WO2024038773A1 - Radical curable silicone composition and silicone cured product - Google Patents

Radical curable silicone composition and silicone cured product Download PDF

Info

Publication number
WO2024038773A1
WO2024038773A1 PCT/JP2023/028498 JP2023028498W WO2024038773A1 WO 2024038773 A1 WO2024038773 A1 WO 2024038773A1 JP 2023028498 W JP2023028498 W JP 2023028498W WO 2024038773 A1 WO2024038773 A1 WO 2024038773A1
Authority
WO
WIPO (PCT)
Prior art keywords
sio
group
curable silicone
silicone composition
radical
Prior art date
Application number
PCT/JP2023/028498
Other languages
French (fr)
Japanese (ja)
Inventor
愛里 朝倉
利之 小材
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024038773A1 publication Critical patent/WO2024038773A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/14Peroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes

Definitions

  • the present invention relates to a radical-curable silicone composition and a cured product thereof.
  • LED lights have achieved remarkable improvements in luminous efficiency, and are characterized by low power consumption, long lifespan, and good design, and are often used in automotive applications such as liquid crystal display (LCD) backlights and car headlights.
  • LCD liquid crystal display
  • LED light has a structure in which an LED chip mounted on a substrate is sealed with a sealing material made of transparent resin.
  • Addition-curing silicone compositions are widely used as sealants for sealing LEDs because of their excellent heat resistance.
  • the emission spectrum of an LED depends on the semiconductor material that forms the LED chip, so in order to obtain white light for LCD backlights and general lighting, a phosphor suitable for each chip is placed on the LED chip. It is necessary to convert the emission wavelength. Specifically, a method of installing yellow phosphors on an LED chip that emits blue light, a method of installing red and green phosphors on an LED chip that emits blue light, and a method of installing red, green, and blue phosphors on an LED chip that emits ultraviolet light. A method of installing phosphors has been proposed. Among these, the most widely adopted methods are currently the method of installing a yellow phosphor on a blue LED and the method of installing a red and green phosphor on a blue LED due to the light emission efficiency and cost of the LED chip. .
  • One specific method for installing a phosphor on an LED chip is to disperse the phosphor in a silicone composition containing an alkenyl group-containing organopolysiloxane and a hydrogen organopolysiloxane, and use a platinum group metal catalyst.
  • a method of attaching a sheet cured by a hydrosilylation reaction has been proposed (Patent Documents 1 to 5).
  • Patent Documents 1 to 5 A method of attaching a sheet cured by a hydrosilylation reaction.
  • curing may be inhibited by catalyst poison contained in the phosphor.
  • heating at high temperatures is required when curing such addition-curable silicone compositions, it has been difficult to use phosphors with low heat resistance.
  • Patent Document 6 Previously, the present inventors have proposed a radical-curable silicone composition that is not affected by catalyst poisons and can be cured at low temperatures (Patent Document 6). However, sheets formed from this composition have low hardness and have problems such as insufficient strength and stretching during handling.
  • the present invention was made in view of the above circumstances, and an object of the present invention is to provide a radical-curable silicone composition that can be cured at low temperatures and provides a cured product with high hardness.
  • R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms.
  • 8 is an alkenyl group
  • R 3 is a substituent having a radically polymerizable functional group.
  • B a linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group;
  • C a polymerization initiator, and
  • D A radical-curable silicone composition characterized in that it contains a solvent is provided.
  • the radical-curable silicone composition of the present invention can be cured at low temperatures by radical curing, and a cured product with high hardness can be obtained.
  • the component (B) is preferably a linear organopolysiloxane represented by the following formula (3).
  • Such a radical curable silicone composition has better compatibility and transparency.
  • R 3 is preferably a group represented by the following formula (2).
  • R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.
  • the curability of the composition of the present invention will be more excellent.
  • the polymerization initiator is preferably an organic peroxide.
  • Such a polymerization initiator can more effectively cure the composition of the present invention.
  • the organic peroxide has a 10-hour half-life temperature of 50 to 150°C.
  • Such organic peroxides have excellent storage stability and controllability of curability of the composition, and can be cured at low temperatures, so that thermal effects on the phosphor can be suppressed.
  • the present invention provides a cured silicone product, which is a cured product of the above radical curable silicone composition.
  • the silicone cured product of the present invention has good hardness, it is useful for applications such as wavelength conversion materials such as sheets in which phosphor is dispersed and sealants.
  • the radical-curing silicone composition of the present invention can be cured at low temperatures by radical curing, and a cured product with high hardness can be obtained, so it is useful for wavelength conversion materials such as phosphor sheets and encapsulants. be.
  • the present invention provides (A) a three-dimensional network organopolysiloxane represented by the following formula (1); (R 1 3 SiO 1/2 ) m1 (R 2 R 1 2 SiO 1/2 ) m2 (R 3 R 1 2 SiO 1/2 ) m3 (SiO 4/2 ) q (1)
  • R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms.
  • 8 is an alkenyl group
  • R 3 is a substituent having a radically polymerizable functional group.
  • B a linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group;
  • C a polymerization initiator, and
  • D A radical-curable silicone composition characterized by containing a solvent.
  • the radical curable silicone composition of the present invention contains components (A) to (D) described below as essential components. This composition may further contain optional components in addition to the above-mentioned essential components, if necessary. Each component will be explained in detail below.
  • Component (A) is a three-dimensional network organopolysiloxane represented by the following formula (1), and has the following structural unit ratio.
  • R 1 3 SiO 1/2 m1
  • R 2 R 1 2 SiO 1/2 m2
  • R 3 R 1 2 SiO 1/2 m3
  • SiO 4/2 q
  • R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms.
  • 8 is an alkenyl group
  • R 3 is a substituent having a radically polymerizable functional group.
  • the three-dimensional network organopolysiloxane contains m3 units and q units as essential units, and has R3 groups.
  • Component (A) can be radically cured at low temperatures due to the presence of the radically polymerizable R 3 group, and radical crosslinking improves the hardness of the cured product.
  • Each of the m1, m2, and m3 units may be composed of a combination of two or more different siloxane units (small units), and the arrangement order of the small units in each of the above units is arbitrary (indeterminate).
  • the substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond represented by R 1 includes a methyl group, an ethyl group, and a propyl group.
  • alkyl groups such as butyl group, pentyl group, hexyl group, heptyl group; aryl groups such as phenyl group, naphthyl group; aralkyl groups such as benzyl group, phenethyl group; chloromethyl group, 3-chloropropyl group, 3,3
  • Examples include halogenated alkyl groups such as , 3-trifluoropropyl groups, and methyl groups are particularly preferred.
  • Examples of the alkenyl group having 2 to 8 carbon atoms represented by R 2 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, an octenyl group, and the like, with a vinyl group being particularly preferred.
  • R 3 is a substituent having a radically polymerizable functional group, and is not particularly limited, but a substituent having a methacrylic group or an acrylic group is preferable, and a substituent represented by the following formula (2) is particularly preferable.
  • R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.
  • the substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms represented by R 4 includes a methylene group, an ethylene group, a propylene group, a trimethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, A straight chain, branched or cyclic alkylene group having 1 to 8 carbon atoms such as octamethylene group, preferably one having 1 to 4 carbon atoms, especially methylene group, ethylene group, propylene group, trimethylene group. preferable.
  • the hydrogen atoms in these groups may be further substituted with any substituent (such as a halogen atom).
  • m1+m2+m3 is preferably in the range of 0.2 ⁇ m1+m2+m3 ⁇ 0.6 from the viewpoint of the ease of handling the composition and the hardness of the cured product. Furthermore, in consideration of setting the hardness of the cured product within a more appropriate range, m3 preferably has a range of 0.01 ⁇ m3 ⁇ 0.05, and more preferably a range of 0.01 ⁇ m3 ⁇ 0.03.
  • component (A) include those having a structural unit ratio represented by the following formula.
  • the weight average molecular weight of component (A) is preferably from 1,000 to 20,000, more preferably from 2,000 to 10,000, from the viewpoint of ease of handling the composition and hardness of the cured product.
  • the weight average molecular weight can be determined, for example, as a polystyrene equivalent value by gel permeation chromatography (GPC) analysis using toluene as a developing solvent.
  • Component (A) may be used alone or in combination of two or more.
  • (B) Component (B) A linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group.
  • Component (B) is preferably a linear organopolysiloxane represented by the following formula (3).
  • the constituent unit ratios are as follows. (R 2 R 1 2 SiO 1/2 ) m4 (R 3 R 1 2 SiO 1/2 ) m5 (R 1 2 SiO 2/2 ) d1 (R 1 R 2 SiO 2/2 ) d2 (R 1 R 3 SiO 2/2 ) d3 (3)
  • R 1 , R 2 and R 3 represent the same meanings as above, provided that at least 1 mol% of all R 1 is a phenyl group
  • the linear organopolysiloxane contains either an m5 unit or a d3 unit, and has an R 3 group at either the molecular chain terminal or the non-terminal portion of the molecular chain, or both.
  • Component (B) can be radically cured at low temperatures due to the presence of the radically polymerizable R3 group.
  • Each of the m4, m5, d1, d2, and d3 units may be composed of a combination of two or more different siloxane units (small units), and the arrangement order of the small units in each of the above units is arbitrary (undefined). It is.
  • R 1 each independently represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond
  • monovalent hydrocarbon groups include , alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; aryl groups such as phenyl group, naphthyl group; aralkyl groups such as benzyl group, phenethyl group; chloromethyl group, Examples include halogenated alkyl groups such as 3-chloropropyl group and 3,3,3-trifluoropropyl group, with methyl group and phenyl group being particularly preferred.
  • At least 1 mol % of all R 1 in the above formula (3) is a phenyl group, preferably 2 to 50 mol %.
  • R 2 here is an alkenyl group having 2 to 8 carbon atoms, and examples of such alkenyl groups include vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, etc. Vinyl groups are preferred.
  • R3 here is a substituent having a radically polymerizable functional group, and although there is no particular limitation, a substituent having a methacrylic group or an acrylic group is preferable, and the one represented by the above formula (2) is particularly preferable. .
  • m4 is preferably 0 and d2 is preferably 0. That is, the linear organopolysiloxane represented by formula (3) preferably does not contain alkenyl group R 2 .
  • the d1 unit may be a combination of two or more different D units (small units). Examples of such D units include ((CH 3 ) 2 SiO 2/2 ), ((C 6 H 5 ) 2 SiO 2/2 ), ((C 6 H 5 )(CH 3 )SiO 2/ Examples include combinations of two or more D units selected from 2 ). Among these, a combination of ((CH 3 ) 2 SiO 2/2 ) and ((C 6 H 5 ) 2 SiO 2/2 ) is preferred.
  • the arrangement order of the small units in each of the above units is arbitrary.
  • component (B) Preferred examples of component (B) are shown below, but the invention is not limited thereto.
  • Me represents a methyl group
  • Ph represents a phenyl group (the same applies hereinafter).
  • the arrangement of siloxane units in parentheses is arbitrary, and * represents a bond with an adjacent silicon atom.
  • the arrangement of siloxane units in parentheses is arbitrary.
  • the arrangement of siloxane units in parentheses is arbitrary.
  • the amount of linear organopolysiloxane added as component (B) is preferably 10 to 1000 parts by weight, more preferably 20 to 200 parts by weight, based on 100 parts by weight of (A). Within this range, the hardness of the cured product can be set within a more appropriate range.
  • Component (C) is a polymerization initiator that polymerizes the polymerizable functional groups of components (A) and (B), and as component (C), an organic peroxide that generates radicals by heat can be used. .
  • the organic peroxide is preferably an organic peroxide having a 10-hour half-life temperature of 50 to 150°C, more preferably an organic peroxide having a 10-hour half-life temperature of 60 to 110°C, from the viewpoint of controlling the storage stability and curability of the composition. It is an oxide.
  • organic peroxides include benzoyl peroxide, t-butyl perbenzoate, o-methylbenzoyl peroxide, p-methylbenzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 1,1 -bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-ditetrabutylperoxy-cyclohexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane , 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, 1,6-bis(p-toluoylperoxycarbonyloxy)hexane, di(4-methylbenzoylperoxy)hexamethylenebis carbonate, 2,5-dimethoxy-2,5-di(2-ethylhexanoylperoxy)hexane, 2,5-dimethyl
  • organic peroxides are also commercially available, for example from NOF Corporation. Specifically, perbutyl NHP (50.6), perhexyl PV (53.2), perbutyl PV (54.6), perloyl 355 (59.4), perloyl L (61.6), perocta O (65.
  • Perloil SA (65.9), Perhexa 25O (66.2), Perhexyl O (69.9), Niper PMB (70.6), Perbutyl O (72.1), Niper BMT (73.1) , Niper BW (73.6), Perhexa MC (83.2), Perhexa TMH (86.7), Perhexa HC (87.1), Perhexa C (90.7), Pertetra A (94.7), Perhexyl I (95.0), Perbutyl MA (96.1), Perbutyl 355 (97.1), Perbutyl L (98.3), Perbutyl I (98.7), Perbutyl E (99.0), Perhexyl Z ( 99.4), Perhexa 25Z (99.7), Perbutyl A (101.9), Perhexa 22 (103.1), Perbutyl Z (104.3), Perhexa V (104.5), Perbutyl P (119.
  • 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane is preferable.
  • Perhexa registered trademark
  • organic peroxides can be used alone or in combination of two or more.
  • the amount of organic peroxide added may be any effective amount, but is usually 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of component (A).
  • Component (D) is an organic solvent, and is not particularly limited as long as it can dissolve or disperse components (A) to (C) above and optional components described below, and any known organic solvent may be used. be able to.
  • organic solvents include aromatic hydrocarbon solvents such as xylene, toluene, and benzene; aliphatic hydrocarbon solvents such as heptane and hexane; halogenated hydrocarbon solvents such as trichlorethylene, perchloroethylene, and methylene chloride; Examples include ester solvents such as ethyl acetate, ketone solvents such as methyl isobutyl ketone and methyl ethyl ketone, alcohol solvents such as ethanol, isopropanol and butanol, ligroin, cyclohexanone, diethyl ether, rubber volatile oil, and silicone solvents. Among them, toluene, heptane, and
  • Component (D) may be used alone or in combination of two or more as a mixed solvent depending on the evaporation rate during the composition coating operation.
  • the radical-curable silicone composition of the present invention may further contain the following optional components, if necessary.
  • the radical curable silicone composition of the present invention can be used as a wavelength conversion member such as a phosphor sheet by adding a phosphor.
  • the phosphor absorbs blue light, violet light, or ultraviolet light emitted from the LED chip and converts the wavelength to produce light of a different wavelength from the LED chip's wavelength in the red, orange, yellow, green, and blue regions. It emits light.
  • a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed, and a multicolor LED including white is obtained.
  • the above-mentioned phosphors include various phosphors, such as a phosphor that emits green light, a phosphor that emits blue light, a phosphor that emits yellow light, and a phosphor that emits red light.
  • Specific examples of the phosphor used in the present invention include known phosphors such as organic phosphors, inorganic phosphors, fluorescent pigments, and fluorescent dyes.
  • Examples of the organic phosphor include allylsulfamide/melamine formaldehyde co-condensed dyes and perylene-based phosphors, and perylene-based phosphors are preferably used because they can be used for a long period of time.
  • Examples of fluorescent substances particularly preferably used in the present invention include inorganic fluorescent substances. The inorganic phosphor used in the present invention will be described below.
  • Phosphors that emit green light include, for example, SrAl 2 O 4 :Eu, Y 2 SiO 5 :Ce, Tb, MgAl 11 O 19 :Ce, Tb, Sr 7 Al 12 O 25 :Eu, (Mg, Ca, Sr , at least one of Ba) Ga 2 S 4 :Eu, and the like.
  • Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl:Eu, (SrCaBa) 5 (PO 4 ) 3 Cl:Eu, (BaCa) 5 (PO 4 ) 3 Cl:Eu, (Mg, (at least one or more of Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu, Mn, (at least one or more of Mg, Ca, Sr, Ba) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. There is.
  • Phosphors that emit light from green to yellow include yttrium aluminum oxide phosphors activated with at least cerium, yttrium gadolinium aluminum oxide phosphors activated with at least cerium, and yttrium aluminum activated with at least cerium.
  • yttrium aluminum oxide phosphors activated with at least cerium yttrium aluminum oxide phosphors activated with at least cerium
  • yttrium aluminum activated with at least cerium.
  • garnet oxide phosphors and yttrium-gallium-aluminum oxide phosphors activated with at least cerium so-called YAG-based phosphors.
  • Ln 3 M 5 O 12 :R (Ln is at least one selected from Y, Gd, and La.
  • M includes at least one of Al and Ca.
  • R is a lanthanoid.
  • Examples of phosphors that emit red light include Y2O2S :Eu, La2O2S :Eu, Y2O3 :Eu, and Gd2O2S : Eu .
  • YAG-based phosphors YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and brightness.
  • known phosphors can be used depending on the purpose and desired emission color.
  • the particle size of the phosphor is not particularly limited, but it is preferably D50 of 0.05 ⁇ m or more, more preferably 3 ⁇ m or more. Moreover, those with D50 of 30 ⁇ m or less are preferable, and those with D50 of 20 ⁇ m or less are more preferable.
  • D50 refers to the particle diameter when the cumulative amount of particles passing from the small particle size side is 50% in the volume-based particle size distribution measured by laser diffraction scattering particle size distribution measuring method. When D50 is within the above range, the phosphor in the phosphor sheet has good dispersibility and stable light emission can be obtained.
  • the content of the phosphor is preferably 20 to 500 parts by mass, more preferably 50 to 400 parts by mass or more, and 80 to 500 parts by mass, more preferably 50 to 400 parts by mass or more, based on 100 parts by mass of the solid content of the radical-curable silicone composition. More preferably, the amount is 300 parts by mass.
  • the phosphor sheet of the present invention is particularly preferably used for surface coating of LEDs. At this time, when the content of the phosphor in the phosphor sheet is within the above range, an LED light emitting device exhibiting excellent performance can be obtained.
  • the radical curable silicone composition of the present invention can contain quantum dots that act as a wavelength conversion material.
  • Quantum dots are usually particles with an average particle diameter D50 of 20 nm or less, and can absorb and convert light energy. Quantum dots can adjust the color of light by changing their particle size. Since the band gap is determined by the particle size, light with high color purity can be obtained by aligning the particle sizes.
  • Quantum dots that emit radiation in the visible light range include CdSe-based particles having shells such as CdS, ZnSe, and ZnS.
  • Cadmium-free quantum dots such as InP, CuInS 2 , AgInS 2 , Te, PbS, and InAs can also be used. Any type of conventional quantum dots can be used in the present invention.
  • the amount of quantum dots added is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the solid content of the radical-curable silicone composition.
  • the radical-curable silicone composition of the present invention contains a known antioxidant such as 2,6-di-t-butyl-4-methylphenol in order to suppress the occurrence of coloration, cloudiness, oxidative deterioration, etc. of the cured product. may be blended. Further, in order to impart resistance to photodeterioration, a light stabilizer such as a hindered amine stabilizer may be added. Furthermore, if necessary, an inorganic filler such as fumed silica may be blended in order to improve the strength, or dyes, pigments, flame retardants, etc. may be blended. An adhesion aid (silane coupling agent) may be added to improve adhesive strength.
  • a known antioxidant such as 2,6-di-t-butyl-4-methylphenol in order to suppress the occurrence of coloration, cloudiness, oxidative deterioration, etc. of the cured product.
  • a light stabilizer such as a hindered amine stabilizer
  • an inorganic filler such as fumed silica may
  • the curing conditions for the radical curable silicone composition of the present invention known methods and conditions can be employed. For example, it can be cured at 50 to 150°C for 10 minutes to 5 hours.
  • the polymerization initiator is an organic peroxide with a 10-hour half-life temperature of 50 to 150°C, low-temperature curing is possible.
  • the present invention provides a cured silicone product, which is a cured product of the above-mentioned radical curable silicone composition.
  • the cured silicone product of the present invention has good hardness and can be cured at low temperatures, so it can suppress thermal effects on phosphors, quantum dots, and the like. Therefore, it is useful for applications such as wavelength conversion materials such as sheets and sealants in which fluorescent substances are dispersed.
  • Me is a methyl group
  • Ph is a phenyl group
  • Vi is an abbreviation meaning a vinyl group.
  • the weight average molecular weight was determined as a polystyrene equivalent value by GPC analysis using toluene as a developing solvent. The viscosity at 25°C was determined using a B-type rotational viscometer.
  • Synthesis example 2 In Synthesis Example 1, the same operation as in Synthesis Example 1 was performed except that the amount of the compound represented by the above formula (4) was changed to 44 g (0.34 mol), and (Me 3 SiO 1/2 ) 0. 40 (ViMe 2 SiO 1/2 ) 0.03 (R 3 Me 2 SiO 1/2 ) 0.02 (SiO 2 ) 50 mass of three-dimensional network organopolysiloxane having a constituent unit ratio expressed as 0.55 % ethyl acetate solution (A-2) was obtained.
  • Example 1 and 2 and Comparative Examples 1 and 2 The components shown below were mixed at the blending ratio (parts by mass) shown in Table 1 to prepare a radical curable silicone composition.
  • the obtained composition was poured into a polytetrafluoroethylene frame having a thickness of 4 mm, and heated at 80° C. for 2 hours to prepare a sheet.
  • the obtained sheet was subjected to the following tests, and the results of evaluating the physical properties are shown in Table 2.
  • Solubility in toluene was confirmed. If it is soluble in toluene, it means that it is not cured, and if it is insoluble, it means that it is cured.
  • R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond
  • R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms.
  • 8 is an alkenyl group
  • R 3 is a substituent having a radically polymerizable functional group.
  • D A radical-curable silicone composition characterized by containing a solvent.
  • [2] The radical curable silicone composition according to [1], wherein the component (B) is a linear organopolysiloxane represented by the following formula (3).
  • R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.
  • [5] The radical-curable silicone composition of [4], wherein the organic peroxide has a 10-hour half-life temperature of 50 to 150°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Silicon Polymers (AREA)

Abstract

The present invention is a radical curable silicone composition characterized by containing: (A) a three dimensional network–like organopolysiloxane represented by formula (1): (R1 3SiO1/2)m1(R2R1 2SiO1/2)m2(R3R1 2SiO1/2)m3(SiO4/2)q (each R1 is independently a 1-12C monovalent hydrocarbon group not having an aliphatic unsaturated bond, R2 is a 2-8C alkenyl group, and R3 is a substituent group having a radical polymerizable functional group. m1≥0, m2≥0, m3>0, and q>0, and m1+m2+m3+q=1 is satisfied); (B) a straight-chain organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent group having a radical polymerizable functional group; (C) a polymerization initiator; and (D) a solvent. Thereby, a radical curable silicone composition is provided that can be cured at a low temperature and that yields a cured product having high hardness.

Description

ラジカル硬化型シリコーン組成物及びシリコーン硬化物Radical curable silicone composition and cured silicone product
 本発明は、ラジカル硬化型シリコーン組成物及びその硬化物に関する。 The present invention relates to a radical-curable silicone composition and a cured product thereof.
 発光ダイオード(LED)ライトは、その発光効率の目覚ましい向上を背景とし、低い消費電力、高寿命、意匠性などを特徴として液晶ディスプレイ(LCD)のバックライト向けや車のヘッドライト等の車載分野ばかりではなく一般照明向けでも急激に市場を拡大しつつある。この様なLEDライトは、基板に実装されたLEDチップを透明な樹脂からなる封止材で封止した構成である。このLEDを封止する封止材としては、優れた耐熱性を有する点から、付加硬化型シリコーン組成物が幅広く使用されている。 Light-emitting diode (LED) lights have achieved remarkable improvements in luminous efficiency, and are characterized by low power consumption, long lifespan, and good design, and are often used in automotive applications such as liquid crystal display (LCD) backlights and car headlights. However, the market for general lighting is rapidly expanding. Such an LED light has a structure in which an LED chip mounted on a substrate is sealed with a sealing material made of transparent resin. Addition-curing silicone compositions are widely used as sealants for sealing LEDs because of their excellent heat resistance.
 LEDの発光スペクトルは、LEDチップを形成する半導体材料に依存するため、LCDバックライトや一般照明向けの白色光を得るためには、LEDチップ上にそれぞれのチップに適合した蛍光体を配置し、発光波長を変換する必要がある。具体的には、青色発光するLEDチップ上に黄色蛍光体を設置する方法、青色発光するLEDチップ上に赤および緑の蛍光体を設置する方法、紫外線を発するLEDチップ上に赤、緑、青の蛍光体を設置する方法などが提案されている。これらの中で、LEDチップの発光効率やコストの面から青色LED上に黄色蛍光体を設置する方法、および青色LED上に赤および緑の蛍光体を設置する方法が現在最も広く採用されている。 The emission spectrum of an LED depends on the semiconductor material that forms the LED chip, so in order to obtain white light for LCD backlights and general lighting, a phosphor suitable for each chip is placed on the LED chip. It is necessary to convert the emission wavelength. Specifically, a method of installing yellow phosphors on an LED chip that emits blue light, a method of installing red and green phosphors on an LED chip that emits blue light, and a method of installing red, green, and blue phosphors on an LED chip that emits ultraviolet light. A method of installing phosphors has been proposed. Among these, the most widely adopted methods are currently the method of installing a yellow phosphor on a blue LED and the method of installing a red and green phosphor on a blue LED due to the light emission efficiency and cost of the LED chip. .
 LEDチップ上に蛍光体を設置する具体的な方法の1つとして、アルケニル基含有オルガノポリシロキサンとハイドロジェンオルガノポリシロキサンとを含むシリコーン組成物中に蛍光体を分散させ、白金族金属触媒を用いたヒドロシリル化反応により硬化させたシートを貼りつける方法が提案されている(特許文献1~5)。しかし、このような付加硬化型シリコーン樹脂を蛍光体バインダーとして使用する際に、蛍光体に含まれる触媒毒によって硬化が阻害される場合があった。また、このような付加硬化型シリコーン組成物を硬化させる際に高温での加熱が必要であるため、耐熱性が低い蛍光体を使用することが困難であった。 One specific method for installing a phosphor on an LED chip is to disperse the phosphor in a silicone composition containing an alkenyl group-containing organopolysiloxane and a hydrogen organopolysiloxane, and use a platinum group metal catalyst. A method of attaching a sheet cured by a hydrosilylation reaction has been proposed (Patent Documents 1 to 5). However, when such an addition-curing silicone resin is used as a phosphor binder, curing may be inhibited by catalyst poison contained in the phosphor. Furthermore, since heating at high temperatures is required when curing such addition-curable silicone compositions, it has been difficult to use phosphors with low heat resistance.
 先に、本発明者らは、触媒毒の影響を受けず低温で硬化可能なラジカル硬化型のシリコーン組成物を提案している(特許文献6)。しかしながら、この組成物から形成されるシートは硬度が低く、強度不足となったり取り扱いの際にシートが伸びてしまう等の問題があった。 Previously, the present inventors have proposed a radical-curable silicone composition that is not affected by catalyst poisons and can be cured at low temperatures (Patent Document 6). However, sheets formed from this composition have low hardness and have problems such as insufficient strength and stretching during handling.
特開2013-1791号公報Japanese Patent Application Publication No. 2013-1791 特開2013-1792号公報Japanese Patent Application Publication No. 2013-1792 特開2013-138216号公報Japanese Patent Application Publication No. 2013-138216 特開2014-114446号公報Japanese Patent Application Publication No. 2014-114446 特開2014-116598号公報Japanese Patent Application Publication No. 2014-116598 特開2021-1296号公報JP 2021-1296 Publication
 本発明は、上記事情に鑑みなされたものであって、低温で硬化可能であり、高硬度の硬化物を与えるラジカル硬化型シリコーン組成物を提供することを目的とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a radical-curable silicone composition that can be cured at low temperatures and provides a cured product with high hardness.
 上記課題を解決するために、本発明では、(A)下記式(1)で表される三次元網目状オルガノポリシロキサン、
(R SiO1/2m1(R SiO1/2m2(R SiO1/2m3(SiO4/2    (1)
(式中、Rは、それぞれ独立に、脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基であり、Rは、炭素原子数2~8のアルケニル基であり、Rは、ラジカル重合性官能基を有する置換基である。m1、m2、m3、qは、m1≧0、m2≧0、m3>0、q>0であり、かつ、m1+m2+m3+q=1を満たす数である。)
(B)ケイ素原子に結合したフェニル基、およびラジカル重合性官能基を有する置換基を有する直鎖状オルガノポリシロキサン、
(C)重合開始剤、及び、
(D)溶剤
を含有するものであることを特徴とするラジカル硬化型シリコーン組成物を提供する。
In order to solve the above problems, in the present invention, (A) a three-dimensional network organopolysiloxane represented by the following formula (1),
(R 1 3 SiO 1/2 ) m1 (R 2 R 1 2 SiO 1/2 ) m2 (R 3 R 1 2 SiO 1/2 ) m3 (SiO 4/2 ) q (1)
(In the formula, R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond, and R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms. 8 is an alkenyl group, and R 3 is a substituent having a radically polymerizable functional group. m1, m2, m3, and q are m1≧0, m2≧0, m3>0, q>0, And it is a number that satisfies m1+m2+m3+q=1.)
(B) a linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group;
(C) a polymerization initiator, and
(D) A radical-curable silicone composition characterized in that it contains a solvent is provided.
 本発明のラジカル硬化型シリコーン組成物であれば、ラジカル硬化により低温での硬化が可能であり、高硬度の硬化物を得ることができる。 The radical-curable silicone composition of the present invention can be cured at low temperatures by radical curing, and a cured product with high hardness can be obtained.
 本発明のラジカル硬化型シリコーン組成物は、前記(B)成分が、下記式(3)で表される直鎖状オルガノポリシロキサンであることが好ましい。
(R SiO1/2m4(R SiO1/2m5(R SiO2/2d1(RSiO2/2d2(RSiO2/2d3  (3)
(式中、R、R及びRは上記と同じ意味を表し、但し、全Rの少なくとも1モル%がフェニル基であり、m4、m5、d1、d2、d3は、それぞれ、m4≧0、m5≧0、d1≧0、d2≧0、d3≧0であり、かつ、m4+m5>0、m5+d3>0、m4+m5+d1+d2+d3=1を満たす数である。)
In the radical curable silicone composition of the present invention, the component (B) is preferably a linear organopolysiloxane represented by the following formula (3).
(R 2 R 1 2 SiO 1/2 ) m4 (R 3 R 1 2 SiO 1/2 ) m5 (R 1 2 SiO 2/2 ) d1 (R 1 R 2 SiO 2/2 ) d2 (R 1 R 3 SiO 2/2 ) d3 (3)
(In the formula, R 1 , R 2 and R 3 represent the same meanings as above, provided that at least 1 mol% of all R 1 is a phenyl group, and m4, m5, d1, d2, d3 are respectively m4 ≧0, m5≧0, d1≧0, d2≧0, d3≧0, and is a number that satisfies m4+m5>0, m5+d3>0, m4+m5+d1+d2+d3=1.)
 このようなラジカル硬化型シリコーン組成物であれば、より相溶性に優れ、透明性に優れる。 Such a radical curable silicone composition has better compatibility and transparency.
 また、本発明のラジカル硬化型シリコーン組成物は、前記Rが、下記式(2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、上記と同じ意味を表し、Rは、それぞれ独立に、置換または非置換の炭素原子数1~8の二価炭化水素基であり、Rは、水素原子またはメチル基であり、*は、隣接ケイ素原子との結合を表す。)
Further, in the radical curable silicone composition of the present invention, R 3 is preferably a group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
(In the formula, R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.)
 このようなラジカル重合性官能基を有する置換基であれば、本発明の組成物の硬化性がより優れたものとなる。 If the substituent has such a radically polymerizable functional group, the curability of the composition of the present invention will be more excellent.
 本発明のラジカル硬化型シリコーン組成物は、前記重合開始剤が、有機過酸化物であることが好ましい。 In the radical curable silicone composition of the present invention, the polymerization initiator is preferably an organic peroxide.
 このような重合開始剤は、本発明の組成物をより効果的に硬化させることができる。 Such a polymerization initiator can more effectively cure the composition of the present invention.
 この場合、前記有機過酸化物が、10時間半減期温度50~150℃のものであることがより好ましい。 In this case, it is more preferable that the organic peroxide has a 10-hour half-life temperature of 50 to 150°C.
 このような有機過酸化物であれば、組成物の保存安定性および硬化性の制御性に優れるとともに、低温で硬化可能であるため、蛍光体に及ぼす熱的影響を抑えることができる。 Such organic peroxides have excellent storage stability and controllability of curability of the composition, and can be cured at low temperatures, so that thermal effects on the phosphor can be suppressed.
 また、本発明は、上記ラジカル硬化型シリコーン組成物の硬化物であることを特徴とするシリコーン硬化物を提供する。 Furthermore, the present invention provides a cured silicone product, which is a cured product of the above radical curable silicone composition.
 本発明のシリコーン硬化物は、良好な硬度を備えているため、蛍光体を分散させたシートや封止材等の波長変換材料等の用途に有用である。 Since the silicone cured product of the present invention has good hardness, it is useful for applications such as wavelength conversion materials such as sheets in which phosphor is dispersed and sealants.
 本発明のラジカル硬化型シリコーン組成物は、ラジカル硬化により低温での硬化が可能であり、高硬度の硬化物が得られるため、蛍光体シートや封止材等の波長変換材料の用途に有用である。 The radical-curing silicone composition of the present invention can be cured at low temperatures by radical curing, and a cured product with high hardness can be obtained, so it is useful for wavelength conversion materials such as phosphor sheets and encapsulants. be.
 本発明者らは、上記目的を達成するために鋭意検討した結果、後述する(A)~(D)成分を含むラジカル硬化型シリコーン組成物であれば、上記課題を解決できることを見出し、本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors found that the above problems can be solved by using a radical-curable silicone composition containing components (A) to (D) described below. completed.
 即ち、本発明は(A)下記式(1)で表される三次元網目状オルガノポリシロキサン、
(R SiO1/2m1(R SiO1/2m2(R SiO1/2m3(SiO4/2    (1)
(式中、Rは、それぞれ独立に、脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基であり、Rは、炭素原子数2~8のアルケニル基であり、Rは、ラジカル重合性官能基を有する置換基である。m1、m2、m3、qは、m1≧0、m2≧0、m3>0、q>0であり、かつ、m1+m2+m3+q=1を満たす数である。)
(B)ケイ素原子に結合したフェニル基、およびラジカル重合性官能基を有する置換基を有する直鎖状オルガノポリシロキサン、
(C)重合開始剤、及び、
(D)溶剤
を含有するものであることを特徴とするラジカル硬化型シリコーン組成物である。
That is, the present invention provides (A) a three-dimensional network organopolysiloxane represented by the following formula (1);
(R 1 3 SiO 1/2 ) m1 (R 2 R 1 2 SiO 1/2 ) m2 (R 3 R 1 2 SiO 1/2 ) m3 (SiO 4/2 ) q (1)
(In the formula, R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond, and R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms. 8 is an alkenyl group, and R 3 is a substituent having a radically polymerizable functional group. m1, m2, m3, and q are m1≧0, m2≧0, m3>0, q>0, And it is a number that satisfies m1+m2+m3+q=1.)
(B) a linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group;
(C) a polymerization initiator, and
(D) A radical-curable silicone composition characterized by containing a solvent.
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in detail, but the present invention is not limited thereto.
[ラジカル硬化型シリコーン組成物]
 本発明のラジカル硬化型シリコーン組成物は、後述する(A)~(D)成分を必須成分として含有するものである。この組成物は、前記必須成分以外に必要に応じて任意の成分を更に含むことができる。
 以下、各成分について詳細に説明する。
[Radical curable silicone composition]
The radical curable silicone composition of the present invention contains components (A) to (D) described below as essential components. This composition may further contain optional components in addition to the above-mentioned essential components, if necessary.
Each component will be explained in detail below.
[(A)成分]
 (A)成分は、下記式(1)で表される三次元網目状オルガノポリシロキサンであって、以下のような構成単位比を有する。
(R SiO1/2m1(R SiO1/2m2(R SiO1/2m3(SiO4/2    (1)
(式中、Rは、それぞれ独立に、脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基であり、Rは、炭素原子数2~8のアルケニル基であり、Rは、ラジカル重合性官能基を有する置換基である。m1、m2、m3、qは、m1≧0、m2≧0、m3>0、q>0であり、かつ、m1+m2+m3+q=1を満たす数である。
[(A) Component]
Component (A) is a three-dimensional network organopolysiloxane represented by the following formula (1), and has the following structural unit ratio.
(R 1 3 SiO 1/2 ) m1 (R 2 R 1 2 SiO 1/2 ) m2 (R 3 R 1 2 SiO 1/2 ) m3 (SiO 4/2 ) q (1)
(In the formula, R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond, and R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms. 8 is an alkenyl group, and R 3 is a substituent having a radically polymerizable functional group. m1, m2, m3, and q are m1≧0, m2≧0, m3>0, q>0, And, it is a number that satisfies m1+m2+m3+q=1.
 上記式(1)で表される三次元網目状オルガノポリシロキサンは、(R SiO1/2)単位(「m1単位」ともいう。以下同様。)、(R SiO1/2)単位(m2単位)、(R SiO1/2)単位(m3単位)、(SiO4/2)単位(q単位)から構成され、各単位の構成比率m1、m2、m3、qはそれぞれ、m1≧0、m2≧0、m3>0、q>0であり、かつ、m1+m2+m3+q=1を満たす数である。上記三次元網目状オルガノポリシロキサンは、m3単位およびq単位を必須単位として含んでおり、R基を有する。(A)成分は、ラジカル重合性のR基が存在することにより、低温でのラジカル硬化が可能であり、ラジカル架橋によって、硬化物の硬度が向上する。
 上記m1、m2、m3単位は、いずれも2つ以上の異なるシロキサン単位(小単位)の組み合わせからなるものであって良く、上記各単位における小単位の配置順序は任意(不定)である。
The three-dimensional network organopolysiloxane represented by the above formula (1) has (R 1 3 SiO 1/2 ) units (also referred to as "m1 units". The same shall apply hereinafter), (R 2 R 1 2 SiO 1/ 2 ) It is composed of units (m2 units), (R 3 R 1 2 SiO 1/2 ) units (m3 units), and (SiO 4/2 ) units (q units), and the composition ratio of each unit is m1, m2, m3 , q are numbers satisfying m1≧0, m2≧0, m3>0, and q>0, and m1+m2+m3+q=1, respectively. The three-dimensional network organopolysiloxane contains m3 units and q units as essential units, and has R3 groups. Component (A) can be radically cured at low temperatures due to the presence of the radically polymerizable R 3 group, and radical crosslinking improves the hardness of the cured product.
Each of the m1, m2, and m3 units may be composed of a combination of two or more different siloxane units (small units), and the arrangement order of the small units in each of the above units is arbitrary (indeterminate).
 上記式(1)において、Rで表される脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等が例示され、特にメチル基が好ましい。 In the above formula (1), the substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond represented by R 1 includes a methyl group, an ethyl group, and a propyl group. , alkyl groups such as butyl group, pentyl group, hexyl group, heptyl group; aryl groups such as phenyl group, naphthyl group; aralkyl groups such as benzyl group, phenethyl group; chloromethyl group, 3-chloropropyl group, 3,3 Examples include halogenated alkyl groups such as , 3-trifluoropropyl groups, and methyl groups are particularly preferred.
 Rで表される炭素原子数2~8のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基等が挙げられ、特にビニル基が好ましい。 Examples of the alkenyl group having 2 to 8 carbon atoms represented by R 2 include a vinyl group, an allyl group, a butenyl group, a pentenyl group, a hexenyl group, an octenyl group, and the like, with a vinyl group being particularly preferred.
 Rは、ラジカル重合性官能基を有する置換基であり、特に制限はないが、メタクリル基やアクリル基を有する置換基が好ましく、特に下記式(2)で表されるものが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、上記と同じ意味を表し、Rは、それぞれ独立に、置換または非置換の炭素原子数1~8の二価炭化水素基であり、Rは、水素原子またはメチル基であり、*は、隣接ケイ素原子との結合を表す。)
R 3 is a substituent having a radically polymerizable functional group, and is not particularly limited, but a substituent having a methacrylic group or an acrylic group is preferable, and a substituent represented by the following formula (2) is particularly preferable.
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.)
 Rで表される置換または非置換の炭素原子数1~8の二価炭化水素基としては、メチレン基、エチレン基、プロピレン基、トリメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基等の炭素原子数1~8の直鎖、分岐または環状のアルキレン基で、好ましくは炭素原子数1~4のものであり、特に、メチレン基、エチレン基、プロピレン基、トリメチレン基が好ましい。これら基の中の水素原子はさらに任意の置換基(ハロゲン原子等)で置換されていてもよい。 The substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms represented by R 4 includes a methylene group, an ethylene group, a propylene group, a trimethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, A straight chain, branched or cyclic alkylene group having 1 to 8 carbon atoms such as octamethylene group, preferably one having 1 to 4 carbon atoms, especially methylene group, ethylene group, propylene group, trimethylene group. preferable. The hydrogen atoms in these groups may be further substituted with any substituent (such as a halogen atom).
 m1+m2+m3は、組成物の取り扱い性および硬化物の硬度の観点から、0.2≦m1+m2+m3≦0.6の範囲であることが好ましい。
 また、硬化物の硬度をより適切な範囲とすることを考慮すると、m3は、0.01≦m3≦0.05の範囲が好ましく、0.01≦m3≦0.03の範囲がより好ましい。
m1+m2+m3 is preferably in the range of 0.2≦m1+m2+m3≦0.6 from the viewpoint of the ease of handling the composition and the hardness of the cured product.
Furthermore, in consideration of setting the hardness of the cured product within a more appropriate range, m3 preferably has a range of 0.01≦m3≦0.05, and more preferably a range of 0.01≦m3≦0.03.
 (A)成分の具体例としては、下記式で表される構成単位比を有するもの等が挙げられる。 Specific examples of component (A) include those having a structural unit ratio represented by the following formula.
((CHSiO1/20.40((CH=CH)(CHSiO1/20.04((R)(CHSiO1/20.01 (SiO0.55
((CHSiO1/20.40((CH=CH)(CHSiO1/20.03((R)(CHSiO1/20.02(SiO0.55
Figure JPOXMLDOC01-appb-C000004
(式中、*は、隣接ケイ素原子との結合を表す。)
(( CH3 ) 3SiO1 / 2) 0.40 (( CH2 =CH ) ( CH3 )2SiO1 / 2 ) 0.04 (( R3 )( CH3 )2SiO1 /2 ) 0 .01 (SiO 2 ) 0.55
(( CH3 ) 3SiO1 / 2) 0.40 (( CH2 =CH ) ( CH3 )2SiO1 / 2 ) 0.03 (( R3 )( CH3 )2SiO1 /2 ) 0 .02 (SiO 2 ) 0.55
Figure JPOXMLDOC01-appb-C000004
(In the formula, * represents a bond with an adjacent silicon atom.)
 (A)成分の重量平均分子量は、組成物の取り扱い性および硬化物の硬度の点から、1000~20000であることが好ましく、2000~10000であることがより好ましい。重量平均分子量は、例えば、トルエンを展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析によるポリスチレン換算値として求めることができる。 The weight average molecular weight of component (A) is preferably from 1,000 to 20,000, more preferably from 2,000 to 10,000, from the viewpoint of ease of handling the composition and hardness of the cured product. The weight average molecular weight can be determined, for example, as a polystyrene equivalent value by gel permeation chromatography (GPC) analysis using toluene as a developing solvent.
 (A)成分は1種単独で用いても、2種以上組み合わせて用いてもよい。 Component (A) may be used alone or in combination of two or more.
[(B)成分]
 (B)ケイ素原子に結合したフェニル基、およびラジカル重合性官能基を有する置換基を有する直鎖状オルガノポリシロキサンである。
[(B) Component]
(B) A linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group.
 (B)成分は、下記式(3)で表される直鎖状オルガノポリシロキサンであることが好ましい。構成単位比は以下のとおりである。
(R SiO1/2m4(R SiO1/2m5(R SiO2/2d1(RSiO2/2d2(RSiO2/2d3  (3)
(式中、R、R及びRは上記と同じ意味を表し、但し、全Rの少なくとも1モル%がフェニル基であり、m4、m5、d1、d2、d3は、それぞれ、m4≧0、m5≧0、d1≧0、d2≧0、d3≧0であり、かつ、m4+m5>0、m5+d3>0、m4+m5+d1+d2+d3=1を満たす数である。)
Component (B) is preferably a linear organopolysiloxane represented by the following formula (3). The constituent unit ratios are as follows.
(R 2 R 1 2 SiO 1/2 ) m4 (R 3 R 1 2 SiO 1/2 ) m5 (R 1 2 SiO 2/2 ) d1 (R 1 R 2 SiO 2/2 ) d2 (R 1 R 3 SiO 2/2 ) d3 (3)
(In the formula, R 1 , R 2 and R 3 represent the same meanings as above, provided that at least 1 mol% of all R 1 is a phenyl group, and m4, m5, d1, d2, d3 are respectively m4 ≧0, m5≧0, d1≧0, d2≧0, d3≧0, and is a number that satisfies m4+m5>0, m5+d3>0, m4+m5+d1+d2+d3=1.)
 上記式(3)で表される直鎖状のオルガノポリシロキサンは、(R SiO1/2)単位(「m4単位」ともいう。以下同様。)、(R SiO1/2)単位(m5単位)、(R SiO2/2)単位(d1単位)、(RSiO2/2)単位(d2単位)、(RSiO2/2)単位(d3単位)から構成され、各単位の構成比率m4、m5、d1、d2、d3は、それぞれ、m4≧0、m5≧0、d1≧0、d2≧0、d3≧0であり、かつ、m4+m5>0、m5+d3>0、m4+m5+d1+d2+d3=1を満たす数である。上記直鎖状オルガノポリシロキサンは、m5単位とd3単位のいずれかを含んでおり、R基を分子鎖末端と分子鎖非末端部分のどちらか一方のみ、又は両方に有する。(B)成分は、ラジカル重合性のR基が存在することにより、低温でのラジカル硬化が可能である。
 上記m4、m5、d1、d2、d3単位は、いずれも2つ以上の異なるシロキサン単位(小単位)の組み合わせからなるものであって良く、上記各単位における小単位の配置順序は任意(不定)である。
The linear organopolysiloxane represented by the above formula (3) has (R 2 R 1 2 SiO 1/2 ) units (also referred to as "m4 units". The same applies hereinafter), (R 3 R 1 2 SiO 1/2 ) unit (m5 unit), (R 1 2 SiO 2/2 ) unit (d1 unit), (R 1 R 2 SiO 2/2 ) unit (d2 unit), (R 1 R 3 SiO 2/2 ) units (d3 units), and the composition ratios of each unit m4, m5, d1, d2, d3 are m4≧0, m5≧0, d1≧0, d2≧0, d3≧0, respectively, In addition, the number satisfies m4+m5>0, m5+d3>0, and m4+m5+d1+d2+d3=1. The linear organopolysiloxane contains either an m5 unit or a d3 unit, and has an R 3 group at either the molecular chain terminal or the non-terminal portion of the molecular chain, or both. Component (B) can be radically cured at low temperatures due to the presence of the radically polymerizable R3 group.
Each of the m4, m5, d1, d2, and d3 units may be composed of a combination of two or more different siloxane units (small units), and the arrangement order of the small units in each of the above units is arbitrary (undefined). It is.
 ここでのRは、それぞれ独立に、脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基であり、このような一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基等のアルキル基;フェニル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基等が例示され、特にメチル基、フェニル基が好ましい。 Here, R 1 each independently represents a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond, and such monovalent hydrocarbon groups include , alkyl groups such as methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group; aryl groups such as phenyl group, naphthyl group; aralkyl groups such as benzyl group, phenethyl group; chloromethyl group, Examples include halogenated alkyl groups such as 3-chloropropyl group and 3,3,3-trifluoropropyl group, with methyl group and phenyl group being particularly preferred.
 組成物の相溶性および硬化物の透明性の観点から、上記式(3)中の全Rの少なくとも1モル%がフェニル基であり、2~50モル%であることが好ましい。 From the viewpoint of compatibility of the composition and transparency of the cured product, at least 1 mol % of all R 1 in the above formula (3) is a phenyl group, preferably 2 to 50 mol %.
 ここでのRは、炭素原子数2~8のアルケニル基であり、このようなアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、オクテニル基等が挙げられ、特にビニル基が好ましい。 R 2 here is an alkenyl group having 2 to 8 carbon atoms, and examples of such alkenyl groups include vinyl group, allyl group, butenyl group, pentenyl group, hexenyl group, octenyl group, etc. Vinyl groups are preferred.
 ここでのRは、ラジカル重合性官能基を有する置換基であり、特に制限はないが、メタクリル基やアクリル基を有する置換基が好ましく、特に上記式(2)で表されるものが好ましい。 R3 here is a substituent having a radically polymerizable functional group, and although there is no particular limitation, a substituent having a methacrylic group or an acrylic group is preferable, and the one represented by the above formula (2) is particularly preferable. .
 上記式(3)において、m4は0、d2は0が好ましい。つまり、式(3)で表される直鎖状のオルガノポリシロキサンは、アルケニル基Rを含まないことが好ましい。d1単位は、2つ以上の異なるD単位(小単位)の組み合わせからなるものであって良い。このようなD単位としては、例えば、((CHSiO2/2)、((CSiO2/2)、((C)(CH)SiO2/2)から選ばれる2つ以上のD単位の組み合わせが挙げられる。中でも、((CHSiO2/2)と((CSiO2/2)の組み合わせが好ましい。上記各単位における小単位の配置順序は任意である。 In the above formula (3), m4 is preferably 0 and d2 is preferably 0. That is, the linear organopolysiloxane represented by formula (3) preferably does not contain alkenyl group R 2 . The d1 unit may be a combination of two or more different D units (small units). Examples of such D units include ((CH 3 ) 2 SiO 2/2 ), ((C 6 H 5 ) 2 SiO 2/2 ), ((C 6 H 5 )(CH 3 )SiO 2/ Examples include combinations of two or more D units selected from 2 ). Among these, a combination of ((CH 3 ) 2 SiO 2/2 ) and ((C 6 H 5 ) 2 SiO 2/2 ) is preferred. The arrangement order of the small units in each of the above units is arbitrary.
 (B)成分の好適な例を以下に示すが、これらに限定されるものではない。なお、式中、Meはメチル基を表し、Phはフェニル基を表す(以下同様)。
Figure JPOXMLDOC01-appb-C000005
(式中、括弧内のシロキサン単位の配列は任意であり、*は隣接ケイ素原子との結合を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、括弧内のシロキサン単位の配列は任意である。)
Figure JPOXMLDOC01-appb-C000007
(式中、括弧内のシロキサン単位の配列は任意である。)
Preferred examples of component (B) are shown below, but the invention is not limited thereto. In addition, in the formula, Me represents a methyl group, and Ph represents a phenyl group (the same applies hereinafter).
Figure JPOXMLDOC01-appb-C000005
(In the formula, the arrangement of siloxane units in parentheses is arbitrary, and * represents a bond with an adjacent silicon atom.)
Figure JPOXMLDOC01-appb-C000006
(In the formula, the arrangement of siloxane units in parentheses is arbitrary.)
Figure JPOXMLDOC01-appb-C000007
(In the formula, the arrangement of siloxane units in parentheses is arbitrary.)
 (B)成分の直鎖状オルガノポリシロキサンの添加量は、上記(A)100質量部に対して、10~1000質量部が好ましく、より好ましくは20~200質量部である。このような範囲であれば、硬化物の硬度をより適切な範囲とすることができる。 The amount of linear organopolysiloxane added as component (B) is preferably 10 to 1000 parts by weight, more preferably 20 to 200 parts by weight, based on 100 parts by weight of (A). Within this range, the hardness of the cured product can be set within a more appropriate range.
[(C)成分]
 (C)成分は(A)成分および(B)成分の重合性官能基を重合させる重合開始剤であり、(C)成分としては、熱によりラジカルを発生させる有機過酸化物を用いることができる。
[(C) Component]
Component (C) is a polymerization initiator that polymerizes the polymerizable functional groups of components (A) and (B), and as component (C), an organic peroxide that generates radicals by heat can be used. .
 有機過酸化物としては、組成物の保存安定性および硬化性の制御の点、10時間半減期温度が50~150℃の有機化過酸化物が好ましく、より好ましくは60~110℃の有機過酸化物である。 The organic peroxide is preferably an organic peroxide having a 10-hour half-life temperature of 50 to 150°C, more preferably an organic peroxide having a 10-hour half-life temperature of 60 to 110°C, from the viewpoint of controlling the storage stability and curability of the composition. It is an oxide.
 有機過酸化物の具体例としては、ベンゾイルパーオキサイド、t-ブチルパーベンゾエート、o-メチルベンゾイルパーオキサイド、p-メチルベンゾイルパーオキサイド、ジ-t-ブチルパーオキサイド、ジクミルパーオキサイド、1,1-ビス(t-ブチルパーオキシ)-3,3,5-トリメチルシクロヘキサン、1,1-ジーテトラブチルパーオキシ-シクロヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、1,6-ビス(p-トルオイルパーオキシカルボニルオキシ)ヘキサン、ジ(4-メチルベンゾイルパーオキシ)ヘキサメチレンビスカーボネート、2,5-ジメトキシ-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン等が挙げられる。 Specific examples of organic peroxides include benzoyl peroxide, t-butyl perbenzoate, o-methylbenzoyl peroxide, p-methylbenzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, 1,1 -bis(t-butylperoxy)-3,3,5-trimethylcyclohexane, 1,1-ditetrabutylperoxy-cyclohexane, 2,5-dimethyl-2,5-di(t-butylperoxy)hexane , 2,5-dimethyl-2,5-di(t-butylperoxy)hexyne, 1,6-bis(p-toluoylperoxycarbonyloxy)hexane, di(4-methylbenzoylperoxy)hexamethylenebis carbonate, 2,5-dimethoxy-2,5-di(2-ethylhexanoylperoxy)hexane, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane, and the like.
 また、有機過酸化物は商業的にも入手でき、例えば、日油株式会社から入手することができる。具体的には、パーブチルNHP(50.6)、パーヘキシルPV(53.2)、パーブチルPV(54.6)、パーロイル355(59.4)、パーロイルL(61.6)、パーオクタO(65.3)、パーロイルSA(65.9)、パーヘキサ25O(66.2)、パーヘキシルO(69.9)、ナイパーPMB(70.6)、パーブチルO(72.1)、ナイパーBMT(73.1)、ナイパーBW(73.6)、パーヘキサMC(83.2)、パーヘキサTMH(86.7)、パーヘキサHC(87.1)、パーヘキサC(90.7)、パーテトラA(94.7)、パーヘキシルI(95.0)、パーブチルMA(96.1)、パーブチル355(97.1)、パーブチルL(98.3)、パーブチルI(98.7)、パーブチルE(99.0)、パーヘキシルZ(99.4)、パーヘキサ25Z(99.7)、パーブチルA(101.9)、パーヘキサ22(103.1)、パーブチルZ(104.3)、パーヘキサV(104.5)、パーブチルP(119.2)、パークミルD(116.4)、パーヘキシルD(116.4)、パーヘキサ25B(117.9)、パーブチルC(119.5)、パーブチルD(123.7)、パーメンタH(128.0)、パーヘキシン25B(128.4)、パークミルP(145.1)などがある。なお、上記化合物名に続く括弧内の数字は、それぞれの10時間半減期温度(単位:℃)である。 Additionally, organic peroxides are also commercially available, for example from NOF Corporation. Specifically, perbutyl NHP (50.6), perhexyl PV (53.2), perbutyl PV (54.6), perloyl 355 (59.4), perloyl L (61.6), perocta O (65. 3), Perloil SA (65.9), Perhexa 25O (66.2), Perhexyl O (69.9), Niper PMB (70.6), Perbutyl O (72.1), Niper BMT (73.1) , Niper BW (73.6), Perhexa MC (83.2), Perhexa TMH (86.7), Perhexa HC (87.1), Perhexa C (90.7), Pertetra A (94.7), Perhexyl I (95.0), Perbutyl MA (96.1), Perbutyl 355 (97.1), Perbutyl L (98.3), Perbutyl I (98.7), Perbutyl E (99.0), Perhexyl Z ( 99.4), Perhexa 25Z (99.7), Perbutyl A (101.9), Perhexa 22 (103.1), Perbutyl Z (104.3), Perhexa V (104.5), Perbutyl P (119. 2), Permil D (116.4), Perhexyl D (116.4), Perhexa 25B (117.9), Perbutyl C (119.5), Perbutyl D (123.7), Permenta H (128.0) , Perhexin 25B (128.4), and Percmil P (145.1). Note that the numbers in parentheses following the above compound names are the respective 10-hour half-life temperatures (unit: °C).
 上記有機過酸化物のうち、(A)成分との相溶性および10時間半減期温度の観点から、好ましくは、2,5-ジメチル-2,5-ジ(2-エチルヘキサノイルパーオキシ)ヘキサン(日油(株)製、パーヘキサ(登録商標)25O、10時間半減期温度66.2℃)である。 Among the above organic peroxides, from the viewpoint of compatibility with component (A) and 10-hour half-life temperature, 2,5-dimethyl-2,5-di(2-ethylhexanoylperoxy)hexane is preferable. (manufactured by NOF Corporation, Perhexa (registered trademark) 25O, 10 hour half-life temperature 66.2°C).
 これらの有機過酸化物は1種単独で又は2種以上を組み合わせて用いることができる。 These organic peroxides can be used alone or in combination of two or more.
 有機過酸化物の添加量は、有効量でよいが、通常、(A)成分100質量部に対して0.01~10質量部、より好ましくは0.1~5質量部である。 The amount of organic peroxide added may be any effective amount, but is usually 0.01 to 10 parts by weight, more preferably 0.1 to 5 parts by weight, per 100 parts by weight of component (A).
[(D)成分]
 (D)成分は、有機溶剤であり、上記(A)~(C)成分及び後述する任意成分を溶解または分散可能なものであれば特に限定されるものではなく、公知の有機溶剤を使用することができる。有機溶剤としては、例えば、キシレン、トルエン、ベンゼン等の芳香族炭化水素系溶剤、ヘプタン、ヘキサン等の脂肪族炭化水素系溶剤、トリクロロエチレン、パークロロエチレン、塩化メチレン等のハロゲン化炭化水素系溶剤、酢酸エチル等のエステル系溶剤、メチルイソブチルケトン、メチルエチルケトン等のケトン系溶剤、エタノール、イソプロパノール、ブタノール等のアルコール系溶剤、リグロイン、シクロヘキサノン、ジエチルエーテル、ゴム揮発油、シリコーン系溶剤などが挙げられる。中でもトルエン、ヘプタン、酢酸エチルが好適に用いられる。
[(D) Component]
Component (D) is an organic solvent, and is not particularly limited as long as it can dissolve or disperse components (A) to (C) above and optional components described below, and any known organic solvent may be used. be able to. Examples of organic solvents include aromatic hydrocarbon solvents such as xylene, toluene, and benzene; aliphatic hydrocarbon solvents such as heptane and hexane; halogenated hydrocarbon solvents such as trichlorethylene, perchloroethylene, and methylene chloride; Examples include ester solvents such as ethyl acetate, ketone solvents such as methyl isobutyl ketone and methyl ethyl ketone, alcohol solvents such as ethanol, isopropanol and butanol, ligroin, cyclohexanone, diethyl ether, rubber volatile oil, and silicone solvents. Among them, toluene, heptane, and ethyl acetate are preferably used.
 (D)成分は、組成物塗布作業時の蒸発速度に応じて、1種を単独で用いても2種以上を組合せて混合溶剤として用いてもよい。 Component (D) may be used alone or in combination of two or more as a mixed solvent depending on the evaporation rate during the composition coating operation.
 本発明のラジカル硬化型シリコーン組成物は、前記(A)~(D)成分以外に必要に応じて以下の任意成分を更に含むことができる。 In addition to the components (A) to (D), the radical-curable silicone composition of the present invention may further contain the following optional components, if necessary.
[蛍光体]
 本発明のラジカル硬化型シリコーン組成物は、蛍光体の添加により、蛍光体シート等の波長変換部材として用いることが出来る。蛍光体は、LEDチップから放出される青色光、紫色光、または紫外光を吸収して波長を変換し、赤色、橙色、黄色、緑色、青色の領域の波長のLEDチップの光と異なる波長の光を放出するものである。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系のLEDが得られる。
[Phosphor]
The radical curable silicone composition of the present invention can be used as a wavelength conversion member such as a phosphor sheet by adding a phosphor. The phosphor absorbs blue light, violet light, or ultraviolet light emitted from the LED chip and converts the wavelength to produce light of a different wavelength from the LED chip's wavelength in the red, orange, yellow, green, and blue regions. It emits light. As a result, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed, and a multicolor LED including white is obtained.
 上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。本発明に用いられる具体的な蛍光体としては、有機蛍光体、無機蛍光体、蛍光顔料、蛍光染料等の公知の蛍光体が挙げられる。有機蛍光体としては、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができ、長期間使用可能な点からペリレン系蛍光体が好ましく用いられる。本発明に特に好ましく用いられる蛍光物質としては、無機蛍光体が挙げられる。以下に本発明に用いられる無機蛍光体について記載する。 The above-mentioned phosphors include various phosphors, such as a phosphor that emits green light, a phosphor that emits blue light, a phosphor that emits yellow light, and a phosphor that emits red light. Specific examples of the phosphor used in the present invention include known phosphors such as organic phosphors, inorganic phosphors, fluorescent pigments, and fluorescent dyes. Examples of the organic phosphor include allylsulfamide/melamine formaldehyde co-condensed dyes and perylene-based phosphors, and perylene-based phosphors are preferably used because they can be used for a long period of time. Examples of fluorescent substances particularly preferably used in the present invention include inorganic fluorescent substances. The inorganic phosphor used in the present invention will be described below.
 緑色に発光する蛍光体として、例えば、SrAl:Eu、YSiO:Ce,Tb、MgAl1119:Ce,Tb、SrAl1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1つ以上)Ga:Euなどがある。 Phosphors that emit green light include, for example, SrAl 2 O 4 :Eu, Y 2 SiO 5 :Ce, Tb, MgAl 11 O 19 :Ce, Tb, Sr 7 Al 12 O 25 :Eu, (Mg, Ca, Sr , at least one of Ba) Ga 2 S 4 :Eu, and the like.
 青色に発光する蛍光体として、例えば、Sr(POCl:Eu、(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1つ以上)Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1つ以上)(POCl:Eu,Mnなどがある。 Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl:Eu, (SrCaBa) 5 (PO 4 ) 3 Cl:Eu, (BaCa) 5 (PO 4 ) 3 Cl:Eu, (Mg, (at least one or more of Ca, Sr, Ba) 2 B 5 O 9 Cl: Eu, Mn, (at least one or more of Mg, Ca, Sr, Ba) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. There is.
 緑色から黄色に発光する蛍光体として、少なくともセリウムで賦活されたイットリウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦括されたイットリウム・ガドリニウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦活されたイットリウム・アルミニウム・ガーネット酸化物蛍光体、及び、少なくともセリウムで賦活されたイットリウム・ガリウム・アルミニウム酸化物蛍光体などがある(いわゆるYAG系蛍光体)。具体的には、Ln12:R(Lnは、Y、Gd、Laから選ばれる少なくとも1つ以上である。Mは、Al、Caの少なくともいずれか一方を含む。Rは、ランタノイド系である。)、(Y1-xGa(Al1-yGa12:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1つ以上である。0<Rx<0.5、0<y<0.5である。)を使用することができる。 Phosphors that emit light from green to yellow include yttrium aluminum oxide phosphors activated with at least cerium, yttrium gadolinium aluminum oxide phosphors activated with at least cerium, and yttrium aluminum activated with at least cerium. - There are garnet oxide phosphors and yttrium-gallium-aluminum oxide phosphors activated with at least cerium (so-called YAG-based phosphors). Specifically, Ln 3 M 5 O 12 :R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid. ), (Y 1-x Ga x ) 3 (Al 1-y Ga y ) 5 O 12 :R (R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, and Ho) 0<Rx<0.5, 0<y<0.5) can be used.
 赤色に発光する蛍光体として、例えば、YS:Eu、LaS:Eu、Y:Eu、GdS:Euなどがある。 Examples of phosphors that emit red light include Y2O2S :Eu, La2O2S :Eu, Y2O3 :Eu, and Gd2O2S : Eu .
 また、青色LEDに対応し発光する蛍光体としては、Y(Al,Ga)12:Ce,(Y,Gd)Al12:Ce,LuAl12:Ce,YAl12:CeなどのYAG系蛍光体、TbAl12:CeなどのTAG系蛍光体、(Ba,Sr)SiO:Eu系蛍光体やCaScSi12:Ce系蛍光体、(Sr,Ba,Mg)SiO:Euなどのシリケート系蛍光体、(Ca,Sr)Si:Eu、(Ca,Sr)AlSiN:Eu、CaSiAlN:Eu等のナイトライド系蛍光体、Cax(Si,Al)12(O,N)16:Euなどのオキシナイトライド系蛍光体、さらには(Ba,Sr,Ca)Si:Eu系蛍光体、CaMgSi16Cl:Eu系蛍光体、SrAl:Eu,SrAl1425:Eu等の蛍光体が挙げられる。 Further, as a phosphor that emits light corresponding to a blue LED, Y 3 (Al, Ga) 5 O 12 :Ce, (Y, Gd) 3 Al 5 O 12 : Ce, Lu 3 Al 5 O 12 : Ce, Y 3 Al 5 O 12 : YAG phosphor such as Ce, Tb 3 Al 5 O 12 : TAG phosphor such as Ce, (Ba, Sr) 2 SiO 4 : Eu phosphor, Ca 3 Sc 2 Si 3 O 12 : Ce-based phosphor, (Sr, Ba, Mg) 2 SiO 4 : Silicate-based phosphor such as Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiN 3 : Eu, CaSiAlN 3 : Nitride phosphor such as Eu, Cax (Si, Al) 12 (O, N) 16 : Oxynitride phosphor such as Eu, and further (Ba, Sr, Ca) Si 2 O 2 N 2 :Eu-based phosphor, Ca8MgSi4O16Cl2 : Eu-based phosphor , SrAl2O4 : Eu , Sr4Al14O25 :Eu , and the like .
 これらの中では、YAG系蛍光体、TAG系蛍光体、シリケート系蛍光体が、発光効率や輝度などの点で好ましく用いられる。 Among these, YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and brightness.
 上記以外にも、用途や目的とする発光色に応じて公知の蛍光体を用いることができる。 In addition to the above, known phosphors can be used depending on the purpose and desired emission color.
 蛍光体の粒子サイズは、特に制限はないが、D50が0.05μm以上のものが好ましく、3μm以上のものがより好ましい。また、D50が30μm以下のものが好ましく、20μm以下のものがより好ましい。ここでD50とは、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布において、小粒径側からの通過分積算が50%となるときの粒子径のことをいう。D50が前記範囲であると、蛍光体シート中の蛍光体の分散性が良好で、安定な発光が得られる。 The particle size of the phosphor is not particularly limited, but it is preferably D50 of 0.05 μm or more, more preferably 3 μm or more. Moreover, those with D50 of 30 μm or less are preferable, and those with D50 of 20 μm or less are more preferable. Here, D50 refers to the particle diameter when the cumulative amount of particles passing from the small particle size side is 50% in the volume-based particle size distribution measured by laser diffraction scattering particle size distribution measuring method. When D50 is within the above range, the phosphor in the phosphor sheet has good dispersibility and stable light emission can be obtained.
 本発明では、蛍光体の含有量が、ラジカル硬化型シリコーン組成物の固形分100質量部に対し20~500質量部であることが好ましく、50~400質量部以上であることがより好ましく、80~300質量部であることがさらに好ましい。蛍光体シート中の蛍光体含有量を前記範囲とすることで、蛍光体シートの光変換効率を高めることができる。本発明の蛍光体シートは、LEDの表面被覆用途に特に好ましく用いられる。その際、蛍光体シート中の蛍光体の含有量が上記範囲であることで、優れた性能を示すLED発光装置を得ることができる。 In the present invention, the content of the phosphor is preferably 20 to 500 parts by mass, more preferably 50 to 400 parts by mass or more, and 80 to 500 parts by mass, more preferably 50 to 400 parts by mass or more, based on 100 parts by mass of the solid content of the radical-curable silicone composition. More preferably, the amount is 300 parts by mass. By setting the phosphor content in the phosphor sheet within the above range, the light conversion efficiency of the phosphor sheet can be increased. The phosphor sheet of the present invention is particularly preferably used for surface coating of LEDs. At this time, when the content of the phosphor in the phosphor sheet is within the above range, an LED light emitting device exhibiting excellent performance can be obtained.
[量子ドット]
 また、本発明のラジカル硬化型シリコーン組成物は、波長変換材として作用する量子ドットを含有することができる。量子ドットは通常、平均粒径D50が20nm以下の粒子であり、光エネルギーを吸収・変換することができる。量子ドットはその粒径を変えることで光の色を調整することができる。粒径の大きさによりバンドギャップが決まるため、粒径を揃えることで色純度の高い光を得ることができる。
[Quantum dot]
Further, the radical curable silicone composition of the present invention can contain quantum dots that act as a wavelength conversion material. Quantum dots are usually particles with an average particle diameter D50 of 20 nm or less, and can absorb and convert light energy. Quantum dots can adjust the color of light by changing their particle size. Since the band gap is determined by the particle size, light with high color purity can be obtained by aligning the particle sizes.
 量子ドットは、可視光域で放射するのもとしては、CdSやZnSe、ZnSのようなシェルを有するCdSe系粒子が挙げられる。また、InP、CuInS、AgInS、Te、PbS、InAsなどのカドミウムフリーの量子ドットも用いることができる。本発明では従来のいかなる種類の量子ドットも使用することができる。 Quantum dots that emit radiation in the visible light range include CdSe-based particles having shells such as CdS, ZnSe, and ZnS. Cadmium-free quantum dots such as InP, CuInS 2 , AgInS 2 , Te, PbS, and InAs can also be used. Any type of conventional quantum dots can be used in the present invention.
 量子ドットの添加量は、ラジカル硬化型シリコーン組成物の固形分100質量部に対して0.01~20質量部が好ましく、0.1~10質量部がより好ましい。 The amount of quantum dots added is preferably 0.01 to 20 parts by weight, more preferably 0.1 to 10 parts by weight, based on 100 parts by weight of the solid content of the radical-curable silicone composition.
[その他の成分]
 本発明のラジカル硬化型シリコーン組成物には、硬化物の着色、白濁、酸化劣化等の発生を抑えるために、2,6-ジ-t-ブチル-4-メチルフェノール等の公知の酸化防止剤を配合してもよい。また、光劣化に対する抵抗性を付与するために、ヒンダードアミン系安定剤等の光安定剤を配合してもよい。さらに、必要に応じて、強度を向上させるためにヒュームドシリカ等の無機質充填剤を配合してもよいし、染料、顔料、難燃剤等を配合してもよい。接着力を向上させるために接着助剤(シランカップリング剤)を配合してもよい。
[Other ingredients]
The radical-curable silicone composition of the present invention contains a known antioxidant such as 2,6-di-t-butyl-4-methylphenol in order to suppress the occurrence of coloration, cloudiness, oxidative deterioration, etc. of the cured product. may be blended. Further, in order to impart resistance to photodeterioration, a light stabilizer such as a hindered amine stabilizer may be added. Furthermore, if necessary, an inorganic filler such as fumed silica may be blended in order to improve the strength, or dyes, pigments, flame retardants, etc. may be blended. An adhesion aid (silane coupling agent) may be added to improve adhesive strength.
[硬化方法および硬化条件]
 本発明のラジカル硬化型シリコーン組成物の硬化条件としては、公知の方法および条件を採用することができる。一例を挙げると、50~150℃で10分~5時間で硬化させることができる。重合開始剤が、10時間半減期温度50~150℃の有機過酸化物である場合は、低温硬化が可能である。
[Curing method and curing conditions]
As the curing conditions for the radical curable silicone composition of the present invention, known methods and conditions can be employed. For example, it can be cured at 50 to 150°C for 10 minutes to 5 hours. When the polymerization initiator is an organic peroxide with a 10-hour half-life temperature of 50 to 150°C, low-temperature curing is possible.
[シリコーン硬化物]
 また、本発明は、上記ラジカル硬化型シリコーン組成物の硬化物であることを特徴とするシリコーン硬化物を提供する。
[Silicone cured product]
Further, the present invention provides a cured silicone product, which is a cured product of the above-mentioned radical curable silicone composition.
 本発明のシリコーン硬化物は、良好な硬度を備えているうえ、低温で硬化可能であるため、蛍光体や量子ドットなどに及ぼす熱的影響を抑えることができる。このため、蛍光体等を分散させたシートや封止材等の波長変換材料等の用途に有用である。 The cured silicone product of the present invention has good hardness and can be cured at low temperatures, so it can suppress thermal effects on phosphors, quantum dots, and the like. Therefore, it is useful for applications such as wavelength conversion materials such as sheets and sealants in which fluorescent substances are dispersed.
 以下、実施例を用いて本発明を具体的に説明するが、これらの実施例は本発明を何ら制限するものではない。なお、以下において、Meはメチル基、Phはフェニル基、Viはビニル基を意味する略号である。また、重量平均分子量は、トルエンを展開溶媒としてGPC分析によるポリスチレン換算値として求めた。25℃における粘度は、B型回転粘度計により求めた。 Hereinafter, the present invention will be specifically explained using Examples, but these Examples are not intended to limit the present invention in any way. In addition, in the following, Me is a methyl group, Ph is a phenyl group, and Vi is an abbreviation meaning a vinyl group. Moreover, the weight average molecular weight was determined as a polystyrene equivalent value by GPC analysis using toluene as a developing solvent. The viscosity at 25°C was determined using a B-type rotational viscometer.
[合成例1]
 (MeSiO1/20.40(ViMeSiO1/20.05(SiO0.55で表わされる構成単位比を有する重量平均分子量5300のオルガノポリシロキサンの50%トルエン溶液1000質量部を、オイルバスで80℃に加熱した。これに六塩化白金1,3-ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を0.54g添加し、攪拌しながら下記式(4)で表される化合物22g(0.17モル)を滴下した。滴下終了後、90℃で2時間撹拌した後、25℃まで冷却した。さらにメタノール300gを添加し、30分間攪拌した後、静置し分離させた。デカンデーションを行い、100℃減圧下でメタノールを除去した。さらに酢酸エチル56gを添加し溶解させ、(MeSiO1/20.40(ViMeSiO1/20.04(RMeSiO1/20.01(SiO0.55で表わされる構成単位比を有する三次元網目状オルガノポリシロキサンの50質量%酢酸エチル溶液(A-1)を得た。
Figure JPOXMLDOC01-appb-C000008
(式中、*は、隣接ケイ素原子との結合を表す。)
[Synthesis example 1]
(Me 3 SiO 1/2 ) 0.40 (ViMe 2 SiO 1/2 ) 0.05 (SiO 2 ) 50% toluene solution of organopolysiloxane having a weight average molecular weight of 5300 and having a constituent unit ratio represented by 0.55 . 1000 parts by mass was heated to 80°C in an oil bath. To this was added 0.54g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum), and while stirring, 22g (0.5%) of a compound represented by the following formula (4) was added. .17 mol) was added dropwise. After the dropwise addition was completed, the mixture was stirred at 90°C for 2 hours, and then cooled to 25°C. Further, 300 g of methanol was added, and after stirring for 30 minutes, the mixture was allowed to stand still for separation. Decandation was performed to remove methanol under reduced pressure at 100°C. Further, 56 g of ethyl acetate was added and dissolved to obtain (Me 3 SiO 1/2 ) 0.40 (ViMe 2 SiO 1/2 ) 0.04 (R 3 Me 2 SiO 1/2 ) 0.01 (SiO 2 ) 0 A 50% by mass ethyl acetate solution (A-1) of a three-dimensional network organopolysiloxane having a structural unit ratio of .55 was obtained.
Figure JPOXMLDOC01-appb-C000008
(In the formula, * represents a bond with an adjacent silicon atom.)
[合成例2]
 合成例1において、上記式(4)で表される化合物の添加量を44g(0.34モル)に変更した以外は合成例1と同じ操作を行い、(MeSiO1/20.40(ViMeSiO1/20.03(RMeSiO1/20.02(SiO0.55で表わされる構成単位比を有する三次元網目状オルガノポリシロキサンの50質量%酢酸エチル溶液(A-2)を得た。
[Synthesis example 2]
In Synthesis Example 1, the same operation as in Synthesis Example 1 was performed except that the amount of the compound represented by the above formula (4) was changed to 44 g (0.34 mol), and (Me 3 SiO 1/2 ) 0. 40 (ViMe 2 SiO 1/2 ) 0.03 (R 3 Me 2 SiO 1/2 ) 0.02 (SiO 2 ) 50 mass of three-dimensional network organopolysiloxane having a constituent unit ratio expressed as 0.55 % ethyl acetate solution (A-2) was obtained.
Figure JPOXMLDOC01-appb-C000009
(式中、*は、隣接ケイ素原子との結合を表す。)
Figure JPOXMLDOC01-appb-C000009
(In the formula, * represents a bond with an adjacent silicon atom.)
[合成例3]
 撹拌装置、冷却管、滴下ロートおよび温度計を備えた1000mLの4つ口フラスコに、下記式(5)で表されるオルガノポリシロキサンの300g(Vi:0.0037モル/100g)をトルエン150gに溶解させ、オイルバスで85℃に加熱した。これに六塩化白金1,3-ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を0.12g添加し、攪拌しながら下記式(5)で表される化合物2.89g(0.011モル)を滴下した。滴下終了後、90℃で2時間撹拌した後、トルエンを減圧留去して、無色透明なオイル状の直鎖状オルガノポリシロキサン(B-1)(25℃における粘度:14Pa・s)300gを得た。
[Synthesis example 3]
In a 1000 mL four-neck flask equipped with a stirrer, a cooling tube, a dropping funnel, and a thermometer, 300 g of organopolysiloxane represented by the following formula (5) (Vi: 0.0037 mol/100 g) was added to 150 g of toluene. It was dissolved and heated to 85°C in an oil bath. To this was added 0.12 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum), and while stirring, 2.89 g of a compound represented by the following formula (5) was added. (0.011 mol) was added dropwise. After the dropwise addition was completed, the toluene was stirred at 90°C for 2 hours, and the toluene was distilled off under reduced pressure to obtain 300g of colorless and transparent oily linear organopolysiloxane (B-1) (viscosity at 25°C: 14 Pa·s). Obtained.
Figure JPOXMLDOC01-appb-C000010
(式中、括弧内のシロキサン単位の配列順は不定である。)
Figure JPOXMLDOC01-appb-C000010
(In the formula, the arrangement order of the siloxane units in parentheses is undefined.)
[合成例4]
 撹拌装置、冷却管、滴下ロートおよび温度計を備えた1000mLの4つ口フラスコに、下記式(6)で表されるオルガノポリシロキサンの300g(Vi基:0.0025モル/100g)をトルエン150gに溶解させ、オイルバスで85℃に加熱した。これに六塩化白金1,3-ジビニルテトラメチルジシロキサンのトルエン溶液(白金換算で0.5質量%)を0.06g添加し、攪拌しながら下記式(6)で表される化合物2.0g(0.0075モル)を滴下した。滴下終了後、90℃で2時間撹拌した後、トルエンを減圧留去して、無色透明なオイル状の直鎖状オルガノポリシロキサン(B-2)(25℃における粘度:110Pa・s)290gを得た。
[Synthesis example 4]
In a 1000 mL four-necked flask equipped with a stirrer, a cooling tube, a dropping funnel, and a thermometer, 300 g of organopolysiloxane represented by the following formula (6) (Vi group: 0.0025 mol/100 g) was added to 150 g of toluene. and heated to 85°C in an oil bath. To this was added 0.06 g of a toluene solution of platinum hexachloride 1,3-divinyltetramethyldisiloxane (0.5% by mass in terms of platinum), and while stirring, 2.0 g of a compound represented by the following formula (6) was added. (0.0075 mol) was added dropwise. After the addition was completed, the toluene was stirred at 90°C for 2 hours, and the toluene was distilled off under reduced pressure to obtain 290g of colorless and transparent oily linear organopolysiloxane (B-2) (viscosity at 25°C: 110 Pa·s). Obtained.
Figure JPOXMLDOC01-appb-C000011
(式中、括弧内のシロキサン単位の配列順は不定である。)
Figure JPOXMLDOC01-appb-C000011
(In the formula, the arrangement order of the siloxane units in parentheses is undefined.)
[実施例1、2および比較例1、2]
 下記に示す各成分を表1に示す配合比(質量部)で混合し、ラジカル硬化型シリコーン組成物を調製した。
[Examples 1 and 2 and Comparative Examples 1 and 2]
The components shown below were mixed at the blending ratio (parts by mass) shown in Table 1 to prepare a radical curable silicone composition.
(A)成分:
(A-1)合成例1で得られた三次元網目状オルガノポリシロキサンの50質量%酢酸エチル溶液
(A-2)合成例2で得られた三次元網目状オルガノポリシロキサンの50質量%酢酸エチル溶液
(A-3)(MeSiO1/20.40(ViMeSiO1/20.05(SiO0.55で表わされる構成単位比を有する三次元網目状オルガノポリシロキサン(重量平均分子量5300)の50質量%酢酸エチル溶液
(A) Component:
(A-1) 50% by mass ethyl acetate solution of the three-dimensional network organopolysiloxane obtained in Synthesis Example 1 (A-2) 50 mass% acetic acid solution of the three-dimensional network organopolysiloxane obtained in Synthesis Example 2 Ethyl solution (A-3) (Me 3 SiO 1/2 ) 0.40 (ViMe 2 SiO 1/2 ) 0.05 (SiO 2 ) 0.55 Three-dimensional network organopolymer having a constituent unit ratio expressed as: 50% by mass ethyl acetate solution of siloxane (weight average molecular weight 5300)
(B)成分:
(B-1)合成例3で得られた直鎖状オルガノポリシロキサン
(B-2)合成例4で得られた直鎖状オルガノポリシロキサン
(B) Component:
(B-1) Linear organopolysiloxane obtained in Synthesis Example 3 (B-2) Linear organopolysiloxane obtained in Synthesis Example 4
(C)成分:
パーヘキサ(登録商標)25O(日油(株)製、ベンゼン中、過酸化物濃度0.05モル/Lにおける10時間半減期温度66.2℃)
(C) Component:
Perhexa (registered trademark) 25O (manufactured by NOF Corporation, in benzene, 10-hour half-life temperature at 0.05 mol/L peroxide concentration 66.2°C)
(D)成分:酢酸エチル (D) Component: Ethyl acetate
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 得られた組成物を厚み4mmのポリテトラフルオロエチレン製の枠に流し込み、80℃で2時間加熱し、シートを作成した。
 得られたシートについて以下の試験を行い、物性を評価した結果を表2に示した。
The obtained composition was poured into a polytetrafluoroethylene frame having a thickness of 4 mm, and heated at 80° C. for 2 hours to prepare a sheet.
The obtained sheet was subjected to the following tests, and the results of evaluating the physical properties are shown in Table 2.
[外観]
 外観を目視で観察し、透明を〇、白濁を×とした。
[exterior]
The appearance was visually observed, and transparent was rated ○, and cloudy was rated ×.
[溶解性]
 トルエンへの溶解性を確認した。トルエンに可溶な場合は未硬化、不溶の場合は硬化していることを意味する。
[Solubility]
Solubility in toluene was confirmed. If it is soluble in toluene, it means that it is not cured, and if it is insoluble, it means that it is cured.
[硬度]
 23℃におけるタイプD硬度の測定を行った。
[hardness]
Type D hardness was measured at 23°C.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表2に示されるように、本発明のラジカル硬化型オルガノポリシロキサン組成物を用いた実施例1、2では、比較的低温での硬化が可能であり、硬度に優れた硬化物が得られた。
 一方、(A)成分をRで表されるラジカル重合性官能基を有しない三次元網目状オルガノポリシロキサンに変更した比較例1では、硬化が不十分であり、(B)成分をフェニル基を有しない直鎖状オルガノポリシロキサンに変更した比較例2では、組成物が相溶せず白濁した。
As shown in Table 2, in Examples 1 and 2 using the radical-curable organopolysiloxane composition of the present invention, curing was possible at a relatively low temperature, and cured products with excellent hardness were obtained. .
On the other hand, in Comparative Example 1 in which component (A) was changed to a three-dimensional network organopolysiloxane having no radically polymerizable functional group represented by R3 , curing was insufficient, and component (B) was replaced with a phenyl group. In Comparative Example 2, in which the composition was changed to a linear organopolysiloxane having no compound, the composition was not miscible and became cloudy.
 本明細書は、以下の態様を包含する。
 [1]:(A)下記式(1)で表される三次元網目状オルガノポリシロキサン、
(R SiO1/2m1(R SiO1/2m2(R SiO1/2m3(SiO4/2    (1)
(式中、Rは、それぞれ独立に、脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基であり、Rは、炭素原子数2~8のアルケニル基であり、Rは、ラジカル重合性官能基を有する置換基である。m1、m2、m3、qは、m1≧0、m2≧0、m3>0、q>0であり、かつ、m1+m2+m3+q=1を満たす数である。)
(B)ケイ素原子に結合したフェニル基、およびラジカル重合性官能基を有する置換基を有する直鎖状オルガノポリシロキサン、
(C)重合開始剤、及び、
(D)溶剤
を含有するものであることを特徴とするラジカル硬化型シリコーン組成物。
[2]:前記(B)成分が、下記式(3)で表される直鎖状オルガノポリシロキサンであることを特徴とする[1]に記載のラジカル硬化型シリコーン組成物。
(R SiO1/2m4(R SiO1/2m5(R SiO2/2d1(RSiO2/2d2(RSiO2/2d3  (3)
(式中、R、R及びRは上記と同じ意味を表し、但し、全Rの少なくとも1モル%がフェニル基であり、m4、m5、d1、d2、d3は、それぞれ、m4≧0、m5≧0、d1≧0、d2≧0、d3≧0であり、かつ、m4+m5>0、m5+d3>0、m4+m5+d1+d2+d3=1を満たす数である。)
[3]:前記Rが、下記式(2)で表される基であることを特徴とする[1]又は[2]に記載のラジカル硬化型シリコーン組成物。
Figure JPOXMLDOC01-appb-C000014
(式中、Rは、上記と同じ意味を表し、Rは、それぞれ独立に、置換または非置換の炭素原子数1~8の二価炭化水素基であり、Rは、水素原子またはメチル基であり、*は、隣接ケイ素原子との結合を表す。)
[4]:前記重合開始剤が、有機過酸化物であることを特徴とする[1]から[3]のいずれか1つに記載のラジカル硬化型シリコーン組成物。
[5]:前記有機過酸化物が、10時間半減期温度50~150℃のものであることを特徴とする[4]のラジカル硬化型シリコーン組成物。
[6]:[1]から[5]のいずれか1つに記載のラジカル硬化型シリコーン組成物の硬化物であることを特徴とするシリコーン硬化物。
The specification includes the following aspects.
[1]: (A) three-dimensional network organopolysiloxane represented by the following formula (1),
(R 1 3 SiO 1/2 ) m1 (R 2 R 1 2 SiO 1/2 ) m2 (R 3 R 1 2 SiO 1/2 ) m3 (SiO 4/2 ) q (1)
(In the formula, R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond, and R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms. 8 is an alkenyl group, and R 3 is a substituent having a radically polymerizable functional group. m1, m2, m3, and q are m1≧0, m2≧0, m3>0, q>0, And it is a number that satisfies m1+m2+m3+q=1.)
(B) a linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group;
(C) a polymerization initiator, and
(D) A radical-curable silicone composition characterized by containing a solvent.
[2]: The radical curable silicone composition according to [1], wherein the component (B) is a linear organopolysiloxane represented by the following formula (3).
(R 2 R 1 2 SiO 1/2 ) m4 (R 3 R 1 2 SiO 1/2 ) m5 (R 1 2 SiO 2/2 ) d1 (R 1 R 2 SiO 2/2 ) d2 (R 1 R 3 SiO 2/2 ) d3 (3)
(In the formula, R 1 , R 2 and R 3 represent the same meanings as above, provided that at least 1 mol% of all R 1 is a phenyl group, and m4, m5, d1, d2, d3 are respectively m4 ≧0, m5≧0, d1≧0, d2≧0, d3≧0, and is a number that satisfies m4+m5>0, m5+d3>0, m4+m5+d1+d2+d3=1.)
[3]: The radical curable silicone composition according to [1] or [2], wherein R 3 is a group represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000014
(In the formula, R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.)
[4]: The radical curable silicone composition according to any one of [1] to [3], wherein the polymerization initiator is an organic peroxide.
[5]: The radical-curable silicone composition of [4], wherein the organic peroxide has a 10-hour half-life temperature of 50 to 150°C.
[6]: A cured silicone product, which is a cured product of the radical-curable silicone composition according to any one of [1] to [5].
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of.

Claims (6)

  1.  (A)下記式(1)で表される三次元網目状オルガノポリシロキサン、
    (R SiO1/2m1(R SiO1/2m2(R SiO1/2m3(SiO4/2    (1)
    (式中、Rは、それぞれ独立に、脂肪族不飽和結合を有しない、置換又は非置換の炭素原子数1~12の一価炭化水素基であり、Rは、炭素原子数2~8のアルケニル基であり、Rは、ラジカル重合性官能基を有する置換基である。m1、m2、m3、qは、m1≧0、m2≧0、m3>0、q>0であり、かつ、m1+m2+m3+q=1を満たす数である。)
    (B)ケイ素原子に結合したフェニル基、およびラジカル重合性官能基を有する置換基を有する直鎖状オルガノポリシロキサン、
    (C)重合開始剤、及び、
    (D)溶剤
    を含有するものであることを特徴とするラジカル硬化型シリコーン組成物。
    (A) a three-dimensional network organopolysiloxane represented by the following formula (1),
    (R 1 3 SiO 1/2 ) m1 (R 2 R 1 2 SiO 1/2 ) m2 (R 3 R 1 2 SiO 1/2 ) m3 (SiO 4/2 ) q (1)
    (In the formula, R 1 is each independently a substituted or unsubstituted monovalent hydrocarbon group having 1 to 12 carbon atoms and having no aliphatic unsaturated bond, and R 2 is a monovalent hydrocarbon group having 2 to 12 carbon atoms. 8 is an alkenyl group, and R 3 is a substituent having a radically polymerizable functional group. m1, m2, m3, and q are m1≧0, m2≧0, m3>0, q>0, And it is a number that satisfies m1+m2+m3+q=1.)
    (B) a linear organopolysiloxane having a phenyl group bonded to a silicon atom and a substituent having a radically polymerizable functional group;
    (C) a polymerization initiator, and
    (D) A radical-curable silicone composition characterized by containing a solvent.
  2.  前記(B)成分が、下記式(3)で表される直鎖状オルガノポリシロキサンであることを特徴とする請求項1に記載のラジカル硬化型シリコーン組成物。
    (R SiO1/2m4(R SiO1/2m5(R SiO2/2d1(RSiO2/2d2(RSiO2/2d3  (3)
    (式中、R、R及びRは上記と同じ意味を表し、但し、全Rの1モル%以上がフェニル基であり、m4、m5、d1、d2、d3は、それぞれ、m4≧0、m5≧0、d1≧0、d2≧0、d3≧0であり、かつ、m4+m5>0、m5+d3>0、m4+m5+d1+d2+d3=1を満たす数である。)
    The radical curable silicone composition according to claim 1, wherein the component (B) is a linear organopolysiloxane represented by the following formula (3).
    (R 2 R 1 2 SiO 1/2 ) m4 (R 3 R 1 2 SiO 1/2 ) m5 (R 1 2 SiO 2/2 ) d1 (R 1 R 2 SiO 2/2 ) d2 (R 1 R 3 SiO 2/2 ) d3 (3)
    (In the formula, R 1 , R 2 and R 3 represent the same meanings as above, provided that 1 mol% or more of all R 1 is a phenyl group, and m4, m5, d1, d2, and d3 are respectively m4 ≧0, m5≧0, d1≧0, d2≧0, d3≧0, and is a number that satisfies m4+m5>0, m5+d3>0, m4+m5+d1+d2+d3=1.)
  3.  前記Rが、下記式(2)で表される基であることを特徴とする請求項1に記載のラジカル硬化型シリコーン組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、上記と同じ意味を表し、Rは、それぞれ独立に、置換または非置換の炭素原子数1~8の二価炭化水素基であり、Rは、水素原子またはメチル基であり、*は、隣接ケイ素原子との結合を表す。)
    The radical curable silicone composition according to claim 1, wherein the R 3 is a group represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents the same meaning as above, R 4 each independently represents a substituted or unsubstituted divalent hydrocarbon group having 1 to 8 carbon atoms, and R 5 represents a hydrogen atom or It is a methyl group, and * represents a bond with an adjacent silicon atom.)
  4.  前記重合開始剤が、有機過酸化物であることを特徴とする請求項1に記載のラジカル硬化型シリコーン組成物。 The radical curable silicone composition according to claim 1, wherein the polymerization initiator is an organic peroxide.
  5.  前記有機過酸化物が、10時間半減期温度50~150℃のものであることを特徴とする請求項4に記載のラジカル硬化型シリコーン組成物。 The radical-curable silicone composition according to claim 4, wherein the organic peroxide has a 10-hour half-life temperature of 50 to 150°C.
  6.  請求項1から請求項5のいずれか1項に記載のラジカル硬化型シリコーン組成物の硬化物であることを特徴とするシリコーン硬化物。 A cured silicone product, which is a cured product of the radical curable silicone composition according to any one of claims 1 to 5.
PCT/JP2023/028498 2022-08-15 2023-08-04 Radical curable silicone composition and silicone cured product WO2024038773A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-129386 2022-08-15
JP2022129386A JP2024025979A (en) 2022-08-15 2022-08-15 Radical curable silicone composition and silicone cured product

Publications (1)

Publication Number Publication Date
WO2024038773A1 true WO2024038773A1 (en) 2024-02-22

Family

ID=89941644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/028498 WO2024038773A1 (en) 2022-08-15 2023-08-04 Radical curable silicone composition and silicone cured product

Country Status (3)

Country Link
JP (1) JP2024025979A (en)
TW (1) TW202411310A (en)
WO (1) WO2024038773A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214543A (en) * 2006-01-12 2007-08-23 Shin Etsu Chem Co Ltd Uv-curing silicone composition for light-emitting diode element
CN104140535A (en) * 2013-11-06 2014-11-12 郑州中原应用技术研究开发有限公司 Phenyl-containing MQ silicon resin and preparation method thereof
JP2020143246A (en) * 2019-03-08 2020-09-10 信越化学工業株式会社 Resin composition for wafer-level optical semiconductor device and optical semiconductor device
JP2021001296A (en) * 2019-06-24 2021-01-07 信越化学工業株式会社 Radical curable silicone composition and cured product
WO2021070471A1 (en) * 2019-10-07 2021-04-15 信越化学工業株式会社 Oxygen-curable silicone composition and cured product thereof
WO2021200089A1 (en) * 2020-04-02 2021-10-07 信越化学工業株式会社 Ultraviolet-curable silicone adhesive composition and cured product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007214543A (en) * 2006-01-12 2007-08-23 Shin Etsu Chem Co Ltd Uv-curing silicone composition for light-emitting diode element
CN104140535A (en) * 2013-11-06 2014-11-12 郑州中原应用技术研究开发有限公司 Phenyl-containing MQ silicon resin and preparation method thereof
JP2020143246A (en) * 2019-03-08 2020-09-10 信越化学工業株式会社 Resin composition for wafer-level optical semiconductor device and optical semiconductor device
JP2021001296A (en) * 2019-06-24 2021-01-07 信越化学工業株式会社 Radical curable silicone composition and cured product
WO2021070471A1 (en) * 2019-10-07 2021-04-15 信越化学工業株式会社 Oxygen-curable silicone composition and cured product thereof
WO2021200089A1 (en) * 2020-04-02 2021-10-07 信越化学工業株式会社 Ultraviolet-curable silicone adhesive composition and cured product thereof

Also Published As

Publication number Publication date
JP2024025979A (en) 2024-02-28
TW202411310A (en) 2024-03-16

Similar Documents

Publication Publication Date Title
JP4876426B2 (en) Light emitting device with excellent heat resistance and light resistance
KR101397204B1 (en) Light-conversion flexible polymer material and use thereof
JP6601142B2 (en) Addition condensation combined curable silicone resin sheet, wavelength conversion sheet, and light emitting device manufacturing method
US20070092758A1 (en) Dispersant having silane head and phosphor paste composition comprising the same
CN103802421A (en) Heat curable silicone resin sheet and method for manufacturing the same, light emitting device using said heat curable silicone resin sheet and method for manufacturing the same
JP6410903B2 (en) Wavelength conversion sheet, laminate, light emitting device, and method for manufacturing wavelength conversion sheet
CN112126232B (en) Free radical curable silicone composition and cured product
TW201323211A (en) Laminated body and method for manufacturing light emitting diode having wavelength conversion layer
JP2017119848A (en) Organic silicon compound, thermosetting composition containing the organic silicon compound, and encapsulation material for optical semiconductor
JP2021021058A (en) Hot-meltable curable silicone composition, sealant, film, opto-semiconductor element
KR20190105509A (en) Curable silicone composition for light reflecting material, silicone resin cured product, reflector, and led device
WO2024038773A1 (en) Radical curable silicone composition and silicone cured product
JP2016011329A (en) Curable resin composition
CN108148412B (en) Condensation-curable silicone resin composition sheet, method for producing same, and method for producing light-emitting device
CN112300576B (en) Hot melt curable silicone composition, sealant, film, and optical semiconductor element
JP7027931B2 (en) Thermosetting resin composition
JP7299242B2 (en) C2-C3-Alkenyl-Substituted Ryleneimide Dyes and Curable Products of Curable Silicone Resin Compositions and C2-C3-Alkenyl-Substituted Ryleneimide Dyes
JP7325375B2 (en) Thermosetting silicone composition, sheet, and silicone cured product
JP2017186479A (en) Thermosetting resin composition
JP2016000793A (en) Curable resin composition
JP6510468B2 (en) Curable silicone resin composition and method of preparing curable silicone resin composition
JP2019182917A (en) Addition reaction curable silicone resin composition and optical semiconductor device
JP2009275141A (en) Thermosetting composition and optical semiconductor device using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23854808

Country of ref document: EP

Kind code of ref document: A1