JP2011104564A - Method and equipment for treating organic wastewater - Google Patents

Method and equipment for treating organic wastewater Download PDF

Info

Publication number
JP2011104564A
JP2011104564A JP2009265202A JP2009265202A JP2011104564A JP 2011104564 A JP2011104564 A JP 2011104564A JP 2009265202 A JP2009265202 A JP 2009265202A JP 2009265202 A JP2009265202 A JP 2009265202A JP 2011104564 A JP2011104564 A JP 2011104564A
Authority
JP
Japan
Prior art keywords
organic wastewater
carrier
denitrification
aeration tank
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009265202A
Other languages
Japanese (ja)
Other versions
JP5523800B2 (en
Inventor
Hitoshi Shoji
仁 庄司
Hiroaki Uemoto
弘明 植本
Yoshihiko Morita
仁彦 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009265202A priority Critical patent/JP5523800B2/en
Publication of JP2011104564A publication Critical patent/JP2011104564A/en
Application granted granted Critical
Publication of JP5523800B2 publication Critical patent/JP5523800B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide equipment for treating organic wastewater, which allows a denitrification reaction occurring in an anaerobic environment to proceed in an aeration tank as an aerobic environment without interfering with the function of decomposing organic matter, which is the function inherent in the organic wastewater treatment using activated sludge. <P>SOLUTION: In the equipment for treating organic wastewater using a biological treatment method, which includes the aeration tank 2 where the organic wastewater 9, together with the activated sludge, is subjected to aeration treatment, the equipment further includes a container 21 of a sealed structure provided with a nonporous membrane 22 in at least a portion thereof and filled with an electron donor substance 23, and a carrier 31 capable of carrying microorganisms thereon. The carrier 31 is arranged at least around the nonporous membrane 22 of the container 21, and the electron donor substance 23 gradually released through the region of the nonporous membrane 22 of the container 21 is supplied to the carrier 31. At least the carrier 31 is accommodated in such a position as to come into contact with the organic wastewater 9 in the aeration tank 2. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、有機性廃水の処理方法及び処理設備に関する。さらに詳述すると、本発明は、
有機性廃水に含まれる窒素成分濃度を低減させるのに好適な有機性廃水の処理方法及び処理設備に関する。
The present invention relates to a method for treating organic wastewater and a treatment facility. More specifically, the present invention
The present invention relates to an organic wastewater treatment method and treatment equipment suitable for reducing the concentration of nitrogen components contained in organic wastewater.

有機性廃水の代表的な浄化処理方法として、活性汚泥法が知られている。この方法は、以下のように実施される。即ち、一次処理(スクリーン、沈砂池、最初沈殿池)を終えた有機性廃水が、曝気槽102に連続的に流入し、曝気槽102内の活性汚泥と混合される。曝気槽102にはブロワー(送風機)等から強制的に空気が吹き込まれて、曝気槽102内の有機性廃水の溶存酸素濃度が高濃度に維持され、有機性廃水中の有機物(BOD成分)が活性汚泥中に存在する好気性微生物の作用により酸化分解される。有機性廃水を曝気槽2内で一定時間滞留させた後、曝気槽102内の混合液をそのまま沈殿槽103に流入させて静置し、微生物群(活性汚泥)にフロックを形成させて沈降させる。上澄液は処理水としてそのまま放流するか、あるいは必要に応じて次工程に回される。沈殿槽103で沈降した活性汚泥は返送汚泥として曝気槽102に返され、再び有機物分解作業に供される。一方で、増殖した微生物に見合う量の活性汚泥が、余剰汚泥として回収される(図16、非特許文献1のp53−54、非特許文献2参照)。   The activated sludge method is known as a typical purification method for organic wastewater. This method is performed as follows. That is, the organic waste water that has finished the primary treatment (screen, sand settling basin, first settling pond) continuously flows into the aeration tank 102 and is mixed with the activated sludge in the aeration tank 102. Air is forcibly blown into the aeration tank 102 from a blower (blower) or the like, the dissolved oxygen concentration in the organic wastewater in the aeration tank 102 is maintained at a high concentration, and organic matter (BOD component) in the organic wastewater is contained. It is oxidatively decomposed by the action of aerobic microorganisms present in the activated sludge. After the organic waste water is retained in the aeration tank 2 for a certain period of time, the mixed liquid in the aeration tank 102 is allowed to flow into the precipitation tank 103 as it is, and is allowed to stand to form a floc in the microorganism group (activated sludge) and settle. . The supernatant is discharged as treated water as it is or sent to the next step as necessary. The activated sludge settled in the settling tank 103 is returned to the aeration tank 102 as a return sludge, and is again subjected to organic matter decomposition work. On the other hand, the activated sludge corresponding to the grown microorganisms is recovered as excess sludge (see FIG. 16, p53-54 of Non-Patent Document 1, Non-Patent Document 2).

ところで、近年、湖沼や内海等の閉鎖系水域において富栄養化の問題が顕在化している。富栄養化の問題を解決するためには、閉鎖系水域への窒素成分さらにはリン成分といった栄養塩の流入を防ぐことが重要である。そこで、活性汚泥法の変法として、窒素除去のための硝化脱窒法、リン除去のための嫌気好気法、窒素・リン同時除去のための嫌気無酸素好気法などが用いられている。 By the way, in recent years, the problem of eutrophication has become apparent in closed waters such as lakes and inland seas. In order to solve the eutrophication problem, it is important to prevent the inflow of nutrients such as nitrogen and phosphorus components into closed water bodies. Thus, as a modified method of the activated sludge method, a nitrification denitrification method for removing nitrogen, an anaerobic aerobic method for removing phosphorus, an anaerobic anaerobic anaerobic method for removing nitrogen and phosphorus simultaneously, and the like are used.

硝化脱窒法は、例えば図18に示すように、曝気槽102の前段に脱窒槽105が設けられた設備において実施される。具体的には、有機性廃水に含まれるアンモニア性窒素が脱窒槽105では何の変化も受けることなく、曝気槽102へと流入する。そして、曝気槽102内で、アンモニア性窒素が亜硝酸性窒素、硝酸性窒素に酸化された後、硝化循環液として大量に(通常、流入する廃水の1〜3倍量)脱窒槽105へと戻される。脱窒槽105では、流入する有機性廃水に含まれる有機物を利用して亜硝酸性窒素、硝酸性窒素が脱窒反応を受け、有機性廃水の窒素の濃度が低減される。また、有機性廃水にはじめから亜硝酸性窒素、硝酸性窒素が含まれていた場合には、有機性廃水が脱窒槽105に流入した段階で脱窒反応を受けてそれらの濃度が低減される。また、有機性廃水中の有機物は、曝気槽105での脱窒菌による消費に加えて、曝気槽102での酸化分解処理によってその濃度が低減する(非特許文献1のp60−61、非特許文献2参照)。   For example, as shown in FIG. 18, the nitrification denitrification method is performed in a facility in which a denitrification tank 105 is provided upstream of the aeration tank 102. Specifically, ammonia nitrogen contained in the organic wastewater flows into the aeration tank 102 without any change in the denitrification tank 105. In the aeration tank 102, ammonia nitrogen is oxidized to nitrite nitrogen and nitrate nitrogen, and then into a denitrification tank 105 in large quantities (usually 1 to 3 times the amount of inflowing wastewater) as a nitrification circulating liquid. Returned. In the denitrification tank 105, nitrite nitrogen and nitrate nitrogen are subjected to a denitrification reaction using organic substances contained in the inflowing organic wastewater, and the concentration of nitrogen in the organic wastewater is reduced. Further, when nitrite nitrogen and nitrate nitrogen are contained in the organic wastewater from the beginning, the concentration of the organic wastewater is reduced by receiving a denitrification reaction when the organic wastewater flows into the denitrification tank 105. . In addition to consumption by denitrifying bacteria in the aeration tank 105, the concentration of the organic matter in the organic wastewater is reduced by oxidative decomposition treatment in the aeration tank 102 (p60-61 of Non-Patent Document 1, Non-Patent Document 1). 2).

嫌気好気法(AO法)は、図17に示すように、曝気槽102の前段に嫌気槽104を設けたものである。活性汚泥中には、嫌気環境下で有機物を摂取しながらリンを放出して、続く好気条件で放出したよりも多くのリンを吸収する機能を有する細菌(ポリリン酸蓄積細菌)が存在している。この細菌の機能によって、有機性廃水のリン濃度を低減すると共に、余剰汚泥中にリンを蓄積させて系外に排出することができる(非特許文献2参照)。   The anaerobic aerobic method (AO method) is a method in which an anaerobic tank 104 is provided in front of the aeration tank 102 as shown in FIG. In activated sludge, there are bacteria (polyphosphate-accumulating bacteria) that release phosphorus while ingesting organic matter in an anaerobic environment and absorb more phosphorus than released under aerobic conditions. Yes. By the function of this bacterium, the concentration of phosphorus in organic wastewater can be reduced, and phosphorus can be accumulated in excess sludge and discharged out of the system (see Non-Patent Document 2).

嫌気無酸素好気活性汚泥法(AO法)は循環式嫌気好気法ともよばれ、例えば図19に示すように、曝気槽102の前段に脱窒槽105が設けられ、さらに脱窒槽105の前段に嫌気槽104が設けられた設備において実施される。具体的には、硝化脱窒法のさらに前段に嫌気槽104をリン溶出槽として設けることにより、嫌気槽104に返送された活性汚泥に含まれるポリリン酸蓄積細菌からリンを放出させ、曝気槽102においてポリリン酸蓄積細菌にリンを過剰摂取させることにより、有機性廃水に含まれるリン濃度を低減し、さらには脱窒槽105と曝気槽102によって、硝化脱窒法と同様に、アンモニア性窒素、さらには亜硝酸性窒素や硝酸性窒素濃度の低減を図ることができる。また、有機性廃水中の有機物は、脱窒槽105における脱窒菌による消費、嫌気槽104や脱窒槽105におけるポリリン酸蓄積細菌による消費、そして曝気槽102における酸化分解によって、濃度が低減する(非特許文献1のp61−62、非特許文献2参照)。 The anaerobic anaerobic anaerobic activated sludge method (A 2 O method) is also called a circulation type anaerobic aerobic method. For example, as shown in FIG. 19, a denitrification tank 105 is provided in front of the aeration tank 102. It is carried out in a facility provided with an anaerobic tank 104 in the previous stage. Specifically, the anaerobic tank 104 is provided as a phosphorus elution tank further before the nitrification denitrification method, thereby releasing phosphorus from the polyphosphate accumulating bacteria contained in the activated sludge returned to the anaerobic tank 104, and in the aeration tank 102. By causing polyphosphate-accumulating bacteria to overtake phosphorus, the concentration of phosphorus contained in organic wastewater is reduced, and ammonia nitrogen and further sublimation are reduced by the denitrification tank 105 and the aeration tank 102 in the same manner as the nitrification denitrification method. Reduction of nitrate nitrogen and nitrate nitrogen concentration can be achieved. The concentration of organic substances in the organic wastewater is reduced by consumption by denitrifying bacteria in the denitrification tank 105, consumption by polyphosphate-accumulating bacteria in the anaerobic tank 104 and denitrification tank 105, and oxidative decomposition in the aeration tank 102 (non-patented). (Refer to p61-62 of Document 1, Non-Patent Document 2)

環境微生物学(昭晃堂、大森俊雄著ら著、初版5刷)Environmental microbiology (written by Shoshodo, Toshio Omori, etc., 5th edition) さまざまな活性汚泥法、[online]、2007年3月30日、畜産環境技術研究所、[平成21年11月17日検索]、インターネット<URL:http://www.chikusan-kankyo.jp/osuiss/kiso/0046.htm>Various activated sludge methods, [online], March 30, 2007, Livestock Environmental Technology Research Institute, [November 17, 2009 search], Internet <URL: http://www.chikusan-kankyo.jp/ osuiss / kiso / 0046.htm> 嫌気−無酸素−好気法、[online]、2008年8月28日、京都市下水道局、[平成21年11月17日検索]、インターネット<URL:http://www.city.kyoto.lg.jp/suido/page/0000008844.html>Anaerobic-anoxic-aerobic method, [online], August 28, 2008, Kyoto City Sewerage Bureau, [searched on November 17, 2009], Internet <URL: http://www.city.kyoto. lg.jp/suido/page/0000008844.html>

しかしながら、これらの既存の処理方式には、それぞれ重大な欠点がある。 However, each of these existing processing schemes has significant drawbacks.

まず、標準活性汚泥法や嫌気好気法については、活性汚泥に含まれている硝化菌によって有機性廃水に含まれるアンモニア性窒素を酸化することはできるものの、アンモニア性窒素の酸化により生成される亜硝酸性窒素や硝酸性窒素、さらには有機性廃水にはじめから含まれている亜硝酸性窒素や硝酸性窒素を分子状窒素に変換(脱窒処理)することができない。したがって、閉鎖系水域での富栄養化の問題を引き起こす硝酸性窒素由来の窒素成分の濃度を低減することができない。しかも、嫌気好気法の場合、残存する硝酸性窒素は返送汚泥とともに嫌気槽に流入するため、嫌気槽においてポリリン酸蓄積細菌と脱窒菌による有機物摂取の競合が生じて、リン除去能力が十分に発揮されなくなる。   First, the standard activated sludge method and the anaerobic aerobic method are produced by oxidation of ammonia nitrogen, although nitrifying bacteria contained in activated sludge can oxidize ammonia nitrogen in organic wastewater. Nitrite nitrogen and nitrate nitrogen, as well as nitrite nitrogen and nitrate nitrogen originally contained in organic wastewater cannot be converted into molecular nitrogen (denitrification treatment). Therefore, it is not possible to reduce the concentration of the nitrogen component derived from nitrate nitrogen which causes the problem of eutrophication in a closed water area. Moreover, in the case of the anaerobic aerobic method, the remaining nitrate nitrogen flows into the anaerobic tank along with the returned sludge. It will not be demonstrated.

また、硝化脱窒法及び嫌気無酸素好気法は、有機性廃水に含まれるアンモニア性窒素のみならず、亜硝酸性窒素や硝酸性窒素を分子状窒素に変換(脱窒処理)してその濃度を低減することができるものの、脱窒処理のための脱窒槽105を別途設けることから、敷地面積に制限のある場合に導入が難しく、また建設費用が増大してしまう。さらに、曝気槽から脱窒槽に大量の返送を必要とすることから、ポンプの運転費用もかさむこととなる。   The nitrification denitrification method and the anaerobic anaerobic aerobic method convert not only ammonia nitrogen contained in organic wastewater but also nitrite nitrogen and nitrate nitrogen into molecular nitrogen (denitrification treatment) and its concentration. However, since the denitrification tank 105 for the denitrification treatment is separately provided, the introduction is difficult when the site area is limited, and the construction cost increases. Furthermore, since a large amount of return is required from the aeration tank to the denitrification tank, the operation cost of the pump is also increased.

これらの問題点は、活性汚泥を用いた有機性廃水処理の本来的な機能である有機物分解処理能を妨げることなく、嫌気環境において生じる脱窒反応を好気環境である曝気槽102において進行させることができれば全て解決することができる。即ち、活性汚泥法及び嫌気好気法については、曝気槽102での脱窒処理を実現できれば、新たに処理槽を設けることなく、有機性廃水中の亜硝酸性窒素や硝酸性窒素濃度の低減を図ることができる。また、硝化脱窒法及び嫌気無酸素好気法については、曝気槽102での脱窒処理を実現できれば、脱窒槽105への硝酸性窒素の返送量を減少させることができる。あるいは、脱窒槽105での脱窒処理工程を完全に曝気槽102にシフトさせて、脱窒槽105への硝化循環液の返送工程を削除し、ポンプの運転費用の削減と施設規模の縮小が可能となる。   These problems are caused by advancing the denitrification reaction that occurs in an anaerobic environment in the aeration tank 102, which is an aerobic environment, without interfering with the organic matter decomposition ability, which is the original function of organic wastewater treatment using activated sludge. If you can, you can solve everything. That is, for the activated sludge method and the anaerobic aerobic method, if the denitrification treatment in the aeration tank 102 can be realized, the concentration of nitrite nitrogen and nitrate nitrogen in the organic wastewater can be reduced without providing a new treatment tank. Can be achieved. As for the nitrification denitrification method and the anaerobic anaerobic anaerobic method, if the denitrification process in the aeration tank 102 can be realized, the amount of nitrate nitrogen returned to the denitrification tank 105 can be reduced. Alternatively, the denitrification treatment process in the denitrification tank 105 can be completely shifted to the aeration tank 102, and the return process of the nitrification circulating liquid to the denitrification tank 105 can be eliminated to reduce the operating cost of the pump and the facility scale. It becomes.

そこで、本発明は、活性汚泥を用いた有機性廃水処理の本来的な機能である有機物分解処理能を妨げることなく、嫌気環境において生じる脱窒反応を好気環境である曝気槽において進行させることのできる有機性廃水の処理方法及び処理設備を提供することを目的とする。   Therefore, the present invention allows a denitrification reaction that occurs in an anaerobic environment to proceed in an aerobic environment aeration tank without interfering with the organic substance decomposition treatment ability that is an essential function of organic wastewater treatment using activated sludge. It aims at providing the processing method and processing equipment of the organic waste water which can do.

かかる課題を解決するため、本願発明者等が鋭意研究を行った。その結果、極めて強い好気環境下に晒される活性汚泥法における曝気槽においても脱窒反応を進行させることができ、しかも、活性汚泥を用いた有機性廃水処理の本来的な機能である有機物分解処理能を妨げることのない構成を知見し、本発明を完成するに至った。   In order to solve such a problem, the inventors of the present application conducted extensive research. As a result, the denitrification reaction can be advanced even in the aeration tank in the activated sludge method exposed to extremely strong aerobic environment, and organic substance decomposition is an essential function of organic wastewater treatment using activated sludge. The present inventors have found a configuration that does not impede processing ability and have completed the present invention.

即ち、本発明の有機性廃水の処理方法は、有機性廃水を活性汚泥と共に曝気槽内で曝気処理する工程を含む生物処理法を利用した有機性廃水の処理方法において、非多孔性膜を少なくとも一部に備えると共に電子供与体物質を充填した密封構造の容器の少なくとも非多孔性膜の周りに微生物を担持し得る担体を配置して、容器の非多孔性膜部分から電子供与体物質を徐放させて担体に供給し、少なくとも担体を曝気槽内の有機性廃水と接触させながら曝気処理を行うようにしている。   That is, the organic wastewater treatment method of the present invention is a method for treating organic wastewater using a biological treatment method including a step of aeration treatment of organic wastewater with activated sludge in an aeration tank. A carrier capable of supporting microorganisms is disposed around at least the non-porous membrane of a sealed container filled with an electron donor material, and the electron donor material is gradually removed from the non-porous membrane portion of the container. The aeration is carried out while supplying the carrier to the carrier and at least bringing the carrier into contact with the organic waste water in the aeration tank.

また、本発明の有機性廃水の処理設備は、有機性廃水が活性汚泥と共に曝気処理される曝気槽を有する生物処理法を利用した有機性廃水の処理設備において、非多孔性膜を少なくとも一部に備えると共に電子供与体物質を充填した密封構造の容器と、微生物を担持し得る担体とをさらに有し、担体は容器の少なくとも非多孔性膜の周りに配置されて容器の非多孔性膜部分から徐放される電子供与体物質が担体に供給され、少なくとも担体は曝気槽内の有機性廃水と接触する位置に収容されているものとしている。   Further, the organic wastewater treatment facility of the present invention is an organic wastewater treatment facility using a biological treatment method having an aeration tank in which the organic wastewater is aerated together with activated sludge. And a container having a sealed structure filled with an electron donor substance, and a carrier capable of supporting microorganisms, the carrier being disposed around at least the non-porous membrane of the container, and the non-porous membrane portion of the container It is assumed that the electron donor substance that is slowly released from is supplied to the carrier, and at least the carrier is accommodated in a position in contact with the organic waste water in the aeration tank.

したがって、本発明の有機性廃水の処理方法及び処理設備によると、活性汚泥に含まれている脱窒菌が担体に付着する。そして、担体に電子供与体物質が供給されることによって担体内に嫌気環境が形成され、嫌気環境下におかれた脱窒菌が脱窒処理能を発揮する。しかも、有機性廃水の有機物濃度を上昇させるエタノール等のアルコールを電子供与体物質として供給した場合にも、担体に付着した脱窒菌さらには活性汚泥によって迅速に消費されるため、活性汚泥を用いた有機性廃水処理の本来的な機能である有機物分解処理能は妨げられない。   Therefore, according to the organic wastewater treatment method and treatment facility of the present invention, denitrifying bacteria contained in the activated sludge adhere to the carrier. And an anaerobic environment is formed in a support | carrier by supplying an electron donor substance to a support | carrier, and the denitrifying bacteria placed in the anaerobic environment show denitrification processing ability. Moreover, even when alcohol such as ethanol that increases the organic matter concentration of organic wastewater is supplied as an electron donor substance, activated sludge is used because it is quickly consumed by denitrifying bacteria and activated sludge adhering to the carrier. The ability to decompose organic substances, which is the original function of organic wastewater treatment, is not hindered.

ここで、本発明において、生物処理法は、標準活性汚泥法、嫌気好気法、嫌気無酸素好気法または硝化脱窒法であることが好ましい。   Here, in the present invention, the biological treatment method is preferably a standard activated sludge method, an anaerobic aerobic method, an anaerobic anaerobic anaerobic method or a nitrification denitrification method.

また、本発明において、担体には予め脱窒菌を担持させておいてもよい。   In the present invention, denitrifying bacteria may be previously supported on the carrier.

本発明によれば、活性汚泥を用いた有機性廃水処理の本来的な機能である有機物分解処理能を妨げることなく、有機性廃水を活性汚泥と共に曝気処理する曝気槽内での脱窒処理が可能となる。   According to the present invention, the denitrification treatment in the aeration tank in which the organic wastewater is aerated together with the activated sludge without interfering with the organic substance decomposition treatment ability, which is the original function of the organic wastewater treatment using the activated sludge. It becomes possible.

したがって、新たな処理槽(脱窒槽)を追加することなく、従来の標準活性汚泥法や嫌気好気法の曝気槽に脱窒処理能を付与することができるので、新たな処理槽を設けるための設備コストや敷地面積を確保することなく、コンパクトな設備で有機性廃水の処理を実施することが可能となる。   Therefore, since a denitrification ability can be imparted to the conventional standard activated sludge method or anaerobic aerobic aeration tank without adding a new treatment tank (denitrification tank), a new treatment tank is provided. It is possible to carry out the treatment of organic wastewater with a compact facility without securing the facility cost and site area.

また、従来の硝化脱窒法や嫌気無酸素好気法の曝気槽に脱窒処理能を付与することにより、脱窒槽での脱窒処理工程の一部または全てを曝気槽にシフトさせることができる。したがって、曝気槽から脱窒槽への硝化循環液の返送量を減少させたり、または硝化循環液の返送工程を削除することができるので、廃水処理効率を従来よりも大幅に向上させることができる。   In addition, by imparting denitrification ability to the conventional nitrification denitrification method or anaerobic anaerobic anaerobic aeration tank, a part or all of the denitrification process in the denitrification tank can be shifted to the aeration tank. . Therefore, since the return amount of the nitrification circulating liquid from the aeration tank to the denitrification tank can be reduced, or the return process of the nitrification circulating liquid can be eliminated, the wastewater treatment efficiency can be greatly improved as compared with the prior art.

また、生物学的リン除去のための嫌気好気法や嫌気無酸素好気法では、曝気槽の硝酸性窒素濃度を低減することで、返送汚泥とともに嫌気槽に流入する硝酸性窒素が減少する。そのため、嫌気槽において、有機性廃水に含まれる有機物の脱窒菌による消費量が大幅に減少し、返送汚泥に含まれるポリリン酸蓄積細菌に優先的に消費されやすくなる。したがって、ポリリン酸蓄積細菌が増殖しやすくなると共に、リン蓄積能を発揮するポリリン酸蓄積細菌の割合が増加する。これにより、有機性廃水のリン濃度を従来よりも低減することができる。 In anaerobic aerobic and anaerobic anaerobic aerobic methods for biological phosphorus removal, nitrate nitrogen flowing into the anaerobic tank along with the return sludge is reduced by reducing the nitrate nitrogen concentration in the aeration tank. . Therefore, in an anaerobic tank, the consumption by the denitrifying bacteria of the organic substance contained in the organic wastewater is greatly reduced, and it is likely to be preferentially consumed by the polyphosphate accumulating bacteria contained in the returned sludge. Therefore, the polyphosphate-accumulating bacteria are easily grown and the proportion of the polyphosphate-accumulating bacteria exhibiting the phosphorus accumulating ability is increased. Thereby, the phosphorus density | concentration of organic wastewater can be reduced rather than before.

生物処理法を活性汚泥法とした場合の本発明の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the processing equipment of the organic waste water of this invention at the time of setting the biological treatment method to the activated sludge method. 生物処理法を嫌気・好気活性汚泥法とした場合の本発明の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the treatment facility of the organic waste water of this invention at the time of making a biological treatment method into the anaerobic / aerobic activated sludge method. 生物処理法を生物学的脱窒素法とした場合の本発明の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the processing equipment of the organic wastewater of this invention at the time of setting biological treatment method as biological denitrification method. 生物処理法を生物学的脱リン法とした場合の本発明の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the processing equipment of the organic waste water of this invention at the time of setting a biological treatment method as the biological dephosphorization method. 本発明に使用する容器の構成の一例を示す図である。It is a figure which shows an example of a structure of the container used for this invention. 本発明に使用する容器の構成の他の例を示す図である。It is a figure which shows the other example of a structure of the container used for this invention. 袋状の担体に容器を内包した形態を示す図である。It is a figure which shows the form which included the container in the bag-shaped carrier. 本発明における曝気槽への脱窒モジュールの収容形態の一例を示す図である。It is a figure which shows an example of the accommodation form of the denitrification module to the aeration tank in this invention. 本発明における曝気槽への脱窒モジュールの収容形態の他の例を示す図である。It is a figure which shows the other example of the accommodation form of the denitrification module to the aeration tank in this invention. 本発明における曝気槽への脱窒モジュールの収容形態のさらに他の例を示す図である。It is a figure which shows the further another example of the accommodation form of the denitrification module to the aeration tank in this invention. 実施例で使用した有機性廃水の処理設備を示す図である。It is a figure which shows the processing equipment of the organic waste water used in the Example. 脱窒菌を予め担持させた担体を用いたときの、有機性廃水中の有機物濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the organic substance density | concentration in organic wastewater when the support | carrier which carry | supported denitrifying bacteria beforehand is used. 脱窒菌を予め担持させた担体を用いたときの、有機性廃水中の硝酸性窒素濃度の経時変化を示す図である。It is a figure which shows a time-dependent change of the nitrate nitrogen density | concentration in organic wastewater when the support | carrier which carry | supported denitrifying bacteria beforehand is used. 脱窒菌を予め担持させていない担体を用いたときの、有機性廃水中の有機物濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the organic substance density | concentration in organic wastewater when the support | carrier which is not carry | supporting denitrifying bacteria beforehand is used. 脱窒菌を予め担持させていない担体を用いたときの、有機性廃水中の硝酸性窒素濃度の経時変化を示す図である。It is a figure which shows the time-dependent change of the nitrate nitrogen density | concentration in organic wastewater when the support | carrier which is not carry | supporting denitrifying bacteria beforehand is used. 活性汚泥法を実施するための従来の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the treatment equipment of the conventional organic wastewater for implementing the activated sludge method. 嫌気・好気活性汚泥法を実施するための従来の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the processing equipment of the conventional organic wastewater for implementing an anaerobic / aerobic activated sludge method. 生物学的脱窒素法を実施するための従来の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the treatment facility of the conventional organic wastewater for implementing biological denitrification method. 生物学的脱リン法を実施するための従来の有機性廃水の処理設備の一例を示す図である。It is a figure which shows an example of the treatment equipment of the conventional organic wastewater for implementing biological dephosphorization method.

以下、本発明を実施するための形態について、図面に基づいて詳細に説明する。   Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings.

本発明の有機性廃水の処理方法は、有機性廃水を活性汚泥と共に曝気槽内で曝気処理する工程を含む生物処理法を利用した有機性廃水の処理方法において、非多孔性膜を少なくとも一部に備えると共に電子供与体物質を充填した密封構造の容器の少なくとも非多孔性膜の周りに微生物を担持し得る担体を配置して、容器の非多孔性膜部分から電子供与体物質を徐放させて担体に供給し、少なくとも担体を曝気槽内の有機性廃水と接触させながら曝気処理を行うようにしている。この方法により、曝気槽内での脱窒処理が可能となる。   The organic wastewater treatment method of the present invention is a method for treating organic wastewater using a biological treatment method including a step of aeration treatment of organic wastewater in an aeration tank together with activated sludge. In addition, a carrier capable of supporting microorganisms is disposed around at least the non-porous membrane of a sealed container filled with an electron donor material, so that the electron donor material is gradually released from the non-porous membrane portion of the container. Then, the aeration treatment is performed while at least the carrier is brought into contact with the organic waste water in the aeration tank. By this method, it is possible to perform a denitrification process in the aeration tank.

本発明の有機性廃水の処理方法は、例えば、図1〜4に示す有機性廃水の処理設備において実施される。即ち、有機性廃水9が活性汚泥と共に曝気処理される曝気槽2を有する生物処理法を利用した有機性廃水の処理設備1において、非多孔性膜22を少なくとも一部に備えると共に電子供与体物質23を充填した密封構造の容器21と、微生物を担持し得る担体31とをさらに有し、担体31は容器21の少なくとも非多孔性膜22の周りに配置されて容器21の非多孔性膜22部分から徐放される電子供与体物質23が担体31に供給され、少なくとも担体31は曝気槽2内の有機性廃水9と接触する位置に収容されている処理設備1において実施される。因みに、図1〜4の符号11は、容器21の非多孔性膜22部分の周りに担体31を配置した脱窒モジュールを意味している。   The organic wastewater treatment method of the present invention is carried out, for example, in an organic wastewater treatment facility shown in FIGS. That is, in the organic wastewater treatment facility 1 using the biological treatment method having the aeration tank 2 in which the organic wastewater 9 is aerated with activated sludge, the electron donor substance is provided with at least a part of the nonporous membrane 22. 23 and a carrier 31 capable of supporting microorganisms, and the carrier 31 is disposed around at least the non-porous membrane 22 of the container 21 so that the non-porous membrane 22 of the container 21 is filled. The electron donor material 23 that is gradually released from the part is supplied to the carrier 31, and at least the carrier 31 is carried out in the treatment facility 1 accommodated in a position in contact with the organic waste water 9 in the aeration tank 2. Incidentally, reference numeral 11 in FIGS. 1 to 4 denotes a denitrification module in which a carrier 31 is arranged around the non-porous membrane 22 portion of the container 21.

以下、容器21の構成、担体31の構成、並びに曝気槽2への脱窒モジュール11の収容形態について説明した後、図1〜4に示す有機性廃水の処理設備について詳細に説明する。尚、脱窒モジュール11を構成する容器21及び担体31については、本件出願人が先に出願した国際公開2006/135028に記載されたものとほぼ同じものを用いることができる。   Hereinafter, after describing the configuration of the container 21, the configuration of the carrier 31, and the accommodation form of the denitrification module 11 in the aeration tank 2, the treatment facility for organic wastewater illustrated in FIGS. 1 to 4 will be described in detail. In addition, about the container 21 and the support | carrier 31 which comprise the denitrification module 11, the thing substantially the same as what was described in the international publication 2006/135028 for which this applicant applied previously can be used.

<容器の構成>
本発明に使用する容器21については、本件出願人が先に出願した国際公開2006/135028に詳細に記載されたものとほぼ同様のものを用いることができる。以下、容器21の構成の概要を説明する。
<Construction of container>
About the container 21 used for this invention, the thing similar to what was described in detail in the international publication 2006/135028 for which this applicant applied previously can be used. Hereinafter, an outline of the configuration of the container 21 will be described.

図5に容器21の形態の一例を示す。容器21は、非多孔性膜22を少なくとも一部に備えると共に、電子供与体物質23を充填して密封構造としたものである。このように構成することで、電子供与体物質23を容器21の非多孔性膜22の部分から非多孔性膜22の分子透過性能に支配される速度で容器21の周辺に供給することができる。図5に示す形態では、容器21は全体が非多孔性膜22で構成される袋状を成し、周縁をヒートシールで溶着したり、接着剤により接着したりするようにして電子供与体物質23を密封するようにしているが、形体や構造はこれに限定されるものではない。例えば容器21をチューブ状やシート状としてもよい。また、容器21は、全体を非多孔性膜22で構成するものに限定されず、片面のみを非多孔性膜22で構成したり、1つの面のさらに一部分を非多孔性膜22のみで構成するようにしてもよい。部分的に非多孔性膜22を用いる場合には、その他の部分は金属製やプラスチック製の剛体フレームを用いたり、電子供与体物質23を透過しない膜や部材を用いてもよい。   FIG. 5 shows an example of the form of the container 21. The container 21 has a non-porous membrane 22 at least in part and is filled with an electron donor material 23 to form a sealed structure. With this configuration, the electron donor material 23 can be supplied from the portion of the non-porous membrane 22 of the container 21 to the periphery of the container 21 at a speed governed by the molecular permeation performance of the non-porous membrane 22. . In the form shown in FIG. 5, the container 21 is formed into a bag shape composed entirely of a non-porous film 22, and the electron donor substance is formed such that the periphery is welded by heat sealing or bonded with an adhesive. However, the shape and structure are not limited to this. For example, the container 21 may be formed in a tube shape or a sheet shape. In addition, the container 21 is not limited to the whole composed of the non-porous film 22, but only one side is composed of the non-porous film 22, or a part of one surface is composed of only the non-porous film 22. You may make it do. When the non-porous film 22 is partially used, a metal or plastic rigid frame may be used for the other parts, or a film or member that does not transmit the electron donor material 23 may be used.

また、容器21は、完全密封された独立したものとせずに、電子供与体物質23をその内部に導入する手段を有する密封構造とし、電子供与体物質23を外部から補充可能としてもよい。例えば、図6に示すように、容器21の縁の一部に電子供与体物質23を注入する供給部25を設けてノズルないしパイプ27を装着する構造でも良いし、予め容器21と一体となったノズルないしパイプ27のようなものでも良い。そして、ノズルないしパイプ27と液体の電子供与体物質23を貯留するタンク26とをチューブ28などで連結し、必要に応じて電子供与体物質23を補充可能としてもよい。この場合、タンク26と容器21とはチューブ28を介して連通されているので、タンク26内に電子供与体物質23を貯留しておけば、容器21内の電子供与体物質23が減少したときに、サイフォンの原理を利用してチューブ両端での圧力差を利用して電子供与体物質23を容器21に補充することができる。あるいは電子供与体物質23を重力により流下させて容器21に補充することもできる。尚、この場合には、容器21は供給部25あるいはノズル27を設けているので厳密な意味での密封構造ではないが、供給ノズル27内がタンクから供給される電子供与体物質3で満たされている状態では、液面がシールとなって容器21内は事実上密封状態にある。このため、液状あるいはガス化した電子供与体物質23が供給部25やノズル27を通って容器21外に漏れ出ることはない。ここで、電子供与体物質23は、容器21内に供給部から供給するのみならず、さらに排出部を設けて排出部から排出させて、容器21内の電子供与体物質23を入れ替え可能にしてもよい。この場合にも、供給部25と排出部には電子供与体物質23が満たされて、容器21内は事実上密封状態となり、液状あるいはガス化した電子供与体物質23が供給部25や排出部を通って容器21外に漏れ出ることはない。   The container 21 may be a sealed structure having means for introducing the electron donor material 23 into the container 21 without being completely sealed and independent, and the electron donor material 23 may be replenished from the outside. For example, as shown in FIG. 6, a structure in which a supply part 25 for injecting an electron donor substance 23 is provided at a part of the edge of the container 21 and a nozzle or a pipe 27 is attached may be provided. A nozzle or a pipe 27 may be used. The nozzle or pipe 27 and the tank 26 for storing the liquid electron donor material 23 may be connected by a tube 28 or the like so that the electron donor material 23 can be replenished as necessary. In this case, since the tank 26 and the container 21 are communicated with each other via the tube 28, if the electron donor material 23 is stored in the tank 26, the electron donor material 23 in the container 21 is reduced. In addition, the electron donor substance 23 can be replenished to the container 21 using the pressure difference between the two ends of the tube using the principle of siphon. Alternatively, the electron donor material 23 can be replenished to the container 21 by gravity. In this case, since the container 21 is provided with the supply unit 25 or the nozzle 27, the container 21 is not strictly sealed. However, the supply nozzle 27 is filled with the electron donor material 3 supplied from the tank. In this state, the liquid level becomes a seal and the inside of the container 21 is practically sealed. For this reason, the liquid or gasified electron donor substance 23 does not leak out of the container 21 through the supply unit 25 and the nozzle 27. Here, the electron donor material 23 is not only supplied from the supply unit into the container 21, but is further provided with a discharge unit to be discharged from the discharge unit so that the electron donor material 23 in the container 21 can be replaced. Also good. Also in this case, the supply part 25 and the discharge part are filled with the electron donor substance 23, the inside of the container 21 is effectively sealed, and the liquid or gasified electron donor substance 23 is supplied to the supply part 25 and the discharge part. It does not leak out of the container 21 through.

非多孔性膜22は、電子供与体物質23の分子を少しずつ透過させることによって徐放するものである。この非多孔性膜22は、膜材料、膜厚、封入する電子供与体物質23の分子量や性質、温度、濃度、膜密度や膜構成分子の構造により、単位面積当たりを透過する電子供与体物質3の分子の量を制御することが可能である。例えば、膜厚を薄くすれば単位面積当たりを透過する電子供与体物質23の分子の量は多くなり、逆に厚くすれば多くなる。電子供与体物質23の温度を高くすれば単位面積当たりを透過する電子供与体物質23の分子の量は多くなり、逆に低くすれば少なくなる。電子供与体物質23の濃度を高めれば単位面積当たりを透過する電子供与体物質23の分子の量は多くなり、逆に低くすれば少なくなる。膜密度を低くすれば単位面積当たりを透過する電子供与体物質23の分子の量は多くなり、逆に高くすれば少なくなる。   The non-porous film 22 is a film that gradually releases the electron donor material 23 by allowing the molecules to pass through little by little. This non-porous membrane 22 is an electron donor material that permeates per unit area depending on the film material, film thickness, molecular weight and properties of the encapsulated electron donor material 23, temperature, concentration, film density, and structure of the film constituent molecules. It is possible to control the amount of the three molecules. For example, if the film thickness is reduced, the amount of molecules of the electron donor material 23 that permeate per unit area increases, and conversely, the thickness increases. If the temperature of the electron donor material 23 is increased, the amount of molecules of the electron donor material 23 that permeate per unit area increases, and conversely, the amount decreases. Increasing the concentration of the electron donor material 23 increases the amount of molecules of the electron donor material 23 that permeate per unit area, and conversely decreases the amount. If the film density is lowered, the amount of molecules of the electron donor material 23 permeating per unit area is increased, and conversely, if the film density is increased, the amount is decreased.

非多孔性膜22としては、疎水性の膜、親水性の膜、または親水性と疎水性の両方の性質を有する膜を、容器内に充填される電子供与体物質の性質に合わせて用いることができる。   As the non-porous membrane 22, a hydrophobic membrane, a hydrophilic membrane, or a membrane having both hydrophilic and hydrophobic properties should be used according to the nature of the electron donor substance filled in the container. Can do.

疎水性の非多孔性膜としては、例えば、ポリエチレン、ポリプロピレンその他のオレフィン系の膜、エチレン・酢酸ビニル共重合体膜が挙げられる。これらの膜は、微生物の活動の場である水領域や土壌中、大気中とそれ以外の領域を良好に区画することが可能である。また、適度な物質の透過性、熱可逆性を有しており、柔軟で成形が容易であるという利点を有している。尚、エチレン・酢酸ビニル共重合体膜は、同じ膜厚のポリエチレンやポリプロピレンの膜と比較して電子供与体物質23の透過性能が高いことから、非多孔性膜22の厚みを、十分な強度を確保できる厚みとしながらも、非多孔性膜22の分子透過性能の初期スペックを高めることができる点で好適である。エチレン・酢酸ビニル共重合体を構成する分子であるエチレンと酢酸ビニルのモル比については、特に限定されるものではないが、例えば、エチレンと酢酸ビニルのモル比が88:12とすることが好適である。但し、疎水性の非多孔性膜はこれらに限定されるものではない。   Examples of the hydrophobic non-porous membrane include polyethylene, polypropylene and other olefin-based membranes, and ethylene / vinyl acetate copolymer membranes. These membranes can satisfactorily partition the water region, the soil, the atmosphere, and other regions where microorganisms are active. Further, it has an appropriate substance permeability and thermoreversibility, and is flexible and easy to mold. Since the ethylene / vinyl acetate copolymer film has higher permeation performance of the electron donor material 23 than the polyethylene or polypropylene film having the same film thickness, the thickness of the non-porous film 22 is set to a sufficient strength. This is preferable in that the initial specification of the molecular permeation performance of the non-porous membrane 22 can be increased while the thickness can be secured. The molar ratio of ethylene and vinyl acetate, which is a molecule constituting the ethylene / vinyl acetate copolymer, is not particularly limited. For example, the molar ratio of ethylene and vinyl acetate is preferably 88:12. It is. However, the hydrophobic non-porous membrane is not limited to these.

親水性の非多孔性膜としては、分子構造中に親水基を有する膜、例えば、ポリエステル、ナイロン(ポリアミド)、ポリビニルアルコール、ビニロン、セロハン、ポリグルタミン酸などが挙げられるが、これらに限定されるものではない。   Examples of hydrophilic non-porous membranes include membranes having a hydrophilic group in the molecular structure, such as polyester, nylon (polyamide), polyvinyl alcohol, vinylon, cellophane, polyglutamic acid, etc., but are not limited thereto. is not.

親水性と疎水性の両方の性質を有する膜としては、例えば、エチレンビニルアルコール共重合体(EVOH)、つまり、疎水性のポリエチレン構造と親水性のポリビニルアルコール構造の両方を有する共重合体膜が挙げられるが、これに限定されるものではない。尚、親水性と疎水性の両方の性質を有する膜は、疎水性のポリエチレンと親水基のポリビニルアルコールの含有比率を変えることにより、疎水性を強めたり、親水性を強めたりすることができる。   Examples of the membrane having both hydrophilic and hydrophobic properties include ethylene vinyl alcohol copolymer (EVOH), that is, a copolymer membrane having both a hydrophobic polyethylene structure and a hydrophilic polyvinyl alcohol structure. Although it is mentioned, it is not limited to this. A membrane having both hydrophilic and hydrophobic properties can be made more hydrophobic or more hydrophilic by changing the content ratio of hydrophobic polyethylene and hydrophilic polyvinyl alcohol.

電子供与体物質23としては、脱窒菌が必要とする電子供与体物質であると共に、脱窒菌に対して毒性を呈さない分子からなる物質であり、非多孔性膜22を腐食しない性質を持ち、且つ非多孔性膜22を透過できる分子量及び性質を有するものが適宜選択され、その状態はガス状であっても液状であってもよい。   The electron donor material 23 is an electron donor material required by the denitrifying bacteria and a substance made of a molecule that is not toxic to the denitrifying bacteria, and has a property of not corroding the non-porous film 22. And what has the molecular weight and the property which can permeate | transmit the non-porous film | membrane 22 is selected suitably, The state may be gaseous or liquid.

疎水性の非多孔性膜を用いる場合には、電子供与体物質23として、ガス状物質である水素や硫化水素、メタン及びエタン等の有機化合物が挙げられる。液状物質としては、メタノール、エタノール及びプロパノール等のアルコール、酢酸及び酢酸よりも分子量の大きい及びプロピオン酸等の揮発性有機酸、ベンゼン、トルエン、フェノール等の揮発性有機物が挙げられ、特に、メタノール及びエタノールの使用が好適である。但し、電子供与体物質23はこれらに限定されるものではない。尚、これらの電子供与体物質23は、1種類のみを用いても良いし、2種以上を混在させて用いてもよい。また、電子供与体物質23としてアルコールを用いる場合でも、原液のまま使用可能である。容器21にアルコールを密封するとアルコールは非多孔性膜22から脱窒菌へ緩やかに供給されるため、アルコールの原液を用いても、アルコールの濃度が薄められて脱窒菌に供給され、脱窒菌が死に至ることはない。尚、必ずしもアルコールの原液を用いることはなく、アルコールの原液を水で希釈して用いた場合や、不純物が混在しているような場合であっても、アルコール分子のみが非多孔性膜を透過して微生物に緩やかに供給される。   When a hydrophobic non-porous film is used, examples of the electron donor material 23 include gaseous compounds such as hydrogen, hydrogen sulfide, methane, and ethane. Examples of the liquid substance include alcohols such as methanol, ethanol and propanol, acetic acid and volatile organic acids such as propionic acid having a molecular weight greater than acetic acid and acetic acid, and volatile organic substances such as benzene, toluene and phenol. The use of ethanol is preferred. However, the electron donor material 23 is not limited to these. These electron donor materials 23 may be used alone or in combination of two or more. Even when alcohol is used as the electron donor material 23, it can be used as it is. When the container 21 is sealed with alcohol, the alcohol is slowly supplied from the non-porous membrane 22 to the denitrifying bacteria. Therefore, even if the alcohol stock solution is used, the alcohol concentration is reduced and supplied to the denitrifying bacteria, and the denitrifying bacteria die. Never reach. Note that the alcohol stock solution is not necessarily used. Even when the alcohol stock solution is diluted with water or when impurities are mixed, only alcohol molecules permeate the non-porous membrane. And is slowly supplied to the microorganisms.

親水性の非多孔性膜を用いる場合には、電子供与体物質23として、メタノール、エタノール及びプロパノール等のアルコール、乳酸、酢酸及びプロピオン酸等の有機酸、グルコース及びスクロース等の糖類が挙げられるが、電子供与体物質23はこれらに限定されるものではない。尚、親水性の非多孔性膜を用いる場合、炭素数の大きな物質を用いると、物質の疎水性が強くなりすぎて、非多孔性膜を透過しなくなる。したがって、炭素数が1〜5のものを使用することが好適であり、炭素数が1〜3のものを使用することがより好適である。   When a hydrophilic non-porous membrane is used, examples of the electron donor material 23 include alcohols such as methanol, ethanol and propanol, organic acids such as lactic acid, acetic acid and propionic acid, and sugars such as glucose and sucrose. The electron donor material 23 is not limited to these. In the case of using a hydrophilic non-porous film, if a substance having a large carbon number is used, the hydrophobicity of the substance becomes too strong and the substance does not permeate the non-porous film. Therefore, it is preferable to use those having 1 to 5 carbon atoms, and it is more preferable to use those having 1 to 3 carbon atoms.

親水性と疎水性の両方の性質を有する非多孔性膜を用いる場合には、上記のいずれの電子供与体物質を用いてもよい。また、容器21を疎水性の非多孔性膜と親水性の非多孔性膜とで構成して、疎水性の非多孔性膜のみを透過する電子供与体物質と親水性の非多孔性膜のみを透過する電子供与体物質とを組み合わせて用いるようにしてもよい。   When using a non-porous membrane having both hydrophilic and hydrophobic properties, any of the above electron donor materials may be used. Further, the container 21 is composed of a hydrophobic non-porous film and a hydrophilic non-porous film, and only an electron donor substance that passes through only the hydrophobic non-porous film and a hydrophilic non-porous film. May be used in combination with an electron-donor substance that permeates.

電子供与体物質23の非多孔性膜22の透過は、当該物質分子が膜に溶け込み、その溶け込んだ分子が膜内部を拡散して反対側に達することにより起こる。したがって、膜への溶け込みが起こらない程分子量の大きなカテキンなどは非多孔性膜22を透過しにくい。また、ポリエチレンやポリプロピレン等は水となじむ官能基が存在しない疎水性の強い膜であると共に低極性であるため、極性分子である水が膜に溶け込みにくい。したがって、水に溶けやすい極性の高い物質であるシアン化合物などもほとんど透過できない。また、水は水分子同士の水素結合が強いため、常温では水が当該膜を透過することはほとんど無い。したがって、疎水性の非多孔性膜を用いた場合には、アルコールに不純物例えばカテキンやシアン化合物のように微生物に対して毒性を呈する抗菌性の分子が混入している廃アルコールを用いることができる。換言すれば、非多孔性膜22は、所望の電子供与体物質を主成分として透過させる「分子ふるい」として機能する。また、電子供与体物質23は、容器21内に充填されている状態が気体、液体、蒸気(揮発性物質が揮発して生成されたもの)のどの状態であっても、容器21外には分子状態で放出される。つまり、電子供与体物質23は、非多孔性膜22を透過して、液体のように分子間の引力により凝集することのないガス(気体)の状態で徐放される。したがって、非多孔性膜22はガス透過性膜とも表現できる。また、電子供与体物質23は、容器21の外部環境が気相であっても液相であっても非多孔性膜22から徐放される。   The permeation of the electron donor material 23 through the non-porous membrane 22 occurs when the material molecules dissolve in the membrane, and the dissolved molecules diffuse inside the membrane and reach the opposite side. Accordingly, catechin having a molecular weight that is so large that the film does not dissolve is difficult to permeate the non-porous film 22. In addition, since polyethylene, polypropylene, and the like are highly hydrophobic membranes that do not have a functional group compatible with water and have low polarity, water that is a polar molecule hardly dissolves in the membrane. Therefore, a cyanide compound, which is a highly polar substance that easily dissolves in water, can hardly pass through. In addition, since water has strong hydrogen bonds between water molecules, water hardly permeates the membrane at room temperature. Therefore, when a hydrophobic non-porous membrane is used, it is possible to use waste alcohol in which antibacterial molecules that are toxic to microorganisms such as catechin and cyanide are mixed in the alcohol. . In other words, the non-porous film 22 functions as a “molecular sieve” that allows a desired electron donor substance to permeate as a main component. In addition, the electron donor material 23 is placed outside the container 21 regardless of whether the container 21 is filled with gas, liquid, or vapor (generated by volatilization of a volatile substance). Released in the molecular state. In other words, the electron donor substance 23 permeates through the non-porous film 22 and is gradually released in a gas (gas) state that does not aggregate due to the attractive force between molecules like a liquid. Therefore, the non-porous membrane 22 can also be expressed as a gas permeable membrane. Further, the electron donor material 23 is gradually released from the non-porous film 22 regardless of whether the external environment of the container 21 is a gas phase or a liquid phase.

尚、非多孔性膜22は、電子供与体物質23を膜に溶け込ませることにより透過させており、多孔質膜のように孔の大きさや数で電子供与体物質の通液量等を制御するものではない。したがって、長期間の使用による孔の閉塞の問題も生じることが無く、定期的な逆洗浄の必要もない。したがって長期間メンテナンスを行うことなく使用でき、ランニングコストを低減できる。   The non-porous film 22 is permeated by dissolving the electron donor substance 23 in the film, and controls the amount of the electron donor substance passing through the size and number of pores like the porous film. It is not a thing. Therefore, there is no problem of hole clogging due to long-term use, and there is no need for regular backwashing. Therefore, it can be used without maintenance for a long time, and the running cost can be reduced.

<担体の構成>
本発明に使用する担体31については、本件出願人が先に出願した国際公開2006/135028に詳細に記載されたものとほぼ同様のものを用いることができる。以下、担体31の構成の概要を説明する。
<Configuration of carrier>
As the carrier 31 used in the present invention, those substantially the same as those described in detail in International Publication No. 2006/135028 filed earlier by the present applicant can be used. Hereinafter, an outline of the configuration of the carrier 31 will be described.

微生物を担持し得る担体31としては、活性汚泥中の脱窒菌を付着させる場合には、各種の有機物あるいは無機物を素材とする繊維や不織布、あるいは活性炭や焼結セラミックスのような多孔質など、微生物を担持することのできる既知または新規の担体を適宜使用できる。また、脱窒菌をあらかじめ固定する場合には、例えば、コラーゲン、フィブリン、アルブミン、カゼイン、セルロースファイバー、セルローストリアセタート、寒天、アルギン酸カルシウム、カラギーナン、アガロース等の天然高分子、ポリアクリルアミド、ポリ−2−ヒドロキシエチルメタクリル酸、ポリビニルクロリド、γ−メチルポリグルタミン酸、ポリスチレン、ポリビニルピロリドン、ポリジメチルアクリルアミド、ポリウレタン、光硬化性樹脂(ポリビニルアルコール誘導体、ポリエチレングリコール誘導体、ポリプロピレングリコール誘導体、ポリブタジエン誘導体等)等の合成高分子、またはこれらの複合体、さらには吸水性ポリマーを用いることが可能である。吸水性ポリマーとしては、公知のものを使用することができるが、具体的には、ポリアクリル酸、ポリアスパラギン酸、ポリグルタミン酸やそれらの改変物、ポリエチレングリコール改変物等が挙げられる。尚、ここで言う改変物とは、イオン性基をもつ高分子を前記高分子の一部に架橋させた物である。また、活性汚泥中の脱窒菌を付着させる場合と同様の担体を用いてもよい。但し、担体31はこれらに限定されるものではない。   As the carrier 31 capable of supporting microorganisms, when attaching denitrifying bacteria in activated sludge, microorganisms such as fibers and nonwoven fabrics made of various organic or inorganic materials, or porous materials such as activated carbon and sintered ceramics are used. A known or novel carrier capable of supporting the above can be used as appropriate. When denitrifying bacteria are immobilized in advance, for example, natural polymers such as collagen, fibrin, albumin, casein, cellulose fiber, cellulose triacetate, agar, calcium alginate, carrageenan, agarose, polyacrylamide, poly-2 -Synthesis of hydroxyethyl methacrylic acid, polyvinyl chloride, γ-methylpolyglutamic acid, polystyrene, polyvinylpyrrolidone, polydimethylacrylamide, polyurethane, photocurable resin (polyvinyl alcohol derivative, polyethylene glycol derivative, polypropylene glycol derivative, polybutadiene derivative, etc.) It is possible to use a polymer, a complex thereof, or a water-absorbing polymer. As the water-absorbing polymer, known polymers can be used, and specific examples include polyacrylic acid, polyaspartic acid, polyglutamic acid, modified products thereof, modified polyethylene glycol, and the like. The modified product referred to here is a product obtained by crosslinking a polymer having an ionic group to a part of the polymer. Moreover, you may use the support | carrier similar to the case where denitrifying bacteria in activated sludge are made to adhere. However, the carrier 31 is not limited to these.

<曝気槽への脱窒モジュールの収容形態>
本発明の有機性廃水の処理設備では、担体31は容器21の少なくとも非多孔性膜22の周りに配置されて容器21の非多孔性膜22部分から徐放される電子供与体物質23が担体31に供給され、少なくとも担体31は曝気槽2内の有機性廃水9と接触する位置に収容される。
<Accommodation form of denitrification module in aeration tank>
In the organic wastewater treatment facility of the present invention, the carrier 31 is disposed around at least the nonporous membrane 22 of the container 21 and the electron donor substance 23 that is slowly released from the nonporous membrane 22 portion of the container 21 is the carrier. 31, and at least the carrier 31 is accommodated in a position in contact with the organic waste water 9 in the aeration tank 2.

まず、脱窒モジュール11について説明する。脱窒モジュール11は、容器21の少なくとも非多孔性膜22の周りに担体31が配置されて、容器21の非多孔性膜22部分から徐放される電子供与体物質23が担体31に供給されるものである。容器21の非多孔性膜22と担体31の位置関係については、容器21の非多孔性膜22部分から徐放される電子供与体物質23が担体31に十分に供給される位置関係にあれば特に限定されるものではないが、容器21の非多孔性膜22と担体31とを例えば数センチ程度まで近接させることが好適であり、容器21の非多孔性膜22に担体31を接触させることがより好適である。   First, the denitrification module 11 will be described. In the denitrification module 11, a carrier 31 is arranged around at least the nonporous membrane 22 of the container 21, and an electron donor substance 23 that is slowly released from the nonporous membrane 22 portion of the container 21 is supplied to the carrier 31. Is. The positional relationship between the non-porous membrane 22 and the carrier 31 of the container 21 is such that the electron donor substance 23 that is slowly released from the non-porous membrane 22 portion of the container 21 is sufficiently supplied to the carrier 31. Although not particularly limited, it is preferable to bring the non-porous membrane 22 of the container 21 and the carrier 31 close to, for example, about several centimeters, and the carrier 31 is brought into contact with the non-porous membrane 22 of the container 21. Is more preferred.

担体31は、非多孔性膜22の表面に例えば接着等により備えてもよいし、非多孔性膜22の袋の周縁をヒートシールする際に担体ごとヒートシールして一体化してもよい。また、担体31を袋状にしてその中に容器21を内包したり、図7に示すように、袋状の担体31の一部を開口しておいて、袋の内部空間33に容器21を収容するようにしてもよい。袋状の担体31を形成する場合には、例えば、構造的補強を図るために不織布32等により袋を形成し、袋の内側もしくは袋の外側または袋の両側(図7では袋の内側)に担体31を塗布して形成したり、予め形成された膜状の担体31を不織布32に接着あるいは溶着するようにしてもよい。但し、この形態に限定するものではなく、不織布32そのものも微生物を担持し得る担体として機能するので、不織布32のみで袋を形成してこれを担体としても良い。また、不織布32を使用せずに高分子等の担体31のみを用いて袋を形成してもよい。尚、容器21の非多孔性膜部分22は担体31で完全に覆われるものとすることが好適である。この場合、電子供与体物質23を担体31に無駄なく供給することができる。   The carrier 31 may be provided on the surface of the non-porous membrane 22 by, for example, adhesion, or may be integrated by heat-sealing together with the carrier when the periphery of the bag of the non-porous membrane 22 is heat-sealed. Further, the carrier 31 is made into a bag shape and the container 21 is enclosed therein, or as shown in FIG. 7, a part of the bag-like carrier 31 is opened, and the container 21 is placed in the inner space 33 of the bag. You may make it accommodate. In the case of forming the bag-shaped carrier 31, for example, a bag is formed with a nonwoven fabric 32 or the like for structural reinforcement, and is formed on the inside of the bag, the outside of the bag, or both sides of the bag (in FIG. 7, the inside of the bag). The carrier 31 may be applied and formed, or the film-like carrier 31 formed in advance may be bonded or welded to the nonwoven fabric 32. However, the present invention is not limited to this form, and the nonwoven fabric 32 itself functions as a carrier capable of supporting microorganisms. Therefore, a bag may be formed only from the nonwoven fabric 32 and used as a carrier. Alternatively, the bag may be formed using only the carrier 31 such as a polymer without using the nonwoven fabric 32. The non-porous membrane portion 22 of the container 21 is preferably completely covered with the carrier 31. In this case, the electron donor material 23 can be supplied to the carrier 31 without waste.

担体31の厚みについては、微生物を担持し得る領域を確保できれば、特に限定されるものではないが、少なくとも0.3mmとすることが好適であり、少なくとも1mmとすることがより好適である。   The thickness of the carrier 31 is not particularly limited as long as a region capable of supporting microorganisms can be secured, but is preferably at least 0.3 mm, and more preferably at least 1 mm.

曝気装置2aが収容された曝気槽2内では、図8に示すように、袋状の担体31に容器21を内包した脱窒モジュール11を有機性廃水9に沈めてもよいし、図9に示すように、容器21の一方の面にのみに担体31を接着等により備えた脱窒モジュール11を有機性廃水9に浮かせて、担体31を有機性廃水9に接触させるようにしてもよい。この場合、容器21の他方の面から電子供与体物質が徐放しないように、バリア膜等を設けることが好適である。尚、脱窒モジュール11は少なくとも担体31のみを有機性廃水9に接触させれば、その全体を有機性廃水9に接触させずとも脱窒処理能を発揮させることができる。   In the aeration tank 2 in which the aeration apparatus 2a is accommodated, as shown in FIG. 8, the denitrification module 11 containing the container 21 in the bag-like carrier 31 may be submerged in the organic waste water 9, and FIG. As shown, the denitrification module 11 provided with the carrier 31 only on one surface of the container 21 by adhesion or the like may be floated on the organic waste water 9 so that the carrier 31 contacts the organic waste water 9. In this case, it is preferable to provide a barrier film or the like so that the electron donor substance is not gradually released from the other surface of the container 21. The denitrification module 11 can exhibit the denitrification ability without contacting the organic waste water 9 as a whole, as long as at least the carrier 31 is brought into contact with the organic waste water 9.

ここで、脱窒モジュール11は、曝気槽2と独立したものには限定されない。例えば、図10に示すように、曝気槽2の一部に貫通孔40を設けてこれを非多孔性膜22で塞ぎ、非多孔性膜22の曝気槽2の内側の表面に担体31を例えば接着等により備え、容器21にはその一部に孔を設けて貫通孔40と連通させ、この孔から曝気槽2の貫通孔40に向けて電子供与体物質23を供給して、非多孔性膜22から電子供与体物質23を透過させるようにしてもよい。この場合、容器21は曝気槽2と独立に設けてもよいし、曝気槽2と一体化させてもよい。   Here, the denitrification module 11 is not limited to an independent one from the aeration tank 2. For example, as shown in FIG. 10, a through-hole 40 is provided in a part of the aeration tank 2 and is closed with a non-porous membrane 22, and a carrier 31 is placed on the inner surface of the aeration tank 2 of the non-porous film 22, for example. The container 21 is provided with an adhesive or the like, and a hole is provided in a part of the container 21 so as to communicate with the through hole 40, and the electron donor material 23 is supplied from the hole toward the through hole 40 of the aeration tank 2, so that the non-porous The electron donor material 23 may be transmitted through the film 22. In this case, the container 21 may be provided independently of the aeration tank 2 or may be integrated with the aeration tank 2.

また、図8及び図9では脱窒モジュール11を一つしか収容していないが、これを複数収容してもよい。脱窒モジュール11を複数収容することで、脱窒菌を担持可能な面積を増大させて、脱窒反応を促進することができる。また、脱窒モジュール11の形状は、図8及び図9のものには限定されず、例えばチューブ状としてもよいし、また、チューブ状の脱窒モジュール11を螺旋状やコイル状として脱窒菌を担持可能な面積をさらに増大させてもよい。   8 and 9, only one denitrification module 11 is accommodated, but a plurality of denitrification modules 11 may be accommodated. By accommodating a plurality of denitrification modules 11, the area capable of supporting denitrifying bacteria can be increased and the denitrification reaction can be promoted. The shape of the denitrification module 11 is not limited to that shown in FIGS. 8 and 9. For example, the denitrification module 11 may have a tube shape. The supported area may be further increased.

担体31を曝気槽2内で有機性廃水9と接触させると、活性汚泥中に存在している脱窒菌が徐々に担体31に担持される。そして、電子供与体物質23が担体31に供給されることによって、担体31に嫌気性環境が形成されると共に、担体31に担持された脱窒菌に電子供与体物質23が与えられる。嫌気性環境で電子供与体物質23が与えられた脱窒菌は、脱窒処理能を発揮する。したがって、曝気槽2内での硝酸性窒素、亜硝酸性窒素の脱窒処理が可能となる。   When the carrier 31 is brought into contact with the organic waste water 9 in the aeration tank 2, denitrifying bacteria present in the activated sludge are gradually carried on the carrier 31. By supplying the electron donor material 23 to the carrier 31, an anaerobic environment is formed in the carrier 31, and the electron donor material 23 is given to the denitrifying bacteria carried on the carrier 31. A denitrifying bacterium to which the electron donor material 23 is given in an anaerobic environment exhibits a denitrifying ability. Therefore, it is possible to denitrify nitrate nitrogen and nitrite nitrogen in the aeration tank 2.

ここで、担体31には、予め脱窒菌を担持させておいてもよい。予め担持させる脱窒菌としては、微生物学の分野における公知ないしは新規のものを適宜採用することができる。例えば、Paracoccus denitrificans、Alcaligenes eutrophus、Alcaligenes faecalis、Pseudomonas denitrificans、Paracoccus pantotrophus、Thiobacillus denitrificansを挙げることができるが、これらに限定されるものではない。尚、予め脱窒菌を担持させる場合に用いる担体としては、上記の天然高分子、合成高分子、これらの複合体及び吸水性ポリマーといったゲル状のものを用いることが好適である。また、活性汚泥に含まれる脱窒菌を曝気槽2において担持させる場合に用いる担体としては、不織布等の空隙率の高い素材を用いることが好適である。   Here, denitrifying bacteria may be supported on the carrier 31 in advance. As the denitrifying bacteria to be supported in advance, known or novel ones in the field of microbiology can be appropriately employed. Examples thereof include, but are not limited to, Paracoccus denitrificans, Alcaligenes eutrophus, Alcaligenes faecalis, Pseudomonas denitrificans, Paracoccus pantotrophus, Thiobacillus denitrificans. In addition, as a support | carrier used when carrying | supporting denitrifying bacteria previously, it is suitable to use gel-like things, such as said natural polymer, a synthetic polymer, these composites, and a water absorbing polymer. Moreover, as a support | carrier used when carrying out the denitrifying bacteria contained in activated sludge in the aeration tank 2, it is suitable to use a raw material with high porosity, such as a nonwoven fabric.

以上、本発明の構成によって、強い好気性である曝気槽2において、硝酸性窒素、亜硝酸性窒素を分子状窒素に変換する脱窒反応を進行させることができる。しかも、有機性廃水のBODを上昇させる虞のある電子供与体物質23を供給しても、有機性廃水のBODの上昇は見られず、活性汚泥を利用した有機性廃水処理の本来的な機能である有機物分解処理能は阻害されることがない。つまり、従来の活性汚泥法の有機物分解処理能を妨げることなく、脱窒処理能のみを付与することができる。また、有機性廃水に含まれるアンモニア性窒素は、活性汚泥に含まれるアンモニア酸化菌が好気性雰囲気で機能して亜硝酸性窒素あるいは硝酸性窒素に酸化される。そして、この亜硝酸性窒素と硝酸性窒素が曝気槽2に付与された脱窒処理能によって、分子状窒素に変換される。したがって、本発明によれば、有機性廃水に含まれる有機物のみならず、硝酸性窒素及び亜硝酸性窒素、さらにはアンモニア性窒素を分子状窒素に変換して無害な窒素ガスとして有機性廃水から除去することが可能となる。   As described above, according to the configuration of the present invention, the denitrification reaction for converting nitrate nitrogen and nitrite nitrogen into molecular nitrogen can proceed in the aerobic tank 2 which is strongly aerobic. Moreover, even if the electron donor material 23 that may increase the BOD of the organic wastewater is supplied, the BOD of the organic wastewater does not increase, and the original function of the organic wastewater treatment using activated sludge is not observed. The ability to decompose organic matter is not inhibited. That is, only the denitrification treatment ability can be imparted without interfering with the organic matter decomposition treatment ability of the conventional activated sludge method. In addition, ammonia nitrogen contained in organic wastewater is oxidized to nitrite nitrogen or nitrate nitrogen by ammonia oxidizing bacteria contained in activated sludge functioning in an aerobic atmosphere. And this nitrite nitrogen and nitrate nitrogen are converted into molecular nitrogen by the denitrification ability given to the aeration tank 2. Therefore, according to the present invention, not only organic substances contained in organic wastewater, but also nitrate nitrogen and nitrite nitrogen, and ammonia nitrogen is converted into molecular nitrogen to form harmless nitrogen gas from organic wastewater. It can be removed.

<有機性廃水の処理設備>
以下、標準活性汚泥法、嫌気好気法、嫌気無酸素好気法、硝化脱窒法を利用した本発明の有機性廃水の処理設備について説明する。
<Organic wastewater treatment equipment>
Hereinafter, the treatment facility for organic wastewater according to the present invention using the standard activated sludge method, the anaerobic aerobic method, the anaerobic anaerobic aerobic method, and the nitrification denitrification method will be described.

(1)標準活性汚泥法
標準活性汚泥法を利用した本発明の有機性廃水の処理設備の一例を図1に示す。この処理設備1aは、有機性廃水9が曝気槽2に導入されて活性汚泥と共に曝気処理され、有機性廃水と活性汚泥の混合液がそのまま沈殿槽3に流入する。そして、沈殿槽3では、曝気槽2から流入した混合液に含まれる活性汚泥がフロックを形成して沈降し、沈殿槽3の上澄液が処理水として得られる。沈殿槽3で沈降した活性汚泥は返送汚泥として曝気槽2に返され、再び有機物分解作業に供される。一方で、増殖した微生物に見合う量の活性汚泥が、余剰汚泥として回収される。そして、曝気槽2には、上記した種々の形態で脱窒モジュール11が収容される。
(1) Standard activated sludge method An example of the treatment equipment for organic wastewater of the present invention using the standard activated sludge method is shown in FIG. In this treatment facility 1a, the organic waste water 9 is introduced into the aeration tank 2 and aerated with the activated sludge, and the mixed liquid of the organic waste water and the activated sludge flows into the sedimentation tank 3 as it is. And in the sedimentation tank 3, the activated sludge contained in the liquid mixture which flowed in from the aeration tank 2 forms a floc and settles, and the supernatant liquid of the sedimentation tank 3 is obtained as treated water. The activated sludge settled in the settling tank 3 is returned to the aeration tank 2 as return sludge, and is again subjected to organic matter decomposition work. On the other hand, an amount of activated sludge commensurate with the grown microorganisms is recovered as excess sludge. And the denitrification module 11 is accommodated in the aeration tank 2 with the above-mentioned various forms.

この処理設備1aにより有機性廃水を処理することで、活性汚泥法の本来的な機能である有機物の分解処理能を維持しながらも、有機性廃水に含まれるアンモニア性窒素、硝酸性窒素、亜硝酸性窒素を分子状窒素に変換してその濃度を低減することができる。すなわち、新たに脱窒槽を設けることなく、窒素除去機能を付与することができる。   By treating organic wastewater with this treatment facility 1a, while maintaining the decomposition ability of organic matter, which is the original function of the activated sludge method, ammonia nitrogen, nitrate nitrogen, Nitrate nitrogen can be converted to molecular nitrogen to reduce its concentration. That is, a nitrogen removal function can be provided without newly providing a denitrification tank.

尚、図1の処理設備は、連続式の活性汚泥法を利用したものであるが、回分式の活性汚泥法の曝気槽2に脱窒モジュール11を収容しても同様の効果が得られる。   1 uses a continuous activated sludge method, but the same effect can be obtained even if the denitrification module 11 is accommodated in the aeration tank 2 of the batch activated sludge method.

(2)嫌気好気法
嫌気好気法を利用した本発明の有機性廃水の処理設備の一例を図2に示す。この処理設備1bは、嫌気槽4、曝気槽2、沈殿槽3の順で処理槽が設置され、有機性廃水9が嫌気槽4→曝気槽2→沈殿槽3の順で導入される。沈殿槽3で沈降した活性汚泥は返送汚泥として嫌気槽4を経由して曝気槽2に戻り、再び有機物分解作業に供される。一方で、増殖した微生物に見合う量の活性汚泥が、余剰汚泥として回収される。そして、曝気槽2には、上記した種々の形態で脱窒モジュール11が収容される。
(2) Anaerobic aerobic method An example of the treatment equipment for organic wastewater of the present invention using the anaerobic aerobic method is shown in FIG. In this treatment facility 1b, treatment tanks are installed in the order of anaerobic tank 4, aeration tank 2, and precipitation tank 3, and organic waste water 9 is introduced in the order of anaerobic tank 4 → aeration tank 2 → precipitation tank 3. The activated sludge settled in the settling tank 3 returns to the aeration tank 2 via the anaerobic tank 4 as return sludge, and is again subjected to the organic matter decomposition operation. On the other hand, an amount of activated sludge commensurate with the grown microorganisms is recovered as excess sludge. And the denitrification module 11 is accommodated in the aeration tank 2 with the above-mentioned various forms.

この処理設備1bにより有機性廃水を処理することで、嫌気好気法の本来的な機能である有機物分解処理能、バルキング抑制能及びリン濃度の低減能を維持しながらも、有機性廃水に含まれるアンモニア性窒素、硝酸性窒素、亜硝酸性窒素を分子状窒素に変換してその濃度を低減することができる。また、曝気槽2の硝酸性窒素濃度を低減することで、返送汚泥とともに嫌気槽4に流入する硝酸性窒素が減少する。そのため、嫌気槽4において、有機性廃水に含まれる有機物の脱窒菌による消費量が大幅に減少し、返送汚泥に含まれるポリリン酸蓄積細菌に優先的に消費されやすくなる。したがって、ポリリン酸蓄積細菌が増殖しやすくなると共に、リン蓄積能を発揮するポリリン酸蓄積細菌の割合が増加する。これにより、有機性廃水のリン濃度を従来よりも低減することができる。   By treating organic wastewater with this treatment facility 1b, it is included in the organic wastewater while maintaining the organic substance decomposition treatment ability, bulking suppression ability and phosphorus concentration reduction ability, which are the original functions of the anaerobic aerobic method. Ammonia nitrogen, nitrate nitrogen, and nitrite nitrogen can be converted to molecular nitrogen to reduce its concentration. Moreover, the nitrate nitrogen which flows into the anaerobic tank 4 with returned sludge decreases by reducing the nitrate nitrogen concentration of the aeration tank 2. Therefore, in the anaerobic tank 4, the amount of organic matter contained in the organic wastewater due to denitrifying bacteria is greatly reduced, and it is likely to be preferentially consumed by the polyphosphate accumulating bacteria contained in the returned sludge. Therefore, the polyphosphate-accumulating bacteria are easily grown and the proportion of the polyphosphate-accumulating bacteria exhibiting the phosphorus accumulating ability is increased. Thereby, the phosphorus density | concentration of organic wastewater can be reduced rather than before.

(3)硝化脱窒法
硝化脱窒法を利用した本発明の有機性廃水の処理設備の一例を図3に示す。この処理設備1cは、脱窒槽5、曝気槽2、沈殿槽3の順で処理槽が設置され、有機性廃水9が脱窒槽5→曝気槽2→沈殿槽3の順で導入される。沈殿槽3で沈降した活性汚泥は返送汚泥として脱窒槽5を経由して曝気槽2に戻り、再び有機物分解作業に供される。一方で、増殖した微生物に見合う量の活性汚泥が、余剰汚泥として回収される。また、曝気槽2内で、アンモニア性窒素が亜硝酸性窒素、硝酸性窒素に酸化された後、曝気槽2内の有機性廃水9(活性汚泥との混合液)が硝化循環液として脱窒槽5へと戻され、脱窒反応に供されて分子状窒素に変換されて除去される。有機性廃水にはじめから亜硝酸性窒素、硝酸性窒素が含まれている場合には、有機性廃水が脱窒槽5に流入した段階で脱窒反応を受けてそれらの濃度が低減される。
(3) Nitrification denitrification method An example of the organic wastewater treatment facility of the present invention using the nitrification denitrification method is shown in FIG. In this treatment facility 1c, treatment tanks are installed in the order of denitrification tank 5, aeration tank 2, and precipitation tank 3, and organic waste water 9 is introduced in the order of denitrification tank 5 → aeration tank 2 → precipitation tank 3. The activated sludge settled in the settling tank 3 returns to the aeration tank 2 via the denitrification tank 5 as return sludge, and is again subjected to the organic matter decomposition work. On the other hand, an amount of activated sludge commensurate with the grown microorganisms is recovered as excess sludge. In addition, after ammonia nitrogen is oxidized to nitrite nitrogen and nitrate nitrogen in the aeration tank 2, the organic waste water 9 (mixed liquid with activated sludge) in the aeration tank 2 is denitrified as a nitrification circulating liquid. It is returned to 5, is subjected to a denitrification reaction, converted to molecular nitrogen and removed. When the organic wastewater contains nitrite nitrogen and nitrate nitrogen from the beginning, the concentration of the organic wastewater is reduced by receiving a denitrification reaction when the organic wastewater flows into the denitrification tank 5.

この処理設備1cでは、脱窒処理工程の一部を脱窒槽5から曝気槽2にシフトさせることができ、曝気槽2から脱窒槽5への硝化循環液の返送量を減少させることができる。したがって、返送のためのポンプの運転費用を削減することができる。つまり、硝化脱窒法を利用した従来の有機性廃水の処理設備において、脱窒能力を上げるために脱窒槽への返送量を増やす結果として発生していた問題、即ち、ポンプ費用が嵩むという問題を本発明の処理設備により大幅に削減することができる。尚、処理設備1cでは、曝気槽2から脱窒槽5への硝化循環液の返送を行うようにしているが、脱窒処理工程を脱窒槽5から曝気槽2に完全にシフトさせて、返送工程を完全に削除してもよい。この場合、有機物分解能力及び窒素成分除去能力を維持しながらも、脱窒槽5を削除して設備のコンパクト化を図ることができる。   In this treatment facility 1c, a part of the denitrification process can be shifted from the denitrification tank 5 to the aeration tank 2, and the return amount of the nitrification circulating liquid from the aeration tank 2 to the denitrification tank 5 can be reduced. Therefore, the operating cost of the pump for return can be reduced. In other words, in the conventional organic wastewater treatment facility using the nitrification denitrification method, the problem that occurred as a result of increasing the return amount to the denitrification tank in order to increase the denitrification capacity, that is, the problem that the pump cost increases. The treatment facility of the present invention can greatly reduce the amount. In the treatment facility 1c, the nitrification circulating liquid is returned from the aeration tank 2 to the denitrification tank 5, but the denitrification treatment process is completely shifted from the denitrification tank 5 to the aeration tank 2, and the return process is performed. May be deleted completely. In this case, while maintaining the organic matter decomposition ability and the nitrogen component removal ability, the denitrification tank 5 can be eliminated to make the equipment compact.

(4)嫌気無酸素好気法
嫌気無酸素好気法を利用した本発明の有機性廃水の処理設備の一例を図4に示す。この処理設備1dは、嫌気槽4、脱窒槽5、曝気槽2、沈殿槽3の順で処理槽が設置され、有機性廃水9が嫌気槽4→脱窒槽5→曝気槽2→沈殿槽3の順で導入される。沈殿槽3で沈降した活性汚泥は返送汚泥として嫌気槽4及び脱窒槽5を経由して曝気槽2に戻り、再び有機物分解作業に供される。一方で、増殖した微生物に見合う量の活性汚泥が、余剰汚泥として回収される。また、曝気槽2内で、アンモニア性窒素が亜硝酸性窒素、硝酸性窒素に酸化された後、曝気槽2内の有機性廃水9(活性汚泥との混合液)が硝化循環液として脱窒槽5へと戻され、脱窒反応に供されて分子状窒素に変換されて除去される。また、嫌気槽4をリン溶出槽として設けることにより、嫌気槽4に返送された活性汚泥に含まれるポリリン酸蓄積細菌からリンを排出させ、曝気槽2においてポリリン酸蓄積細菌にリンを過剰摂取させることにより、有機性廃水に含まれるリン濃度を低減することができる。さらには脱窒槽5と曝気槽2によって、アンモニア性窒素、さらには亜硝酸性窒素や硝酸性窒素濃度の低減を図ることができる。また、有機性廃水中の有機物は、曝気槽2での酸化分解処理に加えて、脱窒槽5において脱窒菌に消費されてその濃度が低減する。さらには、嫌気槽4や脱窒槽5でポリリン酸蓄積細菌に消費されてその濃度が低減する。
(4) Anaerobic / Anaerobic / Aerobic Method FIG. 4 shows an example of the organic wastewater treatment facility of the present invention using the anaerobic / anoxic / aerobic method. In this treatment facility 1d, treatment tanks are installed in the order of anaerobic tank 4, denitrification tank 5, aeration tank 2, and precipitation tank 3, and organic waste water 9 is anaerobic tank 4 → denitrification tank 5 → aeration tank 2 → precipitation tank 3 In this order. The activated sludge settled in the settling tank 3 returns to the aeration tank 2 through the anaerobic tank 4 and the denitrification tank 5 as return sludge, and is again used for the organic matter decomposition work. On the other hand, an amount of activated sludge commensurate with the grown microorganisms is recovered as excess sludge. In addition, after ammonia nitrogen is oxidized to nitrite nitrogen and nitrate nitrogen in the aeration tank 2, the organic waste water 9 (mixed liquid with activated sludge) in the aeration tank 2 is denitrified as a nitrification circulating liquid. It is returned to 5, is subjected to a denitrification reaction, converted to molecular nitrogen and removed. Moreover, by providing the anaerobic tank 4 as a phosphorus elution tank, phosphorus is discharged from the polyphosphate accumulating bacteria contained in the activated sludge returned to the anaerobic tank 4, and the polyphosphate accumulating bacteria are excessively ingested in the aeration tank 2. Thereby, the phosphorus concentration contained in organic wastewater can be reduced. Furthermore, the denitrification tank 5 and the aeration tank 2 can reduce ammonia nitrogen, nitrite nitrogen, and nitrate nitrogen concentration. In addition to the oxidative decomposition treatment in the aeration tank 2, the organic matter in the organic wastewater is consumed by the denitrifying bacteria in the denitrification tank 5 and the concentration thereof is reduced. Furthermore, it is consumed by the polyphosphate accumulating bacteria in the anaerobic tank 4 and the denitrification tank 5 to reduce its concentration.

この処理設備1dでは、脱窒処理工程の一部を脱窒槽5から曝気槽2にシフトさせることができ、曝気槽2から脱窒槽5への硝化循環液の返送量を減少させることができる。したがって、返送のためのポンプの運転費用を削減することができる。また、曝気槽2の硝酸性窒素濃度を低減することで、返送汚泥とともに嫌気槽4に流入する硝酸性窒素が減少する。そのため、嫌気槽4において、有機性廃水に含まれる有機物の脱窒菌による消費量が大幅に減少し、返送汚泥に含まれるポリリン酸蓄積細菌に優先的に消費されるようになる。その結果、ポリリン酸蓄積細菌が増殖しやすくなると共に、リン蓄積能を発揮するポリリン酸蓄積細菌の割合が増加して、有機性廃水のリン濃度を従来よりも低減することができる。尚、処理設備1dでは、曝気槽2から脱窒槽5への硝化循環液の返送を行うようにしているが、脱窒処理工程を脱窒槽5から曝気槽2に完全にシフトさせて、返送工程ならびに処理設備1dの脱窒槽5を削除してもよい。この場合、有機物分解能力、リン除去能力及び窒素成分除去能力を維持しながらも、設備のコンパクト化を図ることができる。   In this treatment facility 1d, a part of the denitrification process can be shifted from the denitrification tank 5 to the aeration tank 2, and the return amount of the nitrification circulating liquid from the aeration tank 2 to the denitrification tank 5 can be reduced. Therefore, the operating cost of the pump for return can be reduced. Moreover, the nitrate nitrogen which flows into the anaerobic tank 4 with returned sludge decreases by reducing the nitrate nitrogen concentration of the aeration tank 2. Therefore, in the anaerobic tank 4, the consumption amount of the organic matter contained in the organic wastewater by the denitrifying bacteria is greatly reduced, and it is preferentially consumed by the polyphosphate accumulating bacteria contained in the returned sludge. As a result, the polyphosphate-accumulating bacteria can easily grow and the ratio of the polyphosphate-accumulating bacteria exhibiting the phosphorus accumulating ability increases, so that the phosphorus concentration of organic waste water can be reduced as compared with the conventional case. In the treatment facility 1d, the nitrification circulating liquid is returned from the aeration tank 2 to the denitrification tank 5, but the denitrification treatment process is completely shifted from the denitrification tank 5 to the aeration tank 2, and the return process is performed. In addition, the denitrification tank 5 of the processing facility 1d may be deleted. In this case, the facility can be made compact while maintaining the organic matter decomposing ability, phosphorus removing ability and nitrogen component removing ability.

上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態では、標準活性汚泥法、嫌気好気法、嫌気無酸素好気法及び硝化脱窒法を例に挙げて説明したが、これらの方法以外にも、有機性廃水を活性汚泥と共に曝気槽内で曝気処理する工程を含むあらゆる生物処理法に本発明を適用することができる。   The above-described embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto, and various modifications can be made without departing from the gist of the present invention. For example, in the above-described embodiment, the standard activated sludge method, the anaerobic aerobic method, the anaerobic anaerobic aerobic method, and the nitrification denitrification method have been described as examples, but in addition to these methods, the organic wastewater is activated sludge. In addition, the present invention can be applied to any biological treatment method including a process of aeration in an aeration tank.

以下に本発明の実施例を説明するが、本発明はこれら実施例に限られるものではない。   Examples of the present invention will be described below, but the present invention is not limited to these examples.

活性汚泥リアクターを用いて本発明の有効性を検討した。   The effectiveness of the present invention was examined using an activated sludge reactor.

<活性汚泥リアクターの構成>
図11に示す連続式の活性汚泥リアクターを構築した。2.9L容の曝気槽2に貯水タンク51から送液ポンプ52により水道水53を供給した。この水道水53には、無機塩類を添加した。また、曝気槽2には、水道水と同時に基質ポンプ54により滅菌した約40倍の濃厚有機物基質55(以下、濃厚基質55と呼ぶ)を供給した。無機塩類と有機物の組成は表1の通りとした。即ち、曝気槽2に水道水53と濃厚基質55を同時に供給して曝気槽2に有機性廃水9を供給するようにした。尚、有機性廃水9の供給量は8.2L/日であり、これは、基質濃度として、TOCが120mg/L、TNが36mgN/Lに相当する。
<Configuration of activated sludge reactor>
A continuous activated sludge reactor shown in FIG. 11 was constructed. Tap water 53 was supplied from a water storage tank 51 to a 2.9-liter aeration tank 2 by a liquid feed pump 52. To this tap water 53, inorganic salts were added. The aeration tank 2 was supplied with about 40 times the concentrated organic substrate 55 (hereinafter referred to as the concentrated substrate 55) sterilized by the substrate pump 54 simultaneously with tap water. The composition of inorganic salts and organic substances was as shown in Table 1. That is, the tap water 53 and the concentrated substrate 55 are simultaneously supplied to the aeration tank 2 to supply the organic waste water 9 to the aeration tank 2. The supply amount of the organic waste water 9 is 8.2 L / day, and this corresponds to a substrate concentration of TOC of 120 mg / L and TN of 36 mg N / L.

曝気槽2の曝気装置(エアストーン2a、エアポンプ2b)で曝気処理された有機性廃水9は沈殿池3に送液され、有機性廃水9に懸濁している活性汚泥を沈殿処理した後、活性汚泥を送液ポンプ52で曝気槽2に戻した。   The organic waste water 9 aerated by the aeration apparatus (air stone 2a, air pump 2b) of the aeration tank 2 is sent to the sedimentation basin 3 and the activated sludge suspended in the organic waste water 9 is precipitated and activated. The sludge was returned to the aeration tank 2 by the liquid feed pump 52.

活性汚泥リアクターは2つ用意し、沈殿池は共有させた。したがって、2つのリアクターにおける活性汚泥単独での処理能力は共通である。種汚泥は、嫌気好気法(AO法)を採用している都市下水処理場から採取した。   Two activated sludge reactors were prepared and the settling basin was shared. Therefore, the treatment capacity of activated sludge alone in the two reactors is common. Seed sludge was collected from an urban sewage treatment plant using the anaerobic aerobic method (AO method).

運転条件は、HRT(水理学的滞留時間)を8.5時間とし、汚泥返送率を100%とし、SRT(汚泥保持時間)を11日とした。曝気槽2内の有機性廃水9の水温とpHについては特に制御を行わなかったが、実験期間中において、それぞれ21℃〜25℃、7.5〜8.0であり、大きな変動は見られず、水質への影響も見られなかった。また、曝気槽2内の有機性廃水9の溶存酸素濃度は常に4mg/L以上に維持した。   The operating conditions were HRT (hydraulic residence time) of 8.5 hours, sludge return rate of 100%, and SRT (sludge retention time) of 11 days. Although the water temperature and pH of the organic waste water 9 in the aeration tank 2 were not particularly controlled, they were 21 ° C. to 25 ° C. and 7.5 to 8.0, respectively, during the experiment period, and large fluctuations were observed. There was no effect on water quality. Moreover, the dissolved oxygen concentration of the organic waste water 9 in the aeration tank 2 was always maintained at 4 mg / L or more.

<脱窒モジュールの構成>
脱窒モジュール11は、不織布32で外袋を作製し、その外側表面に担体31を塗布して作製した以外は図7と同様のものを本実施例に使用した。即ち、電子供与体供給容器21は、容器21の全面を非多孔性膜22とした袋状とした。具体的には、0.1mm厚の低密度ポリエチレンフィルム(ミポロンフィルム、ミツワ株式会社製)を用いた。これを約16cm×16cmに裁断して熱融着して袋状とし、この袋内に99.5%エタノールを70mL封入した。このフィルムのエタノール透過速度は、25℃において0.8mgCOD/cm/日であった。
<Configuration of denitrification module>
The denitrification module 11 was the same as that shown in FIG. 7 except that a non-woven fabric 32 was used to produce an outer bag and a carrier 31 was applied to the outer surface of the denitrification module 11. That is, the electron donor supply container 21 has a bag shape in which the entire surface of the container 21 is a non-porous film 22. Specifically, a 0.1 mm-thick low density polyethylene film (Mipolon film, manufactured by Mitsuwa Corporation) was used. This was cut into approximately 16 cm × 16 cm and heat-sealed to form a bag, and 70 mL of 99.5% ethanol was sealed in the bag. The ethanol transmission rate of this film was 0.8 mg COD / cm 2 / day at 25 ° C.

次に、0.6mm厚のPET(ポリエチレンテレフタレート)樹脂不織布(G2260−1S、東レ製)を用いて、電子供与体供給容器より僅かに大きな外袋を作製した。外袋の表面には、光硬化性樹脂(PVA−SBQ、SPP−H−13、東洋合成工業)をアンモニア酸化細菌(Nitrosomonas europaea NBRC14298)、亜硝酸酸化細菌(Nitrobacter winogradskyi NBRC14297)及び脱窒細菌(Paracoccus pantotrophus JCM6892)を含むリン酸緩衝液と混合して1mm厚で塗布した。その後、メタルハライドランプを片面あたり20分ほど照射して硬化させた。この外袋を担体31とし、この袋の中に電子供与体供給容器21を入れて実験に供した(アンモニア酸化菌、亜硝酸酸化菌及び脱窒菌を担体31に予め固定した脱窒モジュール11(実施例1))。 Next, a 0.6 mm thick PET (polyethylene terephthalate) resin nonwoven fabric (G2260-1S, manufactured by Toray Industries, Inc.) was used to produce an outer bag slightly larger than the electron donor supply container. On the surface of the outer bag, a photocurable resin (PVA-SBQ, SPP-H-13, Toyo Gosei Co., Ltd.) was added with ammonia oxidizing bacteria (Nitrosomonas europaea NBRC14298), nitrite oxidizing bacteria (Nitrobacter winogradskyi NBRC14297) and denitrifying bacteria ( It was mixed with a phosphate buffer containing Paracoccus pantotrophus JCM6892) and applied in a thickness of 1 mm. Thereafter, the metal halide lamp was irradiated and cured for about 20 minutes per side. This outer bag was used as a carrier 31, and an electron donor supply container 21 was placed in the bag for use in experiments (denitrification module 11 in which ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and denitrifying bacteria were fixed in advance on the carrier 31 ( Example 1)).

尚、アンモニア酸化菌、亜硝酸酸化菌及び脱窒菌を予め担体に担持しない場合には、活性汚泥中の脱窒菌を付着させるための不織布として、2mm厚の空隙の多いポリエチレン製エアレイド不織布(金星製紙製、40g/m)を用いて、電子供与体供給容器より僅かに大きな外袋を作製した。この外袋を担体31とし、この袋の中に電子供与体供給容器21を入れて実験に供した(アンモニア酸化菌、亜硝酸酸化菌及び脱窒菌を担体31に固定していない脱窒モジュール11(実施例2))。 In the case where ammonia-oxidizing bacteria, nitrite-oxidizing bacteria and denitrifying bacteria are not previously supported on the carrier, a polyethylene airlaid nonwoven fabric (Venus Paper) with a 2 mm-thick void and many voids is used as a nonwoven fabric for attaching the denitrifying bacteria in the activated sludge. Manufactured, 40 g / m 2 ) to produce an outer bag slightly larger than the electron donor supply container. This outer bag was used as a carrier 31, and an electron donor supply container 21 was put in this bag and used for the experiment (denitrification module 11 in which ammonia oxidizing bacteria, nitrite oxidizing bacteria and denitrifying bacteria were not fixed to the carrier 31. (Example 2)).

<分析方法>
有機物指標として、沈殿槽3の上澄液(処理水)を遠心分離並びに濾過(孔系0.2μm)した後、TOCを測定した。また、インドフェノール法によりアンモニア性窒素を測定し、イオンクロマトグラフ法により亜硝酸性窒素と硝酸性窒素を測定した。汚泥濃度は遠心分離法により測定した。
<Analysis method>
As an organic matter index, the supernatant (treated water) of the precipitation tank 3 was centrifuged and filtered (pore system 0.2 μm), and then the TOC was measured. In addition, ammonia nitrogen was measured by the indophenol method, and nitrite nitrogen and nitrate nitrogen were measured by ion chromatography. The sludge concentration was measured by centrifugation.

(実施例1)
上記の活性汚泥リアクターの曝気槽2に、アンモニア酸化菌、亜硝酸酸化菌及び脱窒菌を担体31に予め固定した脱窒モジュール11を2つ収容し、有機性廃水の処理試験を実施した。尚、ポリエチレンフィルムの面積(即ち、担体31の有効面積)の合計は約1000cmであった。
Example 1
Two denitrification modules 11 in which ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and denitrifying bacteria were fixed in advance on the carrier 31 were accommodated in the aeration tank 2 of the activated sludge reactor, and a treatment test for organic wastewater was performed. The total area of the polyethylene film (that is, the effective area of the carrier 31) was about 1000 cm 2 .

(比較例1)
上記の活性汚泥リアクターの曝気槽2に脱窒モジュール11を収容することなく、有機性廃水の処理試験を実施した。
(Comparative Example 1)
An organic wastewater treatment test was conducted without accommodating the denitrification module 11 in the aeration tank 2 of the activated sludge reactor.

<実験結果1>
アンモニア性窒素と亜硝酸性窒素の濃度は、実施例1と比較例1のいずれの場合にも0.3mgN/L以下であり、極めて低濃度であることが確認された。
<Experimental result 1>
The concentrations of ammonia nitrogen and nitrite nitrogen were 0.3 mg N / L or less in both cases of Example 1 and Comparative Example 1, and it was confirmed that the concentrations were extremely low.

また、図12に示されるように、TOC濃度については、実施例1と比較例1において殆ど差が見られなかった。このことから、脱窒モジュール11を構成する電子供与体供給容器21内に封入されたエタノール23がポリエチレン膜22から透過することによるTOC濃度の上昇は生じないことが明らかとなった。   Also, as shown in FIG. 12, there was almost no difference between Example 1 and Comparative Example 1 regarding the TOC concentration. From this, it became clear that the increase in the TOC concentration due to the permeation of the ethanol 23 enclosed in the electron donor supply container 21 constituting the denitrification module 11 from the polyethylene film 22 does not occur.

さらに、図13に示されるように、硝酸性窒素濃度については、比較例1よりも実施例1の方が濃度が低下することが明らかとなった。このことから、脱窒モジュール11を活性汚泥リアクターの曝気槽2に収容することによって、曝気槽2を曝気処理して溶存酸素濃度が高められた条件下においても、脱窒モジュール11の微生物担体31の一部を嫌気条件として、脱窒菌の脱窒処理能を発揮させることが可能であることが示された。   Further, as shown in FIG. 13, it was found that the concentration of nitrate nitrogen was lower in Example 1 than in Comparative Example 1. From this, the microbial carrier 31 of the denitrification module 11 is accommodated even under conditions in which the denitrification module 11 is accommodated in the aeration tank 2 of the activated sludge reactor and the aeration tank 2 is aerated to increase the dissolved oxygen concentration. It was shown that the denitrification ability of the denitrifying bacteria can be exhibited under a part of the anaerobic conditions.

(実施例2)
担体31にアンモニア酸化菌、亜硝酸酸化菌及び脱窒菌を固定しないタイプの脱窒モジュール11を用いたこと以外は、実施例1と同様の方法で実験を実施した。
(Example 2)
The experiment was carried out in the same manner as in Example 1 except that a denitrification module 11 that does not fix ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, and denitrifying bacteria to the carrier 31 was used.

<実験結果2>
アンモニア性窒素と亜硝酸性窒素の濃度は、実施例2と比較例1のいずれの場合にも0.3mgN/L以下であり、極めて低濃度であることが確認された。
<Experimental result 2>
The concentration of ammonia nitrogen and nitrite nitrogen was 0.3 mg N / L or less in both cases of Example 2 and Comparative Example 1, and it was confirmed that the concentrations were extremely low.

また、図14に示されるように、TOC濃度については、実施例2と比較例1において殆ど差が見られなかった。このことから、脱窒モジュール11を構成する電子供与体供給容器21内に封入されたエタノール23がポリエチレン膜22から透過することによるTOC濃度の上昇は生じないことが明らかとなった。   Further, as shown in FIG. 14, almost no difference was found between Example 2 and Comparative Example 1 with respect to the TOC concentration. From this, it became clear that the increase in the TOC concentration due to the permeation of the ethanol 23 enclosed in the electron donor supply container 21 constituting the denitrification module 11 from the polyethylene film 22 does not occur.

さらに、図15に示されるように、硝酸性窒素濃度については、比較例1よりも実施例2の方が濃度が低下することが明らかとなった。このことから、担体31に脱窒菌が担持されていない脱窒モジュール11を活性汚泥リアクターの曝気槽2に収容した場合にも、担体31に予め脱窒菌を担持させた担体31を脱窒モジュール11を収容した場合と同様、脱窒処理が可能であることが明らかとなった。このことから、担体31に予め脱窒菌を担持させなくても、曝気処理を行う中で、活性汚泥に含まれる脱窒菌を担体31に担持させて、脱窒菌の脱窒処理能を発揮させることが可能であることが明らかとなった。   Further, as shown in FIG. 15, it was revealed that the concentration of nitrate nitrogen was lower in Example 2 than in Comparative Example 1. Therefore, even when the denitrification module 11 in which the denitrifying bacteria are not supported on the carrier 31 is accommodated in the aeration tank 2 of the activated sludge reactor, the carrier 31 on which the denitrifying bacteria are previously supported on the carrier 31 is removed. It was revealed that denitrification treatment was possible, as in the case of containing the. For this reason, the denitrifying bacteria contained in the activated sludge are supported on the carrier 31 and the denitrifying ability of the denitrifying bacteria is exhibited while performing the aeration treatment without the carrier 31 previously supporting the denitrifying bacteria. It became clear that this is possible.

以上の結果から、電子供与体物質23全般を担体31に供給することによって、担体31内に嫌気環境を形成することができると共に、担体31に担持されている脱窒菌に電子供与体物質23を与えて、活性汚泥を用いた有機性廃水処理の本来的な機能である有機物分解処理能を妨げることなく、脱窒菌に脱窒処理能を発揮させ、曝気槽2に脱窒処理能を付与できる可能性が導かれた。   From the above results, by supplying the electron donor material 23 in general to the carrier 31, an anaerobic environment can be formed in the carrier 31, and the electron donor material 23 is added to the denitrifying bacteria carried on the carrier 31. The denitrification ability can be exerted on the denitrifying bacteria and the denitrification ability can be imparted to the aeration tank 2 without interfering with the organic matter decomposition ability that is the original function of organic wastewater treatment using activated sludge. The possibility was led.

1(1a、1b、1c、1d) 有機性廃水の処理設備
2 曝気槽
9 有機性廃水
21 容器
22 非多孔性膜
23 電子供与体物質
31 担体
1 (1a, 1b, 1c, 1d) Organic wastewater treatment facility 2 Aeration tank 9 Organic wastewater 21 Container 22 Non-porous membrane 23 Electron donor substance 31 Carrier

Claims (6)

有機性廃水を活性汚泥と共に曝気槽内で曝気処理する工程を含む生物処理法を利用した有機性廃水の処理方法において、
非多孔性膜を少なくとも一部に備えると共に電子供与体物質を充填した密封構造の容器の少なくとも前記非多孔性膜の周りに微生物を担持し得る担体を配置して、前記容器の前記非多孔性膜部分から前記電子供与体物質を徐放させて前記担体に供給し、少なくとも前記担体を前記曝気槽内の前記有機性廃水と接触させながら前記曝気処理を行うことを特徴とする曝気槽内での脱窒処理を可能とした有機性廃水の処理方法。
In a method for treating organic wastewater using a biological treatment method including a process of aeration treatment of organic wastewater with activated sludge in an aeration tank,
A non-porous membrane is provided at least in part and a carrier capable of supporting microorganisms is disposed around at least the non-porous membrane in a sealed container filled with an electron donor substance, and the non-porous membrane of the container is disposed. In the aeration tank, the electron donor substance is gradually released from a membrane portion and supplied to the carrier, and the aeration treatment is performed while at least the carrier is in contact with the organic waste water in the aeration tank. Organic wastewater treatment method that enables denitrification treatment.
前記生物処理法が、標準活性汚泥法、嫌気好気法、嫌気無酸素好気法または硝化脱窒法である請求項1に記載の有機性廃水の処理方法。 The organic wastewater treatment method according to claim 1, wherein the biological treatment method is a standard activated sludge method, an anaerobic aerobic method, an anaerobic anaerobic aerobic method, or a nitrification denitrification method. 前記担体に予め脱窒菌を担持させてから前記有機性廃水と接触させる請求項1に記載の有機性廃水の処理方法。 The method for treating organic wastewater according to claim 1, wherein the carrier is loaded with denitrifying bacteria in advance and then brought into contact with the organic wastewater. 有機性廃水が活性汚泥と共に曝気処理される曝気槽を有する生物処理法を利用した有機性廃水の処理設備において、
非多孔性膜を少なくとも一部に備えると共に電子供与体物質を充填した密封構造の容器と、微生物を担持し得る担体とをさらに有し、
前記担体は前記容器の少なくとも前記非多孔性膜の周りに配置されて前記容器の前記非多孔性膜部分から徐放される前記電子供与体物質が前記担体に供給され、少なくとも前記担体は前記曝気槽内の前記有機性廃水と接触する位置に収容されていることを特徴とする曝気槽内での脱窒処理が可能な有機性廃水の処理設備。
In an organic wastewater treatment facility using a biological treatment method having an aeration tank in which organic wastewater is aerated with activated sludge,
A container having a non-porous membrane at least in part and having a sealed structure filled with an electron donor substance, and a carrier capable of supporting microorganisms;
The carrier is disposed around at least the nonporous membrane of the container, and the electron donor substance that is slowly released from the nonporous membrane portion of the container is supplied to the carrier, and at least the carrier is aerated. An organic wastewater treatment facility capable of denitrification in an aeration tank, wherein the treatment equipment is housed in a position in contact with the organic wastewater in the tank.
前記生物処理法が、標準活性汚泥法、嫌気好気法、嫌気無酸素好気法または硝化脱窒法である請求項4に記載の有機性廃水の処理設備。 The organic wastewater treatment facility according to claim 4, wherein the biological treatment method is a standard activated sludge method, an anaerobic aerobic method, an anaerobic anaerobic aerobic method, or a nitrification denitrification method. 前記担体には予め脱窒菌が担持されている請求項4に記載の有機性廃水の処理設備。 The treatment equipment for organic wastewater according to claim 4, wherein denitrifying bacteria are supported on the carrier in advance.
JP2009265202A 2009-11-20 2009-11-20 Organic wastewater treatment method and treatment equipment Active JP5523800B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009265202A JP5523800B2 (en) 2009-11-20 2009-11-20 Organic wastewater treatment method and treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009265202A JP5523800B2 (en) 2009-11-20 2009-11-20 Organic wastewater treatment method and treatment equipment

Publications (2)

Publication Number Publication Date
JP2011104564A true JP2011104564A (en) 2011-06-02
JP5523800B2 JP5523800B2 (en) 2014-06-18

Family

ID=44228687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009265202A Active JP5523800B2 (en) 2009-11-20 2009-11-20 Organic wastewater treatment method and treatment equipment

Country Status (1)

Country Link
JP (1) JP5523800B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211933A (en) * 2014-05-01 2015-11-26 角川建設株式会社 Sewage purification device and sewage purification method
JP2017519630A (en) * 2014-06-30 2017-07-20 ハンプトン ローズ サニテーション ディストリクト Wastewater treatment method and apparatus using external sorting
JP2021000577A (en) * 2019-06-19 2021-01-07 順幸 佐藤 Water quality purifying system
CN113292156A (en) * 2021-02-09 2021-08-24 深圳前海百润环保科技有限公司 Mixed growth type sewage treatment method and system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290194A (en) * 1995-04-20 1996-11-05 Hitachi Plant Eng & Constr Co Ltd Sewage treating device
JP2000288582A (en) * 1999-04-09 2000-10-17 Nippon Steel Corp Denitrification treatment apparatus in waste water and method for washing the same
JP2000334492A (en) * 1999-05-31 2000-12-05 Matsushita Electric Ind Co Ltd Denitrication accelerating agent and water treatment using the same
JP2001269689A (en) * 2000-03-24 2001-10-02 Matsushita Electric Ind Co Ltd Solid denitrification/dephosphorization accelerating agent
WO2006135028A1 (en) * 2005-06-15 2006-12-21 Central Research Institute Of Electric Power Industry Method of feeding microbial activity controlling substance, apparatus therefor, and making use of the same, method of environmental cleanup and bioreactor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08290194A (en) * 1995-04-20 1996-11-05 Hitachi Plant Eng & Constr Co Ltd Sewage treating device
JP2000288582A (en) * 1999-04-09 2000-10-17 Nippon Steel Corp Denitrification treatment apparatus in waste water and method for washing the same
JP2000334492A (en) * 1999-05-31 2000-12-05 Matsushita Electric Ind Co Ltd Denitrication accelerating agent and water treatment using the same
JP2001269689A (en) * 2000-03-24 2001-10-02 Matsushita Electric Ind Co Ltd Solid denitrification/dephosphorization accelerating agent
WO2006135028A1 (en) * 2005-06-15 2006-12-21 Central Research Institute Of Electric Power Industry Method of feeding microbial activity controlling substance, apparatus therefor, and making use of the same, method of environmental cleanup and bioreactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211933A (en) * 2014-05-01 2015-11-26 角川建設株式会社 Sewage purification device and sewage purification method
JP2017519630A (en) * 2014-06-30 2017-07-20 ハンプトン ローズ サニテーション ディストリクト Wastewater treatment method and apparatus using external sorting
JP2021000577A (en) * 2019-06-19 2021-01-07 順幸 佐藤 Water quality purifying system
CN113292156A (en) * 2021-02-09 2021-08-24 深圳前海百润环保科技有限公司 Mixed growth type sewage treatment method and system

Also Published As

Publication number Publication date
JP5523800B2 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US7556961B2 (en) Method for collecting and acclimatizing anaerobic ammonuim oxidizing bacteria, and denitrifing water
ES2605624T3 (en) Procedure for a compact bed bioreactor for the control of biological inlays of reverse osmosis and nanofiltration membranes
JP5194771B2 (en) Biological treatment method and apparatus for water containing organic matter
JP5150993B2 (en) Denitrification method and apparatus
JP2000005795A (en) Water treatment device having denitrogen performance
JP2014097472A (en) Treatment method and treatment apparatus for organic waste water
TW201024231A (en) System and method for treating waste water containing ammonia
JP5523800B2 (en) Organic wastewater treatment method and treatment equipment
JP4719095B2 (en) Treatment method of wastewater containing selenate compound by microorganisms
WO2006019256A1 (en) Biological wastewater treating apparatus and method for biologically treating wastewater using the apparatus
JP4859170B2 (en) Nitrogen-containing organic wastewater treatment system
WO2003043941A1 (en) Apparatus and method for treating organic waste water
KR100603182B1 (en) Method for advanced treatment of wastewater
KR100477204B1 (en) A microorganism media and method thereof
JP3474476B2 (en) Sewage treatment method
JP2009195831A (en) Method and system for treating drain water
JP2008012461A (en) Method for treating selenic acid compound-containing liquid using microorganism
JP2015160202A (en) Method and apparatus for biological treatment of 1,4-dioxane-containing organic waste water
JP3797554B2 (en) Organic wastewater treatment method and equipment
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
CN101798158A (en) Advanced treatment method of refractory organic industrial sewage
KR100304068B1 (en) Biological Water Treatment Apparatus Using Biological Membrane Filtration and Process thereof(SBF)
JP5010785B2 (en) Bioreactor and water treatment method
JP2003033787A (en) Method for nitrifying drainage
JPH07185589A (en) Waste water treatment method for removal of nitrogen and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140408

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140409

R150 Certificate of patent or registration of utility model

Ref document number: 5523800

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250