JPH0516000Y2 - - Google Patents
Info
- Publication number
- JPH0516000Y2 JPH0516000Y2 JP1989145782U JP14578289U JPH0516000Y2 JP H0516000 Y2 JPH0516000 Y2 JP H0516000Y2 JP 1989145782 U JP1989145782 U JP 1989145782U JP 14578289 U JP14578289 U JP 14578289U JP H0516000 Y2 JPH0516000 Y2 JP H0516000Y2
- Authority
- JP
- Japan
- Prior art keywords
- tank
- treated water
- filter bed
- water
- biofilm filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 142
- 238000001914 filtration Methods 0.000 claims description 63
- 238000000746 purification Methods 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 6
- 239000010410 layer Substances 0.000 description 15
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 14
- 239000002351 wastewater Substances 0.000 description 12
- -1 iron ions Chemical class 0.000 description 11
- 239000011494 foam glass Substances 0.000 description 10
- 238000011001 backwashing Methods 0.000 description 9
- 244000005700 microbiome Species 0.000 description 9
- 229910002651 NO3 Inorganic materials 0.000 description 8
- 238000005273 aeration Methods 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 7
- 239000010800 human waste Substances 0.000 description 7
- 229910052757 nitrogen Inorganic materials 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000010797 grey water Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 241000894006 Bacteria Species 0.000 description 4
- 239000005416 organic matter Substances 0.000 description 4
- 239000010865 sewage Substances 0.000 description 4
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000010840 domestic wastewater Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 1
- JVMRPSJZNHXORP-UHFFFAOYSA-N ON=O.ON=O.ON=O.N Chemical compound ON=O.ON=O.ON=O.N JVMRPSJZNHXORP-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000005407 aluminoborosilicate glass Substances 0.000 description 1
- 239000005354 aluminosilicate glass Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000005355 lead glass Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Biological Treatment Of Waste Water (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Description
〔産業上の利用分野〕
本考案は生活雑排水および屎尿排水等を処理す
る浄化装置に係り、特に一般家庭で個別的に用い
られる小型の浄化装置に関する。
〔従来の技術〕
湖沼や内海などいわゆる閉鎖性水域は各種の栄
養塩の流入などにより富栄養化の進行が著しい。
富栄養化とは、排水中の窒素、リンなどの栄養
塩濃度が増加し、これを利用して光合成を行なう
藻類や水生植物が異常に増殖する現象である。
特に、水中の窒素化合物に関していえば、水中
生物の排泄物以外はほとんど人間活動により流入
したものであり、なかでも生活雑排水および屎尿
浄化槽放流水の影響は極めて大きい。
それゆえ、生活雑排水および屎尿排水の浄化の
ため、脱窒素機能を有する種々の家庭用個別浄化
装置が提案されている。
その一例として、好気性処理槽での硝化を、原
水の流入量、好気性処理槽の滞留時間等を調整す
る、いわゆる容積負荷調整方法等により行なうも
のがある。
〔考案が解決しようとする課題〕
しかしながら、このような処理方法では、処理
量が減少し、処理能力が上がらず、処理量を増や
そうとすると処理槽の容積を大きくしなければな
らずコンパクト性に欠けるという欠点がある。
本考案は、上記事情に鑑みて創案されたもので
その目的は、特に一般家庭で個別的に用いられる
生活雑排水および屎尿排水の浄化装置において、
コンパクトかつ簡易な構造でしかも脱窒素の処理
能力に優れた浄化装置を提供することにある。
〔課題を解決するための手段〕
上記課題を解決するために本発明は、嫌気性濾
床槽と、粒状多孔質担体を充填した生物膜濾過槽
と、処理水槽を有する浄化装置において、前記処
理水槽の処理水の一部を、生物膜濾過槽と嫌気性
濾床槽とにそれぞれ返送して生物学的硝化、脱窒
を行わせる処理水返送装置を備えることを特徴と
するものである。
〔作用〕
本発明の浄化装置は、処理水槽の処理水の一部
を生物膜濾過槽と嫌気性濾床槽とに、それぞれ返
送する処理水返送装置を備え、処理水の一部を生
物膜濾過槽と嫌気性濾床槽に戻すことによつて、
生物学的硝化、脱窒素をおこなうようにしてい
る。
従つて、本考案装置は、一般家庭で個別的に用
いられる生活雑排水および屎尿排水の浄化、特
に、脱窒素の処理能力が極めて優れ、その結果と
して装置自体も極めてコンパクトになる。
〔実施例〕
本考案の実施例を第1図を参照して説明する。
第1図は、本考案の浄化装置の概略構成縦断面
図を示したものである。
本考案における浄化装置は、第1図に示される
ように、嫌気性濾床槽第1室R1、嫌気性濾床槽
第2室R2、生物膜濾過槽Sおよび処理水槽Tを
有している。
嫌気性濾床槽第1室R1、嫌気性濾床槽第2室
R2(以下、それぞれ、濾床槽R1、濾床槽R2
と称す)においては、通常、嫌気性生物化学的処
理が行なわれる。
このような濾床槽R1、濾床槽R2の構成とし
ては、種々の構成が考えられるが、その中でも特
に第1図に示される構成のものが好ましい。
すなわち、第1図に示されるように濾床槽R1
と濾床槽R2は、濾床槽R1の低水位(L.W.L)
の位置に開口8を設けた仕切壁7によつて連通さ
れており、両槽ともに嫌気性微生物を保持しやす
く、目づまりにくい濾材を充填した濾床5a,5
bを備え、濾床5a,5bの下方に空間がそれぞ
れ設けられている。
濾床槽R1には汚水である原水を流入させる流
入口3、この流入口3につながる下方および側面
に開口部を有した導水管4が設けられ、この導水
管4の下方の開口部の真下であつて濾床5aの上
方には導水管4の水流を一箇所に集中させず、周
囲へ拡散させ槽内の水を撹拌させないため、阻流
板(図示しない)が設けられている。この濾床5
aは嫌気性微生物が保持されており、濾床槽R1
は濾床槽R2とともに嫌気性濾床槽Rを構成して
いる。
濾床槽R1と濾床槽R2とを仕切る仕切壁7に
沿つて鉛直に濾床5aより下方に延在し、そこに
開口している掃除筒6が設けられている。この掃
除筒6は掃除の際にこの掃除筒6の底まで図示し
ない掃除ポンプのノズルを挿入するためのもので
ある。
濾床槽R2には、濾床5bの直ぐ上に間欠定量
ポンプ9が設置され、この間欠定量ポンプ9の水
の吸入口11は一方向バルブ10を介して濾床5
bの上面内部へ下方に向けて開口している。この
間欠定量ポンプ9はパイプ14に電磁弁15を介
して接続されたポンプ用ブロワー16によつて作
動される。この吸入管水平部17の位置より濾床
槽R2の水位が低いとき(低水位:L.W.L)には
後述する生物膜濾過槽Sには水が送られず、これ
より多いときのみ送られる。
汚水が導水管4から流れ込んでくる量に増減が
あつても間欠定量ポンプ9によつてオーバーフロ
ー式でなく、パイプ13を介して生物膜濾過槽S
に送られるため、常に安定した処理ができる。
このような濾床槽R2に続いて生物膜濾過槽S
が設置されている。
生物膜濾過槽Sは、排水中に残存しているアン
モニア態窒素を亜硝酸菌により亜硝酸態窒素へ硝
化したり、汚濁原因物質などを微生物のもつ分解
作用を利用した微生物処理及びリン酸イオン、鉄
イオン等の生物吸着、物理的濾過をすることを目
的としており、その処理槽の構成としては種々の
態様が考えられるが、中でも特に以下に述べるよ
うな構成とすることが好ましい。
すなわち、生物膜濾過槽Sの上方には逆洗時に
生物膜濾過槽Sで増加し溢れた処理水が前記濾床
槽R1へ戻される逆洗排水パイプ31が設けら
れ、一方、底部近くには図示のごとく曝気用ブロ
ワ35に接続された曝気・逆洗用パイプ37が枠
組されて設けられ、この枠組された部分には多く
の孔が設けられている。
このような曝気・逆洗用パイプ37の枠組部の
上方近辺および連結パイプ13の開口部下方近辺
双方にはそれぞれロストル39,41が設けら
れ、この間に好気性微生物を付着させた粒状の多
孔質セラミツクスからなる多数の担体43を充填
して生物膜濾過層45を形成している。
上記粒状の多孔質セラミツクスとしては、例え
ば高多孔性粒状泡ガラスを用いることが好まし
い。
当該高多孔性粒状泡ガラスの材質としてはシリ
カガラス、ソーダ石炭ガラス、アルミノホウケイ
酸ガラス、ホウケイ酸ガラス、アルミノケイ酸ガ
ラス、鉛ガラスなどがあり、必要に応じて適宜変
更することができるが、経済的な観点から安価な
ソーダ石灰ガラスが望ましい。また、鉄などの金
属分を含浸させた特殊な組成のガラスを用いて、
リンなどの特定成分の除去率を高めることも可能
である。
用いられる泡ガラスは粒状であり、かつ、高度
に多孔度を有するものである。この泡ガラスの粒
径は、例えば、0.2〜20mm、好ましくは、4〜10
mmである。
この粒径上限を超えると微生物の付着が担体表
面にかたより、浄化効率が悪くなり、逆にこの粒
径下限未満では目づまりをおこすおそれがあるか
らである。この泡ガラスの多孔度は、高度であ
り、具体的には、全細孔容積1〜4.5ml/g、好
ましくは2〜3.5ml/g、吸水率50〜85%、好ま
しくは70〜85%(Vol/Vol)、中央細孔直径(容
積)1〜50μm、好ましくは5〜50μm、嵩比重
0.1〜1.5、好ましくは0.15〜0.4である。
上記の高多孔性粒状泡ガラスは、例えば、従来
の方法により製造された5〜20%の吸水率を有す
る粒状泡ガラスを、温水又はアルカリ溶液に浸漬
させて、粒状泡ガラス中の可溶性アルカリ成分を
除去せしめ、粒状泡ガラスの表面層ならびに独立
気泡中に開口を設けるようにして、これを製造す
ることができる。
また、硝子パウダーに発泡剤を融点の高い金属
酸化物、例えば、アルミナ、シリカ、ジルコニア
等を5〜10%添加し、焼成した後、急冷して微細
な気泡を発生せしめることによつても製造するこ
とができる。
このような例えば多孔性粒状泡ガラスからなる
多孔質セラミツクスは、前述したように多孔質で
あるため、比表面積、細孔容積が大きく微生物の
付着増殖に最適構造をもつており、微生物を高濃
度に保持できる。従つて、生物膜濾過槽を多孔質
セラミツクスからなる担体で構成したような場合
には、この処理能力は一層増大し、さらに小型化
を図ることができる。
また、比重も1に近く、少々の流れによつても
位置を変え撹拌がなされる。すなわち、逆洗動力
が極めて少なくてもよい。さらにこの生物膜濾過
槽Sの底部でロストル39より下、すなわち生物
膜濾過層45より下側に開口し、生物膜濾過層4
5により浄化処理された処理水を処理水槽Tへ供
給するとともに、逆洗時には処理水槽Tの処理水
を生物膜濾過槽Sへ逆送するパイプ47が設けら
れている。このパイプ47によつて生物膜濾過槽
Sと処理水槽Tとは連通される。
処理水槽Tの中には処理水返送装置としての一
例としての間欠定量ポンプ54が設置されてい
る。この間欠定量ポンプ54に連結してメインパ
イプ57が上方に向けて設けられ、このメインパ
イプ57は、図示のごとく途中で返送パイプ58
aと58bとに分岐されている。
返送パイプ58aは、処理水の一部を生物膜濾
過槽Sに返送するために生物膜濾過槽Sに至ると
ころまで延びている。そして、そのパイプ58a
の先端付近には流量調整バルブ59aが設けら
れ、返送量を任意に調整できるようになつてい
る。
ところで、もう一方の返送パイプ58bは、処
理水の一部を嫌気性濾床槽R1に返送するため
に、嫌気性濾床槽R1まで延び、そのパイプ58
bの先端にも同様に流量調整バルブ59bが設け
られている。
また、その他の処理水返送装置の1例として
は、いわゆるエアーリフト方式のものがあり、こ
の場合には堰の高さ等を調節し、返送する処理水
の流量を調整するようになつている。
処理水槽Tの中の処理水の一部を、それぞれ生
物膜濾過槽Sと嫌気性濾床槽R1に返送する理由
について説明する。
処理水槽Tの中の処理水の一部を生物膜濾過槽
Sに返送するのは、処理水中に残存しているアン
モニア態窒素を完全に亜硝酸、硝酸態窒素へと硝
化するためである。すなわち、処理水の一部を生
物膜濾過槽Sに返送することによつて、生物膜濾
過槽Sの上層部の溶存酸素(DO)を高めるとと
もに、生物化学的酸素要求量(BOD)を低くす
ることができ、また、生物膜濾過槽Sを通過する
水量が増加し、そのことによつて原水が生物膜濾
過槽S全体に均等に分散され、これにより亜硝酸
菌や硝酸菌の活性が高まり、アンモニアを亜硝酸
イオンや硝酸イオンに酸化することができる。
この場合、循環比、すなわち原水流入量に対す
る生物膜濾過槽Sへの返送量の比r1は、0.5〜
4.0、特に2.0〜3.0が好ましい。
この値が0.5未満であると処理水の硝化率がわ
るくなり、一方、この値が4.0をこえると、不必
要な循環をさせることになり、好ましくない。
一方、処理水槽Tの中の処理水の一部を嫌気性
濾床槽R1に返送するのは、上述のように亜硝酸
イオンや硝酸イオンに分解された処理水の脱窒素
をおこなうためである。
すなわち、嫌気性濾床槽R1に繁殖する脱窒素
菌により、嫌気性濾床槽R1に返送された処理水
の亜硝酸イオンや硝酸イオン中の酸素が取られ、
この還元作用によつて、亜硝酸イオンや硝酸イオ
ン中の窒素はN2ガスとして大気へ放出され、排
水中の無機性窒素の除去がおこなわれる。
この場合、循環比、すなわち原水流入量に対す
る嫌気性濾床槽R1への返送量の比r2は、0.5
〜6.0、特に3.0〜4.0が好ましい。
この値が0.5未満であると処理水の窒素除去率
がややわるくなり、一方、この値が6.0をこえる
と、不必要な循環をさせることになり、好ましく
ない。
このように処理水槽Tの中の処理水の一部を生
物膜濾過槽Sと嫌気性濾床槽R1にそれぞれ返送
する組み合わせによつて、アンモニアの亜硝酸イ
オン化および硝酸イオン化、並びに酸化された窒
素化合物中の脱窒素が行われる。
具体的な操作の一例として、まず間欠定量ポン
プ54を運転し、処理水槽T中の処理水の一部を
返送パイプ58aを介して生物膜濾過槽Sに返送
し、生物膜濾過槽Sと処理水槽T間を強制循環さ
せて、処理水中のアンモニアの亜硝酸イオン化や
硝酸イオン化を図り、次いでイオン化された処理
水を返送パイプ58bを介して嫌気性濾床槽R1
に返送し始めることによつて浄化槽全体を連続運
転に至らしめる。
なお、処理水槽Tには、パイプ47の他端が底
部まで延び、そこに処理水を逆送させる逆洗ポン
プ53が通常取り付けられている。また、パイプ
47の中間位置にはエルボ管55が設けられ、生
物膜濾過槽Sで処理された処理水を処理水槽Tに
放出している。この処理水をオーバーフローさせ
て放流するため、通常、図示のごとく小室57、
59,61が設けられ、小室61に設けられた放
流口63から放流している。小室59,61のい
ずれかには通常、薬筒65が設けられ、有機物が
処理された処理水を中和、殺菌等を行なつてい
る。
上述の本考案の浄化装置は、個々の槽(嫌気性
濾床槽第1室R1、嫌気性濾床槽第2室R2、処
理水槽T等)を個別に製作し、これらを配管して
連通させることもできるが、通常、例えば強化繊
維プラスチツク(FRP)等の材質で各槽を一体
成形し、これらの中に所定の濾床5a,5b、配
管、ポンプ等を組み込み、所定の機能を持たせる
ことが浄化装置のコンパクト化を図るうえで好ま
しい。
次に、上述してきた浄化装置1の汚水の処理方
法について説明する。
本考案の浄化装置1は、特に一般家庭で個別的
に用いられる生活雑排水および屎尿の浄化処理を
目的とするものであり、それゆえ浄化装置の個々
の槽の大きさは、それに相応する大きさとされ
る。
汚水はまず最初の流入口3から導水管4を通
り、阻流板(図示しない)によつて広げられて濾
床5aに撒かれて原水槽Rの濾床槽R1に送られ
る。
原水は、水位が上昇し、導水管4の途中までき
たときには側面の開口8から流出する。汚水が濾
床5aを通過するとき、この濾床5aには嫌気性
の微生物が付着しており、ここで有機物の1次的
分解、吸着が行なわれる。通過した水は濾床槽R
1の水位を上げていき、同様に濾床5bで有機物
の分解、吸着がなされる。水位が吸入管水平部1
7を超えた後には電磁弁15が開放され、ポンプ
用ブロア16の圧力がパイプ14を通して間欠定
量ポンプ9を作動させる。この間欠定量ポンプ9
によつて汚水の流入量に関係なく定量で生物膜濾
過槽Sへ送り出す。したがつて、流入量が多いと
きには濾床槽R1の水位が高水位(H.W.L)の
線以内で上昇する。
パイプ13で送られた水は生物膜濾過槽Sに入
り、生物膜濾過層45を下向流で通過する。この
生物膜濾過層45内には前述したように粒状多孔
質セラミツクスからなる多数の担体43が充填さ
れており、この中を曲折しながら下降する。
ところで、このとき、曝気用ブロワー35が作
用し、底部に枠組された曝気・逆洗用パイプ37
から空気の気泡が吹き出され、上昇する。この気
泡は、担体43に衝突しながら曲線的に上昇する
ので、急激に粗大化せず滞留時間も長くなり、高
い酸素利用率が得られるため、高負荷運転が可能
である。
このように生物膜濾過槽45で原水と空気とを
向流接触させることにより、接触曝気をし、汚水
への酸素溶解を図り、生物酸化機能を高めて有機
物の分解や微生物の増殖をするとともに、担体粒
子間と広い生物膜表面への吸着とによる濾過作用
により、より効率的に浄化し処理水とする。
なお、後述するように生物膜濾過層45は一定
時間経過毎に逆洗されるので、底部に沈澱するこ
とはほとんどない。
処理水はパイプ47によつてエルボ管55の開
口から処理水槽Tへ送り込まれる。
処理水槽Tの処理水の一部は、間欠定量ポンプ
54により返送パイプ58aを介して生物膜濾過
槽Sに一定量、循環させ、未処理のアンモニア態
窒素を完全に亜硝酸、硝酸態窒素へと酸化させて
いる。詳細については上述した通りである。
また、同様に処理水槽Tの処理水の一部は、間
欠定量ポンプ54により返送パイプ58bを介し
て一定量、第1嫌気性濾床槽R1に返送される。
ここで、亜硝酸イオンや硝酸イオンに分解された
処理水の脱窒素がおこなわれる。なお、詳細につ
いては上述した通りである。
ところで、最終的に処理水槽Tの中の大部分の
処理水は、通常、連接される小室57,59,6
1を経て放流口63から放流される。この間、小
室57からオーバーフローした処理水は薬筒65
からの薬注によつて中和や殺菌がなされることに
よつて放流される。
この放流は、前記嫌気性濾床槽Rに受けられた
間欠定量ポンプ9による水の供給により、処理ス
ピードは設定されており、この設定は通常、生物
膜濾過槽Sの生物膜濾過層45の処理能力によつ
て設定されている。したがつて、常に安定した処
理水の水質を確保できる。汚水の処理の結果、生
物膜濾過層45の担体43には有機物や増殖汚泥
が付着してきており、これが担体43から外れて
沈澱が始まる前に、逆洗ポンプ53を作動させる
と処理水槽T内に溜まつている処理水がパイプ4
7中を逆流して、生物膜濾過槽Sの底部から生物
膜濾過層45内を吹き上がる。この時エルボ管5
5からも一部吹き出すが口径が小さいので問題に
ならない。
この上昇流によつて、生物膜濾過層45内に付
着捕捉されている増殖汚泥等は、曝気ブロワー3
5から曝気・逆洗用パイプ37を介して吹き出さ
れる気泡と相俟つて除去され、逆洗排水中に浮遊
する。ここに生物膜濾過層45は上述したように
粒状多孔質セラミツクスの多数担体43であり、
比重が1に近いことから、担体43は舞い上が
り、互に衝突し合うことになり、捕捉していた増
殖汚泥を離脱させることになり、洗われることと
なる。
逆洗ポンプ53で処理水槽Tの処理水が送り込
まれるため、生物膜濾過槽Sの水位は上昇し、浮
遊している増殖汚泥とともに逆洗排水として上方
の逆洗排水パイプ31によつて濾床槽R1に戻さ
れる。この逆洗排水は前記濾床5a,5bを通過
し、再度嫌気性微生物により分解され、嫌気性濾
床槽Rの底に増殖汚泥を減少させ、浮遊あるいは
沈澱させる。
この逆洗を所定時間経過毎に行い生物膜濾過層
45を洗滌して、分解、吸着能力を復帰させ嫌気
性濾床槽Rへ増殖汚泥等を戻し、嫌気性濾床槽R
の掃除筒6から掃除ポンプのノズルを挿入して定
期的に増殖汚泥を抜き取り、処理をする。このよ
うな逆洗方法は、特に生物膜濾過層の処理能力を
低下させることなく、沈澱槽を設けることなく、
常にあまり変えることのない処理能力を維持する
ためには最適である。
この逆洗が終つた後には、嫌気性濾床槽Rへの
汚水の流入が続き、平常の浄化処理が行われる。
このような逆洗は、家庭用雑排水を処理対象と
する場合には、例えば1日に1度、逆洗すること
で足りる。
なお、本考案の実施例では、処理水返送装置の
一例であるポンプは処理水槽T内に設定されてい
るが、これに限定されることなく、処理水槽Tの
中の処理水の一部をそれぞれ生物膜濾過槽Sと嫌
気性濾床槽R1に返送できるのであればどこに設
置されていても良い。
また、処理水返送装置は、一つに限らず生物膜
濾過槽Sへの返送用および生物膜濾過槽Sへの返
送用として個々に設けて二つにしてもよい。
また、本考案の実施例では処理水の一部は嫌気
性濾床槽R1に返送されているが、嫌気性濾床槽
R2に返送してもよいことは勿論である。また、
嫌気性濾床槽R1,R2双方に返送してもよい。
次に第1図に示されるような装置を用いて具体
的な浄化実験を行なつた。
実験例 1
まず、処理水槽Tと生物膜濾過槽Sとの間の循
環による硝化率の変化を調べるために、下記の実
験を行なつた。
すなわち、まず最初に、流入口3から原水を流
入させ、通常の浄化処理を行ない、次いで処理水
返送装置であるポンプ54を作動させ、一定量の
処理水を生物膜濾過槽Sのみに送水(返送)し、
処理水槽Tと生物膜濾過槽Sとの間を循環させな
がら、浄化処理を行なつた。この場合、循環させ
る割合は、種々変えた。
結果を下記表1に示す。
[Industrial Application Field] The present invention relates to a purification device for treating gray water, human waste water, etc., and particularly to a small-sized purification device for individual use in general households. [Prior Art] So-called closed water bodies, such as lakes and marshes and inland seas, are rapidly becoming eutrophic due to the influx of various nutrients. Eutrophication is a phenomenon in which the concentration of nutrients such as nitrogen and phosphorus in wastewater increases, and algae and aquatic plants that use this to carry out photosynthesis proliferate abnormally. In particular, when it comes to nitrogen compounds in water, almost everything other than the excrement of aquatic organisms has entered the environment due to human activities, and the influence of gray water and human waste septic tank discharge water is particularly large. Therefore, various household individual purifiers having a denitrification function have been proposed for purifying gray water and human waste water. One example is a method in which nitrification in an aerobic treatment tank is carried out by adjusting the amount of raw water flowing in, the residence time of the aerobic treatment tank, etc., using a so-called volume load adjustment method. [Problems that the invention aims to solve] However, with such a treatment method, the amount of treatment decreases, the treatment capacity does not increase, and if the amount of treatment is increased, the volume of the treatment tank must be increased, making it less compact. It has the disadvantage of being lacking. This invention was devised in view of the above circumstances, and its purpose is to purify domestic wastewater and human waste water used individually in general households.
It is an object of the present invention to provide a purification device which has a compact and simple structure and has an excellent denitrification processing ability. [Means for Solving the Problems] In order to solve the above problems, the present invention provides a purification apparatus having an anaerobic filter bed tank, a biofilm filtration tank filled with a granular porous carrier, and a treated water tank. This system is characterized by being equipped with a treated water return device that returns a portion of the treated water from the aquarium to the biofilm filtration tank and the anaerobic filter bed tank, respectively, for biological nitrification and denitrification. [Function] The purification device of the present invention includes a treated water return device that returns a portion of the treated water in the treated water tank to the biofilm filtration tank and the anaerobic filter bed tank, respectively. By returning to the filter tank and anaerobic filter bed tank,
Biological nitrification and denitrification are carried out. Therefore, the device of the present invention has an extremely excellent processing ability for purifying gray water and human waste water used individually in general households, especially for denitrification, and as a result, the device itself is extremely compact. [Example] An example of the present invention will be described with reference to FIG. FIG. 1 shows a schematic vertical sectional view of the purification apparatus of the present invention. As shown in FIG. 1, the purification device of the present invention has an anaerobic filter bed tank first chamber R1, an anaerobic filter bed tank second chamber R2, a biofilm filtration tank S, and a treated water tank T. . Anaerobic filter bed tank first chamber R1, anaerobic filter bed tank second chamber R2 (hereinafter referred to as filter bed tank R1, filter bed tank R2, respectively)
anaerobic biochemical treatment is usually carried out. Although various configurations can be considered for the configuration of such filter bed tank R1 and filter bed tank R2, the configuration shown in FIG. 1 is particularly preferable among them. That is, as shown in FIG.
and the filter bed tank R2 is the low water level (LWL) of the filter bed tank R1.
Both tanks have filter beds 5a, 5 filled with a filter material that easily retains anaerobic microorganisms and is hard to clog.
b, and spaces are provided below the filter beds 5a and 5b, respectively. The filter bed tank R1 is provided with an inlet 3 through which raw water (sewage) flows, and a water conduit 4 connected to the inlet 3 with openings on the lower side and on the side, and directly below the lower opening of the water conduit 4. A baffle plate (not shown) is provided above the filter bed 5a in order to prevent the water flow from the water conduit 4 from concentrating in one place, but to spread it around and prevent the water in the tank from being agitated. This filter bed 5
a holds anaerobic microorganisms, and filter bed tank R1
constitutes an anaerobic filter bed tank R together with the filter bed tank R2. A cleaning tube 6 is provided which extends vertically downward from the filter bed 5a along a partition wall 7 that partitions the filter bed tank R1 and the filter bed tank R2 and is open there. This cleaning tube 6 is for inserting a nozzle of a cleaning pump (not shown) to the bottom of the cleaning tube 6 during cleaning. In the filter bed tank R2, an intermittent metering pump 9 is installed immediately above the filter bed 5b, and a water inlet 11 of the intermittent metering pump 9 is connected to the filter bed 5 through a one-way valve 10.
It opens downward into the upper surface of b. This intermittent metering pump 9 is operated by a pump blower 16 connected to a pipe 14 via a solenoid valve 15. When the water level in the filter bed tank R2 is lower than the position of the suction pipe horizontal portion 17 (low water level: LWL), water is not sent to the biofilm filtration tank S, which will be described later, and is sent only when the amount is higher than this. Even if the amount of sewage flowing in from the water conduit pipe 4 increases or decreases, the intermittent metering pump 9 prevents it from overflowing, and instead flows through the pipe 13 to the biofilm filtration tank S.
Because the data is sent to , stable processing is possible at all times. Following such a filter bed tank R2, a biofilm filtration tank S
is installed. The biofilm filtration tank S nitrates ammonia nitrogen remaining in wastewater to nitrite nitrogen using nitrite bacteria, and performs microbial treatment using the decomposition action of microorganisms to remove pollution-causing substances and phosphate ions. The purpose is to perform bioadsorption and physical filtration of iron ions, etc., and various configurations can be considered for the treatment tank, but among them, the configuration described below is particularly preferable. That is, a backwash drain pipe 31 is provided above the biofilm filtration tank S, through which treated water that increases and overflows in the biofilm filtration tank S during backwashing is returned to the filter bed tank R1, while near the bottom thereof, a backwash drain pipe 31 is provided. As shown in the figure, an aeration/backwashing pipe 37 connected to an aeration blower 35 is provided in a framed manner, and this framed portion is provided with many holes. Rostles 39 and 41 are provided both above the framework of the aeration/backwashing pipe 37 and near the bottom of the opening of the connecting pipe 13, between which granular porous particles to which aerobic microorganisms are attached are provided. A biofilm filtration layer 45 is formed by filling a large number of carriers 43 made of ceramics. As the granular porous ceramic, for example, highly porous granular foam glass is preferably used. Materials for the highly porous granular foam glass include silica glass, soda coal glass, aluminoborosilicate glass, borosilicate glass, aluminosilicate glass, lead glass, etc., and can be changed as necessary, but economically. Soda-lime glass is desirable because it is inexpensive. In addition, using glass with a special composition impregnated with metals such as iron,
It is also possible to increase the removal rate of specific components such as phosphorus. The foam glass used is granular and highly porous. The particle size of this foam glass is, for example, 0.2 to 20 mm, preferably 4 to 10 mm.
mm. If the upper limit of the particle size is exceeded, the attachment of microorganisms will be concentrated on the surface of the carrier, resulting in poor purification efficiency, whereas if the particle size is less than the lower limit of the particle size, clogging may occur. The porosity of this foam glass is high, specifically a total pore volume of 1 to 4.5 ml/g, preferably 2 to 3.5 ml/g, and a water absorption rate of 50 to 85%, preferably 70 to 85%. (Vol/Vol), median pore diameter (volume) 1 to 50 μm, preferably 5 to 50 μm, bulk specific gravity
It is 0.1-1.5, preferably 0.15-0.4. The above-mentioned highly porous granular foam glass can be produced by, for example, immersing granular foam glass having a water absorption rate of 5 to 20% produced by a conventional method in hot water or an alkaline solution to remove the soluble alkali components in the granular foam glass. This can be produced by removing the granular foam glass and creating openings in the surface layer as well as in the closed cells. It can also be produced by adding 5 to 10% of a metal oxide with a high melting point, such as alumina, silica, zirconia, etc., to glass powder, firing it, and then rapidly cooling it to generate fine bubbles. can do. Porous ceramics made of porous granular foam glass, for example, are porous as described above, so they have a large specific surface area and pore volume, and have an optimal structure for the adhesion and growth of microorganisms. can be maintained. Therefore, when the biofilm filtration tank is constructed of a carrier made of porous ceramics, the processing capacity can be further increased and the tank can be further downsized. In addition, the specific gravity is close to 1, and even a slight flow can change the position and stir it. In other words, the backwashing power may be extremely small. Further, at the bottom of this biofilm filtration tank S, an opening is opened below the rostre 39, that is, below the biofilm filtration layer 45, and the biofilm filtration layer 4
A pipe 47 is provided to supply the treated water purified by step 5 to the treated water tank T, and to send the treated water from the treated water tank T back to the biofilm filtration tank S during backwashing. This pipe 47 connects the biofilm filtration tank S and the treated water tank T. In the treated water tank T, an intermittent metering pump 54 is installed as an example of a treated water return device. A main pipe 57 is provided upward connected to the intermittent metering pump 54, and as shown in the figure, a return pipe 58 is connected to the main pipe 57.
It is branched into a and 58b. The return pipe 58a extends to the biofilm filtration tank S in order to return a portion of the treated water to the biofilm filtration tank S. And that pipe 58a
A flow rate adjustment valve 59a is provided near the tip of the flow rate adjustment valve 59a, so that the amount of return can be adjusted as desired. By the way, the other return pipe 58b extends to the anaerobic filter bed tank R1 in order to return a part of the treated water to the anaerobic filter bed tank R1.
Similarly, a flow rate adjustment valve 59b is provided at the tip of b. Another example of a treated water return device is the so-called air lift system, in which the height of the weir is adjusted to adjust the flow rate of the treated water returned. . The reason why a portion of the treated water in the treated water tank T is returned to the biofilm filtration tank S and the anaerobic filter bed tank R1 will be explained. The reason why a portion of the treated water in the treated water tank T is returned to the biofilm filtration tank S is to completely nitrify the ammonia nitrogen remaining in the treated water to nitrite and nitrate nitrogen. In other words, by returning a portion of the treated water to the biofilm filtration tank S, dissolved oxygen (DO) in the upper layer of the biofilm filtration tank S is increased and biochemical oxygen demand (BOD) is lowered. In addition, the amount of water passing through the biofilm filtration tank S increases, and as a result, the raw water is evenly distributed throughout the biofilm filtration tank S, which reduces the activity of nitrite bacteria and nitrate bacteria. can oxidize ammonia to nitrite and nitrate ions. In this case, the circulation ratio, that is, the ratio r1 of the amount of returned water to the biofilm filtration tank S to the amount of raw water inflow, is 0.5 to
4.0, especially 2.0-3.0 is preferred. If this value is less than 0.5, the nitrification rate of the treated water will be poor, while if this value exceeds 4.0, it will cause unnecessary circulation, which is not preferable. On the other hand, the reason why a part of the treated water in the treated water tank T is returned to the anaerobic filter bed tank R1 is to denitrify the treated water that has been decomposed into nitrite ions and nitrate ions as described above. . That is, oxygen in nitrite ions and nitrate ions of the treated water returned to the anaerobic filter bed tank R1 is removed by denitrifying bacteria that breed in the anaerobic filter bed tank R1,
Due to this reduction action, nitrogen in nitrite ions and nitrate ions is released into the atmosphere as N 2 gas, and inorganic nitrogen in the wastewater is removed. In this case, the circulation ratio, that is, the ratio r2 of the amount of returned water to the anaerobic filter bed tank R1 to the amount of raw water inflow, is 0.5
-6.0, especially 3.0-4.0 are preferred. If this value is less than 0.5, the nitrogen removal rate of the treated water will be slightly poor, while if this value exceeds 6.0, unnecessary circulation will be required, which is not preferable. In this way, by returning a portion of the treated water in the treated water tank T to the biofilm filtration tank S and the anaerobic filter bed tank R1, respectively, nitrite ionization and nitrate ionization of ammonia, and oxidized nitrogen Denitrification in the compound takes place. As an example of a specific operation, first, the intermittent metering pump 54 is operated, and a part of the treated water in the treated water tank T is returned to the biofilm filtration tank S via the return pipe 58a, and then the treated water is returned to the biofilm filtration tank S and treated. The ammonia in the treated water is forced to circulate between the water tanks T to ionize nitrite and nitrate, and then the ionized treated water is sent to the anaerobic filter bed tank R1 via the return pipe 58b.
The entire septic tank is brought into continuous operation by starting to return the water to the tank. In addition, the other end of the pipe 47 extends to the bottom of the treated water tank T, and a backwash pump 53 is usually attached to which the treated water is sent back. Further, an elbow pipe 55 is provided at an intermediate position of the pipe 47, and discharges the treated water treated in the biofilm filtration tank S to the treated water tank T. In order to overflow and discharge this treated water, usually a small chamber 57, as shown in the figure,
59 and 61 are provided, and water is discharged from a discharge port 63 provided in the small chamber 61. A cartridge 65 is usually provided in either of the small chambers 59, 61 to neutralize, sterilize, etc. the treated water that has been treated with organic substances. In the purification device of the present invention described above, each tank (anaerobic filter bed tank first chamber R1, anaerobic filter bed tank second chamber R2, treated water tank T, etc.) is manufactured individually, and these are connected by piping. However, usually, each tank is integrally molded from a material such as reinforced fiber plastic (FRP), and predetermined filter beds 5a, 5b, piping, pumps, etc. are built into these to provide predetermined functions. It is preferable to make the purification device more compact. Next, a method for treating wastewater using the purification device 1 described above will be explained. The purpose of the purification device 1 of the present invention is to purify domestic wastewater and human waste that are used individually in general households, and therefore, the size of each tank of the purification device should be adjusted accordingly. be discovered. The sewage first passes through the water conduit 4 from the first inlet 3, is spread by a baffle plate (not shown), is spread on the filter bed 5a, and is sent to the filter bed tank R1 of the raw water tank R. When the water level rises and the raw water reaches the middle of the water pipe 4, it flows out from the side opening 8. When wastewater passes through the filter bed 5a, anaerobic microorganisms are attached to the filter bed 5a, and primary decomposition and adsorption of organic matter takes place here. The water that has passed is filtered into the filter bed tank R.
As the water level of 1 is raised, organic matter is similarly decomposed and adsorbed in the filter bed 5b. Water level is horizontal part 1 of suction pipe
After the pressure exceeds 7, the solenoid valve 15 is opened, and the pressure of the pump blower 16 operates the intermittent metering pump 9 through the pipe 14. This intermittent metering pump 9
By this, a fixed amount of wastewater is sent to the biofilm filtration tank S regardless of the amount of wastewater flowing in. Therefore, when the inflow is large, the water level in the filter bed tank R1 rises within the high water level (HWL) line. The water sent through the pipe 13 enters the biofilm filtration tank S and passes through the biofilm filtration layer 45 in a downward flow. As described above, this biofilm filtration layer 45 is filled with a large number of carriers 43 made of granular porous ceramics, and the carriers 43 descend while bending through the carriers. By the way, at this time, the aeration blower 35 is activated, and the aeration/backwash pipe 37 framed at the bottom is activated.
Air bubbles are blown out and rise. Since the bubbles rise in a curved manner while colliding with the carrier 43, the bubbles do not become coarse rapidly and the residence time becomes long, and a high oxygen utilization rate is obtained, so that high-load operation is possible. In this way, by bringing the raw water into countercurrent contact with the air in the biofilm filtration tank 45, contact aeration is performed, oxygen is dissolved in the wastewater, and the biological oxidation function is enhanced to decompose organic matter and grow microorganisms. Through the filtration effect between the carrier particles and adsorption on the wide biofilm surface, the treated water is purified more efficiently. Note that, as will be described later, the biofilm filtration layer 45 is backwashed every predetermined time period, so there is almost no precipitation at the bottom. The treated water is sent to the treated water tank T through the pipe 47 from the opening of the elbow pipe 55. A part of the treated water in the treated water tank T is circulated in a constant amount to the biofilm filtration tank S via the return pipe 58a by the intermittent metering pump 54, and untreated ammonia nitrogen is completely converted to nitrite and nitrate nitrogen. and is oxidized. The details are as described above. Similarly, a certain amount of the treated water in the treated water tank T is returned to the first anaerobic filter bed tank R1 by the intermittent metering pump 54 via the return pipe 58b.
Here, denitrification of the treated water, which has been decomposed into nitrite ions and nitrate ions, is performed. Note that the details are as described above. By the way, most of the treated water in the treated water tank T is usually stored in connected small chambers 57, 59, 6.
1 and is discharged from the discharge port 63. During this time, the treated water that overflowed from the small chamber 57 was poured into the cartridge 65.
It is neutralized and sterilized by the injection of chemicals, and then released. The processing speed of this discharge is set by supplying water received by the anaerobic filter bed tank R by the intermittent metering pump 9, and this setting is normally set for the biofilm filtration layer 45 of the biofilm filtration tank S. It is set according to processing capacity. Therefore, stable quality of treated water can always be ensured. As a result of sewage treatment, organic matter and proliferated sludge have adhered to the carrier 43 of the biofilm filtration layer 45, and when the backwash pump 53 is activated before this comes off the carrier 43 and begins to settle, the inside of the treated water tank T is removed. The treated water collected in pipe 4
7 and blows up from the bottom of the biofilm filtration tank S into the biofilm filtration layer 45. At this time, elbow pipe 5
Some of it also blows out from 5, but the diameter is small so it's not a problem. Due to this upward flow, the grown sludge and the like that are attached and trapped in the biofilm filtration layer 45 are removed by the aeration blower 3.
Together with the air bubbles blown out from the air bubbles 5 through the aeration/backwash pipe 37, the air bubbles are removed and floated in the backwash wastewater. Here, the biofilm filtration layer 45 is a multi-carrier 43 of granular porous ceramics, as described above,
Since the specific gravity is close to 1, the carriers 43 fly up and collide with each other, causing the trapped grown sludge to be released and washed. As the treated water from the treated water tank T is sent in by the backwash pump 53, the water level in the biofilm filtration tank S rises, and together with the floating proliferated sludge, the water is sent to the filter bed by the upper backwash drain pipe 31 as backwash wastewater. It is returned to tank R1. This backwash wastewater passes through the filter beds 5a and 5b and is decomposed by anaerobic microorganisms again, reducing the grown sludge to float or settle at the bottom of the anaerobic filter bed tank R. This backwashing is performed every predetermined period of time to wash the biofilm filtration layer 45, restore the decomposition and adsorption capacity, and return the grown sludge etc. to the anaerobic filter bed tank R.
A nozzle of a cleaning pump is inserted into the cleaning tube 6 of the cleaning tube 6, and the grown sludge is periodically extracted and treated. This type of backwashing method does not particularly reduce the processing capacity of the biofilm filtration layer and does not require a settling tank.
This is ideal for maintaining processing capacity that does not change much at all times. After this backwashing is completed, the wastewater continues to flow into the anaerobic filter bed tank R, and normal purification processing is performed. When treating domestic gray water, it is sufficient to carry out such backwashing once a day, for example. In the embodiment of the present invention, the pump, which is an example of a treated water return device, is installed in the treated water tank T, but the pump is not limited to this, and can be used to transport some of the treated water in the treated water tank T. They may be installed anywhere as long as they can be returned to the biofilm filtration tank S and the anaerobic filter bed tank R1, respectively. Further, the number of treated water return devices is not limited to one, and two devices may be provided, one for returning to the biofilm filtration tank S and the other for returning to the biofilm filtration tank S. Further, in the embodiment of the present invention, a part of the treated water is returned to the anaerobic filter bed tank R1, but it goes without saying that it may be returned to the anaerobic filter bed tank R2. Also,
It may be returned to both anaerobic filter beds R1 and R2. Next, a specific purification experiment was conducted using the apparatus shown in FIG. Experimental Example 1 First, in order to investigate the change in nitrification rate due to circulation between the treated water tank T and the biofilm filtration tank S, the following experiment was conducted. That is, first, raw water is introduced through the inlet 3 and subjected to normal purification treatment, and then the pump 54, which is the treated water return device, is operated to send a certain amount of treated water only to the biofilm filtration tank S ( return) and
Purification treatment was carried out while circulating between the treated water tank T and the biofilm filtration tank S. In this case, the circulation rate was varied. The results are shown in Table 1 below.
【表】
表1中、循環比r1は、原水流入量に対する生物
膜濾過槽への返送量の比をあらわす。
原水T−Nおよび処理水T−Nは、それぞれ原
水中および処理水中の総窒素分を示す。
処理水NOX−Nは、窒素酸化物中の総窒素分
を示す。
実験例 2
実験例1で最適の効果が得られた循環比r1=2
をそのままにし、さらに処理水中の処理水を嫌気
性濾床槽R1に返送した。この場合にも返送量
(循環比r2)を種々変化させた。
結果を下記表2に示す。[Table] In Table 1, the circulation ratio r1 represents the ratio of the amount of raw water returned to the biofilm filtration tank to the amount of raw water inflow. Raw water TN and treated water TN indicate the total nitrogen content in raw water and treated water, respectively. Treated water NOx - N indicates the total nitrogen content in nitrogen oxides. Experimental example 2 Circulation ratio r1 = 2 where the optimal effect was obtained in experimental example 1
was left as it was, and the treated water in the treated water was returned to the anaerobic filter bed tank R1. In this case as well, the amount of return (circulation ratio r2) was varied. The results are shown in Table 2 below.
以上の結果より、本発明の効果は明らかであ
る。すなわち、本考案の浄化装置は、処理水槽の
処理水の一部を生物膜濾過槽と嫌気性濾床槽とに
それぞれ戻す処理水返送装置を備え、処理水の一
部を生物膜濾過槽と嫌気性濾床槽に戻すことによ
つて、硝化、脱窒素をおこなうようにしている。
従つて、一般家庭で個別的に用いられる生活雑排
水および屎尿排水の浄化、特に、脱窒素の処理能
力が極めて優れ、その結果として装置自体も極め
てコンパクトになる。
From the above results, the effects of the present invention are clear. That is, the purification device of the present invention is equipped with a treated water return device that returns a portion of the treated water from the treated water tank to the biofilm filtration tank and the anaerobic filter bed tank. Nitrification and denitrification are performed by returning the water to the anaerobic filter bed tank.
Therefore, the treatment capacity for purifying gray water and human waste water used individually in general households, especially for denitrification, is extremely excellent, and as a result, the apparatus itself is extremely compact.
第1図は、本考案の浄化装置の概略構成縦断面
図である。
R1……嫌気性濾床槽第1室、R2……嫌気性
濾床槽第2室、S……生物膜濾過槽、T……処理
水槽、5a,5b……濾床、39,41……ロス
トル、43……担体、45……生物膜濾過層、5
4……間欠定量ポンプ。
FIG. 1 is a schematic vertical cross-sectional view of the purification device of the present invention. R1...Anaerobic filter bed tank 1st chamber, R2...Anaerobic filter bed tank 2nd chamber, S...Biofilm filtration tank, T...Treatment water tank, 5a, 5b...Filter bed, 39,41... ...Rostol, 43...Carrier, 45...Biofilm filtration layer, 5
4...Intermittent metering pump.
Claims (1)
物膜濾過槽と、処理水槽を有する浄化装置であつ
て、 該装置は、嫌気性濾床槽、生物膜濾過槽、およ
び処理水槽を順次経て処理された処理水槽中の処
理水の一部を、生物膜濾過槽と嫌気性濾床槽とに
それぞれ返送して生物学的硝化、脱窒を行わせる
処理水返送装置を備え、 該処理水返送装置における原水流入量に対する
生物膜濾過槽への返送量の比は、0.5〜4.0、原水
流入量に対する嫌気性濾床槽への返送量の比は、
0.5〜6.0であることを特徴とする浄化装置。[Scope of Claim for Utility Model Registration] A purification device having an anaerobic filter bed tank, a biofilm filtration tank filled with a granular porous carrier, and a treated water tank, A process in which a portion of the treated water in the treated water tank that has been sequentially processed through the filtration tank and treated water tank is returned to the biofilm filtration tank and the anaerobic filter bed tank for biological nitrification and denitrification. Equipped with a water return device, the ratio of the amount returned to the biofilm filtration tank to the amount of raw water inflow in the treated water return device is 0.5 to 4.0, and the ratio of the amount returned to the anaerobic filter bed tank to the amount of raw water inflow is:
A purification device characterized in that it is 0.5 to 6.0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989145782U JPH0516000Y2 (en) | 1989-12-18 | 1989-12-18 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1989145782U JPH0516000Y2 (en) | 1989-12-18 | 1989-12-18 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0383697U JPH0383697U (en) | 1991-08-26 |
JPH0516000Y2 true JPH0516000Y2 (en) | 1993-04-27 |
Family
ID=31692405
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1989145782U Expired - Lifetime JPH0516000Y2 (en) | 1989-12-18 | 1989-12-18 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0516000Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006055700A2 (en) * | 2004-11-17 | 2006-05-26 | Dentsply International Inc. | Plastic sheets for thermoforming dental products |
ES2387502T3 (en) * | 2005-02-16 | 2012-09-25 | Dentsply International Inc. | Plastic sheets for thermoforming dental products and a procedure |
-
1989
- 1989-12-18 JP JP1989145782U patent/JPH0516000Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0383697U (en) | 1991-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2875765B2 (en) | High-concentration wastewater treatment equipment | |
CN101434444B (en) | Membrane bioreactor and use thereof in wastewater treatment | |
KR102170601B1 (en) | Advanced sewage and wastewater separation membrane device using low temperature plasma | |
CN108793405A (en) | Build sewage water denitrification dephosphorization apparatus method, denitrification dephosphorization apparatus and denitrification and dephosphorization method | |
CN103641241A (en) | Preposed denitrification aeration biofilter and method for treating sewage | |
CN114380454A (en) | TMBR sewage treatment process based on MABR and MBR | |
CN205933371U (en) | Use alkali to soak bological aerated filter system of excess sludge for packing | |
CN208071544U (en) | A kind of railway communication system production wastewater treatment system | |
JPH0516000Y2 (en) | ||
KR101827525B1 (en) | Method for small medium size sewage advanced treatment using float media filtering | |
JP2608520B2 (en) | Purification device | |
CN210711166U (en) | Villages and towns sewage treatment plant | |
KR100583904B1 (en) | High intergated Biological Nutrient Removal System | |
JPH0634877Y2 (en) | Purification device | |
JP2839065B2 (en) | Septic tank | |
JP2519919Y2 (en) | Septic tank | |
KR100619254B1 (en) | Biological denitrification process using sulfur-utilizing chemolithoautotroph | |
CN214936812U (en) | Multi-membrane combined double-circulation bioreactor and multi-membrane combined double-circulation biological treatment system | |
CN220078792U (en) | Aquaculture tail water purification system with flexible switching of recycling and standard discharge | |
CN203593663U (en) | Pre-denitrification biological aerated filter | |
CN218811172U (en) | High-efficient sewage denitrification processing apparatus | |
JPH0611899U (en) | Purification device | |
JPS61287498A (en) | Biological treatment of organic sewage | |
JPH02238835A (en) | Filter of breeding water of fishes | |
JPH0771672B2 (en) | Small treatment septic tank |