脱硫反応の
反応温度を340℃にした以外は参考例1と全く同様の操
作を行った。この結果を第1表に示した。尚、本処理油
も蛍光色は全く見られなかった。
(Reference Example 2) The same operation as in Reference Example 1 was performed except that the reaction temperature of the first desulfurization reaction using the Co-Mo catalyst was set to 340 ° C. The results are shown in Table 1. Note that no fluorescent color was observed in the treated oil.

(参考例3) 参考例1において、後のNi−Mo触媒での脱硫反応の反
応温度を340℃にした以外は参考例1と全く同様の操作
を行った。この結果を第1表に示した。尚、本処理油も
蛍光色は全く見られなかった。
(Reference Example 3) The same operation as in Reference Example 1 was performed, except that the reaction temperature of the desulfurization reaction using the Ni-Mo catalyst was changed to 340 ° C in Reference Example 1. The results are shown in Table 1. Note that no fluorescent color was observed in the treated oil.

(実施例) 参考例1の方法においてCo−Mo触媒とNi−Mo触媒の反
応順序を逆にした以外は参考例1と全く同様の操作を行
った。この結果を第1表に示した。尚、本処理油も蛍光
色は全く見られなかった。
(Example) Except that the reaction order of the Co-Mo catalyst and the Ni-Mo catalyst in the method of Reference Example 1 was reversed, the same operation as in Reference Example 1 was performed. The results are shown in Table 1. Note that no fluorescent color was observed in the treated oil.

(比較例1) 参考例1と同じ軽油留分10gを参考例1と同じ予備硫
化処理したCo−Mo触媒1gとともに50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させた。得られた処理油の硫黄分を参考例1と同
様に測定した。この結果を第1表に示した。
(Comparative Example 1) 10 g of the same gas oil fraction as in Reference Example 1 was placed in a 50 cc autoclave together with 1 g of the same presulfurized Co-Mo catalyst as in Reference Example 1, and reacted at a reaction temperature of 320 ° C and a reaction hydrogen pressure of 50 atm for 1 hour. I let it. The sulfur content of the obtained treated oil was measured in the same manner as in Reference Example 1. The results are shown in Table 1.

(比較例2) 参考例1と同じ軽油留分10gを参考例1と同じ予備硫
化処理したNi−Mo触媒1gとともに50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させた。得られた処理油の硫黄分を参考例1と同
様に測定した。この結果を第1表に示した。
(Comparative Example 2) 10 g of the same gas oil fraction as in Reference Example 1 was placed in a 50 cc autoclave together with 1 g of the pre-sulfurized Ni-Mo catalyst as in Reference Example 1, and reacted at a reaction temperature of 320 ° C and a reaction hydrogen pressure of 50 atm for 1 hour. I let it. The sulfur content of the obtained treated oil was measured in the same manner as in Reference Example 1. The results are shown in Table 1.

(比較例3) 比較例1において反応時間を2時間とした以外は比較
例1と全く同じ操作を行った。この結果を第1表に示し
た。
(Comparative Example 3) The same operation as in Comparative Example 1 was performed except that the reaction time was changed to 2 hours. The results are shown in Table 1.

(比較例4) 参考例1と同じ軽油留分10gを参考例1と同じ予備硫
化処理したCo−Mo触媒1gとともに50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させた。反応終了後、冷却し、反応に供した水素
をフレッシユな水素と交換し、それ以外はそのままで、
再度、反応温度320℃、反応水素圧50気圧で1時間反応
させた。得られた処理油の硫黄分を参考例1と同様に測
定した。この結果を第1表に示した。
(Comparative Example 4) 10 g of the same gas oil fraction as in Reference Example 1 was placed in a 50 cc autoclave together with 1 g of the pre-sulfurized Co-Mo catalyst as in Reference Example 1, and reacted at a reaction temperature of 320 ° C and a reaction hydrogen pressure of 50 atm for 1 hour. I let it. After the completion of the reaction, the reaction mixture was cooled, and the hydrogen used for the reaction was replaced with fresh hydrogen.
The reaction was performed again at a reaction temperature of 320 ° C. and a reaction hydrogen pressure of 50 atm for 1 hour. The sulfur content of the obtained treated oil was measured in the same manner as in Reference Example 1. The results are shown in Table 1.

(比較例5) 参考例1と同じ軽油留分10gを参考例1と同じ予備硫
化処理したCo−Mo触媒1gとともに50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させた。反応終了後、反応物から触媒を分離して
得られた処理油を、新しい前記触媒と同じ予備硫化処理
したCo−Mo触媒1gとともに、再度50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させ、処理油の硫黄分の測定を行った。この結果
を第1表に示した。
(Comparative Example 5) 10 g of the same gas oil fraction as in Reference Example 1 was placed in a 50 cc autoclave together with 1 g of the pre-sulfurized Co-Mo catalyst as in Reference Example 1, and reacted at a reaction temperature of 320 ° C and a reaction hydrogen pressure of 50 atm for 1 hour. I let it. After completion of the reaction, the treated oil obtained by separating the catalyst from the reaction product was again placed in a 50 cc autoclave together with 1 g of the same pre-sulfurized Co-Mo catalyst as the new catalyst, and the reaction temperature was 320 ° C and the reaction hydrogen pressure was The reaction was performed at 50 atm for 1 hour, and the sulfur content of the treated oil was measured. The results are shown in Table 1.

(比較例6) 参考例1と同じ軽油留分10gを参考例1と同じ予備硫
化処理したNi−Mo触媒1gとともに50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させた。反応終了後、反応物から触媒を分離して
得られた処理油を、新しい前記触媒と同じ予備硫化処置
したNi−Mo触媒1gとともに、再度50ccのオートクレーブ
に張り込み、反応温度320℃、反応水素圧50気圧で1時
間反応させ、処理油の硫黄分の測定を行った。この結果
を第1表に示した。
(Comparative Example 6) 10 g of the same gas oil fraction as in Reference Example 1 was placed in a 50 cc autoclave together with 1 g of the pre-sulfurized Ni-Mo catalyst as in Reference Example 1, and reacted at a reaction temperature of 320 ° C and a reaction hydrogen pressure of 50 atm for 1 hour. I let it. After completion of the reaction, the treated oil obtained by separating the catalyst from the reaction product was again placed in a 50 cc autoclave together with 1 g of the same pre-sulfurized Ni-Mo catalyst as the new catalyst, and the reaction temperature was 320 ° C and the reaction hydrogen pressure was The reaction was performed at 50 atm for 1 hour, and the sulfur content of the treated oil was measured. The results are shown in Table 1.

(比較例7) 参考例1と同じ軽油留分10gを予備硫化処理したNi−C
o−Mo触媒(アルミナ担体にニッケルをNiOとして1重量
%、コバルトをCoOとして3重量、モリブデンをMoO3
して17重量%担持したもの)1gとともに50ccのオートク
レーブに張り込み、反応温度320℃、反応水素圧50気圧
で1時間反応させ、処理油の硫黄分の測定を行った。こ
の結果を第1表に示した。
(Comparative Example 7) Ni-C obtained by presulfurizing 10 g of the same light oil fraction as in Reference Example 1.
An o-Mo catalyst (1% by weight of nickel as NiO, 3% of cobalt as CoO, and 17% by weight of molybdenum as MoO 3 on an alumina carrier) was placed in a 50 cc autoclave together with 1 g, and the reaction temperature was 320 ° C. The reaction was carried out at a pressure of 50 atm for 1 hour, and the sulfur content of the treated oil was measured. The results are shown in Table 1.

(比較例8) 参考例1と同じ軽油留分10gを参考例1と同じ予備硫
化処理したCo−Mo触媒1gとともに50ccのオートクレーブ
に張り込み、反応温度350℃、反応水素圧50気圧で2時
間反応させた。この結果、処理油に顕著に蛍光色の着色
が認められた。
(Comparative Example 8) 10 g of the same gas oil fraction as in Reference Example 1 was placed in a 50 cc autoclave together with 1 g of the same pre-sulfurized Co-Mo catalyst as in Reference Example 1, and reacted at a reaction temperature of 350 ° C and a reaction hydrogen pressure of 50 atm for 2 hours. I let it. As a result, the treated oil was noticeably colored in a fluorescent color.

これらの結果から明らかなように、接触時間を長くし
たり、同じ触媒で二段脱硫処理を行うこと等に比べて、
触媒の種類を変えて二段脱硫処理を行う方法が硫黄分を
顕著に低減できることが分かる。
As is clear from these results, as compared to increasing the contact time or performing two-step desulfurization treatment with the same catalyst,
It can be seen that the method of performing the two-stage desulfurization treatment by changing the type of the catalyst can significantly reduce the sulfur content.

[発明の効果] 本発明は、軽油留分を触媒を違えて、二段脱硫を行う
ようにしたため、マイルドな条件下に深度脱硫すること
ができ、蛍光色等の着色の少ない高品質の軽油留分を得
ることができるという格別の効果を奏するものである。
[Effects of the Invention] In the present invention, since the gas oil fraction is subjected to two-stage desulfurization using a different catalyst, it can be subjected to deep desulfurization under mild conditions, and is a high-quality gas oil with little coloring such as fluorescent color. This has a special effect that a fraction can be obtained.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C10G 45/06,45/08 C10G 65/04 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C10G 45 / 06,45 / 08 C10G 65/04

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軽油留分をニッケルとモリブデンを担持し
た触媒の存在下に30〜60kg/cm2・Gの水素圧力、280〜4
00℃の温度で水素化脱硫し、次いでコバルトとモリブデ
ンを担持した触媒の存在下に30〜60kg/cm2・Gの水素圧
力、280〜400℃の温度で水素化脱硫する脱硫方法であ
り、硫黄分0.05wt%以下の軽油留分が得られる水素圧力
及び温度において水素化脱硫を行うことを特徴とする軽
油の深度脱硫方法。
1. A gas oil fraction is subjected to hydrogen pressure of 30 to 60 kg / cm 2 · G in the presence of a catalyst supporting nickel and molybdenum at a pressure of 280 to 4 kg / cm 2 · G.
Hydrodesulfurization at a temperature of 00 ° C., and then hydrodesulfurization at a hydrogen pressure of 30 to 60 kg / cm 2 G at a temperature of 280 to 400 ° C. in the presence of a catalyst supporting cobalt and molybdenum, A deep desulfurization method for gas oil, comprising performing hydrodesulfurization at a hydrogen pressure and temperature at which a gas oil fraction having a sulfur content of 0.05 wt% or less is obtained.
JP2311514A 1990-11-19 1990-11-19 Gas oil deep desulfurization method Expired - Fee Related JP2995081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2311514A JP2995081B2 (en) 1990-11-19 1990-11-19 Gas oil deep desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2311514A JP2995081B2 (en) 1990-11-19 1990-11-19 Gas oil deep desulfurization method

Publications (2)

Publication Number Publication Date
JPH04183786A JPH04183786A (en) 1992-06-30
JP2995081B2 true JP2995081B2 (en) 1999-12-27

Family

ID=18018154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2311514A Expired - Fee Related JP2995081B2 (en) 1990-11-19 1990-11-19 Gas oil deep desulfurization method

Country Status (1)

Country Link
JP (1) JP2995081B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576257B2 (en) * 2004-02-10 2010-11-04 Jx日鉱日石エネルギー株式会社 Production method of oil fraction
JP2007100013A (en) * 2005-10-07 2007-04-19 Petroleum Energy Center Method for hydrorefining of gas oil
JP7321790B2 (en) 2019-06-25 2023-08-07 日揮触媒化成株式会社 Method for hydrotreating heavy oil

Also Published As

Publication number Publication date
JPH04183786A (en) 1992-06-30

Similar Documents

Publication Publication Date Title
JP3387700B2 (en) Desulfurization method of catalytic cracking gasoline
US4149965A (en) Method for starting-up a naphtha hydrorefining process
JP3522797B2 (en) Method for producing hydrocarbon fuel
JP3868128B2 (en) Gas oil hydrodesulfurization apparatus and method
JP2000109856A (en) Process for hydrodesulfurization of light oil
JPH1192772A (en) Hydrodesulfurization process for catalytic cracking gasoline, and gasoline
US3094480A (en) Hydrodenitrogenation with high molybdenum content catalyst
US4108761A (en) Denitrification of carbonaceous feedstocks
JP4423037B2 (en) Multistage hydrodesulfurization of cracked naphtha streams with interstage fractionation
JPH10310782A (en) High-degree hydrodesulfurization of hydrocarbon feedstock
JP4740544B2 (en) Selective hydrodesulfurization of naphtha stream
JPH0959650A (en) Method for desulfurizing catalytic cracking gasoline
JP4233154B2 (en) Hydrodesulfurization method of light oil
CA2190392A1 (en) Stacked bed catalyst system for deep hydrosulfurization
JP2004010897A (en) Method for producing hydrocarbon having low sulfur and nitrogen content
JP2995081B2 (en) Gas oil deep desulfurization method
JP2004010893A (en) Method for hydrodesulfurizing fraction containing sulfur compound and olefin in the presence of catalyst containing group 8 element and tungsten
EP0512778B1 (en) Hydroconversion process
JP5123635B2 (en) Method for producing gasoline base material and gasoline
CA1074717A (en) Process for the desulphurization of hydrocarbon oils
JPH0372676B2 (en)
JP3269900B2 (en) Desulfurization of cracked gasoline fraction
JP2000109860A (en) Light oil and hydrodesulfurization process
JP2921379B2 (en) Hydrodesulfurization of gas oil
JP2000073072A (en) Production of high cetane number, low sulfur diesel gas oil

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees