JP2021000577A - Water quality purifying system - Google Patents

Water quality purifying system Download PDF

Info

Publication number
JP2021000577A
JP2021000577A JP2019113882A JP2019113882A JP2021000577A JP 2021000577 A JP2021000577 A JP 2021000577A JP 2019113882 A JP2019113882 A JP 2019113882A JP 2019113882 A JP2019113882 A JP 2019113882A JP 2021000577 A JP2021000577 A JP 2021000577A
Authority
JP
Japan
Prior art keywords
water
treated
denitrification
denitrifying
filter medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019113882A
Other languages
Japanese (ja)
Inventor
真 延東
Makoto Endo
真 延東
順幸 佐藤
Yoriyuki Sato
順幸 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019113882A priority Critical patent/JP2021000577A/en
Publication of JP2021000577A publication Critical patent/JP2021000577A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Water Treatments (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

To provide a water quality purifying system capable of removing nitrate nitrogen, phosphate phosphorus, and suspension particles to maintain good water quality stably without causing water quality to be deteriorated due to an organic substance or the suspension particles discharged from a denitrifying device.SOLUTION: A water quality purifying system of this invention is constituted of: a denitrifying device that removes nitrate nitrogen included in treatment water under an aerobic condition; and a froth separation device that removes suspension particles included in the treatment water, suspension particles eluted from filter media charged into the denitrifying device, suspension particles formed by microorganisms proliferated or particles captured in the denitrifying device detaching therefrom, and suspension particles formed by a denitrifying reaction. The denitrifying device is a sprinkling filter bed-type denitrifying device that exposes at least a part of the filter media to air by supplying the treatment water from above a denitrifying tank and passing the treatment water without being retained in the denitrifying tank.SELECTED DRAWING: Figure 1

Description

本発明は、水中の硝酸態窒素、リン酸態リン、懸濁粒子を除去するための水質浄化システム、より詳しくは、魚介類を飼育するために、好気条件下で脱窒、脱リンを行うことができる脱リン機能を有する脱窒装置と、飼育水中に分散する懸濁粒子、脱窒装置から排出される懸濁粒子を除去する泡沫分離装置を備える水質浄化システム関するものである。 The present invention provides a water purification system for removing nitrate nitrogen, phosphate phosphorus and suspended particles in water, more specifically, denitrification and dephosphorification under aerobic conditions for breeding fish and shellfish. It relates to a water quality purification system including a denitrifying device having a dephosphorifying function that can be performed, a suspension particle dispersed in breeding water, and a foam separation device for removing suspended particles discharged from the denitrifying device.

養殖や蓄養など魚介類を飼育する際、魚介類からアンモニアや体表粘液などの有機性懸濁粒子が排出され飼育水の水質が悪化する。特に、水を交換せずに魚介類を飼育する閉鎖循環方式では、アンモニアや有機性懸濁粒子が飼育に適さない濃度まで上昇するので、水質浄化装置を設置して魚介類に適した濃度まで低下させなくてはならない。
従来の養殖設備は、サンゴなどのろ材に繁殖する硝化細菌の働きで有毒なアンモニアを無害な硝酸にする硝化装置が設置されている程度で、長期間、良好な水質を維持することは困難であった。特に、硝酸や体表粘液などの有機性懸濁粒子は毒性が低いと考えられていたため、脱窒装置や泡沫分離装置が設置されることは少なかったが、近年、成長不良や斃死を引き起こす原因物質の一つとであることがわかり、設置されるようになってきた。また、養殖排水に含まれる窒素、リンは環境汚染の原因物質となることから、処理してから河川、海に放出することが求められるようになってきた。
When breeding fish and shellfish such as aquaculture and farming, organic suspended particles such as ammonia and body surface mucus are discharged from the fish and shellfish, and the water quality of the breeding water deteriorates. In particular, in the closed circulation method in which fish and shellfish are bred without exchanging water, ammonia and organic suspended particles rise to a concentration unsuitable for breeding, so a water purification device is installed to reach a concentration suitable for fish and shellfish. Must be lowered.
Conventional aquaculture equipment is only equipped with a nitrifying device that converts toxic ammonia into harmless nitric acid by the action of nitrifying bacteria that propagate on filter media such as coral, and it is difficult to maintain good water quality for a long period of time. there were. In particular, since organic suspended particles such as nitric acid and body surface mucus were considered to have low toxicity, denitrification devices and foam separation devices were rarely installed, but in recent years, causes of poor growth and mortality. It turned out to be one of the substances and has come to be installed. In addition, nitrogen and phosphorus contained in aquaculture wastewater are substances that cause environmental pollution, so it has become necessary to treat them before releasing them into rivers and the sea.

従来の脱窒装置は、無酸素下で脱窒細菌により硝酸を窒素ガスに還元する嫌気脱窒であったため硫化水素発生の危険性が高く、魚介類飼育に用いられることは少なかった。近年は、セルロースの存在下、好気脱窒細菌の働きで硝酸を窒素ガスに還元する好気脱窒法が開発され、魚介類飼育に用いられるようになってきた。好気脱窒には、サイフォンの原理を用いて間欠的に排水を行い、脱窒細菌を保持しているろ材が空気曝露と液体浸漬を交互繰り返す間欠ろ過式と、ろ材より下部に処理水排出口を設けた脱窒槽の上部より飼育水を散布して、脱窒槽に飼育水を溜めずにろ材の間隙を飼育水が流れることで、脱窒細菌を保持しているろ材に空気曝露部と液体浸漬部を作り出す散水ろ床式がある。 Since the conventional denitrification device is anaerobic denitrification in which nitric acid is reduced to nitrogen gas by denitrifying bacteria under anoxic conditions, there is a high risk of hydrogen sulfide generation, and it is rarely used for breeding fish and shellfish. In recent years, in the presence of cellulose, an aerobic denitrification method that reduces nitric acid to nitrogen gas by the action of aerobic denitrifying bacteria has been developed and has come to be used for fish and shellfish breeding. For aerobic denitrification, drainage is performed intermittently using the siphon principle, and the filter medium holding the denitrifying bacteria alternates between air exposure and liquid immersion, and the treated water is discharged below the filter medium. Breeding water is sprayed from the upper part of the denitrification tank provided with an outlet, and the breeding water flows through the gaps between the filter media without collecting the breeding water in the denitrification tank, so that the filter medium holding the denitrifying bacteria is exposed to air. There is a watering filter type that creates a liquid immersion part.

飼育水中に分散する懸濁粒子の除去は、ろ材を充填したろ過槽に懸濁粒子が分散した飼育水を通過させ、ろ材間に生じる抑留作用でろ材間隙に懸濁粒子を捕捉して除去するろ過法と、気泡の界面に物質が吸着、濃縮する性質を利用して、分離槽に飼育水と気泡を供給し、懸濁粒子が吸着した気泡を除去することで飼育水中より懸濁粒子を除去する泡沫分離法とがある。 To remove the suspended particles dispersed in the breeding water, the breeding water in which the suspended particles are dispersed is passed through a filter tank filled with a filter medium, and the suspended particles are captured and removed in the gaps between the filter media by the detention action generated between the filter media. Using the filtration method and the property of adsorbing and concentrating substances at the interface of air bubbles, breeding water and air bubbles are supplied to the separation tank, and the airborne particles adsorbed by the suspended particles are removed to remove the suspended particles from the breeding water. There is a foam separation method to remove.

ろ過法は、多量の懸濁粒子を処理するとろ材が目詰まりを起こし、洗浄して蓄積した懸濁粒子を取り除くことが必要になる。また、水質悪化の最大の原因物質である体表粘液や脱窒装置のろ材から溶出する有機物は、粒径が小さいため容易に除去できず、長期間飼育水中に滞留して水質悪化を引き起こす。 In the filtration method, when a large amount of suspended particles are treated, the filter medium becomes clogged, and it is necessary to wash and remove the accumulated suspended particles. In addition, organic substances eluted from the body surface mucus and the filter medium of the denitrifying device, which are the largest causative substances of water quality deterioration, cannot be easily removed due to their small particle size, and stay in the breeding water for a long period of time to cause water quality deterioration.

一方、泡沫分離法は、気泡と懸濁粒子は疎水結合により吸着するので、タンパク質のように懸濁粒子が疎水性部位を有していることが必要となり、砂などの親水性懸濁粒子は気泡に吸着することができず、飼育水より除去することができない。砂などの気泡に吸着しない懸濁粒子を泡沫分離法で除去するためには、親水性懸濁粒子を気泡に吸着させ、さらに水面で気泡の層を形成するための薬剤の供給が必要となる。例えば、液体中に分散しているカオリン粒子を除去するために、薬注ポンプを用いて、疎水性部位がありカオリン粒子と吸着する性質を持つカゼイン溶液を添加する。液体中でカゼインはカオリン粒子と吸着し、カオリン粒子が気泡に吸着できる疎水性部位を有する懸濁粒子(カゼイン−カオリン粒子)に変化することで、液体中より除去することができるようになる。 On the other hand, in the foam separation method, bubbles and suspended particles are adsorbed by a hydrophobic bond, so that the suspended particles need to have a hydrophobic site like a protein, and hydrophilic suspended particles such as sand are used. It cannot be adsorbed on air bubbles and cannot be removed from breeding water. In order to remove suspended particles that are not adsorbed by bubbles such as sand by the foam separation method, it is necessary to adsorb the hydrophilic suspended particles to the bubbles and to supply a chemical for forming a layer of bubbles on the water surface. .. For example, in order to remove the kaolin particles dispersed in the liquid, a casein solution having a hydrophobic site and having a property of adsorbing to the kaolin particles is added using a chemical injection pump. Casein is adsorbed with kaolin particles in a liquid, and the kaolin particles are changed into suspended particles (casein-kaolin particles) having a hydrophobic site that can be adsorbed on bubbles, so that the casein can be removed from the liquid.

リン酸の除去は、カルシウムやマグネシウムを添加してリン酸を粒子化して分離除去する方法(HAP法、MAP法)や、嫌気処理と好気処理を行い微生物にリン酸を吸収させて除去する方法(AO法)が知られている。しかし、両方法ともコストが高く操作が複雑であるため、生産性が重要な養殖で使われることはなかった。 Phosphoric acid can be removed by adding calcium or magnesium to atomize phosphoric acid and separating and removing it (HAP method, MAP method), or by performing anaerobic treatment and aerobic treatment to allow microorganisms to absorb phosphoric acid and remove it. The method (AO method) is known. However, both methods were not used in aquaculture where productivity was important due to their high cost and complicated operation.

特許4602446号公報Japanese Patent No. 4602446 特許6480015号公報Japanese Patent No. 6480015

硝酸態窒素の除去は、被処理水中の溶存酸素濃度をゼロにして行う嫌気脱窒が一般的であるが、脱窒装置処理水を飼育水槽に返送する閉鎖循環式養殖においては、飼育水槽に戻す前に曝気を行い溶存酸素濃度を飼育水と同等程度まで高めるため、余分なエネルギーが必要になる。また、嫌気脱窒は有毒な硫化水素発生の危険性が高く、そのため、計測機器を用いて硫化水素が発生しないように管理したり、バッチ処理をして嫌気状態になった場合でも飼育水槽に硫化水素が流入しないようにしている。そのため、計測機器が誤測定を起こさないように定期メンテナンスと定期交換が必要になり、イニシャルコスト、ランニングコストが高くなる。また、バッチ処理は排水工程が余分に必要になるため装置の大型化につながり、イニシャルコストが高くなる。 Nitrate nitrogen is generally removed by anaerobic denitrification with the dissolved oxygen concentration in the water to be treated set to zero, but in closed-circulation aquaculture in which the treated water from the denitrification device is returned to the breeding tank, the breeding tank is used. Extra energy is required to aerate the water before returning it to raise the dissolved oxygen concentration to the same level as the breeding water. In addition, anaerobic denitrification has a high risk of generating toxic hydrogen sulfide. Therefore, even if hydrogen sulfide is not generated by using a measuring device or batch processing is performed, it can be placed in the breeding water tank. It prevents hydrogen sulfide from flowing in. Therefore, regular maintenance and regular replacement are required so that the measuring device does not cause erroneous measurement, and the initial cost and running cost become high. In addition, batch processing requires an extra drainage process, which leads to an increase in the size of the equipment and an increase in initial cost.

好気脱窒は、一般的には被処理水を好気脱窒細菌が繁殖したろ材に通水して液体浸漬させ、浸漬後サイフォンの原理で排水してろ材を気中曝露する間欠ろ過法が用いられている。間欠ろ過法は、ろ材が空気に定期的に暴露されるため、嫌気状態になることが無く、硫化水素が発生しない安全な処理方法である。さらに、閉鎖循環養殖においては、飼育水の溶存酸素濃度をゼロにする前処理工程と処理水の曝気工程が必要なく、装置が小さくなるためイニシャルコストが安くなる。 Aerobic denitrification is an intermittent filtration method in which water to be treated is generally passed through a filter medium in which aerobic denitrification bacteria have propagated, immersed in a liquid, and then drained by the siphon principle to expose the filter medium in the air. Is used. The intermittent filtration method is a safe treatment method in which the filter medium is regularly exposed to air, so that it does not become anaerobic and hydrogen sulfide is not generated. Further, in closed circulation aquaculture, the pretreatment step of reducing the dissolved oxygen concentration of the breeding water to zero and the aeration step of the treated water are not required, and the device becomes smaller, so that the initial cost is reduced.

しかし、間欠ろ過式はサイフォンの原理を用いて排水を行うため、処理水を送水する水槽よりも高い位置に設置することが必要となり、頑丈な架台が必要となる。また、一定間隔で排水が行われるので、送水先の水槽は脱窒槽から1回に排出される水量分の容積が余分に必要となる。 However, since the intermittent filtration type drains water using the siphon principle, it is necessary to install it at a position higher than the water tank that sends the treated water, and a sturdy mount is required. Further, since drainage is performed at regular intervals, the water tank to which the water is sent needs an extra volume corresponding to the amount of water discharged from the denitrification tank at one time.

好気脱窒は間欠ろ過式以外に、脱窒槽上部から噴水状に液体を噴霧し、脱窒槽下部に処理水排出口を配設することで、脱窒槽に被処理水が溜まることなくろ材間隙を被処理水が流れながら硝酸態窒素を処理する散水ろ床法を用いられる。散水ろ床式は間欠ろ過式と同様に、処理水を送水する水槽よりも高い位置に設置しなければならないが、脱窒槽に被処理水が貯留されないので頑丈な架台が必要とならない。
しかし、ろ材上部より被処理水を散水するため、ろ材の減耗が激しくランニングコストが高くなる。さらに、ろ材の成分である有機物が溶出するので、処理水中の硝酸態窒素は少なくなるが有機物、懸濁粒子の濃度は上昇し水質が悪化する。
In addition to the intermittent filtration type, aerobic denitrification is performed by spraying a liquid like a fountain from the upper part of the denitrification tank and arranging a treated water discharge port at the lower part of the denitrification tank so that the water to be treated does not collect in the denitrification tank. A watering filter method is used in which nitrate nitrogen is treated while the water to be treated flows. Like the intermittent filtration type, the sprinkler filter type must be installed at a higher position than the water tank that sends the treated water, but since the water to be treated is not stored in the denitrification tank, a sturdy stand is not required.
However, since the water to be treated is sprinkled from the upper part of the filter medium, the filter medium is severely worn and the running cost is high. Further, since the organic matter which is a component of the filter medium is eluted, the nitrate nitrogen in the treated water is reduced, but the concentration of the organic matter and the suspended particles is increased and the water quality is deteriorated.

脱リン技術は、水処理においてはMAP法やHAP法が用いられている。MAP法、HAP法は、液体中に含まれるリン酸イオンと、アンモニウムイオン、マグネシウムイオン、カルシウムイオンを反応させ、リン酸イオンを不溶性のリン酸塩粒子にし、沈降もしくはろ過する方法である。MAP法やHAP法は、液体中のカルシウムイオン、マグネシウムイオンが減少するため、貝類養殖においては成長阻害の要因となり生産効率の低下を招く。さらに、薬剤を添加する、処理時間が長い、目詰まりによる定期的な洗浄が必要など処理コストが高い。 As the dephosphorization technique, the MAP method and the HAP method are used in water treatment. The MAP method and the HAP method are methods in which phosphate ions contained in a liquid are reacted with ammonium ions, magnesium ions, and calcium ions to form insoluble phosphate particles, which are precipitated or filtered. In the MAP method and the HAP method, calcium ions and magnesium ions in the liquid are reduced, which causes growth inhibition in shellfish farming and causes a decrease in production efficiency. Furthermore, the treatment cost is high because chemicals are added, the treatment time is long, and regular cleaning is required due to clogging.

泡沫分離法は、発泡性があり分子中に疎水基を持っている懸濁粒子のみを除去する特性があるため、被処理水の水質により処理性能が変わる。安定的に処理するためには、疎水基を持っていない懸濁粒子でも気泡に吸着させて除去できるように、タンパク質など、発泡性があり、疎水基を持っていて、気泡と懸濁粒子の両方に吸着する性質がある物質の添加が必要になりコストが高くなる。 Since the foam separation method has the property of removing only suspended particles that are foamable and have hydrophobic groups in the molecule, the treatment performance varies depending on the water quality of the water to be treated. For stable treatment, even suspended particles that do not have a hydrophobic group can be adsorbed to bubbles and removed, so that proteins, etc. that have effervescent and hydrophobic groups and that have bubbles and suspended particles It is necessary to add a substance that has the property of adsorbing to both, which increases the cost.

本発明の目的は、上記した従来技術の問題点を鑑みて、脱窒装置と泡沫分離装置を併用することで、脱窒装置から排出される物質、例えば、脱窒装置ろ材から溶出される有機物、脱窒脱リン工程で発生する反応生成物、リンを取り込んだ微生物及び微生物の死骸を泡沫分離装置で除去し、脱窒装置から排出される有機物や懸濁粒子により水質を悪化させることなく、硝酸、リン酸を除去する水質浄化システムを提供することである。また、脱窒装置の処理方式を散水ろ床式にし、脱窒槽に充填されるろ材で脱窒脱リンを同時に行うことで、硫化水素発生の危険性が無い、小型で設置が容易な脱窒装置を提供することである。さらに、脱窒装置ろ材に発泡性、気泡への吸着性を高める成分を添加し、脱窒装置のろ材から溶出される物質が起泡剤、吸着剤となることで、被処理水中の懸濁粒子の除去効率を高め、安定して良好な水質を維持することができる水質浄化システムを提供することである。 An object of the present invention is to consider a substance discharged from a denitrifying device, for example, an organic substance eluted from a denitrifying device filter medium, by using a denitrifying device and a foam separating device in combination in view of the above-mentioned problems of the prior art. , Reaction products generated in the denitrification and dephosphorification process, microorganisms that have taken up phosphorus, and dead microorganisms are removed by the foam separator, and the water quality is not deteriorated by the organic substances and suspended particles discharged from the denitrification device. It is to provide a water purification system that removes nitrates and phosphoric acids. In addition, by using a sprinkling filter as the treatment method for the denitrification device and simultaneously performing denitrification and dephosphorification with the filter medium filled in the denitrification tank, there is no risk of hydrogen sulfide generation, and the denitrification is compact and easy to install. To provide the device. Furthermore, by adding a component that enhances foamability and adsorption to air bubbles to the filter medium of the denitrifying device, and the substance eluted from the filter medium of the denitrifying device becomes a foaming agent and an adsorbent, it is suspended in the water to be treated. It is to provide a water purification system capable of increasing the removal efficiency of particles and maintaining stable and good water quality.

上記課題を解決するために本発明は、
被処理水中に含まれる硝酸態窒素を好気条件下で除去する脱窒装置と、
被処理水中に含まれる懸濁粒子、脱窒装置に充填されるろ材から溶出する懸濁粒子、脱窒装置に繁殖する微生物または捕捉されている粒子が剥離することで生じる懸濁粒子、脱窒反応によって生成される懸濁粒子を除去する泡沫分離装置で構成され、
前記脱窒装置は、被処理水が供給される脱窒槽と、前記脱窒槽内に充填される脱窒をおこなう細菌を保持するろ材と、前記脱窒槽下方に配設される処理水排出口を備え、
前記脱窒槽に上方より被処理水を供給し、前記脱窒槽に被処理水を溜めることなく通過させることで、ろ材の少なくても一部を空気に曝露させることを特徴とする。
In order to solve the above problems, the present invention
A denitrifying device that removes nitrate nitrogen contained in the water to be treated under aerobic conditions,
Suspended particles contained in the water to be treated, suspended particles eluted from the filter medium filled in the denitrifying device, suspended particles generated by exfoliation of microorganisms propagating in the denitrifying device or captured particles, denitrification Consists of a foam separator that removes suspended particles produced by the reaction
The denitrification device includes a denitrification tank to which water to be treated is supplied, a filter medium for holding denitrifying bacteria filled in the denitrification tank, and a treated water discharge port arranged below the denitrification tank. Prepare,
It is characterized in that at least a part of the filter medium is exposed to air by supplying the water to be treated to the denitrification tank from above and passing the water to be treated through the denitrification tank without accumulating it.

前記脱窒装置は、好気条件下で、脱窒と脱リン反応が同一ろ材で行われ、被処理水から硝酸態窒素とリン酸態リンが除去されることを特徴とする。しかし、リンは窒素と異なりガス化することが無いので、被処理水から除去されたリン酸態リンは、微生物の体内に取り込まれたり、粒子化してろ材に捕捉されたりして、脱窒装置内に残留している。リン酸態リンを含有した懸濁粒子が脱窒装置のろ材から剥離して被処理水中に再供給される場合でも、前記泡沫分離装置で系外に除去することで、被処理水中のリン酸態リンは増加しない。 The denitrification device is characterized in that denitrification and dephosphorification are carried out on the same filter medium under aerobic conditions, and nitrate nitrogen and phosphate phosphorus are removed from the water to be treated. However, unlike nitrogen, phosphorus does not gasify, so phosphoric acid phosphorus removed from the water to be treated is taken into the body of microorganisms or atomized and captured by the filter medium, resulting in a denitrification device. It remains inside. Even when suspended particles containing phosphoric acid phosphorus are separated from the filter medium of the denitrification device and resupplied into the water to be treated, the phosphoric acid in the water to be treated can be removed by removing it from the system with the foam separation device. Phosphorus does not increase.

前記脱窒装置に送水される被処理水に懸濁粒子が含まれると、ろ材や被処理水供給配管に目詰まりが生じる。そこで本発明は、脱窒装置に送水する被処理水を、泡沫分離装置で処理した処理水を用いることで、ろ材や被処理水供給配管の目詰まりを防止することを特長とする。泡沫分離装置処理水は、硝化装置処理水など泡沫分離装置直後の処理水でなくてもよい。 If the water to be treated that is sent to the denitrification device contains suspended particles, the filter medium and the water supply pipe to be treated are clogged. Therefore, the present invention is characterized in that clogging of the filter medium and the water supply pipe to be treated is prevented by using the treated water treated by the foam separating device as the water to be treated to be sent to the denitrification device. The treated water of the foam separating device does not have to be the treated water immediately after the foam separating device such as the treated water of the vitrifying device.

前記脱窒装置は処理能力を最大限に引き出すために、ろ材と被処理水供給口の間に被処理水を均等に分散させるための邪魔板を配設することで、ろ材表面に被処理水が均等に送水されることを特徴とする。さらに前記邪魔板を配設することで、被処理水供給によって生じるろ材への衝撃力が緩和され、ろ材からの懸濁粒子排出量を少なくすることができる。 In the denitrification device, in order to maximize the treatment capacity, a baffle plate for evenly dispersing the water to be treated is arranged between the filter medium and the water supply port to be treated, so that the water to be treated is placed on the surface of the filter medium. Is characterized in that water is evenly distributed. Further, by disposing the baffle plate, the impact force on the filter medium generated by the supply of water to be treated can be alleviated, and the amount of suspended particles discharged from the filter medium can be reduced.

前記脱窒装置に充填するろ材に発泡性を有する物質を添加することで、被処理水が発泡性を有しない場合でも泡沫分離装置を機能させることができることを特徴とする。添加する発泡性物質は、添加物質自体に発泡性が無くても、脱窒反応で性状を変え発泡性が生じる物質であれば何ら限定されるものではない。 By adding a foamable substance to the filter medium to be filled in the denitrification device, the foam separation device can function even when the water to be treated does not have foamability. The effervescent substance to be added is not limited as long as it is a substance that changes its properties by a denitrification reaction and causes effervescence even if the additive substance itself does not have effervescence.

また、前記脱窒装置に充填されるろ材に、気泡と懸濁粒子の両方に吸着できる性質を持つ物質を添加し、ろ材に添加した物質を溶出させることで、疎水基がなく気泡に吸着する性質を持たない懸濁粒子でも泡沫分離装置で被処理水より除去できるようにすることを特徴とする。添加する物質はカゼインなどの界面活性物質が最適であるが、疎水基を持っており、懸濁粒子と吸着性がある物質であれば何ら限定されるものではない。また、添加物質自体に疎水基を持っていない、懸濁粒子に吸着しない物質であっても、脱窒反応により性状が変化して気泡と懸濁粒子の両方に吸着する物質であれば何ら限定されるものではない。 Further, by adding a substance having a property of being adsorbable to both bubbles and suspended particles to the filter medium filled in the denitrifying device and eluting the substance added to the filter medium, the substance is adsorbed to the bubbles without a hydrophobic group. It is characterized in that even suspended particles having no property can be removed from the water to be treated by a foam separator. The optimum substance to be added is a surface-active substance such as casein, but the substance is not limited as long as it has a hydrophobic group and is adsorptive to suspended particles. Further, even if the additive substance itself does not have a hydrophobic group and is not adsorbed on the suspended particles, it is limited as long as the substance changes its properties due to the denitrification reaction and is adsorbed on both the bubbles and the suspended particles. It is not something that is done.

本発明に係わる水質浄化システムによれば次の効果を奏する。
本発明に従えば、脱窒装置のろ材より溶出するセルロースなどの有機性懸濁粒子を泡沫分離装置で除去することで、脱窒装置由来の有機物が水中に蓄積することなく、被処理水中の硝酸態窒素、リン酸態リンを効率よく除去でき、長期間にわたって安定した水質を維持することができる。
According to the water purification system according to the present invention, the following effects are obtained.
According to the present invention, by removing organic suspended particles such as cellulose eluted from the filter medium of the denitrifying device with the foam separator, the organic substances derived from the denitrifying device do not accumulate in the water and are in the water to be treated. Nitrate nitrogen and phosphate phosphorus can be efficiently removed, and stable water quality can be maintained for a long period of time.

本発明に従えば、脱窒装置に充填されるろ材の少なくとも一部が空気に曝露されるので、硫化水素発生の危険性が無い。また、嫌気脱窒と異なり溶存酸素濃度をゼロにする工程と溶存酸素濃度を処理前の状態に戻す工程が不要になるので、曝気に要するエネルギーが削減できるだけでなく装置もコンパクトになり、コストが低減される。 According to the present invention, there is no risk of hydrogen sulfide generation because at least a part of the filter medium filled in the denitrifying device is exposed to air. Also, unlike anaerobic denitrification, the process of reducing the dissolved oxygen concentration to zero and the process of returning the dissolved oxygen concentration to the state before treatment are not required, so not only the energy required for aeration can be reduced, but also the device becomes compact and the cost is reduced. It will be reduced.

本発明に従えば、脱窒反応と脱リン反応を同一ろ材で行うことができるので、装置がコンパクトになり、イニシャルコストを低減することができる。また、硝酸態窒素は、脱窒細菌により窒素ガスとして水中を経由して大気中に放出されるが、リン酸態リンは気体化して水中より除去することができないので、系外に除去するにはろ材の洗浄など物理的手法を用いることが必要となる。しかし、ろ材の洗浄は重労働なだけでなく処理性の悪化を引き起こす。ろ材から微生物などリン酸を含有する懸濁粒子が液中に再分散したときに、泡沫分離装置を用いて水中より取り除くことで、ろ材を洗浄すること無くリン酸を含有する物質を系外に取り除くことができる。 According to the present invention, since the denitrification reaction and the dephosphorification reaction can be carried out with the same filter medium, the apparatus can be made compact and the initial cost can be reduced. In addition, nitrate nitrogen is released into the atmosphere as nitrogen gas by denitrifying bacteria via water, but phosphate phosphorus is vaporized and cannot be removed from water, so it is necessary to remove it outside the system. It is necessary to use a physical method such as cleaning the filter medium. However, cleaning the filter medium is not only hard work but also causes deterioration of processability. When suspended particles containing phosphoric acid such as microorganisms are redispersed in the liquid from the filter medium, they are removed from the water using a foam separator to remove the substance containing phosphoric acid from the filter medium without washing the filter medium. Can be removed.

本発明に従えば、脱窒装置のろ材を充填する脱窒槽に被処理水が溜まることがないので、運転時の装置重量が軽くなり、架台の強度を小さくすることができ、イニシャルコストを削減できる。 According to the present invention, since the water to be treated does not collect in the denitrification tank filled with the filter medium of the denitrification device, the weight of the device during operation can be reduced, the strength of the gantry can be reduced, and the initial cost can be reduced. it can.

本発明に従えば、脱窒装置のろ材と被処理水供給口の間に邪魔板を配設することで、ろ材表面に被処理水を均等に送水することができ、硝酸態窒素、リン酸態リンの除去効率が向上する。除去効率が高いので装置がコンパクトになり、イニシャルコストを削減できる。さらに邪魔板を用いて脱窒装置に供給される被処理水のろ材への衝撃力を緩和できるため、水質汚濁の原因になるろ材からの有機性懸濁粒子の排出量が少なくなる。その結果、ろ材減耗量が減少し、ランニングコストが低減される。 According to the present invention, by disposing a baffle plate between the filter medium of the denitrification device and the water supply port to be treated, the water to be treated can be evenly supplied to the surface of the filter medium, and nitrate nitrogen and phosphoric acid can be supplied. The efficiency of removing state phosphorus is improved. Since the removal efficiency is high, the device becomes compact and the initial cost can be reduced. Further, since the impact force of the water to be treated supplied to the denitrification device to the filter medium can be alleviated by using the baffle plate, the amount of organic suspended particles discharged from the filter medium, which causes water pollution, is reduced. As a result, the amount of filter media wear is reduced and the running cost is reduced.

本発明に従えば、脱窒装置のろ材の目詰まりや被処理水供給配管の閉塞を防止することができ、洗浄や交換の必要がなくなることで、イニシャルコスト、ランニングコストの低減が図れる。 According to the present invention, it is possible to prevent clogging of the filter medium of the denitrification device and blockage of the water supply pipe to be treated, and it is possible to reduce the initial cost and the running cost by eliminating the need for cleaning or replacement.

本発明に従えば、被処理水に発泡性が無いもしくは少ない場合でも、脱窒装置に充填するろ材に発泡性物質もしくは脱窒反応中に発泡性物質に性状を変化させる物質を添加し、被処理水がろ材を通過する際に溶出させることで、泡沫分離装置を機能させることができ、安定した処理ができるようになる。 According to the present invention, even if the water to be treated has no or little foaming property, a foaming substance or a substance that changes the properties of the foaming substance during the denitrification reaction is added to the filter medium to be filled in the denitrification device. By eluting the treated water as it passes through the filter medium, the foam separator can function and stable treatment can be performed.

本発明に従えば、疎水基を含まず気泡に吸着する性質の無いため泡沫分離装置では除去できない懸濁粒子でも、脱窒装置に充填するろ材に気泡と懸濁粒子の両方に吸着する性質を持つ物質を添加し、被処理水がろ材を通過する際に溶出させることで、泡沫分離装置を機能させることができ、被処理水中より容易に除去できるようになる。 According to the present invention, even suspended particles that cannot be removed by the foam separator because they do not contain hydrophobic groups and do not have the property of adsorbing to bubbles have the property of adsorbing to both bubbles and suspended particles in the filter medium filled in the denitrifying device. By adding the substance to be treated and eluting the water to be treated as it passes through the filter medium, the foam separation device can function and can be easily removed from the water to be treated.

本発明の実施形態に係わる水質浄化システムの概略構成図Schematic block diagram of the water purification system according to the embodiment of the present invention 本発明の脱窒装置を断面図で示した概略構成図Schematic configuration diagram showing a cross-sectional view of the denitrifying apparatus of the present invention. 本発明の邪魔板を配設した脱窒装置の内部の流れを示した概念図The conceptual diagram which showed the internal flow of the denitrification apparatus which arranged the baffle plate of this invention. 本発明の実施形態に係わる水質浄化システムを組み込んだ閉鎖循環式魚介類飼育システムの概略構成図Schematic configuration of a closed circulation type seafood breeding system incorporating the water purification system according to the embodiment of the present invention.

以下、本発明の実施の形態について、図示した例とともに詳説するが、本発明は下記の実施形態に何ら限定されるものではなく、適宜変更して実施できるものである。図1は、本発明の実施形態に係わる水質浄化システムの概略構成図である。本発明の水質浄化システム1は、水中の硝酸態窒素、リン酸態リン、魚介類が排泄する体表粘液や脱窒装置2から排出される懸濁粒子を処理するシステムであり、脱窒装置2、泡沫分離装置3で構成される。ここでいう懸濁粒子は大きさが限定されるものではなく、タンパク質のようなコロイド粒子も含まれる。 Hereinafter, embodiments of the present invention will be described in detail together with the illustrated examples, but the present invention is not limited to the following embodiments, and can be appropriately modified and implemented. FIG. 1 is a schematic configuration diagram of a water purification system according to an embodiment of the present invention. The water purification system 1 of the present invention is a system for treating nitrate nitrogen, phosphoric acid phosphorus, body surface mucus excreted by fish and shellfish, and suspended particles discharged from the denitrifying device 2, and is a denitrifying device. 2. It is composed of a foam separating device 3. The size of the suspended particles is not limited, and colloidal particles such as proteins are also included.

脱窒装置2は、脱窒槽21、脱窒細菌を保持するためのろ材22、被処処理水を脱窒槽内に散水するための散水ノズル23、処理水排出口24からなり(図2)、ポンプ5などで散水ノズル23に供給された被処理水は、散水ノズル23に開いている多数の穴よりろ材表面に均一に送水される。ろ材表面に送水された被処理水は、ろ材22の間隙を通過して脱窒槽下部の処理水排出口24に送られる。脱窒槽21下部に処理水排出口24を設けることで、被処理水は脱窒槽21に溜まることなく処理水排出口24より排水される。被処理水は、ろ材22の間隙が全て埋まるだけの量はないので、ろ材22は被処理水と接している部分22aと空気に曝露されている部分22bが混在しており、被処理水と接する部分22aで硝酸態窒素が脱窒細菌に取り込まれ、空気に曝露されている部分22bで空気中の酸素が取り込まれる。被処理水が接触しないろ材が生じないように、脱窒槽21にブロワなどで空気を供給して被処理水を分散させることもできる。 The denitrification device 2 includes a denitrification tank 21, a filter medium 22 for holding denitrifying bacteria, a watering nozzle 23 for sprinkling treated water into the denitrification tank, and a treated water discharge port 24 (FIG. 2). The water to be treated supplied to the watering nozzle 23 by the pump 5 or the like is uniformly sent to the surface of the filter medium through a large number of holes opened in the watering nozzle 23. The water to be treated that has been sent to the surface of the filter medium passes through the gap of the filter medium 22 and is sent to the treated water discharge port 24 at the bottom of the denitrification tank. By providing the treated water discharge port 24 at the lower part of the denitrification tank 21, the water to be treated is drained from the treated water discharge port 24 without accumulating in the denitrification tank 21. Since the amount of water to be treated is not sufficient to fill all the gaps in the filter medium 22, the filter medium 22 contains a mixture of a portion 22a in contact with the water to be treated and a portion 22b exposed to air, and is combined with the water to be treated. Nitrate nitrogen is taken up by denitrifying bacteria at the contacting portion 22a, and oxygen in the air is taken up at the air-exposed portion 22b. Air can be supplied to the denitrification tank 21 with a blower or the like to disperse the water to be treated so that a filter medium that the water to be treated does not come into contact with is not generated.

図3は、本発明の脱窒装置2に配設される邪魔板25と、脱窒装置2の内部の流れを示した概念図である。被処理水は、ポンプなどでろ材上方に配設される散水ノズル23に送水され、ろ材22に向けて円錐状に散水される。散水ノズル23は、圧をかけて噴霧状に被処理水を供給するノズル以外に、圧をかける必要が無い図2に示されているパイプに穴を開けただけのノズルでもよい。
散水ノズル23とろ材22の間には邪魔板25が配設されており、散水された被処理水は邪魔板25に衝突することで速度が低減され、さらに邪魔板25に開いている多数の穴から被処理水がろ材22に向けて流れることで、被処理水はろ材22に衝撃を与えることなく均等に送水される。邪魔板25は多数の円形の穴が開いたものが最適であるが、格子状のネットなど被処理水の衝撃を緩和し、被処理水をろ材表面に均等に分散するものであれば、形状になんら制限されるものではない。
FIG. 3 is a conceptual diagram showing the baffle plate 25 arranged in the denitrification device 2 of the present invention and the internal flow of the denitrification device 2. The water to be treated is sent to the watering nozzle 23 arranged above the filter medium by a pump or the like, and is sprinkled in a conical shape toward the filter medium 22. The watering nozzle 23 may be a nozzle in which a hole is simply formed in the pipe shown in FIG. 2 which does not require pressure, in addition to the nozzle which applies pressure to supply the water to be treated in a spray form.
A baffle plate 25 is arranged between the watering nozzle 23 and the filter medium 22, and the sprinkled water to be treated collides with the baffle plate 25 to reduce the speed, and a large number of water is open to the baffle plate 25. Since the water to be treated flows from the holes toward the filter medium 22, the water to be treated is evenly distributed without giving an impact to the filter medium 22. The baffle plate 25 is optimally provided with a large number of circular holes, but if it cushions the impact of the water to be treated, such as a grid-like net, and evenly disperses the water to be treated on the surface of the filter medium, the shape There are no restrictions.

脱窒槽21に充填されるろ材22は、好気条件下で脱窒を行う脱窒細菌が繁殖するために構造は多孔質が好ましいが、脱窒細菌を保持できるものであれば、別段、制限されるものではない。また、ろ材22には脱窒反応に必要な有機物が含有されており、セルロースもしくはセルロース骨格をもつ物質が最良であるが、脱窒細菌が利用できる物質であればなんら限定されるものではない。 The filter medium 22 filled in the denitrification tank 21 is preferably porous in structure because denitrifying bacteria that denitrify under aerobic conditions propagate, but it is particularly limited as long as it can retain the denitrifying bacteria. It is not something that is done. Further, the filter medium 22 contains an organic substance necessary for the denitrification reaction, and a substance having cellulose or a cellulose skeleton is the best, but the substance is not limited as long as it can be used by denitrifying bacteria.

泡沫分離装置3は、被処理水を収容する分離槽32に気泡供給機33で気泡を供給し、気泡に被処理水中の懸濁粒子を吸着させ、水面に形成する懸濁粒子を吸着した気泡の層を取り除くことにより、被処理水中より懸濁粒子を除去する装置である。気泡供給機33は、回転翼を高速回転させることで回転翼に負圧域を発生させ、大気との圧力差で空気を回転翼に供給し、回転翼の剪断力により空気を微細化して被処理水中に供給する気泡供給機構が最良であるが、気泡を供給することができる装置であればなんら限定されるものではない。 The foam separation device 3 supplies bubbles to the separation tank 32 containing the water to be treated by the bubble feeder 33, adsorbs the suspended particles in the water to be treated to the bubbles, and adsorbs the suspended particles formed on the water surface. It is a device that removes suspended particles from the water to be treated by removing the layer of. The bubble feeder 33 generates a negative pressure region in the rotor by rotating the rotor at high speed, supplies air to the rotor by the pressure difference from the atmosphere, and refines the air by the shearing force of the rotor to be covered. The bubble supply mechanism for supplying air into the treated water is the best, but the device is not limited as long as it can supply air bubbles.

図4は、本発明の実施形態に係わる水質浄化システム1を組み込んだ閉鎖循環式魚介類飼育システムの概略構成図である。閉鎖循環式魚介類飼育システム8は、本発明の水質浄化システム1と、飼育水中のアンモニア態窒素を硝化細菌の働きで硝酸態窒素にするための硝化装置6と、飼育水を循環させるポンプ5と、図示しないが水温調整装置を備えている。硝化装置6は、硝化槽61、硝化細菌を保持するためのろ材62で構成される。魚介類の種類によっては殺菌装置、オゾンなどの酸化装置などの装置が組み込まれることがある。 FIG. 4 is a schematic configuration diagram of a closed circulation type seafood breeding system incorporating the water purification system 1 according to the embodiment of the present invention. The closed circulation type fish and shellfish breeding system 8 includes a water purification system 1 of the present invention, a nitrifying device 6 for converting ammonia nitrogen in breeding water into nitrate nitrogen by the action of nitrifying bacteria, and a pump 5 for circulating breeding water. Although not shown, it is equipped with a water temperature adjusting device. The nitrifying apparatus 6 is composed of a nitrifying tank 61 and a filter medium 62 for holding nitrifying bacteria. Depending on the type of seafood, equipment such as a sterilizer and an oxidizing device such as ozone may be incorporated.

飼育水はオーバーフローで、泡沫分離装置3、硝化装置6に送水され、ポンプ5により、硝化装置処理水を脱窒装置2と飼育水槽7に送水する。脱窒装置処理水は、脱窒装置2のろ材底部よりも下方に配設される処理水排出口24より泡沫分離装置3に返送される。脱窒装置処理水は、泡沫分離装置3でなく硝化装置6や飼育水槽7に返送してもよい。 The breeding water overflows and is sent to the foam separation device 3 and the nitrification device 6, and the nitrification device treated water is sent to the denitrification device 2 and the breeding aquarium 7 by the pump 5. The treated water of the denitrifying device is returned to the foam separating device 3 from the treated water discharge port 24 arranged below the bottom of the filter medium of the denitrifying device 2. The denitrifying device treated water may be returned to the nitrifying device 6 or the breeding aquarium 7 instead of the foam separating device 3.

(実施例1)
飼育水槽と浄化装置(硝化装置、脱窒装置、泡沫分離装置)を設置し(実験区)、ポンプを用いて飼育水槽の海水を浄化装置に送水した。浄化装置で処理された飼育水は、再び飼育水槽に返送した。飼育水槽にはアワビを入れ、1日1回アワビ養殖用配合飼料を与えた。飼育水温はエアコンで18〜20度に調整した。ろ材は、アンモニア硝化用にセラミックスと紐状接触材、脱窒用にセルロースを用いた。海水の交換は行わず、蒸発分の水道水の補給と泡沫分離装置で排出される泡による減少分の人工海水の補給のみ行って飼育した。
(Example 1)
A breeding aquarium and a purification device (nitrification device, denitrification device, foam separation device) were installed (experimental area), and seawater in the breeding aquarium was sent to the purification device using a pump. The breeding water treated by the purification device was returned to the breeding aquarium again. Abalone was placed in the breeding aquarium and a mixed feed for abalone farming was given once a day. The breeding water temperature was adjusted to 18 to 20 degrees with an air conditioner. As the filter medium, ceramics and a string-like contact material were used for ammonia nitrification, and cellulose was used for denitrification. The animals were bred by replenishing tap water for evaporation and artificial seawater for reduction due to bubbles discharged by the foam separator without exchanging seawater.

実験開始1ヶ月後の水質を表1に示す。硝化装置と泡沫分離装置を設置し脱窒装置のみを設置しないシステムを対照区1、硝化装置のみで脱窒装置と泡沫分離装置を設置しないシステムを対照区2とし、両システムとも同条件で飼育した。
表1に示すように、対照区1、2と比べて実験区は、硝酸態窒素およびリン酸態リンが少ないことが確認された。ろ材にセルロースを用い好気条件で脱窒を行い、泡沫分離装置により懸濁粒子を除去することにより、硝酸態窒素とリン酸態リンが同時に除去されることが確認された。
Table 1 shows the water quality one month after the start of the experiment. The system in which the nitrification device and the foam separation device are installed and only the denitrification device is not installed is defined as the control group 1, and the system in which the nitrification device and the denitrification device and the foam separation device are not installed is defined as the control group 2. Both systems are bred under the same conditions. did.
As shown in Table 1, it was confirmed that the experimental group had less nitrate nitrogen and phosphoric acid phosphorus than the control groups 1 and 2. It was confirmed that nitrate nitrogen and phosphate phosphorus were removed at the same time by denitrifying under aerobic conditions using cellulose as a filter medium and removing suspended particles with a foam separator.

Figure 2021000577
Figure 2021000577

(実施例2)
飼育水槽と浄化装置(硝化装置、脱窒装置、泡沫分離装置)を設置し、水中ポンプを用いてアワビの入った飼育水槽の海水を浄化装置に送水した。浄化装置で処理された飼育水は、再び飼育水槽に返送した。試験開始時、泡沫分離装置は運転しなかった。
(Example 2)
A breeding aquarium and a purification device (nitrification device, denitrification device, foam separation device) were installed, and seawater in the breeding aquarium containing abalone was sent to the purification device using a submersible pump. The breeding water treated by the purification device was returned to the breeding aquarium again. At the start of the test, the foam separator was not operated.

試験開始1日後、飼育水が白濁し、アワビが死亡しだしたので、泡沫分離装置の運転を開始した。泡沫分離装置を運転すると大量の安定泡沫が発生し、運転開始1日後には白濁だった飼育水が透明になった。脱窒装置のろ材から溶出される懸濁粒子は、泡沫分離装置により水中より除去できることが確認できた。 One day after the start of the test, the breeding water became cloudy and the abalone began to die, so the operation of the foam separator was started. When the foam separator was operated, a large amount of stable foam was generated, and one day after the start of operation, the breeding water, which was cloudy, became transparent. It was confirmed that the suspended particles eluted from the filter medium of the denitrifier can be removed from the water by the foam separator.

1 水質浄化システム
2 脱窒装置
21 脱窒槽
22 脱窒用ろ材
22a 液体接触部位
22b 空気曝露部位
23 散水ノズル
24 処理水排水口
25 邪魔板
3 泡沫分離装置
31 分離槽
32 気泡供給機
4 水槽
5 ポンプ
6 硝化装置
61 硝化槽
62 硝化用ろ材
7 飼育水槽
8 閉鎖循環式魚介類飼育システム
1 Water purification system 2 Denitrification device 21 Denitrification tank 22 Denitrification filter medium 22a Liquid contact part 22b Air exposure part 23 Sprinkling nozzle 24 Treated water drain port 25 Obstacle plate 3 Foam separation device 31 Separation tank 32 Bubble feeder 4 Water tank 5 Pump 6 Nitrification device 61 Nitrification tank 62 Nitrification filter media 7 Breeding aquarium 8 Closed circulation type fish and shellfish breeding system

Claims (5)

被処理水に含まれる硝酸態窒素を好気条件下で除去する脱窒装置と、
被処理水に含まれる懸濁粒子と前記脱窒装置の処理水に含まれる懸濁粒子とを除去する泡沫分離装置で構成され、
前記脱窒装置は、被処理水が供給される脱窒槽と、
前記脱窒槽内に充填される脱窒をおこなう細菌を保持するろ材と、
前記脱窒槽下方に配設される処理水排出口を備え、
前記脱窒槽に上方より被処理水を供給し、前記脱窒槽に被処理水を溜めることなく通過させることで、ろ材の少なくても一部を空気に曝露させることを特徴とする水質浄化システム
A denitrifying device that removes nitrate nitrogen contained in the water to be treated under aerobic conditions,
It is composed of a foam separator that removes suspended particles contained in the water to be treated and suspended particles contained in the treated water of the denitrification device.
The denitrification device includes a denitrification tank to which water to be treated is supplied and
A filter medium that holds bacteria that perform denitrification and is filled in the denitrification tank.
A treated water discharge port arranged below the denitrification tank is provided.
A water purification system characterized in that at least a part of a filter medium is exposed to air by supplying water to be treated to the denitrification tank from above and passing the water to be treated through the denitrification tank without accumulating it.
前記脱窒装置がリン酸態リンを除去する機能を有する請求項1記載の水質浄化システム The water purification system according to claim 1, wherein the denitrifying device has a function of removing phosphoric acid phosphorus. 前記脱窒装置の被処理水が泡沫分離装置処理水であることを特徴とする請求項1、2記載の水質浄化システム The water purification system according to claim 1 or 2, wherein the water to be treated by the denitrification device is treated water by a foam separator. 前記脱窒装置の被処理水供給口とろ材との間に邪魔板を配設することを特徴とする請求項1〜3記載の水質浄化システム The water quality purification system according to claim 1 to 3, wherein a baffle plate is arranged between the water supply port to be treated and the filter medium of the denitrification device. 前記脱窒装置のろ材に、発泡性を有するまたは発泡性を増加させる物質、泡沫分離装置で供給される気泡と被処理水中の懸濁粒子との吸着性を増加させる物質を添加することを特徴とする請求項1〜4記載の水質浄化システム

The filter medium of the denitrification device is characterized by adding a substance having foamability or increasing foamability, and a substance increasing the adsorptivity between bubbles supplied by the foam separator and suspended particles in the water to be treated. The water purification system according to claims 1 to 4.

JP2019113882A 2019-06-19 2019-06-19 Water quality purifying system Pending JP2021000577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019113882A JP2021000577A (en) 2019-06-19 2019-06-19 Water quality purifying system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019113882A JP2021000577A (en) 2019-06-19 2019-06-19 Water quality purifying system

Publications (1)

Publication Number Publication Date
JP2021000577A true JP2021000577A (en) 2021-01-07

Family

ID=73995604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019113882A Pending JP2021000577A (en) 2019-06-19 2019-06-19 Water quality purifying system

Country Status (1)

Country Link
JP (1) JP2021000577A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241584A (en) * 1994-03-07 1995-09-19 Hitachi Ltd Waste water treatment method and apparatus using composite activated sludge carrier
JPH10244290A (en) * 1997-02-28 1998-09-14 Ii & S Kurieeshiyon:Kk Filtration method of water in water tank and filter
JP2005021831A (en) * 2003-07-04 2005-01-27 Hokukon Co Ltd Carrier for microorganism proliferation, and its using method
JP2011104564A (en) * 2009-11-20 2011-06-02 Central Res Inst Of Electric Power Ind Method and equipment for treating organic wastewater
KR20120126790A (en) * 2011-05-13 2012-11-21 황명산 Up top trickle filter with skimmer apparatus for water treatment
JP2013150970A (en) * 2011-12-28 2013-08-08 Metawater Co Ltd Wastewater processing device and wastewater processing method
JP2014209899A (en) * 2013-04-05 2014-11-13 ブルーアクア・インダストリー株式会社 Energy saving land farming method and land farming facility
JP2015116554A (en) * 2013-12-17 2015-06-25 和順 佐藤 Automated denitrification system
WO2017110296A1 (en) * 2015-12-22 2017-06-29 国立大学法人東京海洋大学 Denitrification device and aquatic organism rearing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07241584A (en) * 1994-03-07 1995-09-19 Hitachi Ltd Waste water treatment method and apparatus using composite activated sludge carrier
JPH10244290A (en) * 1997-02-28 1998-09-14 Ii & S Kurieeshiyon:Kk Filtration method of water in water tank and filter
JP2005021831A (en) * 2003-07-04 2005-01-27 Hokukon Co Ltd Carrier for microorganism proliferation, and its using method
JP2011104564A (en) * 2009-11-20 2011-06-02 Central Res Inst Of Electric Power Ind Method and equipment for treating organic wastewater
KR20120126790A (en) * 2011-05-13 2012-11-21 황명산 Up top trickle filter with skimmer apparatus for water treatment
JP2013150970A (en) * 2011-12-28 2013-08-08 Metawater Co Ltd Wastewater processing device and wastewater processing method
JP2014209899A (en) * 2013-04-05 2014-11-13 ブルーアクア・インダストリー株式会社 Energy saving land farming method and land farming facility
JP2015116554A (en) * 2013-12-17 2015-06-25 和順 佐藤 Automated denitrification system
WO2017110296A1 (en) * 2015-12-22 2017-06-29 国立大学法人東京海洋大学 Denitrification device and aquatic organism rearing system

Similar Documents

Publication Publication Date Title
KR0149621B1 (en) Apparatus and method for waste water treatment utilizing aerobic and anaerobic microorganisms
KR101110710B1 (en) Water purification of polluted water methods, and the device
KR20170022051A (en) Recirculating aquaculture system
KR102379737B1 (en) Automatic Sedimentation Circulation Breeding Tank for Bioflock aquafarm.
JPH11169654A (en) Circulation type microbial deodorization apparatus
JP2012024664A (en) Microorganism carrier and biological deodorization apparatus
JP2003340489A (en) Water cleaning apparatus in closed water area
KR100254136B1 (en) Closed recirculating filter system for sea fish culturing facility using bio-submerged filtration and ozone denitrification
JP2015202102A (en) Rearing water circulation system for closed circulation type rearing
JP2021000577A (en) Water quality purifying system
KR100458764B1 (en) Method and apparatus for the treatment of contaminated water by submersible biological aerated filter
KR102323795B1 (en) Wastewater treatment device with reduced power consumption
JP2007253132A (en) Wastewater treatment method and wastewater treatment equipment
JP4181501B2 (en) Biofilm filtration apparatus and method
JPS6214359B2 (en)
JPH0516000Y2 (en)
JP2002273475A (en) Device and method for treating nitrate nitrogen in sea water
JP2005034675A (en) Treatment device for waste liquid or the like, and production method for liquefied fertilizer or the like using the same
CN219248940U (en) Circulating water purifying and breeding system
JP2000229297A (en) Biological water treating device
JP2609181B2 (en) Biological nitrification denitrification method and apparatus for organic wastewater
JP2519919Y2 (en) Septic tank
JPH0338289A (en) Biologically activated carbon water-treatment apparatus
KR100403036B1 (en) Circulation Filtration (Sprinkling, Foam, Physics, Biology) and Low Pressure Hydro Power Systems
JPH10118629A (en) Apparatus and method for cleaning water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230618

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231217