JP2021001296A - Radical curable silicone composition and cured product - Google Patents

Radical curable silicone composition and cured product Download PDF

Info

Publication number
JP2021001296A
JP2021001296A JP2019116660A JP2019116660A JP2021001296A JP 2021001296 A JP2021001296 A JP 2021001296A JP 2019116660 A JP2019116660 A JP 2019116660A JP 2019116660 A JP2019116660 A JP 2019116660A JP 2021001296 A JP2021001296 A JP 2021001296A
Authority
JP
Japan
Prior art keywords
group
curable silicone
silicone composition
carbon atoms
radical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019116660A
Other languages
Japanese (ja)
Other versions
JP7145125B2 (en
Inventor
愛里 朝倉
Airi Asakura
愛里 朝倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2019116660A priority Critical patent/JP7145125B2/en
Priority to KR1020200074740A priority patent/KR20210000276A/en
Priority to TW109121288A priority patent/TW202115187A/en
Priority to CN202010591585.4A priority patent/CN112126232B/en
Publication of JP2021001296A publication Critical patent/JP2021001296A/en
Application granted granted Critical
Publication of JP7145125B2 publication Critical patent/JP7145125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/04Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F230/08Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3009Sulfides
    • C08K2003/3036Sulfides of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/10Transparent films; Clear coatings; Transparent materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Polymerisation Methods In General (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicon Polymers (AREA)

Abstract

To provide a radical curable silicone composition that has quantum dots dispersed therein and can be cured at low temperature.SOLUTION: A radical curable silicone composition contains (A) a linear organopolysiloxane represented by the formula (1) and (B) a polymerization initiator. (R1R22SiO1/2)a(R3R22SiO1/2)b(R22SiO2/2)c(R3R2SiO2/2)d(R1R2SiO2/2)e (1), where R1 is a C2-8 alkenyl group, R2 is a C1-8 alkyl group or a C6-12 aryl group, 10 mol% or more of all the R2 is aryl groups, R3 is a group represented by the formula (2). a-e each represent a number of 0 or more and satisfying a+b>0, b+d>0, a+b+c+d+e=1. In the formula (2), R4 is a C1-8 bivalent hydrocarbon group, R5 is an H atom, a C1-8 alkyl group, or a C6-12 aryl group. * is a bond to a silicon atom).SELECTED DRAWING: None

Description

本発明は、ラジカル硬化型シリコーン組成物及びその硬化物に関する。 The present invention relates to a radical curable silicone composition and a cured product thereof.

近年、パソコンやテレビ、スマートフォンなどの普及に伴い、画像表示装置の需要が拡大している。このような画像表示装置のバックライトには、LED(発光ダイオード)が幅広く用いられている。LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するためその発光色は限られている。そのため、LEDを用いて液晶ディスプレイのバックライトや一般照明向けの白色光を得るためには、LEDチップ上にそれぞれのチップに適合した蛍光体を配置し、発光波長を変換する必要がある。具体的には青色発光するLEDチップ上に黄色蛍光体を設置する方法、青色発光するLEDチップ上に赤および緑の蛍光体を設置する方法が現在最も広く採用されている。 In recent years, with the spread of personal computers, televisions, smartphones, etc., the demand for image display devices has been increasing. LEDs (light emitting diodes) are widely used as backlights of such image display devices. Since the emission spectrum of an LED depends on the semiconductor material forming the LED chip, its emission color is limited. Therefore, in order to obtain white light for a backlight of a liquid crystal display or general lighting using an LED, it is necessary to arrange a phosphor suitable for each chip on the LED chip and convert the emission wavelength. Specifically, the method of placing a yellow phosphor on an LED chip that emits blue light and the method of placing red and green phosphors on an LED chip that emits blue light are currently most widely adopted.

ディスプレイのバックライトにLEDを用いる場合、蛍光体の発光スペクトルの半値幅が狭まるにつれて、ディスプレイの色再現域が広がる。しかしながら蛍光体の発光スペクトルの半値幅は比較的広い。このため、黄色蛍光体を用いたLEDをディスプレイのバックライトとした場合、色再現域が十分ではない。 When an LED is used as the backlight of a display, the color reproduction range of the display widens as the half width of the emission spectrum of the phosphor narrows. However, the half width of the emission spectrum of the phosphor is relatively wide. Therefore, when an LED using a yellow phosphor is used as a backlight of a display, the color reproduction range is not sufficient.

近年、波長変換材料として量子ドットが注目されている。量子ドットは粒径によってバンドギャップを調節することが可能であるため、粒径を揃えることで発光スペクトルの半値幅を狭め、分布色純度の優れた光を発生させることができるためバックライト用途に好適である。 In recent years, quantum dots have been attracting attention as a wavelength conversion material. Since the bandgap of quantum dots can be adjusted according to the particle size, the half-value width of the emission spectrum can be narrowed by making the particle size uniform, and light with excellent distributed color purity can be generated, making it suitable for backlight applications. Suitable.

このような量子ドットはマトリックス材料に分散させ封止材やフィルターとして用いられている。マトリックスとしては、アクリル樹脂やエポキシ樹脂などが用いられているが、このような樹脂は耐久性や耐クラック性が課題となっている(特許文献1、2)。
また、量子ドット自体の耐熱性が低いため、低温で硬化可能なマトリックス材料が必要とされている。さらに量子ドットがマトリックス中で凝集することなく、均一に分散することも必要である。
Such quantum dots are dispersed in a matrix material and used as a sealing material or a filter. Acrylic resins, epoxy resins, and the like are used as the matrix, and such resins have problems of durability and crack resistance (Patent Documents 1 and 2).
Further, since the heat resistance of the quantum dots themselves is low, a matrix material that can be cured at a low temperature is required. It is also necessary for the quantum dots to be uniformly dispersed in the matrix without agglomeration.

特開2018−13724号公報Japanese Unexamined Patent Publication No. 2018-13724 特表2016−536641号公報Special Table 2016-536641

本発明は、上記事情に鑑みなされたものであって、量子ドットが分散し、かつ低温で硬化可能なラジカル硬化型シリコーン組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a radical-curable silicone composition in which quantum dots are dispersed and curable at a low temperature.

上記課題を解決するために、本発明では、
(A)下記式(1)で表される直鎖状のオルガノポリシロキサン
(R SiO1/2(R SiO1/2(R SiO2/2(RSiO2/2(RSiO2/2 (1)
(式中、Rは炭素原子数2〜8のアルケニル基、Rはそれぞれ独立に置換あるいは非置換の炭素原子数1〜8のアルキル基、又は、置換あるいは非置換の炭素原子数6〜12のアリール基であり、但し、全Rの少なくとも10mol%が前記アリール基であり、Rは下記式(2)で表される基である。a、b、c、d、eはそれぞれ、a≧0、b≧0、c≧0、d≧0、e≧0であり、かつ、a+b>0、b+d>0、a+b+c+d+e=1を満たす数である。)

Figure 2021001296
(式中、Rはそれぞれ独立に置換または非置換の炭素原子数1〜8の二価炭化水素基であり、Rは水素原子、置換または非置換の炭素原子数1〜8のアルキル基、置換または非置換の炭素原子数6〜12のアリール基のいずれかであり、*は隣接ケイ素原子との結合を表す。)、
及び、
(B)重合開始剤
を含有するものであることを特徴とするラジカル硬化型シリコーン組成物を提供する。 In order to solve the above problems, the present invention
(A) Linear organopolysiloxane represented by the following formula (1) (R 1 R 2 2 SiO 1/2 ) a (R 3 R 2 2 SiO 1/2 ) b (R 2 2 SiO 2 / 2 ) c (R 3 R 2 SiO 2/2 ) d (R 1 R 2 SiO 2/2 ) e (1)
(In the formula, R 1 is an alkenyl group having 2 to 8 carbon atoms, R 2 is an alkyl group having 1 to 8 carbon atoms independently substituted or unsubstituted, or 6 to 8 substituted or unsubstituted carbon atoms. There are 12 aryl groups, except that at least 10 mol% of the total R 2 is the aryl group, R 3 is a group represented by the following formula (2), and a, b, c, d and e are each. , A ≧ 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, and a + b> 0, b + d> 0, a + b + c + d + e = 1.
Figure 2021001296
(In the formula, R 4 is an independently substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is a hydrogen atom, substituted or unsubstituted alkyl group having 1 to 8 carbon atoms. , Either a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and * represents a bond with an adjacent silicon atom.),
as well as,
(B) Provided is a radical curable silicone composition characterized by containing a polymerization initiator.

本発明のラジカル硬化型シリコーン組成物であれば、量子ドットを良好に分散させることができ、また、ラジカル硬化により低温での硬化が可能である。 The radical-curable silicone composition of the present invention can disperse quantum dots well, and can be cured at a low temperature by radical curing.

本発明のラジカル硬化型シリコーン組成物は、さらに(C)量子ドットを含有するものであることが好ましい。 The radical-curable silicone composition of the present invention preferably further contains (C) quantum dots.

このようなラジカル硬化型シリコーン組成物であれば、量子ドットがマトリックス中で凝集することなく、均一に分散するため、優れた波長変換材料を得ることができる。 With such a radical-curable silicone composition, the quantum dots are uniformly dispersed without agglutination in the matrix, so that an excellent wavelength conversion material can be obtained.

また、本発明のラジカル硬化型シリコーン組成物は、前記Rはそれぞれ独立にメチル基又はフェニル基であることがより好ましい。 Further, in the radical curable silicone composition of the present invention, it is more preferable that each of the R 2 is independently a methyl group or a phenyl group.

このようなRを有する直鎖状オルガノポリシロキサン((A)成分)は、工業的に入手が容易である。 Such a linear organopolysiloxane (component (A)) having R 2 is industrially easily available.

本発明のラジカル硬化型シリコーン組成物は、前記重合開始剤が、有機過酸化物、又は、光重合開始剤であることが好ましい。 In the radical curable silicone composition of the present invention, the polymerization initiator is preferably an organic peroxide or a photopolymerization initiator.

このような重合開始剤は、本発明の組成物をより効果的に硬化させることができる。 Such a polymerization initiator can cure the composition of the present invention more effectively.

この場合、前記有機過酸化物が、10時間半減期温度50〜150℃のものであることがより好ましい。 In this case, it is more preferable that the organic peroxide has a 10-hour half-life temperature of 50 to 150 ° C.

このような有機過酸化物であれば、組成物の保存安定性および硬化性の制御性に優れるとともに、さらに(C)量子ドットを含有するものである場合は、低温で硬化可能であるため、量子ドットに及ぼす熱的影響を抑えることができる。 Such an organic peroxide is excellent in storage stability and curability controllability of the composition, and when it contains (C) quantum dots, it can be cured at a low temperature. The thermal effect on the quantum dots can be suppressed.

また、本発明は、上記ラジカル硬化型シリコーン組成物の硬化物であることを特徴とするシリコーン硬化物を提供する。 The present invention also provides a cured silicone composition, which is a cured product of the radical curable silicone composition.

本発明のシリコーン硬化物は、優れた透明性と良好な硬度を備えているため、ディスプレイのバックライトや照明等の用途に有用である。また、前記硬化物がさらに(C)量子ドットを含有するものである場合は、量子ドットがマトリックス中で凝集することなく、均一に分散するため、波長変換材料として優れており、封止材やフィルター等の用途に有用である。 Since the cured silicone product of the present invention has excellent transparency and good hardness, it is useful for applications such as display backlights and lighting. Further, when the cured product further contains (C) quantum dots, the quantum dots are uniformly dispersed without agglutination in the matrix, so that they are excellent as a wavelength conversion material, and are excellent as a sealing material or a sealing material. It is useful for applications such as filters.

本発明のラジカル硬化型シリコーン組成物は、量子ドットの分散性が良好であり、また、ラジカル硬化により低温での硬化が可能であるため、ディスプレイのバックライトや照明等の用途に有用である。 The radical-curable silicone composition of the present invention has good dispersibility of quantum dots and can be cured at a low temperature by radical curing, so that it is useful for applications such as display backlights and lighting.

本発明者らは、上記目的を達成するために鋭意検討した結果、後述する(A)及び(B成分を含むシリコーン樹脂組成物であれば、上記課題を解決できることを見出し、本発明を完成させた。 As a result of diligent studies to achieve the above object, the present inventors have found that the above problems can be solved if the silicone resin composition containing the components (A) and (B) described later is used, and complete the present invention. It was.

即ち、本発明は、ラジカル硬化型シリコーン組成物であって、
(A)下記式(1)で表される直鎖状のオルガノポリシロキサン
(R SiO1/2(R SiO1/2(R SiO2/2(RSiO2/2(RSiO2/2 (1)
(式中、Rは炭素原子数2〜8のアルケニル基、Rはそれぞれ独立に置換あるいは非置換の炭素原子数1〜8のアルキル基、又は、置換あるいは非置換の炭素原子数6〜12のアリール基であり、但し、全Rの少なくとも10mol%が前記アリール基であり、Rは下記式(2)で表される基である。a、b、c、d、eはそれぞれ、a≧0、b≧0、c≧0、d≧0、e≧0であり、かつ、a+b>0、b+d>0、a+b+c+d+e=1を満たす数である。)

Figure 2021001296
(式中、Rはそれぞれ独立に置換または非置換の炭素原子数1〜8の二価炭化水素基であり、Rは水素原子、置換または非置換の炭素原子数1〜8のアルキル基、置換または非置換の炭素原子数6〜12のアリール基のいずれかであり、*は隣接ケイ素原子との結合を表す。)、
及び、
(B)重合開始剤
を含有するものであることを特徴とするラジカル硬化型シリコーン組成物である。 That is, the present invention is a radical curable silicone composition.
(A) Linear organopolysiloxane represented by the following formula (1) (R 1 R 2 2 SiO 1/2 ) a (R 3 R 2 2 SiO 1/2 ) b (R 2 2 SiO 2 / 2 ) c (R 3 R 2 SiO 2/2 ) d (R 1 R 2 SiO 2/2 ) e (1)
(In the formula, R 1 is an alkenyl group having 2 to 8 carbon atoms, R 2 is an alkyl group having 1 to 8 carbon atoms independently substituted or unsubstituted, or 6 to 8 substituted or unsubstituted carbon atoms. There are 12 aryl groups, except that at least 10 mol% of the total R 2 is the aryl group, R 3 is a group represented by the following formula (2), and a, b, c, d and e are each. , A ≧ 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, and a + b> 0, b + d> 0, a + b + c + d + e = 1.
Figure 2021001296
(In the formula, R 4 is an independently substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is a hydrogen atom, substituted or unsubstituted alkyl group having 1 to 8 carbon atoms. , Either a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and * represents a bond with an adjacent silicon atom.),
as well as,
(B) A radical-curable silicone composition containing a polymerization initiator.

以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

[ラジカル硬化型シリコーン組成物]
本発明のラジカル硬化型シリコーン組成物は、後述する(A)および(B)成分を必須成分として含有するものである。この組成物は、前記必須成分以外に必要に応じて任意の成分を更に含むことができる。
以下、各成分について詳細に説明する。
[Radical curable silicone composition]
The radical curable silicone composition of the present invention contains the components (A) and (B) described later as essential components. This composition may further contain any component other than the essential component, if necessary.
Hereinafter, each component will be described in detail.

[(A)成分]
(A)成分は下記式(1)で表される直鎖状のオルガノポリシロキサンである。
(R SiO1/2(R SiO1/2(R SiO2/2(RSiO2/2(RSiO2/2 (1)
(式中、Rは炭素原子数2〜8のアルケニル基、Rはそれぞれ独立に置換あるいは非置換の炭素原子数1〜8のアルキル基、又は、置換あるいは非置換の炭素原子数6〜12のアリール基であり、但し、全Rの少なくとも10mol%が前記アリール基であり、Rは下記式(2)で表される基である。a、b、c、d、eはそれぞれ、a≧0、b≧0、c≧0、d≧0、e≧0であり、かつ、a+b>0、b+d>0、a+b+c+d+e=1を満たす数である。)

Figure 2021001296
(式中、Rはそれぞれ独立に置換または非置換の炭素原子数1〜8の二価炭化水素基であり、Rは水素原子、置換または非置換の炭素原子数1〜8のアルキル基、置換または非置換の炭素原子数6〜12のアリール基のいずれかであり、*は隣接ケイ素原子との結合を表す。)、 [(A) component]
The component (A) is a linear organopolysiloxane represented by the following formula (1).
(R 1 R 2 2 SiO 1/2 ) a (R 3 R 2 2 SiO 1/2 ) b (R 2 2 SiO 2/2 ) c (R 3 R 2 SiO 2/2 ) d (R 1 R 2) SiO 2/2 ) e (1)
(In the formula, R 1 is an alkenyl group having 2 to 8 carbon atoms, R 2 is an alkyl group having 1 to 8 carbon atoms independently substituted or unsubstituted, or 6 to 8 substituted or unsubstituted carbon atoms. There are 12 aryl groups, except that at least 10 mol% of the total R 2 is the aryl group, R 3 is a group represented by the following formula (2), and a, b, c, d and e are each. , A ≧ 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, and a + b> 0, b + d> 0, a + b + c + d + e = 1.
Figure 2021001296
(In the formula, R 4 is an independently substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is a hydrogen atom, substituted or unsubstituted alkyl group having 1 to 8 carbon atoms. , Either a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and * represents a bond with an adjacent silicon atom.),

上記式(1)において、Rで表される炭素原子数2〜8のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基等が挙げられ、特にビニル基が好ましい。これら基の中の水素原子はさらに任意の置換基(ハロゲン原子等)で置換されていてもよい。 In the above formula (1), examples of the alkenyl group having 2 to 8 carbon atoms represented by R 1 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, an octenyl group and the like, and in particular, a vinyl group. Is preferable. The hydrogen atom in these groups may be further substituted with an arbitrary substituent (halogen atom or the like).

で表される炭素原子数1〜8のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基、オクチル基等が挙げられ、特にメチル基が好ましい。また、炭素原子数6〜12のアリール基としてはフェニル基、ナフチル基等が挙げられ、特にフェニル基が好ましい。これら基の中の水素原子はさらに任意の置換基(ハロゲン原子等)で置換されていてもよい。
なお、全Rの少なくとも10mol%以上は、置換または非置換の炭素原子数6〜12のアリール基であり、好ましくは15mol%以上である。アリール基が全Rの10mol%未満であると、量子ドットの分散性が劣るものとなり、組成物及びその硬化物の透明性が損なわれるおそれがある。
Examples of the alkyl group having 1 to 8 carbon atoms represented by R 2, a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group and the like, especially Methyl groups are preferred. Examples of the aryl group having 6 to 12 carbon atoms include a phenyl group and a naphthyl group, and a phenyl group is particularly preferable. The hydrogen atom in these groups may be further substituted with an arbitrary substituent (halogen atom or the like).
At least 10 mol% or more of the total R 2 is a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, preferably 15 mol% or more. If the aryl group is less than 10 mol% of the total R 2 , the dispersibility of the quantum dots becomes poor, and the transparency of the composition and its cured product may be impaired.

は、それぞれ独立にメチル基又はフェニル基であることが特に好ましい。このようなRを有する直鎖状オルガノポリシロキサン((A)成分)は、工業的に入手が容易である。 It is particularly preferable that R 2 is independently a methyl group or a phenyl group. Such a linear organopolysiloxane (component (A)) having R 2 is industrially easily available.

で表される置換または非置換の炭素原子数1〜8の二価炭化水素基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等の炭素原子数1〜8の直鎖、分岐または環状のアルキレン基で、好ましくは炭素原子数1〜4のものであり、特に、メチレン基、エチレン基、プロピレン基、トリメチレン基が好ましい。これら基の中の水素原子はさらに任意の置換基(ハロゲン原子等)で置換されていてもよい。 The divalent hydrocarbon radical of a substituted or unsubstituted 1-8 carbon atoms represented by R 4, a methylene group, an ethylene group, a propylene group, a trimethylene group, a pentamethylene group, hexamethylene group, heptamethylene group, A linear, branched or cyclic alkylene group having 1 to 8 carbon atoms such as an octamethylene group, preferably one having 1 to 4 carbon atoms, particularly a methylene group, an ethylene group, a propylene group and a trimethylene group. preferable. The hydrogen atom in these groups may be further substituted with an arbitrary substituent (halogen atom or the like).

は水素原子、置換または非置換の炭素原子数1〜8のアルキル基、置換または非置換の炭素原子数6〜12のアリール基のいずれかであり、水素原子又はメチル基であることが好ましい。 R 5 is any of a hydrogen atom, an alkyl group having 1 to 8 substituted or unsubstituted carbon atoms, and an aryl group having 6 to 12 substituted or unsubstituted carbon atoms, and may be a hydrogen atom or a methyl group. preferable.

上記式(1)で表される直鎖状のオルガノポリシロキサンは、(R SiO1/2)単位(「a単位」ともいう。以下同様。)、(R SiO1/2)単位(b単位)、(R SiO2/2)単位(c単位)、(RSiO2/2)単位(d単位)、(RSiO2/2)単位(e単位)から構成され、各単位の構成比率a、b、c、d、eはそれぞれ、a≧0、b≧0、c≧0、d≧0、e≧0であり、かつ、a+b>0、b+d>0、a+b+c+d+e=1を満たす数である。上記直鎖状オルガノポリシロキサンは、b単位とd単位のいずれかを必須単位として含んでおり、R基を分子鎖末端と分子鎖非末端部分のどちらか一方のみ、又は両方に有する。(A)成分は、ラジカル架橋しやすいR基が存在することにより、低温でのラジカル硬化が可能であり、ラジカル架橋によって、硬化物の硬度が向上する。これに加えて、本発明のラジカル硬化型シリコーン組成物は、アリール基が全Rの10mol%以上であり、量子ドットがマトリックス中で凝集することなく、均一に分散するため、波長変換材料として特に有用である。 The linear organopolysiloxane represented by the above formula (1) is in units of (R 1 R 2 2 SiO 1/2 ) (also referred to as “a unit”; the same applies hereinafter), (R 3 R 2 2 SiO). 1/2) units (b units), (R 2 2 SiO 2/2 ) units (c unit), (R 3 R 2 SiO 2/2) units (d units), (R 1 R 2 SiO 2/2 ) Units (e units), and the constituent ratios a, b, c, d, and e of each unit are a ≧ 0, b ≧ 0, c ≧ 0, d ≧ 0, and e ≧ 0, respectively. , A + b> 0, b + d> 0, a + b + c + d + e = 1. It said linear organopolysiloxane, one of the b units and d units contains as an essential unit, an R 3 group either end of the molecular chain and the molecular chain non-end portion only, or with both. The component (A) can be radically cured at a low temperature due to the presence of 3 R groups that are easily radically crosslinked, and the hardness of the cured product is improved by the radical crosslinking. In addition to this, the radical-curable silicone composition of the present invention has an aryl group of 10 mol% or more of the total R 2 , and quantum dots are uniformly dispersed in the matrix without agglomeration, so that it can be used as a wavelength conversion material. Especially useful.

(A)成分の好適な例を以下に示すが、これらに限定されるものではない。なお、式中、Meはメチル基を表し、Phはフェニル基を表す(以下同様)。

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は任意であり、*は隣接ケイ素原子との結合を表す。)
Figure 2021001296
(式中、括弧内のシロキサン単位の配列は任意である。)
Figure 2021001296
(式中、括弧内のシロキサン単位の配列は任意である。)
Figure 2021001296
Suitable examples of the component (A) are shown below, but are not limited thereto. In the formula, Me represents a methyl group and Ph represents a phenyl group (the same applies hereinafter).
Figure 2021001296
(In the formula, the arrangement of the siloxane unit in parentheses is arbitrary, and * represents the bond with the adjacent silicon atom.)
Figure 2021001296
(In the formula, the arrangement of siloxane units in parentheses is arbitrary.)
Figure 2021001296
(In the formula, the arrangement of siloxane units in parentheses is arbitrary.)
Figure 2021001296

(A)成分は、1種単独で用いても2種以上を併用してもよい。 The component (A) may be used alone or in combination of two or more.

(A)成分の粘度は10〜100,000,000mPa・sであることが好ましく、特に、200〜10,000mPs・sの範囲のオイル状であることが好ましい。なお、以下において特に断らない限り、粘度は25℃における回転粘度計による測定値である。 The viscosity of the component (A) is preferably 10 to 100,000,000 mPa · s, and particularly preferably oily in the range of 200 to 10,000 mPs · s. Unless otherwise specified below, the viscosity is a value measured by a rotational viscometer at 25 ° C.

[(B)成分]
(B)成分は(A)成分の重合性官能基を重合させる重合開始剤であり、(B)成分としては、熱によりラジカルを発生させる有機過酸化物、もしくは紫外線等の光によりラジカルを発生させる光重合開始剤を用いることができる。
[(B) component]
The component (B) is a polymerization initiator that polymerizes the polymerizable functional group of the component (A), and the component (B) is an organic peroxide that generates radicals by heat or radicals by light such as ultraviolet rays. A photopolymerization initiator to be used can be used.

有機過酸化物としては、組成物の保存安定性および硬化性の制御の点、ならびに量子ドットの耐熱温度の点から、10時間半減期温度が50〜150℃の有機化過酸化物が好ましく、より好ましくは60〜110℃の有機過酸化物である。 As the organic peroxide, an organic peroxide having a 10-hour half-life temperature of 50 to 150 ° C. is preferable from the viewpoint of controlling the storage stability and curability of the composition and the heat-resistant temperature of the quantum dots. More preferably, it is an organic peroxide at 60 to 110 ° C.

有機過酸化物の具体例としては、ベンゾイルパーオキサイド、t−ブチルパーベンゾエート、o−メチルベンゾイルパーオキサイド、p−メチルベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、1,1−ビス(t−ブチルパーオキシ)−3,3,5−トリメチルシクロヘキサン、1,1−ジ−テトラブチルパーオキシ−シクロヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン、1,6−ビス(p−トルオイルパーオキシカルボニルオキシ)ヘキサン、ジ(4−メチルベンゾイルパーオキシ)ヘキサメチレンビスカーボネート、2,5−ジメトキシ−2,5―ジ(2−エチルヘキサノイルパーオキシ)ヘキサン、2,5−ジメチル−2,5―ジ(2−エチルヘキサノイルパーオキシ)ヘキサン等が挙げられる。 Specific examples of the organic peroxide include benzoyl peroxide, t-butyl perbenzoate, o-methylbenzoyl peroxide, p-methylbenzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 1,1 -Bis (t-butylperoxy) -3,3,5-trimethylcyclohexane, 1,1-di-tetrabutylperoxy-cyclohexane, 2,5-dimethyl-2,5-di (t-butylperoxy) Hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) hexin, 1,6-bis (p-toroil peroxycarbonyloxy) hexane, di (4-methylbenzoylperoxy) hexamethylene Examples thereof include biscarbonate, 2,5-dimethoxy-2,5-di (2-ethylhexanoylperoxy) hexane, and 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane. ..

また、有機過酸化物は商業的にも入手でき、例えば、日油株式会社から入手することができる。具体的には、パーブチルNHP(50.6)、パーヘキシルPV(53.2)、パーブチルPV(54.6)、パーロイル355(59.4)、パーロイルL(61.6)、パーオクタO(65.3)、パーロイルSA(65.9)、パーヘキサ25O(66.2)、パーヘキシルO(69.9)、ナイパ−PMB(70.6)、パーブチルO(72.1)、ナイパーBMT(73.1)、ナイパーBW(73.6)、パーヘキサMC(83.2)、パーヘキサTMH(86.7)、パーヘキサHC(87.1)、パーヘキサC(90.7)、パーテトラA(94.7)、パーヘキシルI(95.0)、パーブチルMA(96.1)、パーブチル355(97.1)、パーブチルL(98.3)、パーブチルI(98.7)、パーブチルE(99.0)、パーヘキシルZ(99.4)、パーヘキサ25Z(99.7)、パーブチルA(101.9)、パーヘキサ22(103.1)、パーブチルZ(104.3)、パーヘキサV(104.5)、パーブチルP(119.2)、パークミルD(116.4)、パーヘキシルD(116.4)、パーヘキサ25B(117.9)、パーブチルC(119.5)、パーブチルD(123.7)、パーメンタH(128.0)、パーヘキシン25B(128.4)、パークミルP(145.1)などがある。なお、上記化合物名に続く括弧内の数字は、それぞれの10時間半減期温度(単位:℃)である。 Organic peroxides are also commercially available, for example from NOF CORPORATION. Specifically, Perbutyl NHP (50.6), Perhexyl PV (53.2), Perbutyl PV (54.6), Perloyl 355 (59.4), Perloyl L (61.6), Perocta O (65. 3), Perloyl SA (65.9), Perhexa 25O (66.2), Perhexyl O (69.9), Niper-PMB (70.6), Perbutyl O (72.1), Niper BMT (73.1) ), Niper BW (73.6), Perhexa MC (83.2), Perhexa TMH (86.7), Perhexa HC (87.1), Perhexa C (90.7), Pertetra A (94.7), Perhexyl I (95.0), Perbutyl MA (96.1), Perbutyl355 (97.1), Perbutyl L (98.3), Perbutyl I (98.7), Perbutyl E (99.0), Perhexyl Z (99.4), Perhexa 25Z (99.7), Perbutyl A (101.9), Perhexa 22 (103.1), Perbutyl Z (104.3), Perhexa V (104.5), Perbutyl P (119) .2), Park Mill D (116.4), Perhexyl D (116.4), Perhexa 25B (117.9), Perbutyl C (119.5), Perbutyl D (123.7), Permenta H (128.0) ), Perhexin 25B (128.4), Park Mill P (145.1) and the like. The numbers in parentheses following the compound name are the respective 10-hour half-life temperatures (unit: ° C.).

上記有機過酸化物のうち、(A)成分との相溶性および10時間半減期温度の観点から、好ましくは、2,5−ジメチル−2,5―ジ(2−エチルヘキサノイルパーオキシ)ヘキサン(日油(株)製、パーヘキサ(登録商標)25O、10時間半減期温度66.2℃)である。 Of the above organic peroxides, 2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane is preferable from the viewpoint of compatibility with the component (A) and a 10-hour half-life temperature. (Perhexa (registered trademark) 25O manufactured by Nichiyu Co., Ltd., 10-hour half-life temperature 66.2 ° C.).

これらの有機過酸化物は1種単独で又は2種以上を組み合わせて用いることができる。 These organic peroxides can be used alone or in combination of two or more.

有機過酸化物の添加量は、有効量でよいが、通常、(A)成分のオルガノポリシロキサン100質量部に対して0.01〜10質量部、より好ましくは0.1〜5質量部である。 The amount of the organic peroxide added may be an effective amount, but is usually 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). is there.

光重合開始剤の具体例としては、2,2−ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン(BASF製Irgacure 651)、1−ヒドロキシ−シクロヘキシル−フェニル−ケトン(BASF製Irgacure 184)、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF製Irgacure 1173)、2−ヒドロキシ−1−{4−[4−(2−ヒドロキシ−2−メチループロピオニル)−ベンジル]−フェニル}−2−メチループロパン−1−オン(BASF製Irgacure 127)、フェニルグリオキシリックアシッドメチルエステル(BASF製Irgacure MBF)、2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン(BASF製Irgacure 907)、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−1−ブタノン(BASF製Irgacure 369)、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF製Irgacure 819)、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(BASF製Irgacure TPO)等が挙げられる。 Specific examples of the photopolymerization initiator include 2,2-diethoxyacetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one (Irgacure 651 manufactured by BASF), and 1-hydroxy-cyclohexyl-phenyl-ketone. (BASF Irgacure 184), 2-Hydroxy-2-methyl-1-phenyl-propan-1-one (BASF Irgacure 1173), 2-Hydroxy-1- {4- [4- (2-Hydroxy-2-) Methyl-propionyl) -benzyl] -phenyl} -2-methyl-propan-1-one (BASF Irgacure 127), phenylglycoxylic acid methyl ester (BASF Irgacure MBF), 2-methyl-1- [4-] (Methylthio) Phenyl] -2-morpholinopropan-1-one (BASF Irgacure 907), 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butanone (BASF Irgacure 369) , Bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (Irgacure 819 manufactured by BASF), 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (Irgacure TPO manufactured by BASF) and the like.

上記光重合開始剤のうち、(A)成分との相溶性の観点から好ましくは、2,2−ジエトキシアセトフェノン、2−ヒドロキシ−2−メチル−1−フェニル−プロパン−1−オン(BASF製Irgacure 1173)、ビス(2,4,6−トリメチルベンゾイル)−フェニルフォスフィンオキサイド(BASF製Irgacure 819)、2,4,6−トリメチルベンゾイル−ジフェニル−フォスフィンオキサイド(BASF製Irgacure TPO)である。 Of the above photopolymerization initiators, 2,2-diethoxyacetophenone and 2-hydroxy-2-methyl-1-phenyl-propane-1-one (manufactured by BASF) are preferable from the viewpoint of compatibility with the component (A). Irgacure 1173), bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (BASF's Irgacure 819), 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide (BASF's Irgacure TPO).

これらの光重合開始剤は1種単独で又は2種以上を組み合わせて用いることができる。 These photopolymerization initiators can be used alone or in combination of two or more.

光重合開始剤の添加量は、硬化性の観点から、(A)成分100質量部に対して0.1〜10質量部が好ましい。 The amount of the photopolymerization initiator added is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A) from the viewpoint of curability.

[(C)成分]
本発明のラジカル硬化型シリコーン組成物は、さらに(C)成分として量子ドットを含有することができる。(C)成分(量子ドット)は、波長変換材として作用する。量子ドットは通常、平均粒径が20nm以下の粒子であり、光エネルギーを吸収・変換することができる。量子ドットはその粒径を変えることで光の色を調整することができる。粒径の大きさによりバンドギャップが決まるため、粒径を揃えることで色純度の高い光を得ることができる。さらに(C)成分として量子ドットを含有するラジカル硬化型シリコーン組成物は、量子ドットがマトリックス中で凝集することなく、均一に分散するため、優れた波長変換材料となる。
[Component (C)]
The radical curable silicone composition of the present invention can further contain quantum dots as the component (C). The component (C) (quantum dot) acts as a wavelength conversion material. Quantum dots are usually particles having an average particle size of 20 nm or less, and can absorb and convert light energy. The color of light can be adjusted by changing the particle size of quantum dots. Since the band gap is determined by the size of the particle size, it is possible to obtain light with high color purity by making the particle size uniform. Further, the radical curable silicone composition containing quantum dots as the component (C) is an excellent wavelength conversion material because the quantum dots are uniformly dispersed in the matrix without agglutination.

量子ドットは、可視光域で放射するのもとしては、CdSやZnSe、ZnSのようなシェルを有するCdSe系粒子が挙げられる。また、InP、CuInS、AgInS、Te、PbS、InAsなどのカドミウムフリーの量子ドットも用いることができる。本発明では従来のいかなる種類の量子ドットも使用することができる。 Examples of the quantum dots that radiate in the visible light region include CdSe-based particles having shells such as CdS, ZnSe, and ZnS. Cadmium-free quantum dots such as InP, CuInS 2 , AgInS 2 , Te, PbS, and InAs can also be used. Any conventional quantum dot can be used in the present invention.

(C)成分は1種単独で又は2種以上を組み合わせて用いることができる。また、有機溶剤等に予め分散したものを用いてもよい。 The component (C) can be used alone or in combination of two or more. Further, those previously dispersed in an organic solvent or the like may be used.

(C)成分の添加量は、(A)成分100質量部に対して0.01〜20質量部が好ましく、0.1〜10質量部がより好ましい。 The amount of the component (C) added is preferably 0.01 to 20 parts by mass, more preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of the component (A).

[その他の成分]
本発明のラジカル硬化型シリコーン組成物には、硬化物の着色、白濁、酸化劣化等の発生を抑えるために、2,6−ジ−t−ブチル−4−メチルフェノール等の公知の酸化防止剤を配合してもよい。また、光劣化に対する抵抗性を付与するために、ヒンダードアミン系安定剤等の光安定剤を配合してもよい。さらに、必要に応じて、強度を向上させるためにヒュームドシリカ等の無機質充填剤を配合してもよいし、染料、顔料、難燃剤等を配合してもよい。接着力を向上させるために接着助剤(シランカップリング剤など)を配合してもよい。
[Other ingredients]
The radical-curable silicone composition of the present invention contains a known antioxidant such as 2,6-di-t-butyl-4-methylphenol in order to suppress the occurrence of coloring, cloudiness, oxidative deterioration, etc. of the cured product. May be blended. Further, in order to impart resistance to photodegradation, a light stabilizer such as a hindered amine stabilizer may be added. Further, if necessary, an inorganic filler such as fumed silica may be blended in order to improve the strength, or a dye, a pigment, a flame retardant or the like may be blended. An adhesive aid (such as a silane coupling agent) may be added to improve the adhesive strength.

[硬化方法および硬化条件]
本発明のラジカル硬化型シリコーン組成物のうち、有機過酸化物を含有する熱ラジカル硬化タイプの硬化方法および硬化条件としては、公知の方法および条件を採用することができる。一例を挙げると、窒素雰囲気下、70〜150℃において10分〜5時間の条件で硬化させることができる。重合開始剤が、10時間半減期温度50〜150℃の有機過酸化物である場合は、低温硬化が可能である。
また、光重合開始剤を含有する光硬化タイプのラジカル硬化型シリコーン組成物については、紫外線等の光を照射することで硬化させることができる。紫外線の光源として、例えば、UVLEDランプ、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアークランプ、及びキセノンランプ等が挙げられる。紫外線の照射量(積算光量)は、例えば、本発明の組成物を2.0mm程度の厚みに成形したシートに対して、好ましくは1〜10,000mJ/cmであり、より好ましくは10〜9,000mJ/cmである。即ち、照度100mW/cmの紫外線を用いた場合、0.01〜100秒程度紫外線を照射することで硬化させることができる。
[Curing method and conditions]
Among the radical-curable silicone compositions of the present invention, known methods and conditions can be adopted as the curing method and curing conditions of the thermal radical curing type containing an organic peroxide. As an example, it can be cured in a nitrogen atmosphere at 70 to 150 ° C. for 10 minutes to 5 hours. When the polymerization initiator is an organic peroxide having a 10-hour half-life temperature of 50 to 150 ° C., low-temperature curing is possible.
Further, the photocurable type radical curable silicone composition containing a photopolymerization initiator can be cured by irradiating with light such as ultraviolet rays. Examples of the light source of ultraviolet rays include UV LED lamps, high-pressure mercury lamps, ultra-high pressure mercury lamps, metal halide lamps, carbon arc lamps, xenon lamps and the like. The irradiation amount (integrated light amount) of ultraviolet rays is preferably 1 to 10,000 mJ / cm 2 and more preferably 10 to 10 mJ / cm 2 with respect to a sheet obtained by molding the composition of the present invention into a thickness of about 2.0 mm. It is 9,000 mJ / cm 2 . That is, when ultraviolet rays having an illuminance of 100 mW / cm 2 are used, they can be cured by irradiating the ultraviolet rays for about 0.01 to 100 seconds.

以下、実施例を用いて本発明を具体的に説明するが、これらの実施例は本発明を何ら制限するものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but these Examples do not limit the present invention in any way.

[合成例1]
撹拌装置、冷却管、滴下ロートおよび温度計を備えた2Lの4つ口フラスコに、下記式(3)で表されるオルガノポリシロキサン1,000gをトルエン500gに溶解させ、オイルバスを用いて85℃に加熱した。これに六塩化白金1,3−ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を1g添加し、撹拌しながら下記式(4)で表されるオルガノハイドロジェンジシロキサン44.3gを滴下した。滴下終了後、95℃で2時間撹拌した後、25℃まで冷却した。その後、活性炭素を5g添加し室温で1時間撹拌したのち、ろ過により除去した。トルエンを減圧留去して、無色透明なオイル状の反応生成物(A−1)(25℃における粘度:6180mPa・s)842.3gを得た。

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定である。)
Figure 2021001296
[Synthesis Example 1]
In a 2 L 4-neck flask equipped with a stirrer, a cooling tube, a dropping funnel and a thermometer, 1,000 g of organopolysiloxane represented by the following formula (3) is dissolved in 500 g of toluene, and 85 using an oil bath. Heated to ° C. To this, 1 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum) was added, and the organohydrogendisiloxane 44 represented by the following formula (4) was stirred while stirring. .3 g was added dropwise. After completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours and then cooled to 25 ° C. Then, 5 g of activated carbon was added, the mixture was stirred at room temperature for 1 hour, and then removed by filtration. Toluene was distilled off under reduced pressure to obtain 842.3 g of a colorless and transparent oily reaction product (A-1) (viscosity at 25 ° C.: 6180 mPa · s).
Figure 2021001296
(In the formula, the sequence of siloxane units in parentheses is indefinite.)
Figure 2021001296

[合成例2]
撹拌装置、冷却管、滴下ロートおよび温度計を備えた2Lの4つ口フラスコに、下記式(5)で表されるオルガノポリシロキサン1,000gをトルエン500gに溶解させ、オイルバスを用いて85℃に加熱した。これに六塩化白金1,3−ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を1g添加し、撹拌しながら前記式(4)で表されるオルガノハイドロジェンジシロキサン46.9gを滴下した。滴下終了後、95℃で2時間撹拌した後、25℃まで冷却した。その後、活性炭素を5g添加し室温で1時間撹拌したのち、ろ過により除去した。トルエンを減圧留去して、無色透明なオイル状の反応生成物(A−2)(25℃における粘度:4,000mPa・s)987.23gを得た。

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定である。) [Synthesis Example 2]
In a 2 L 4-neck flask equipped with a stirrer, a cooling tube, a dropping funnel and a thermometer, 1,000 g of organopolysiloxane represented by the following formula (5) is dissolved in 500 g of toluene, and 85 using an oil bath. Heated to ° C. To this, 1 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum) was added, and the organohydrogendisiloxane 46 represented by the above formula (4) was stirred with stirring. .9 g was added dropwise. After completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours and then cooled to 25 ° C. Then, 5 g of activated carbon was added, the mixture was stirred at room temperature for 1 hour, and then removed by filtration. Toluene was distilled off under reduced pressure to obtain 987.23 g of a colorless and transparent oily reaction product (A-2) (viscosity at 25 ° C.: 4,000 mPa · s).
Figure 2021001296
(In the formula, the sequence of siloxane units in parentheses is indefinite.)

[合成例3]
撹拌装置、冷却管、滴下ロートおよび温度計を備えた2Lの4つ口フラスコに、下記式(6)で表されるオルガノポリシロキサン200gをトルエン100gに溶解させ、オイルバスを用いて85℃に加熱した。これに六塩化白金1,3−ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を0.2g添加し、撹拌しながら前記式(4)で表されるオルガノハイドロジェンジシロキサン30.7gを滴下した。滴下終了後、95℃で2時間撹拌した後、25℃まで冷却した。その後、活性炭素を5g添加し室温で1時間撹拌したのち、ろ過により除去した。トルエンを減圧留去して、無色透明なオイル状の反応生成物(A−3)(25℃における粘度:2,400mPa・s)216.6gを得た。

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定である。) [Synthesis Example 3]
200 g of organopolysiloxane represented by the following formula (6) is dissolved in 100 g of toluene in a 2 L four-necked flask equipped with a stirrer, a cooling tube, a dropping funnel and a thermometer, and heated to 85 ° C. using an oil bath. It was heated. To this, 0.2 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum) was added, and the organohydrogenge represented by the above formula (4) was stirred with stirring. 30.7 g of siloxane was added dropwise. After completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours and then cooled to 25 ° C. Then, 5 g of activated carbon was added, the mixture was stirred at room temperature for 1 hour, and then removed by filtration. Toluene was distilled off under reduced pressure to obtain 216.6 g of a colorless and transparent oily reaction product (A-3) (viscosity at 25 ° C.: 2,400 mPa · s).
Figure 2021001296
(In the formula, the sequence of siloxane units in parentheses is indefinite.)

[比較合成例1]
撹拌装置、冷却管、滴下ロートおよび温度計を備えた2Lの4つ口フラスコに、下記式(7)で表されるオルガノポリシロキサン500gをトルエン250gに溶解させ、オイルバスを用いて85℃に加熱した。これに六塩化白金1,3−ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を0.1g添加し、撹拌しながら前記式(4)で表されるオルガノハイドロジェンジシロキサン7.8gを滴下した。滴下終了後、95℃で2時間撹拌した後、25℃まで冷却した。その後、活性炭素を2.5g添加し室温で1時間撹拌したのち、ろ過により除去した。トルエンを減圧留去して、無色透明なオイル状の反応生成物(A−4)(25℃における粘度:6,000mPa・s)485gを得た。

Figure 2021001296
[Comparative Synthesis Example 1]
In a 2 L 4-neck flask equipped with a stirrer, a cooling tube, a dropping funnel and a thermometer, 500 g of organopolysiloxane represented by the following formula (7) is dissolved in 250 g of toluene and heated to 85 ° C. using an oil bath. It was heated. To this, 0.1 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum) was added, and the organohydrogenge represented by the above formula (4) was stirred with stirring. 7.8 g of siloxane was added dropwise. After completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours and then cooled to 25 ° C. Then, 2.5 g of activated carbon was added, the mixture was stirred at room temperature for 1 hour, and then removed by filtration. Toluene was distilled off under reduced pressure to obtain 485 g of a colorless and transparent oily reaction product (A-4) (viscosity at 25 ° C.: 6,000 mPa · s).
Figure 2021001296

[比較合成例2]
撹拌装置、冷却管、滴下ロートおよび温度計を備えた2Lの4つ口フラスコに、下記式(8)で表されるオルガノポリシロキサン500gをトルエン250gに溶解させ、オイルバスを用いて85℃に加熱した。これに六塩化白金1,3−ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を0.1g添加し、撹拌しながら前記式(4)で表されるオルガノハイドロジェンジシロキサン7.8gを滴下した。滴下終了後、95℃で2時間撹拌した後、25℃まで冷却した。その後、活性炭素を2.5g添加し室温で1時間撹拌したのち、ろ過により除去した。トルエンを減圧留去して、無色透明なオイル状の反応生成物(A−5)(25℃における粘度:5,000mPa・s)480gを得た。

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定である。) [Comparative synthesis example 2]
500 g of organopolysiloxane represented by the following formula (8) is dissolved in 250 g of toluene in a 2 L 4-neck flask equipped with a stirrer, a cooling tube, a dropping funnel and a thermometer, and the temperature is adjusted to 85 ° C. using an oil bath. It was heated. To this, 0.1 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum) was added, and the organohydrogenge represented by the above formula (4) was stirred with stirring. 7.8 g of siloxane was added dropwise. After completion of the dropping, the mixture was stirred at 95 ° C. for 2 hours and then cooled to 25 ° C. Then, 2.5 g of activated carbon was added, the mixture was stirred at room temperature for 1 hour, and then removed by filtration. Toluene was distilled off under reduced pressure to obtain 480 g of a colorless and transparent oily reaction product (A-5) (viscosity at 25 ° C.: 5,000 mPa · s).
Figure 2021001296
(In the formula, the sequence of siloxane units in parentheses is indefinite.)

[実施例1〜6および比較例1〜6]
下記に示す(A−1)〜(A−6)成分と、(C)成分を表1及び表2の組成(表中の数値は質量部を表す)でそれぞれ混合し、減圧条件にて80℃でトルエンを留去した。その後、(B)成分を添加し均一に混合してラジカル硬化型シリコーン組成物を調製した。
[Examples 1 to 6 and Comparative Examples 1 to 6]
The components (A-1) to (A-6) shown below and the component (C) are mixed according to the compositions shown in Tables 1 and 2 (the numerical values in the table represent parts by mass), and 80 under reduced pressure conditions. Toluene was distilled off at ° C. Then, the component (B) was added and mixed uniformly to prepare a radical curable silicone composition.

(A)成分:
(A−1)合成例1で得られた下記式で表されるオルガノポリシロキサン

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定であり、アスタリスク(*)は隣接ケイ素原子との結合を表す。) (A) Ingredient:
(A-1) Organopolysiloxane represented by the following formula obtained in Synthesis Example 1
Figure 2021001296
(In the formula, the arrangement of the siloxane unit in parentheses is indefinite, and the asterisk (*) represents the bond with the adjacent silicon atom.)

(A−2)合成例2で得られた下記式で表されるオルガノポリシロキサン

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定である。) (A-2) Organopolysiloxane represented by the following formula obtained in Synthesis Example 2
Figure 2021001296
(In the formula, the sequence of siloxane units in parentheses is indefinite.)

(A−3)合成例3で得られた下記式で表されるオルガノポリシロキサン

Figure 2021001296
(式中、括弧内のシロキサン単位の配列は不定である。) (A-3) Organopolysiloxane represented by the following formula obtained in Synthesis Example 3
Figure 2021001296
(In the formula, the sequence of siloxane units in parentheses is indefinite.)

比較成分:
(A−4)比較合成例1で得られた下記式で表されるオルガノポリシロキサン

Figure 2021001296
(A−5)比較合成例2で得られた下記式で表されるオルガノポリシロキサン
Figure 2021001296
(A−6)上記式(3)で表されるオルガノポリシロキサン Comparative component:
(A-4) Organopolysiloxane represented by the following formula obtained in Comparative Synthesis Example 1
Figure 2021001296
(A-5) Organopolysiloxane represented by the following formula obtained in Comparative Synthesis Example 2
Figure 2021001296
(A-6) Organopolysiloxane represented by the above formula (3)

(B)成分:
(B−1)パーヘキサ(登録商標)25O(日油(株)製、10時間半減期温度66.2℃)
(B−2)Irgacure 1173(BASF製)
(B) Ingredient:
(B-1) Perhexa (registered trademark) 25O (manufactured by NOF CORPORATION, 10-hour half-life temperature 66.2 ° C)
(B-2) Irgacure 1173 (manufactured by BASF)

(C)成分:
(C−1)InP/ZnSコア・シェル型量子ドット(SIGMA−ALDRICH社製、5mg/mLトルエン溶液(量子ドット含有率0.6質量%)、発光ピーク530nm)
(C) component:
(C-1) InP / ZnS core-shell type quantum dots (manufactured by SIGMA-ALDRICH, 5 mg / mL toluene solution (quantum dot content: 0.6% by mass), emission peak: 530 nm)

Figure 2021001296
Figure 2021001296

Figure 2021001296
Figure 2021001296

実施例および比較例で得られた組成物を以下の方法で評価し、結果を表3及び表4に示した。 The compositions obtained in Examples and Comparative Examples were evaluated by the following methods, and the results are shown in Tables 3 and 4.

[外観]
各組成物、及び、組成物を下記硬化条件で硬化させた硬化物について、それぞれ外観を目視にて観察し、透明性を維持している場合は○、白濁の場合は×として評価した。
[appearance]
The appearance of each composition and the cured product obtained by curing the composition under the following curing conditions were visually observed and evaluated as ◯ when the transparency was maintained and × when the composition was cloudy.

[硬さ]
・熱硬化型
組成物を窒素雰囲気下で80℃の熱風循環式オーブンで2時間加熱することにより作製した厚さ2mmの硬化物の硬度について、23℃におけるタイプA硬度の測定を行った。
・紫外線硬化型
オルガノポリシロキサン組成物をアイグラフィックス(株)製アイUV電子制御装置(型式UBX0601−01)を用い、窒素雰囲気下、25℃で、波長365nmの紫外光での照射量が8,000mJ/cm2となるように紫外線を照射し、硬化させた2mm厚の硬化物の硬度について、23℃におけるタイプA硬度の測定を行った。
[Hardness]
-The hardness of the cured product having a thickness of 2 mm prepared by heating the thermosetting composition in a hot air circulation oven at 80 ° C. for 2 hours in a nitrogen atmosphere was measured for type A hardness at 23 ° C.
-The ultraviolet curable organopolysiloxane composition was irradiated with ultraviolet light having a wavelength of 365 nm at 25 ° C. in a nitrogen atmosphere using an eye UV electronic controller (model UBX0601-01) manufactured by Eye Graphics Co., Ltd. The type A hardness at 23 ° C. was measured for the hardness of the cured product having a thickness of 2 mm, which was cured by irradiating ultraviolet rays so as to be 000 mJ / cm 2 .

Figure 2021001296
Figure 2021001296

Figure 2021001296
Figure 2021001296

表3に示されるように、本発明のラジカル硬化型シリコーン組成物を用いた実施例1〜6では、量子ドットの分散性に優れ、硬化後においても透明性を維持していた。一方、表4に示されるように、本発明の(A)成分に代えてフェニル基(アリール基)を有しない又は含有量が少ないオルガノポリシロキサンを用いた比較例1〜4では、量子ドットの凝集による白濁が発生した。上記式(2)で表される基(R)を有しないオルガノポリシロキサンを用いた比較例5及び6では、上記硬化条件において硬化が起こらなかった。 As shown in Table 3, in Examples 1 to 6 using the radically curable silicone composition of the present invention, the dispersibility of the quantum dots was excellent, and the transparency was maintained even after curing. On the other hand, as shown in Table 4, in Comparative Examples 1 to 4 in which an organopolysiloxane having no phenyl group (aryl group) or a low content was used instead of the component (A) of the present invention, the quantum dots White turbidity occurred due to aggregation. In Comparative Examples 5 and 6 using the organopolysiloxane having no group (R 3 ) represented by the above formula (2), curing did not occur under the above curing conditions.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

Claims (6)

(A)下記式(1)で表される直鎖状のオルガノポリシロキサン
(R SiO1/2(R SiO1/2(R SiO2/2(RSiO2/2(RSiO2/2 (1)
(式中、Rは炭素原子数2〜8のアルケニル基、Rはそれぞれ独立に置換あるいは非置換の炭素原子数1〜8のアルキル基、又は、置換あるいは非置換の炭素原子数6〜12のアリール基であり、但し、全Rの少なくとも10mol%が前記アリール基であり、Rは下記式(2)で表される基である。a、b、c、d、eはそれぞれ、a≧0、b≧0、c≧0、d≧0、e≧0であり、かつ、a+b>0、b+d>0、a+b+c+d+e=1を満たす数である。)
Figure 2021001296
(式中、Rはそれぞれ独立に置換または非置換の炭素原子数1〜8の二価炭化水素基であり、Rは水素原子、置換または非置換の炭素原子数1〜8のアルキル基、置換または非置換の炭素原子数6〜12のアリール基のいずれかであり、*は隣接ケイ素原子との結合を表す。)、
及び、
(B)重合開始剤
を含有するものであることを特徴とするラジカル硬化型シリコーン組成物。
(A) Linear organopolysiloxane represented by the following formula (1) (R 1 R 2 2 SiO 1/2 ) a (R 3 R 2 2 SiO 1/2 ) b (R 2 2 SiO 2 / 2 ) c (R 3 R 2 SiO 2/2 ) d (R 1 R 2 SiO 2/2 ) e (1)
(In the formula, R 1 is an alkenyl group having 2 to 8 carbon atoms, R 2 is an alkyl group having 1 to 8 carbon atoms independently substituted or unsubstituted, or 6 to 8 substituted or unsubstituted carbon atoms. There are 12 aryl groups, except that at least 10 mol% of the total R 2 is the aryl group, R 3 is a group represented by the following formula (2), and a, b, c, d and e are each. , A ≧ 0, b ≧ 0, c ≧ 0, d ≧ 0, e ≧ 0, and a + b> 0, b + d> 0, a + b + c + d + e = 1.
Figure 2021001296
(In the formula, R 4 is an independently substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 is a hydrogen atom, substituted or unsubstituted alkyl group having 1 to 8 carbon atoms. , Either a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, and * represents a bond with an adjacent silicon atom.),
as well as,
(B) A radical-curable silicone composition containing a polymerization initiator.
さらに(C)量子ドットを含有するものであることを特徴とする請求項1に記載のラジカル硬化型シリコーン組成物。 The radical-curable silicone composition according to claim 1, further comprising (C) quantum dots. 前記Rはそれぞれ独立にメチル基又はフェニル基であることを特徴とする請求項1または請求項2に記載のラジカル硬化型シリコーン組成物。 The radical-curable silicone composition according to claim 1 or 2, wherein each R 2 is independently a methyl group or a phenyl group. 前記重合開始剤が、有機過酸化物、又は、光重合開始剤であることを特徴とする請求項1から請求項3のいずれか1項に記載のラジカル硬化型シリコーン組成物。 The radical-curable silicone composition according to any one of claims 1 to 3, wherein the polymerization initiator is an organic peroxide or a photopolymerization initiator. 前記有機過酸化物が、10時間半減期温度50〜150℃のものであることを特徴とする請求項4に記載のラジカル硬化型シリコーン組成物。 The radical curable silicone composition according to claim 4, wherein the organic peroxide has a 10-hour half-life temperature of 50 to 150 ° C. 請求項1から請求項5のいずれか1項に記載のラジカル硬化型シリコーン組成物の硬化物であることを特徴とするシリコーン硬化物。 A silicone cured product, which is a cured product of the radical curable silicone composition according to any one of claims 1 to 5.
JP2019116660A 2019-06-24 2019-06-24 Radical-curable silicone composition and cured product Active JP7145125B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019116660A JP7145125B2 (en) 2019-06-24 2019-06-24 Radical-curable silicone composition and cured product
KR1020200074740A KR20210000276A (en) 2019-06-24 2020-06-19 Radical curable silicone composition and cured product
TW109121288A TW202115187A (en) 2019-06-24 2020-06-23 Radical-curable silicone composition and cured product
CN202010591585.4A CN112126232B (en) 2019-06-24 2020-06-24 Free radical curable silicone composition and cured product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019116660A JP7145125B2 (en) 2019-06-24 2019-06-24 Radical-curable silicone composition and cured product

Publications (2)

Publication Number Publication Date
JP2021001296A true JP2021001296A (en) 2021-01-07
JP7145125B2 JP7145125B2 (en) 2022-09-30

Family

ID=73850204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019116660A Active JP7145125B2 (en) 2019-06-24 2019-06-24 Radical-curable silicone composition and cured product

Country Status (4)

Country Link
JP (1) JP7145125B2 (en)
KR (1) KR20210000276A (en)
CN (1) CN112126232B (en)
TW (1) TW202115187A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116347A (en) * 2020-01-24 2021-08-10 信越化学工業株式会社 Radical curable composition and cured product
WO2022234802A1 (en) 2021-05-07 2022-11-10 ダウ・東レ株式会社 Ultraviolet radiation-curable silicone composition, cured product thereof, layered body, optical device, and optical display
WO2024038773A1 (en) * 2022-08-15 2024-02-22 信越化学工業株式会社 Radical curable silicone composition and silicone cured product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304108A (en) * 1988-05-31 1989-12-07 Shin Etsu Chem Co Ltd Photo-curable organopolysiloxane composition
JP2016219748A (en) * 2015-05-26 2016-12-22 シャープ株式会社 Light-emitting device and image display apparatus
JP2017171734A (en) * 2016-03-22 2017-09-28 信越化学工業株式会社 Ultraviolet curable silicone composition and cured product thereof, and optical element sealing material comprising the composition, and optical element sealed with the optical element sealing material
WO2019065398A1 (en) * 2017-09-29 2019-04-04 信越化学工業株式会社 Uv curable silicone adhesive composition and cured product thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102086712B1 (en) 2013-08-14 2020-05-15 나노코 테크놀로지스 리미티드 Quantum dot films utilizing multi-phase resins
JP6765368B2 (en) * 2014-06-19 2020-10-07 インクロン オサケユキチュアInkron Oy Method for producing siloxane polymer composition
JP6729128B2 (en) 2016-07-22 2020-07-22 大日本印刷株式会社 Wavelength conversion sheet and barrier film used therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01304108A (en) * 1988-05-31 1989-12-07 Shin Etsu Chem Co Ltd Photo-curable organopolysiloxane composition
JP2016219748A (en) * 2015-05-26 2016-12-22 シャープ株式会社 Light-emitting device and image display apparatus
JP2017171734A (en) * 2016-03-22 2017-09-28 信越化学工業株式会社 Ultraviolet curable silicone composition and cured product thereof, and optical element sealing material comprising the composition, and optical element sealed with the optical element sealing material
WO2019065398A1 (en) * 2017-09-29 2019-04-04 信越化学工業株式会社 Uv curable silicone adhesive composition and cured product thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021116347A (en) * 2020-01-24 2021-08-10 信越化学工業株式会社 Radical curable composition and cured product
JP7461148B2 (en) 2020-01-24 2024-04-03 信越化学工業株式会社 Radical curable composition and cured product
WO2022234802A1 (en) 2021-05-07 2022-11-10 ダウ・東レ株式会社 Ultraviolet radiation-curable silicone composition, cured product thereof, layered body, optical device, and optical display
KR20240005840A (en) 2021-05-07 2024-01-12 다우 도레이 캄파니 리미티드 Ultraviolet curable silicone composition and its cured product, laminate, and optical device or optical display
WO2024038773A1 (en) * 2022-08-15 2024-02-22 信越化学工業株式会社 Radical curable silicone composition and silicone cured product

Also Published As

Publication number Publication date
CN112126232A (en) 2020-12-25
CN112126232B (en) 2023-10-27
KR20210000276A (en) 2021-01-04
TW202115187A (en) 2021-04-16
JP7145125B2 (en) 2022-09-30

Similar Documents

Publication Publication Date Title
JP7145125B2 (en) Radical-curable silicone composition and cured product
TWI494342B (en) Epoxy composition for sealing optical semicomductor and fabricating method thereof,and curing object
KR20170110024A (en) Ultraviolet-curable silicone composition, cured product thereof and optical element sealing material comprising said composition, and optical element sealed by said optical element sealing material
CN1575066A (en) Light emitting device formed using rare earth complex and luminescent medium
TW200823265A (en) Heat-curable silicone composition and light emitting diode element using same
JP2013543030A (en) Hybrid silicone composition for light emitting devices
KR101454798B1 (en) Siloxane cross linker for sealing material of light emitting diode
JP5318383B2 (en) Optical component sealing material and light emitting device
JP5810060B2 (en) Semiconductor light-emitting device sealing agent, semiconductor light-emitting device sealing material using the same, and semiconductor light-emitting device
JP2021116347A (en) Radical curable composition and cured product
JP2024025979A (en) Radical curable silicone composition and cured silicone product
TW202411310A (en) Free radical hardening silicone composition and silicone hardened product
JP5810012B2 (en) Curable composition, sealing material for semiconductor light emitting device using the same, and semiconductor light emitting device
JP2021042132A (en) Alkynyl group-containing organopolysiloxane and hydrosilylation reaction control agent
JP2023084042A (en) Radical curable composition and cured product
JP4453008B2 (en) Thermosetting resin composition for optical semiconductor encapsulation, cured product thereof and optical semiconductor
JP7325375B2 (en) Thermosetting silicone composition, sheet, and silicone cured product
CN111699186B (en) C 2 -C 3 Alkenyl substituted ruimide dyes, curable silicone compositions and C 2 -C 3 Cured products of alkenyl substituted ruimide dyes
JP2016204559A (en) Novel organosilicon compound, thermosetting resin composition comprising the organosilicon compound and cured product of the same
JP2016125020A (en) Ultraviolet ray-curable composition and organic-inorganic hybrid coloring material
EP2130872B1 (en) Thermosetting composition
JP2015120767A (en) Sealant composition for light-emitting diode
JP2003197830A (en) Optical semiconductor sealing unsaturated polyester resin composition, and optical semiconductor device sealed therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220916

R150 Certificate of patent or registration of utility model

Ref document number: 7145125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150