JP2020532083A5 - - Google Patents

Download PDF

Info

Publication number
JP2020532083A5
JP2020532083A5 JP2020512786A JP2020512786A JP2020532083A5 JP 2020532083 A5 JP2020532083 A5 JP 2020532083A5 JP 2020512786 A JP2020512786 A JP 2020512786A JP 2020512786 A JP2020512786 A JP 2020512786A JP 2020532083 A5 JP2020532083 A5 JP 2020532083A5
Authority
JP
Japan
Prior art keywords
conductive additive
less
electrode body
body according
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020512786A
Other languages
English (en)
Other versions
JP2020532083A (ja
JP7317000B2 (ja
Filing date
Publication date
Application filed filed Critical
Priority claimed from PCT/US2018/048378 external-priority patent/WO2019046322A1/en
Publication of JP2020532083A publication Critical patent/JP2020532083A/ja
Publication of JP2020532083A5 publication Critical patent/JP2020532083A5/ja
Application granted granted Critical
Publication of JP7317000B2 publication Critical patent/JP7317000B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Claims (15)

  1. 電気活性材料と導電性添加剤とを含む電極体であって、ここで、前記導電性添加剤は、約3.0nm超の格子定数(L)と約1.01〜約1.4の統計的厚さ表面積/窒素表面積(STSA/N2SA)比を有する、電極体。
  2. 動的光散乱法(DLS)により測定される前記導電性添加剤のZ平均粒径が、式
    Figure 2020532083

    に基づいて予測される値よりも少なくとも約30%大きく、
    式中、Dは最大凝集径(ナノメートル)であり、SはSTSA(m/g)であり、そして、<DBP>は標準試験手順ASTM D2414に準拠したフタル酸ジブチルの体積(ml/100g)に等しく、又は、
    前記導電性添加剤の粒子総数の少なくとも約5%の自由空間割合が、計数に基づいて約90%以上である、
    請求項1に記載の電極体。
  3. (i)前記導電性添加剤の抽出可能な総PAHが約1ppm未満であるか、又は
    (ii)前記導電性添加剤が約99.8%超のトートを有する、請求項1に記載の電極体。
  4. 前記導電性添加剤が約50ppm未満の総硫黄含有量を有する、請求項1に記載の電極体。
  5. 前記導電性添加剤は、酸素が約0.4重量%以下の酸素含有量を有する、請求項1に記載の電極体。
  6. 前記導電性添加剤は、水素が約0.4重量%未満の水素含有量を有する、請求項1に記載の電極体。
  7. 前記導電性添加剤が約1%以下の総灰含有量を有し、そして、任意に、前記灰含有量の約90%以下が、Fe、Ni及び/又はCoの金属不純物であってもよく、
    又は、前記導電性添加剤が、約5ppm未満のFe、約200ppb未満のCr、約200ppb未満のNi、約10ppb未満のCo、約10ppb未満のZn、約10ppb未満のSn、又はそれらの任意の組み合わせを含む、請求項1に記載の電極体。
  8. 前記導電性添加剤が、(i)約0.3重量%以下の水分含有量を有するか、又は(ii)相対湿度80%雰囲気から前記導電性添加剤の表面積1平方メートルあたり水約0.5ml(ミリリットル)未満の水を吸着する親和性を有するか、又は
    (iii)約0と約8mJ/mの間の水拡散圧力(WSP)を有する、
    請求項1に記載の電極体。
  9. 前記導電性添加剤が、約0.5μmol/m以下の総表面酸基含有量を有する、請求項1に記載の電極体。
  10. 前記導電性添加剤が、約(i)20ミクロン、(ii)30ミクロン、又は(iii)40ミクロンよりも大きい粒子を実質的に含まない、請求項1に記載の電極体。
  11. 前記導電性添加剤が、固形分重量基準で約0.05%と7%の間のホウ素濃度を有する、請求項1に記載の電極体。
  12. 前記電極体が、5メガパスカル(MPa)において、約10オームセンチメートル(Ω−cm)未満の抵抗を有する、請求項1に記載の電極体。
  13. 前記導電性添加剤の体積抵抗率が、2MPaにおいて約0.3Ω−cm未満である、請求項1に記載の電極体。
  14. 結合剤と導電性添加剤とを含む導電層であって、ここで、前記導電性添加剤は約3.0nm超の格子定数(L)と約1.01〜約1.4の統計的厚さ表面積/窒素表面積(STSA/N2SA)比とを有する、導電層。
  15. 前記導電性添加剤が、約1.3以上の表面積/電子顕微鏡表面積(STSA/EMSA)比を有する、請求項14に記載の導電層。
JP2020512786A 2017-08-28 2018-08-28 粒子システムと方法 Active JP7317000B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762551052P 2017-08-28 2017-08-28
US62/551,052 2017-08-28
PCT/US2018/048378 WO2019046322A1 (en) 2017-08-28 2018-08-28 PARTICLE SYSTEMS AND METHODS

Publications (3)

Publication Number Publication Date
JP2020532083A JP2020532083A (ja) 2020-11-05
JP2020532083A5 true JP2020532083A5 (ja) 2021-09-30
JP7317000B2 JP7317000B2 (ja) 2023-07-28

Family

ID=65527868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020512786A Active JP7317000B2 (ja) 2017-08-28 2018-08-28 粒子システムと方法

Country Status (8)

Country Link
US (1) US20210020947A1 (ja)
EP (1) EP3676901A4 (ja)
JP (1) JP7317000B2 (ja)
KR (1) KR20210075032A (ja)
CN (1) CN111279537A (ja)
CA (1) CA3074223A1 (ja)
MX (1) MX2020002220A (ja)
WO (1) WO2019046322A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
CA2937909C (en) 2014-01-31 2023-09-19 Monolith Materials, Inc. Plasma torch design
BR112017016692A2 (pt) 2015-02-03 2018-04-10 Monolith Materials, Inc. método e aparelho para resfriamento regenerativo
KR20170129713A (ko) 2015-02-03 2017-11-27 모놀리스 머티어리얼스 인코포레이티드 카본 블랙 생성 시스템
WO2017019683A1 (en) 2015-07-29 2017-02-02 Monolith Materials, Inc. Dc plasma torch electrical power design method and apparatus
MX2018013161A (es) 2016-04-29 2019-06-24 Monolith Mat Inc Metodo y aparato para inyector de antorcha.
CN109562347A (zh) 2016-04-29 2019-04-02 巨石材料公司 颗粒生产工艺和设备的二次热添加
CA3055830A1 (en) 2017-03-08 2018-09-13 Monolith Materials, Inc. Systems and methods of making carbon particles with thermal transfer gas
EP3612600A4 (en) 2017-04-20 2021-01-27 Monolith Materials, Inc. PARTICULAR SYSTEMS AND PROCEDURES
CA3116989C (en) 2017-10-24 2024-04-02 Monolith Materials, Inc. Particle systems and methods
JP7414233B2 (ja) * 2019-10-02 2024-01-16 株式会社クラレ 蓄電デバイス用炭素質材料の製造方法および蓄電デバイス用炭素質材料

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5352289A (en) * 1992-12-18 1994-10-04 Cabot Corporation Low ash carbon blacks
EP1043731B1 (en) * 1999-03-29 2004-10-20 Denki Kagaku Kogyo Kabushiki Kaisha Carbon black, method for its preparation and its applications
JP2001085014A (ja) 1999-09-13 2001-03-30 Sanyo Electric Co Ltd リチウム二次電池
US6441084B1 (en) * 2000-04-11 2002-08-27 Equistar Chemicals, Lp Semi-conductive compositions for wire and cable
AU2001262674A1 (en) 2000-05-31 2001-12-11 Showa Denko K K Electrically conductive fine carbon composite, catalyst for solid polymer fuel cell and fuel battery
JP2002203551A (ja) 2000-12-28 2002-07-19 Gs-Melcotec Co Ltd 非水電解質電池
JP2007505975A (ja) 2003-09-18 2007-03-15 コロンビアン ケミカルズ カンパニー 各種用途に用いられる熱改質カーボンブラック及びその製造方法
US20070104636A1 (en) 2004-05-04 2007-05-10 Kutsovsky Yakov E Carbon black and multi-stage process for making same
US20060068987A1 (en) * 2004-09-24 2006-03-30 Srinivas Bollepalli Carbon supported catalyst having reduced water retention
JP5057261B2 (ja) * 2005-10-25 2012-10-24 東海カーボン株式会社 カーボンブラック水性分散体及びその製造方法
CN101688070B (zh) * 2007-04-24 2014-02-12 卡伯特公司 引入了低结构炭黑的涂料组合物和由其形成的器件
CN101335343A (zh) 2007-06-25 2008-12-31 晟茂(青岛)先进材料有限公司 一种可弯折电池负极材料及其制造方法
CN102186932B (zh) 2008-10-16 2014-07-23 赢创炭黑有限公司 炭黑、其制备方法及其用途
DE102009045060A1 (de) * 2009-09-28 2011-03-31 Evonik Degussa Gmbh Ruß, ein Verfahren zu seiner Herstellung sowie seine Verwendung
US9761903B2 (en) * 2011-09-30 2017-09-12 Ppg Industries Ohio, Inc. Lithium ion battery electrodes including graphenic carbon particles
DK2791947T3 (da) * 2011-12-12 2023-06-12 Circtec Knowledge Ltd Anvendelse af carbon black til fremstilling af forbindelser med defineret volumenresistivitet
KR20150056617A (ko) * 2012-11-20 2015-05-26 쇼와 덴코 가부시키가이샤 리튬 이온 전지용 부극재의 제조 방법
HUE035012T2 (en) 2013-06-21 2018-05-02 Cabot Corp Conductive carbon for lithium ion batteries
JP6631506B2 (ja) 2014-02-27 2020-01-15 戸田工業株式会社 正極合剤および非水電解質二次電池
EP3350855A4 (en) 2015-09-14 2019-08-07 Monolith Materials, Inc. CARBON BLACK FROM NATURAL GAS

Similar Documents

Publication Publication Date Title
JP2020532083A5 (ja)
Zappielo et al. Solid phase extraction to on-line preconcentrate trace cadmium using chemically modified nano-carbon black with 3-mercaptopropyltrimethoxysilane
Yoo et al. Highly sensitive gas sensor based on Al-doped ZnO nanoparticles for detection of dimethyl methylphosphonate as a chemical warfare agent simulant
Tung et al. Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: The particle size effects
WO2005096414A3 (de) Nanoskalige siliziumpartikel in negativen elektrodenmaterialien für lithium-ionen-batterien
Yan et al. Improved NO2 sensing properties at low temperature using reduced graphene oxide nanosheet–In2O3 heterojunction nanofibers
EP1749853A3 (en) Composite material
JP2019508355A (ja) 炭素質材料及びその使用方法
Kumar et al. Electrostatic fabrication of oleylamine capped nickel oxide nanoparticles anchored multiwall carbon nanotube nanocomposite: a robust electrochemical determination of riboflavin at nanomolar levels
Sahoo et al. Sonochemical synthesis and characterization of amine‐modified graphene/conducting polymer nanocomposites
JP2020505753A5 (ja)
Chan et al. Assessments of surface coverage after nanomaterials are drop cast onto electrodes for electroanalytical applications
Zhang et al. Significant promotion effect of carbon nanotubes on the electrocatalytic activity of supported Pd NPs for ethanol oxidation reaction of fuel cells: the role of inner tubes
Jana et al. Enhancement of photoluminescence emission and anomalous photoconductivity properties of Fe 3 O 4@ SiO 2 core–shell microspheres
Carrasco et al. CVD synthesis of carbon spheres using NiFe-LDHs as catalytic precursors: structural, electrochemical and magnetoresistive properties
Chen et al. Speciation and release risk of heavy metals bonded on simulated naturally-aged microplastics prepared from artificially broken macroplastics
Wei et al. Facile formation of graphene-encapsulated α-Fe2O3 nanorice as enhanced anode materials for lithium storage
Shihabudeen et al. Nitrogen doped In 2 O 3–ZnO nanocomposite mesoporous thin film based highly sensitive and selective ethanol sensors
Dascalu et al. Sol-gel Zn, Fe modified SnO2 powders for CO sensors and magnetic applications
Yang et al. Enhanced response of hydrogenated Fe2O3 nanostructured materials to volatile organic compound vapors and gas sensing mechanism
KR20160045188A (ko) 반도체 가스센서용 p-형 반도체 피복 복합나노입자 가스감지물질
JP2006059806A (ja) 表面改質透明導電性酸化スズ微粉末とその製造方法およびその分散体
Okram et al. Anomalous electrical transport behavior in nanocrystalline nickel
Yoon et al. Reassembled graphene-platelets encapsulated silicon nanoparticles for Li-ion battery anodes
JP6360373B2 (ja) センサ及び構造体