本出願は、米国特許法第119条の下で、2017年10月17日出願の米国仮特許出願第62/573,343号(これは、2017年9月6日出願のオランダ特許出願第2019489号に対する優先権の利益を主張する、2017年9月18日出願の米国仮特許出願第62/559,764号に対する優先権の利益を主張するものである)に対する優先権の利益、及び2017年8月16日出願の米国仮特許出願第62/546,163号に対する優先権の利益を主張するものであり、上記仮特許出願の内容は依拠され、その全体が参照により本出願に援用される。
これより、光ファイバを製造するための方法及びシステムの実施形態について詳細に言及する。可能な限り、図面全体を通して、同一又は同様の部分を指すために同一の参照番号を使用する。しかしながら、本開示は、多数の異なる形態で具体化でき、また本明細書に記載の実施形態に限定されるものと解釈してはならない。より具体的には、本明細書に記載の方法及びシステムは、1つ以上の流体軸受によって促進される、1つ以上の非垂直経路部分を備えるドロー経路に沿った光ファイバの生産に関する。更に、上記1つ以上の流体軸受はそれぞれ、ファイバ支持チャネルを備え、これにより、上記ファイバ支持チャネル内に配置された光ファイバに流体クッションを提供する。本明細書に記載の実施形態は、光ファイバに保護コーティングを塗布する前を含む生産の全ての段階を通して、非垂直経路に沿って光ファイバを輸送できるようにすることにより、光ファイバ生産に柔軟性を提供する。本明細書では、光ファイバを生産するための方法及びシステムの様々な実施形態について、添付の図面を具体的に参照しながら説明する。
ここで図1を参照すると、光ファイバを生産するために構成された光ファイバ生産システム100が概略図で図示されている。光ファイバ生産システム100は、ドロー炉110、ファイバ冷却機構112、1つ以上の流体軸受120、ファイバコーティングユニット114、及びファイバ回収ユニット116を備える。図1に示すように、ドロー経路102はドロー炉110からファイバ回収ユニット116まで延在し、生産中に光ファイバ10がそれに沿って移動する経路である。ドロー経路102は、1つ以上のドロー経路部分、例えば第1のドロー経路部分102a、第2のドロー経路部分102b、及び第3のドロー経路部分102cを備える。更に、これらのドロー経路部分は、(「A」方向によって示される)垂直であっても、(「B」方向によって示される)非垂直であってもよい。動作時、光ファイバ10は、本明細書中で更に詳細に説明されるように、1つ以上の流体軸受120を用いて、1つ以上の非垂直ドロー経路部分(例えば第2のドロー経路部分102b)を通るように配向できる。
図1に示すように、光ファイバプリフォーム12をドロー炉110に入れ、そこからファイバをドロー加工することにより、素地光ファイバ14を形成する。光ファイバプリフォーム12は、光ファイバの製造に好適ないずれのガラス又は材料で構成されていてよい。更に、本明細書中で使用する場合、「素地光ファイバ(bare optical fiber)」は、プリフォームからドロー加工してすぐの、外側表面に1つ以上のコーティング層を塗布する前の(例えば素地光ファイバを、保護用ポリマー系コーティング層等の1つ以上のコーティング層でコーティングする前の)光ファイバを指す。本明細書中での「光ファイバ10(optical fiber 10)」に対する言及は、素地光ファイバ14又はコーティング済み光ファイバ20(例えば1つ以上のコーティング層が塗布された素地光ファイバ)を指すことができる。
動作時、素地光ファイバ14は、光ファイバプリフォーム12からドロー加工されてドロー炉110を離れ、第1のドロー経路部分102aに沿ってA方向に移動した後、1つ以上の流体軸受120のうちの第1の流体軸受120aに到達し、第1のドロー経路部分102a、即ち(略垂直な)A方向への移動から、第2のドロー経路部分102b、即ちB方向への移動へとシフトする。第2のドロー経路部分102bに沿って、素地光ファイバ14はファイバ冷却機構112を横断してよい。図示されているように、第2のドロー経路部分102bは、第1のドロー経路部分102aに対して直交するように(例えば水平に)配向されているが、本明細書に記載のシステム及び方法は、コーティング層21の塗布前(又は後)に、光ファイバ10(例えば素地光ファイバ14)をいずれの非垂直経路に沿って再配向できることを理解されたい。
例えば素地光ファイバ14のコーティング前に、1つ以上の非垂直経路部分を有する光ファイバ製造システムを提供することには、多くの利点がある。例えば、従来の直線型ファイバ生産システムでは、更なるコーティングユニット及び更なる冷却機構等の新規の又は追加の構成部品をファイバコーティングユニット114の前に追加するには、全てのこのような構成部品を垂直に配設する必要があり、多くの場合、システム全体の高さを増大させる必要がある。本明細書に記載の光ファイバ生産システム100の場合、コーティング層21の塗布前に光ファイバ10を水平方向又は対角線方向に(例えば垂直方向から外れて)ルーティングできることにより、設備のセットアップにおいてだけでなく、システム全体の高さを増大させる必要のない既存の生産施設内での後の修正、追加及び更新に関して、より高い柔軟性を実現できる。
再び図1を参照すると、素地光ファイバ14は、ファイバ冷却機構112を通過する際に冷却され、その後ファイバコーティングユニット114に供され、ここでコーティング層21(例えば一次保護コーティング層)を素地光ファイバ14の外側表面に塗布することによって、コーティング済み光ファイバ20を形成する。ファイバ冷却機構112は、光ファイバを冷却するための、当該技術分野で公知のいずれの機構とすることができる。例えばファイバ冷却機構112を、空気中での素地光ファイバ14の冷却よりも速い又は遅い速度での素地光ファイバ14の冷却を促進できる気体で充填してよい。ファイバ冷却機構112は任意の構成部品であり、光ファイバ生産システム100の他の実施形態はファイバ冷却機構112を備えない場合があることを理解されたい。
いくつかの実施形態では、図1に示すように、1つ以上の流体軸受120は、第2の流体軸受120bを備えてよく、これは、第1の流体軸受120aと第2の流体軸受120bとの整列によって生成される第2のドロー経路部分102bから、第1のドロー経路部分102aに対して略垂直であっても平行であってもよい第3のドロー経路部分102cへと、素地光ファイバ14を輸送するために使用できる。図1に示すように、第3のドロー経路部分102cは、第2の流体軸受120bからファイバコーティングユニット114まで延在する。ファイバコーティングユニット114を離れた後、コーティング層21を備える(もはや素地ではない)コーティング済み光ファイバ20は、光ファイバ生産システム100内での他の多様な処理段階(図示せず)を通過した後、ファイバ回収ユニット116に到達できる。ファイバ回収ユニット116は、1つ以上のドロー機構117を含み、これは、コーティング済み光ファイバ20に張力を印加することにより、図1に示すように光ファイバ生産システム100全体を通して光ファイバ10をドロー加工する際に光ファイバ10に必要な張力を提供するために使用される。ファイバ回収ユニット116は、ファイバ貯蔵用スプール118も含み、コーティング済み光ファイバ20をファイバ貯蔵用スプール118上に巻き付けることができる。更に、3つのドロー経路部分(102a、102b、102c)が図1に示されているものの、それぞれが垂直又は非垂直配向を有するいずれの個数の経路部分が考えられることを理解されたい。
本明細書中で更に詳細に説明されるように、1つ以上の流体軸受120(例えば第1の流体軸受120a及び第2の流体軸受120b)は、コーティング層21を素地光ファイバ14に塗布する(ことによってコーティング済み光ファイバ20を形成する)まで、素地光ファイバ14がいずれの表面と機械的に接触しないように、光ファイバ生産システム100を通して素地光ファイバ14を輸送する。動作時、1つ以上の流体軸受120は、流体クッションの領域を提供でき、この領域上では、例えば素地光ファイバ14に対して非反応性の流体(例えば空気、ヘリウム)によって、素地光ファイバ14が流体軸受120に機械的に接触することなく移動できる。本明細書中で使用される場合、「機械的接触(mechanical contact)」は、ドロープロセス中での剛性構成部品との接触を指す。このように機械的に接触しないことは、脆性の素地光ファイバ、特にファイバコーティングユニット114でコーティングされる前に非垂直経路を通って移動する素地光ファイバの、品質及び完全性を維持するために重要となり得る。ファイバ回収ユニット116によって提供される機械的接触は許容可能である。というのは、光ファイバがファイバ回収ユニット116に到達するとき、光ファイバ10は、ファイバを保護するコーティング層21でコーティングされており、従って剛性表面との機械的接触は、実質的には、ファイバの品質又は完全性に対して、ファイバがコーティングされていない場合と同様に影響を及ぼすことはないためである。しかしながら、本明細書中では流体軸受120を主に、ドロー経路102に沿った素地光ファイバ14の移動を促進するものとして説明しているものの、流体軸受120を、コーティング済み光ファイバ20等のいずれの光ファイバ10と共に使用してよいことを理解されたい。
いくつかの実施形態では、素地光ファイバ14がその上を移動できる流体クッションの領域を提供する一方で、1つ以上の流体軸受120は、素地光ファイバ14を冷却することもできる。例えば、ファイバ冷却機構112を備えない実施形態では、1つ以上の流体軸受120がファイバ冷却機構112の冷却機能を実施できる。特に、1つ以上の流体軸受120は、素地光ファイバ14を支持する移動流体流を利用するため、素地光ファイバ14は、ドロー炉110のすぐ外側に存在し得るような移動しない周囲空気中で素地光ファイバ14を冷却する場合より速い速度で冷却される。更に、素地光ファイバ14と流体軸受120中の流体(これは好ましくは環境温度又は室温の空気である)との間の温度差が大きいほど、流体軸受120が素地光ファイバ14を冷却する能力が高くなる。
ここで図2を参照すると、流体軸受120が更に詳細に図示されている。流体軸受120は、第1のプレート130、第2のプレート132、内側部材136、並びに第1のプレート130及び第2のプレート132のうちの少なくとも1つにある開口134を含む。第1のプレート130及び第2のプレート132はそれぞれ円弧状外側表面138、139を含み、互いに反対側に位置決めされる。円弧状外側表面138、139は、各プレート130、132の外周に沿って存在し、互いに略整列される。更に、第1のプレート130及び第2のプレート132を締結器具(例えばボルト140)で接続することにより、第1のプレート130と第2のプレート132とを、流体が流体軸受120を通過できるように、一体に連結する。
第1のプレート130及び第2のプレート132はそれぞれ、内面142、144及び外面143、145を有する。第1のプレート130の内面142は、第2のプレート132の内面144に対面して、内面142と内面144との間の、各プレート130、132の円弧状外側表面138、139から半径方向内向きに延在する、ファイバ支持チャネル150(その一実施形態が図3A及び3Bに図示されている)を形成する。ファイバ支持チャネル150は、流体流のためのプレナムを提供し、素地光ファイバ14(又は他のいずれの光ファイバ10)を、流体軸受120の回転を発生させずに、かつ素地光ファイバ14と流体軸受120との間に機械的な接触を発生させずに、素地光ファイバ14がファイバ支持チャネル150に沿って移動できるように、受承する。ファイバ支持チャネル150の様々な構成について、本明細書で更に詳細に説明する。更に、少なくとも1つの開口134は、第1のプレート130及び第2のプレート132のうちの少なくとも1つを通過して、流体(例えば空気、ヘリウム、又は他の所望の気体若しくは液体)を流体軸受120に供給することを可能にし、従って、上記流体はファイバ支持チャネル150を通って流体軸受120から出ることができ、これによってファイバ支持チャネル150内に配置された素地光ファイバ14のための流体クッションを提供できる(図3A)。
引き続き図2を参照すると、流体軸受120は、第1のプレート130と第2のプレート132との間に位置決めされた内側部材136も含むことができる。内側部材136(例えばシム137)は、少なくとも1つの開口134からファイバ支持チャネル150内へと流体を配向するのを支援するよう構成され、これにより流体は、所定の流れ方向を有してファイバ支持チャネル150を出る。内側部材136を第1のプレート130と第2のプレート132との間に配置することにより、これらの間に間隙を提供する。いくつかの実施形態では、内側部材136は、非半径方向の流れを抑制することによって流体流を更に制御するための、複数の指状部(図示せず)を備えてよい。更に、内側部材136は、第1のプレート130と第2のプレート132との間に実質的な接触を提供するための封止部分として機能する。
ここで図3Aを参照すると、ファイバ支持チャネル150が更に詳細に図示されている。図3A及び3Bに示すように、ファイバ支持チャネル150は、ファイバスロット152及び流体スロット154を備える。ファイバスロット152は、プレート130、132の円弧状外側表面138、139から(例えば第1のプレート130及び第2のプレート132の円弧状外側表面138と円弧状外側表面139との間の開口160から)半径方向内向きに延在し、ファイバ支持チャネル境界155で終端する。この半径方向内向きの方向は、本明細書中では深さ方向とも呼ばれ、ここで深さとは、ファイバ支持チャネル内での素地光ファイバの位置を指す。ファイバ支持チャネル内での深さは、ファイバ支持チャネルに向かう開口に対して測定され、上記深さ方向は、開口からファイバスロットを通って流体スロットへ向かう方向である。深さ方向に対応する軸は、ファイバ支持チャネル内でセンタリングされた軸、又はファイバ支持チャネル内でセンタリングされた軸に対して平行な軸である。ある好ましい実施形態では、ファイバ支持チャネルは、ファイバ支持チャネル内でセンタリングされた軸に関して対称である。流体スロット154は、ファイバ支持チャネル境界155から半径方向内向きに延在し、内側部材136において終端する。動作時、流体は、内側部材136から流体スロット154及びファイバスロット152を通って半径方向外向きに流れることにより、ファイバスロット152内に配置された素地光ファイバ14のための流体クッションを提供でき、従って素地光ファイバ14は、流体軸受120と機械的に接触することなく、ドロー経路102に沿って配向できる(図1)。
ファイバ支持チャネル150は、チャネル幅WCだけ離間している第1のプレート130の内面142と第2のプレート132の内面144との間に延在する。図3Aに示す実施形態では、ファイバ支持チャネル150は先細になっており、従って開口160におけるチャネル幅WCは、ファイバ支持チャネル境界155におけるチャネル幅WCより大きく、ファイバ支持チャネル150のWCは半径方向に可変である(例えば光ファイバ10がファイバ支持チャネル150内のどこに垂直に位置決めされているかに応じて可変である)。
更に、図3Aは、ファイバ支持チャネル150のファイバスロット152内に配置された素地光ファイバ14を示し、また流体スロット154からファイバスロット152を通って流れる流体151(例えば空気)(例えば第1のプレート130及び/又は第2のプレート132の少なくとも1つの開口134から発する流体流)を示し、これは、素地光ファイバ14が流体軸受120を横断して輸送される際に素地光ファイバ14に接触する。この流体流により、素地光ファイバ14の下に正圧が生じ、これは、上向きの(半径方向外向きの)力を提供することによって、素地光ファイバ14の底部に対して作用してこれを支持し、これによって素地光ファイバ14を浮揚させて、素地光ファイバ14と流体軸受120との間の実質的な機械的接触を防止する。理論によって制限されることを意図したものではないが、圧力を最適化することによって、素地光ファイバ14をファイバ支持チャネル150のファイバスロット152内に位置決めして垂直に維持でき、従って、素地光ファイバ14がファイバ支持チャネル境界155とファイバ支持チャネル150の開口160との間に維持される。例えば、ファイバ支持チャネル150を横断する流体151は、素地光ファイバ14が流体軸受120を通って移動する際に光ファイバ10をファイバスロット152内に維持又は支持できる、一定の流体流量を有することができ、また、ファイバスロット152の設計、及び/又は以下で説明される1つ以上の圧力解放領域(例えば図4Bの圧力解放領域270)は、ファイバスロット152内での素地光ファイバ14の自己配置を促進できる。
引き続き図3Aを参照すると、いくつかの実施形態では、内面142、144の、ファイバ支持チャネル150のファイバスロット152内の部分は、先細になっているか又は傾斜していてよく、従ってファイバスロット152は、ファイバ支持チャネル150の開口160においてよりも、ファイバ支持チャネル境界155において(即ち素地光ファイバ14が流体軸受120を通過する際に形成する円弧状経路の内側において)、より狭いチャネル幅WCを備える。いくつかの実施形態では、内面142及び144はそれぞれ、0°より大きく10°未満の角度、例えば約0.3°〜約7°、約0.4°〜約3°等の角度で傾斜している。更に、ファイバ支持チャネル150及びファイバスロット152は、いずれの深さ及びいずれのチャネル幅WCを備えてよい。異なる実施形態では、ファイバスロット152の深さは、0.25インチ(6.35mm)超、又は0.40インチ(10.16mm)超、又は0.55インチ(13.97mm)超、又は0.70インチ(17.78mm)超、又は0.85インチ(21.59mm)超、又は0.25インチ(6.35mm)〜1.25インチ(31.75mm)、又は0.35インチ(8.89mm)〜1.05インチ(26.67mm)、又は0.45インチ(11.43mm)〜0.90インチ(22.86mm)、又は0.55インチ(13.97mm)〜0.85インチ(21.59mm)、又は0.60インチ(15.24mm)〜0.80インチ(20.32mm)、又は約0.65インチ(16.51mm)、又は約0.75インチ(19.05mm)である。(例えば図3Aに示すように)先細になったファイバ支持チャネル150を利用し、流体151をファイバ支持チャネル150内に、この流体がファイバ支持チャネル150の比較的狭い内側部分に入って、ファイバ支持チャネル150の比較的幅広い外側領域を出てゆくように、注入することにより、ファイバ支持チャネル150を通して放出される流体151のクッションが、素地光ファイバ14をファイバ支持チャネル150内で自己配置させることになる。
理論によって制限されることを意図したものではないが、流体151の所与の流量に関して、ファイバのドロー張力は、下向き(半径方向内向き)の力を提供し、これは流体151の流れが提供する上向き(半径方向外向き)の力に反作用する。ファイバ支持チャネル150内での素地光ファイバ14の位置は、ファイバのドロー張力が提供する下向きの力が、流体151の流れが提供する上向きの力と平衡する位置において、安定する。ファイバのドロー加工中に発生し得るドロー張力の変動は、素地光ファイバ14に作用する力の平衡を変化させ、素地光ファイバ14を安定した平衡位置から変位させる。ドロー張力が増大すると、素地光ファイバ14に対する下向きの力が増大し、素地光ファイバ14はその安定した平衡位置から、ファイバ支持チャネル150内のより深い位置へと(即ちファイバ支持チャネル150内における、開口160から更に離れた位置へと)下向きに変位される。ドロー張力が低下すると、素地光ファイバ14に対する下向きの力が低下し、素地光ファイバ14はその安定した平衡位置から、ファイバ支持チャネル150内のより浅い位置へと(即ちファイバ支持チャネル内における、開口160により近い位置へと)上向きに変位される。素地光ファイバ14の位置がその安定した平衡位置から下向きに変位すると、素地光ファイバ14はファイバ支持チャネル150と機械的に接触する場合があり、及び/又は素地光ファイバ14は流体スロット154に入る場合がある。素地光ファイバ14の位置がその安定した平衡位置から上向きに変位すると、素地光ファイバ14はファイバ支持チャネル150と機械的に接触する場合があり、及び/又は素地光ファイバ14はファイバ支持チャネル150を出て流体軸受120から脱出する。
本記載の複数の実施形態では、ファイバスロット152及び/又は流体スロット154は、ドロー張力の変動又はその他の変化によって引き起こされる、素地光ファイバ14の安定した平衡位置の上向き及び下向きの変位に反作用するよう設計される。例えば図3Aでは、ファイバスロット152はそれぞれ、第1のプレート130の先細になった内面142、及び第2のプレート132の先細になった内面144によって画定される。ファイバのドロー張力が増大すると、素地光ファイバ14に対する下向きの力が増大し、素地光ファイバ14はファイバスロット152内で下向きに(例えば半径方向内向きに)移動することになる。張力によって誘発された素地光ファイバ14の下向きの変位は、素地光ファイバ14がファイバスロット152内の更に深い位置(下向きに)移動するに従って、流体151が提供する上向きの力の増大によって補償される。ファイバスロット152内での流体151の流れパターンは、素地光ファイバ14を支持する(浮揚させる)部分と、素地光ファイバ14の周囲を流れる部分とを含む。ファイバスロット152から流体スロット154へと供給される流体151の所与の流量(又は圧力)に関して、流体151の流れパターンの、素地光ファイバ14の周囲を流れる部分は、素地光ファイバ14と内面142及び144との間の間隙に依存する。内面142及び144の先細形状により、素地光ファイバ14と内面142及び144との間の間隙は、ファイバスロット152内の素地光ファイバ14の位置と共に変化する。素地光ファイバ14がファイバスロット152内の更に深い位置に移動すると、素地光ファイバ14と内面142及び144との間の間隙は狭くなる。これにより、流体151の流れパターンの、素地光ファイバ14の周囲を流れる部分が削減され、流体151の流れパターンの、素地光ファイバ14を支持する部分が増大する。その結果、素地光ファイバ14がファイバスロット152内の更に深い位置に移動すると、素地光ファイバ14に作用する流体151の上向きの力(圧力)が増大して、ドロー張力の増大によって引き起こされる素地光ファイバ14の下向きの変位に反作用する。同様に、ドロー張力が低下すると、張力によって誘発された素地光ファイバ14に対する下向きの力は低下し、素地光ファイバ14はファイバスロット152内で上向きに(半径方向外向きに、より浅い深さへと)移動する。素地光ファイバ14がファイバスロット152内で上向きに移動すると、素地光ファイバ14と内面142及び144との間の間隙は増大し、流体151の流れパターンのうちのより大きな部分が、素地光ファイバ14の周囲を流れる。素地光ファイバ14を浮揚させるために作用する流体151の上向きの力(又は圧力)は、これに対応して低下して、張力によって誘発された素地光ファイバ14の上向きの変位を補償する。このように、張力によって誘発された素地光ファイバ14の変位は、素地光ファイバ14の位置がファイバスロット152内で変化する際に流体151が提供する上向きの力を調整することによって、補償される。張力によって誘発された下向きの力と、流体151が提供する上向きの力との間の平衡が再び確立されると、新たな安定化された平衡位置が得られる。ファイバドロープロセスの経過を通して、ドロー張力は経時的に変化するため、上向きの力と下向きの力とが自己補償的に常に平衡を取り直し、ファイバスロット152内における素地光ファイバ14の安定した位置を維持する。下向きの(半径方向内向きの)力と上向きの(半径方向外向きの)力との変動及び再平衡化による張力の補償は、本明細書で開示される流体軸受120の実施形態の特徴である。張力の補償を達成する流体軸受120の様々な設計を以下に記載する。
いくつかの実施形態では、素地光ファイバ14は、ファイバスロット152内のある垂直位置に配置されていてよく、この垂直位置は、素地光ファイバ14の直径の約1〜2倍、例えば素地光ファイバ14の直径の約1〜1.75倍、素地光ファイバ14の直径の約1〜1.5倍等の幅を有する。理論によって制限されることを意図したものではないが、素地光ファイバ14を、ファイバスロット152内のこのような比較的狭い領域に配置することにより、素地光ファイバ14は、ベルヌーイ効果により、動作中に内面142と内面144との間で自然にセンタリングされる。例えば、素地光ファイバ14が内面144に近づき、内面142から離れると、流体151の速度は、内面142に最も近い位置で増大し、内面144に最も近い位置で低下する。ベルヌーイ効果によると、流体の速度の増大は、圧力の低下と同時に発生する。その結果、内面144付近の減少した流体流によって引き起こされる、より高い圧力が、素地光ファイバ14をファイバスロット152の中央へと押し戻すことになる。このように、少なくとも実質的には、ファイバをドロー加工している間(即ち素地光ファイバ14がドロー経路102に沿って移動しながらファイバ支持チャネル150を横断している間(図1))に、ファイバの周囲を通過してファイバ支持チャネル150を出る流体の流れによるベルヌーイ効果によって、素地光ファイバ14をファイバ支持チャネル150内でセンタリングできる。
これもまた理論によって制限されることを意図したものではないが、このようなセンタリングは、ファイバに側部から衝突する流体のいずれの流れを利用する必要なしに行われ、例えば内面142又は144から発する流体流の噴射は利用されない。ファイバ支持チャネル150を通って(例えば素地光ファイバ14が配置されたファイバスロット152を通って)移動する流体の流れの速度を好ましく調整することにより、素地光ファイバ14を、上記ファイバの全体がファイバスロット152(例えば図3Aに示されているファイバ支持チャネル150の先細部分)内となるように維持する。更に、素地光ファイバ14が、素地光ファイバ14の直径の約1〜2倍の幅を有するファイバ支持チャネル150の領域内に位置するため、素地光ファイバ14は、(選択によってはファイバの支持に使用される場合もある空気力学的抗力ではなく、これとは反対に)素地光ファイバ14の下方に存在する圧力差によって支持される。流体の圧力差によって素地光ファイバ14をファイバ支持チャネル150内で支持する、又は浮揚させることにより、空気力学的抗力を用いてファイバを浮揚させる場合に比べて、使用される流体流をはるかに少なくすることができる。
更に、ファイバ支持チャネル150は、ファイバスロット152内で素地光ファイバ14を自己配置させるように張力の補償を提供するために、先細になったファイバスロット152を備えるが、以下で更に詳細に説明されるような別のファイバスロットの設計及び構成によって張力の補償を提供するための、流体軸受120の他の実施形態も考えられる。例えばこれらの実施形態のうちのいくつかは、張力の補償のために、第1のプレート130及び/又は第2のプレート132内に配置された、1つ以上の圧力解放領域(例えば図4Bの流体軸受220の実施形態において図示されている圧力解放領域270)を備えてよい。しかしながら、流体軸受120が先細になったファイバスロット152を備える場合、圧力解放領域は任意であり、図3Bの流体軸受120の部分側面図に示すように、張力の補償を提供するために必要ではない。
ここで図4A及び4Bを参照すると、流体軸受220が図示されている。図4Aは流体軸受220の部分側面図を示し、図4Bは流体軸受220の部分正面図を示す。流体軸受220はファイバ支持チャネル250を備え、これは、第1のプレート230及び第2のプレート232の円弧状外側表面238、239からファイバ支持チャネル境界255まで半径方向内向きに延在するファイバスロット252と、ファイバスロット252から半径方向内側に位置決めされた流体スロット254とを備える。第1のプレート230は、内面242及び外面243を含む。第2のプレート232は、内面244及び外面245を含む。流体軸受220はまた、第1のプレート230と第2のプレート232との間に配置されてこれらの間に間隙を設ける、内側部材236も含む。図4Aに示すように、ファイバスロット252のチャネル幅WCは、ファイバスロット252の深さを通して一定であり、ここで深さとは、円弧状外側表面238、239の間の空間によって画定される開口260からの、半径方向内向き方向の位置を指す。例えば、ファイバスロット252のチャネル幅WCは、開口260及びファイバ支持チャネル境界255において同一である。よって、ファイバ支持チャネル250を通る流体流によって引き起こされる圧力差は、ファイバスロット252内での素地光ファイバ14の垂直位置が変化する際に、チャネル幅WCの変化によって変化しない。
その代わりに、ここで図4Bを参照すると、流体軸受220は圧力解放領域270を備え、これは、第1のプレート230を内面242から外面243まで通って、及び/又は第2のプレート232を内面244から外面245まで通って延在する、複数の逃し通気管272を備える。図4Bは、第1のプレート230が逃し通気管272を有する圧力解放領域270を含む一実施形態における、第1のプレート230の外面243を示す。図4Bに示すように、複数の逃し通気管272は、第1のプレート230内で方位角方向に離間している。図4Bはまた、逃し通気管272に対する素地光ファイバ14の例示的な位置を示す。素地光ファイバ14のいくつかの部分は、逃し通気管272に隣接してファイバスロット252内に配置され、素地光ファイバ14の他の部分は、内面242に隣接してファイバスロット252内に配置される。一実施形態では、第2のプレート232は同様に構成され、従って逃し通気管272を有する方位角方向に離間した圧力解放領域270を含む。動作時、ファイバスロット252を通って流れる流体251の一部は、逃し通気管272を通って流体軸受220を出ることができる。この実施形態では、ファイバスロット252内の間隙流(例えば素地光ファイバ14と、ファイバスロット252を画定する内面242、244との間の流れ)が依然として発生し、これにより、図3Aに関して上で更に詳細に説明したように、ファイバスロット252内での素地光ファイバ14の位置を維持するために必要な上向きの力及びセンタリング力が生成される。
図4A及び4Bの実施形態では、張力の補償(例えば、素地光ファイバ14に印加されるドロー張力の変化に応答した、ファイバスロット252内での深さ(半径方向内向き)方向の素地光ファイバ14の自己配置)は、流体251の流れパターンの、圧力逃し通気管272を通って流れる部分の変化によって達成される。特に、素地光ファイバ14が(例えばドロー張力の低下によって)ファイバスロット252内で上向きに移動すると、逃し通気管272の、素地光ファイバ14の下方の領域が増大する。流体251のある一定の流量(又は圧力)に関して、逃し通気管272の、素地光ファイバ14の下方の領域が増大すると、流体251の流れパターンのうちの大きな部分が逃し通気管272を通過し、流体251の流れパターンのうちの小さな部分がファイバスロット252内で素地光ファイバ14を支持する(浮揚させる)。その結果、張力によって誘発された素地光ファイバ14の上向きの変位に反作用するための、素地光ファイバ14に作用する流体251の上向きの力が低下する。素地光ファイバ14がファイバスロット252内で上向きに移動すると、張力によって誘発された上向きの変位に反作用するための、素地光ファイバ14に作用する流体251の圧力が低下する。反対に、素地光ファイバ14が(例えばドロー張力の増大によって)ファイバスロット252内で下向きに移動すると、逃し通気管272の、素地光ファイバ14の下方の領域が減少する。その結果、流体251の流れパターンのうちの小さな部分が逃し通気管272を通過し、流体251の流れパターンのうちの大きな部分が素地光ファイバ14を支持し(浮揚させ)、張力によって誘発された素地光ファイバ14の下向きの変位に反作用するための、素地光ファイバ14に作用する流体251の上向きの力が増大する。素地光ファイバ14がファイバスロット252内で下向きに移動すると、張力によって誘発された下向きの変位に反作用するための、素地光ファイバ14に作用する流体251の圧力が増大する。
ある例示的な例として、流体軸受220は:約3インチ(7.62cm)の半径と;素地光ファイバ14をファイバスロット252内でセンタリングしたときに、例示的な素地光ファイバ14と各内面242、244との間の間隙が約0.0005インチ(12.7μm)となるようにサイズ設定された、一定のチャネル幅WCを有するファイバスロット252とを備える。例示的な流体軸受220は、内面242、244からプレート230、232を通って外面243、245まで延在する、複数の逃し通気管272を備える。例示的な逃し通気管272は、半径方向の高さが約0.030インチ(0.762mm)、方位角方向の幅が0.006インチ(152.4μm)であり、内面242、244と外面243、245との間の厚さが約0.3インチ(7.62mm)であり、方位角方向に例えば約4°ずつ離間している。この例示的な例では、素地光ファイバを200グラムの張力でドロー加工する場合、素地光ファイバはファイバスロット252内において、逃し通気管272の底部の垂直位置に位置決めされることになり、素地光ファイバを10グラムの張力でドロー加工する場合、素地光ファイバはファイバスロット252内において、逃し通気管272の頂部の垂直位置に位置決めされることになる。
ここで図5A〜5Cを参照すると、流体軸受320が図示されている。図5Aは流体軸受320の部分側面図を示し、図5Bは流体軸受320の部分正面図を示し、図5Cは流体軸受320の部分上面図を示す。図4A及び4Bの流体軸受220と同様に、流体軸受320はファイバ支持チャネル350を備え、これは、第1のプレート330及び第2のプレート332の円弧状外側表面338、339からファイバ支持チャネル境界355まで半径方向内向きに延在するファイバスロット352と、ファイバスロット352から半径方向内側に位置決めされた流体スロット354とを備える。流体軸受320はまた、第1のプレート330と第2のプレート332との間に配置されてこれらの間に間隙を設ける、内側部材336も含む。図5Aに示すように、ファイバスロット352のチャネル幅WCは、ファイバスロット352の深さを通して一定である。よって、ファイバ支持チャネル350を通る流体流によって引き起こされる圧力差は、ファイバスロット352内での素地光ファイバ14の垂直位置が変化する際に、チャネル幅WCの変化によって変化しない。
その代わりに、図5A及び5Cに示すように、流体軸受320は、圧力逃し領域370を含み、これは、プレート330、332の内面342、344のうちの一方又は両方の中へと延在する逃しスロット374を備えるが、逃しスロット374は、図4Bの逃し通気管272とは違って、内面342、344を部分的にしか貫通せず、プレート330、332の外面343、345まで延在しない。図5Bに示されている第1のプレート330の外面343によって例示されるように、逃しスロット374は、第1のプレート330を通って外面343まで延在しない。その代わりに、図5A及び5Cに示すように、逃しスロット374は、ファイバ支持チャネル境界355と円弧状外側表面338、339との間の複数の方位角方向に離間した位置において、内面342、344内へと延在し、素地光ファイバ14によって妨げられない流体経路を提供する。更に、図5A及び5Cに示されている実施形態では、逃しスロット374には角度が付けられており、従って逃しスロット374は、円弧状外側表面338、339に近い位置にあるほど、内面342、344内へと延在する。しかしながら、直線状の逃しスロット374(即ち半径方向において一定の断面積を有する逃しスロット374)も考えられる。動作時、流体は、ファイバスロット352へと加えられた流体351のいずれの所与の圧力に関して、逃しスロット374に接触すると、逃しスロット374から流出し、従って流体軸受320から流出するため、素地光ファイバ14をファイバスロット352内で支持する位置が高いほど(例えば素地光ファイバ14がファイバ支持チャネル350の開口360に近づくほど)、流体圧力は小さくなり、よって素地光ファイバ14に作用する流体351による上向きの力が小さくなる。
理論によって制限されることを意図したものではないが、素地光ファイバ14がファイバスロット352内の高い位置にあるほど、逃しスロット374の、素地光ファイバ14の下方の領域は大きくなり、流体351の流れパターンの、逃しスロット374を通過する部分が増大する。その結果、流体351の流れパターンの、素地光ファイバ14を支持する(浮揚させる)部分は減少し、素地光ファイバ14に作用する流体351由来の上向きの力(圧力)は低下する。素地光ファイバ14がファイバスロット352内で上向きに移動すると、張力によって誘発された上向きの変位に反作用するための、素地光ファイバ14に作用する流体351の力(圧力)は低下する。反対に、素地光ファイバ14がファイバ支持チャネル350内の低い位置にあるほど、逃しスロット374の、素地光ファイバ14の下方の領域は小さくなり、流体351の流れパターンの、逃しスロット374を通過する部分が減少する。その結果、流体351の流れパターンの、素地光ファイバ14を支持する(浮揚させる)部分は増大し、素地光ファイバ14に作用する流体351由来の上向きの力(圧力)は増大する。素地光ファイバ14がファイバスロット352内で下向きに移動すると、張力によって誘発された下向きの変位に反作用するための、素地光ファイバ14に作用する流体351の圧力が増大する。このように、ファイバスロット352の内面342、244が互いに対して平衡である実施形態においても、素地光ファイバ14に対するドロー張力が変化する際に、素地光ファイバ14をファイバスロット内352に保持できる。というのは、素地光ファイバ14がファイバスロット352内で上方に(例えば半径方向外向きに)移動すると、より多くの流体が逃しスロット374を通って出てゆくことにより、素地光ファイバ14の下側の圧力差が減少し、素地光ファイバ14がファイバスロット352内で上向きに移動するのが停止されるためである。
ある例示的な例として、流体軸受320は:約3インチ(7.62cm)の半径と;素地光ファイバ14をファイバスロット352内でセンタリングしたときに、例示的な素地光ファイバ14と各内面342、344との間の間隙が約0.0005インチ(12.7μm)となるようにサイズ設定された、一定の幅WCを有するファイバスロット352とを備える。例示的な流体軸受320はまた、プレート330、332の内面342、344内へと延在する、複数の逃しスロット374を含み、これらは、半径方向の高さが約0.025インチ(0.635mm)、方位角方向の幅が0.015インチ(381μm)であり、円弧状外側表面338、339(例えば最も深い点)において内面342、344内へ約0.01インチ(0.254mm)の深さまで延在し、方位角方向に例えば約4°ずつ離間している。この例示的な例では、素地光ファイバを200グラムの張力でドロー加工する場合、素地光ファイバはファイバスロット352内において、逃しスロット374の底部の垂直位置に位置決めされ、素地光ファイバを10グラムの張力でドロー加工する場合、素地光ファイバはファイバスロット352内において、逃しスロット374の頂部の垂直位置に位置決めされる。
ここで図6A及び6Bを参照すると、流体軸受420が図示されている。図6Aは流体軸受420の部分側面図を示し、図6Bは流体軸受420の部分正面図を示す。図3A〜5Cの流体軸受120、220及び320と同様に、流体軸受420はファイバ支持チャネル450を備え、これは、第1のプレート430及び第2のプレート432の円弧状外側表面438、439からファイバ支持チャネル境界455まで半径方向内向きに延在するファイバスロット452と、ファイバスロット452から半径方向内側に位置決めされた流体スロット454とを有する。流体軸受420はまた、第1のプレート430と第2のプレート432との間に配置されてこれらの間に間隙を設ける、内側部材436も含む。図6Aに示すように、ファイバスロット452のチャネル幅WCは、ファイバスロット452の深さを通して一定である。よって、ファイバ支持チャネル450を通る流体流によって引き起こされる圧力差は、ファイバスロット452内での素地光ファイバ14の垂直位置が変化する際に、チャネル幅WCの変化によって変化しない。
その代わりに、図6A及び6Bに示すように、流体軸受420は圧力解放領域470を含み、これは、ファイバ支持チャネル450のファイバスロット452の半径方向位置において第1のプレート430及び第2のプレート432の内面442、444内に配置された、1つ以上の多孔質材料領域476を備え、これにより、流体は、ファイバ支持チャネル450の内面442、444を通り、流体軸受420の外面443、445を通って出ることができる。第1のプレート430の外面443が図6Bに図示されている。1つ以上の多孔質材料領域476は、焼結プロセス中に細孔が金属内に閉じ込められるように金属のベッドを焼結することによって形成されたもの等の、多孔質金属媒体を含んでよい。このような多孔質金属媒体は例えば、Applied Porous Technologies(米国コネチカット州タリフヴィル)から入手できる。多孔質媒体の他の実施形態としては、セラミック多孔質媒体が挙げられる。理論によって制限されることを意図したものではないが、流体は多孔質材料領域476を通ってファイバ支持チャネル450から流出することになるため、ファイバ支持チャネル450を通る流体流が少なくなり、従って、素地光ファイバ14がファイバ支持チャネル450内で上向きに(半径方向外向きに)移動する際に素地光ファイバ14を支持するための流体の力(圧力)が小さくなる。その結果、素地光ファイバ14に対するドロー張力が低下して素地光ファイバ14の上向きの変位が誘発された場合に、図6Aに示すようにファイバスロット452を形成する内面442、444が互いに対して平行である場合でも、素地光ファイバ14をファイバスロット452内に保持できる。素地光ファイバ14がファイバスロット452内で上向きに(例えば半径方向外向きに)移動すると、流体451のうちの比較的多くが1つ以上の多孔質材料領域476を通って出てゆくことにより、素地光ファイバ14の下側の圧力差が減少し、素地光ファイバ14がファイバスロット452内で上向きに(例えば半径方向外側に)移動するのが停止される。素地光ファイバ14がファイバスロット452内で上向きに移動すると、流体451の流れパターンの比較的大きな部分が多孔質材料領域476を通過し、流体451の流れパターンの比較的小さな部分が素地光ファイバ14を支持する(浮揚させる)。その結果、張力によって誘発された素地光ファイバ14の上向きの変位に反作用するための、素地光ファイバ14に作用する流体451由来の上向きの力(圧力)が低下する。素地光ファイバ14がファイバスロット452内で上向きに移動すると、張力によって誘発される上向きの変位に反作用するための、素地光ファイバ14に作用する流体451の力(圧力)は低下する。同様に、ドロー張力が増大すると、ファイバスロット452内での素地光ファイバ14の下向きの変位が発生する。素地光ファイバ14がファイバスロット452内で下向きに移動すると、流体451の流れパターンの比較的小さな部分が多孔質材料領域476を通過し、流体451の流れパターンの比較的大きな部分が素地光ファイバ14を支持して(浮揚させて)、張力によって誘発される下向きの変位に反作用するように作用する上向きの力(圧力)を提供する。素地光ファイバ14がファイバスロット452内で下向きに移動すると、張力によって誘発される下向きの変位に反作用するための、素地光ファイバ14に作用する流体451の力(圧力)が増大する。
再び図1〜6Bを参照して、光ファイバ生産システム100が上述の様々な構成を有する流体軸受を備えてよく、更に光ファイバ生産システム100のいずれの単一の流体軸受が、これらの構成のいずれの組み合わせを備えてよいことを理解されたい。動作時、各流体軸受120、220、320、420は、張力の補償を達成してファイバスロット152、252、352、452内に素地光ファイバ14を保持するよう設計された構成を備える。しかしながら、ファイバスロット152、252、352、452内での素地光ファイバ14の垂直方向(例えば半径方向)の位置の急速な変動により、素地光ファイバ14がファイバスロット152、252、352、452を出てしまう場合がある。例えば、素地光ファイバ14の急速な半径方向上向きの移動により、素地光ファイバ14が開口160、260、360、460から出る場合があり、また急速な半径方向下向きの移動により、素地光ファイバ14が流体スロット154、254、354、454に機械的に接触する又は入る場合がある。特に、流体スロット154、254、354、454の幅が素地光ファイバ14の直径より小さい場合には、素地光ファイバ14が流体スロット154、254、354、454に接触する場合があり、流体スロット154、254、354、454の幅が素地光ファイバ14の直径より大きい場合には、素地光ファイバ14が流体スロット154、254、354、454に入る場合がある。
理論によって制限されることを意図したものではないが、素地光ファイバの急速な垂直方向の移動は、ドロー張力の急速な変化(例えば増大又は減少)、素地光ファイバの直径の変化、及び素地光ファイバの振動によって引き起こされ得、上記振動は、流体軸受の個数が多い光ファイバ生産システムの実施形態において増大し得る。理論によって制限されることを意図したものではないが、流体軸受の間の光ファイバの複数の部分(例えば異なる複数の「ファイバ脚部(fiber leg」)は、別個の固有振動数を有する複数の連結された振動発振器を形成し得、上記固有振動数は、ドロー経路に沿った「ファイバ脚部」の個数の増加によって増幅され得る。更に、ドロー張力の増大によって素地光ファイバの垂直位置がファイバスロット内で急速に落下すると、素地光ファイバに対する下向きの力が慣性の影響で瞬間的に増補され得(例えば増大し得)、急速な高さの変化が更に悪化する。
急速な垂直移動は、入口及び出口のノッチ(即ち素地光ファイバがファイバ支持チャネルに90°で出入りするように構成された、ファイバ支持チャネルの断面方向の切り欠き部)を有する流体軸受、例えば米国特許第7,937,971号明細書(この特許文献は参照によりその全体が本出願に援用される)に記載の流体軸受の実施形態にとって、特に問題となる。理論によって制限されることを意図したものではないが、素地光ファイバの、流体軸受の入口のすぐ上流、及び流体軸受の出口のすぐ下流の部分は、素地光ファイバの、ファイバ支持チャネル内に配置された部分に対して、軸方向の剛度によってしっかりと連結されているが、素地光ファイバのこれらの外側に位置する部分には、上向きの力が印加されない。というのは、これらの部分は流体軸受の外側にあり、浮揚させる作用を有する流体流を受けていないためである。これにより、素地光ファイバの、流体軸受の流体スロット内にある部分に関して、上向きの力に対する有効なファイバの慣性の比が増大し、従って、素地光ファイバがファイバ支持チャネルに機械的に接触する及び/又は入る蓋然性が高くなる。
素地光ファイバと流体スロットとの間の機械的接触(例えば素地光ファイバと、内壁のうちの流体スロットを画定する部分との機械的接触)は、素地光ファイバに損傷を与える場合があり、これはファイバの強度の低下、及び場合によってはファイバの破損を引き起こす。素地光ファイバがすぐに破損しない場合であっても、流体スロットとの機械的接触は、素地光ファイバの表面に、後続の引張試験中に素地光ファイバの破損を発生させる程度に十分大きな傷を発生させることが多い。素地光ファイバの破損により、結果として得られるファイバの長さが短くなり(顧客にとって望ましくないものとなり)、またファイバドロープロセスの停止及び再開が必要となる。更に、破損前の引張試験中に販売可能な最小の長さに到達しなければ、破損前のファイバの全長は役に立たないものとなり得る。また、張力の変動によって流体スロット内への素地光ファイバの下向きの変位が引き起こされることも望ましくない。流体スロットはほとんどの場合、対向する内側表面間に一定の幅を有し、これは即ち、素地光ファイバが流体スロット内のより深い位置へと移動する際に、素地光ファイバに作用する上向きの力(圧力)の変化が発生しないことを意味する。その結果、素地光ファイバが流体スロットに入ると、流体スロット内へのファイバの下向きの変位を誘発した張力又は張力の変化によって、ファイバが流体スロットの底面に接触しやすくなる。よって、素地光ファイバが流体スロットに入る又は機械的に接触する事例を減少させるように、流体軸受を修正することが望ましい。
ここで図7A〜11Bを参照すると、ファイバ支持チャネルの流体スロットに入る又は機械的に接触する蓋然性を低下させるよう構成された、流体軸受の実施形態が図示されている。例えば図7A〜11Bの実施形態では、流体軸受は、張力の変動によって引き起こされる下向きの変位に対する流体の抵抗を増大させるよう設計された、代替的な流体スロット及び/又は圧力解放領域の構成を備える。下向きの変位に対する抵抗は、素地光ファイバを半径方向内向きの方向に、ファイバスロット内のより深い位置まで移動させるために必要な、単位距離あたりの仕事に対応する。単位距離あたりの仕事が増大するに従って、素地光ファイバをその安定した平衡位置からファイバスロット内のより深い位置へと変位させるために必要な張力の変動が増大する。換言すれば、下向き方向の単位距離あたりの仕事が増大するに従って、張力の所与の変動によって引き起こされる、張力によって誘発される下向きの変位が減少し、これにより、ファイバスロット内での素地光ファイバの位置の一貫性が増大し、また素地光ファイバが流体スロットに入る蓋然性が低下する。
一実施形態では、所与の深さ、開口における所与の幅、及びファイバ支持チャネル境界における所与の幅を有するファイバスロット内のより深い位置へとファイバが移動するために必要な単位距離あたりの仕事は、同一の深さ、開口における同一の幅、及びファイバ支持チャネル境界における同一の幅を有する、一定の角度で先細になった内側表面を有する基準ファイバスロット構成(例えば図3A(これは、開口160とファイバ支持チャネル境界155との間に一定の勾配又は角度を有する、ファイバスロット152のための先細になった内側表面142、144を示す)に示されているタイプのファイバスロット設計)に対して、増大する。理論によって制限されることを意図したものではないが、素地光ファイバをファイバスロットの頂部から底部まで移動させるために必要な単位距離あたりの平均仕事が、素地光ファイバが(例えば上述のような、張力によって誘発される下向きの変位によって)ファイバスロット内で下向きに移動する際の素地光ファイバの瞬間的な運動エネルギより大きい場合、素地光ファイバは流体スロットに入らず、又は流体スロットに機械的に接触しない。
例えば、図12Aを参照する。図12Aは、2つの設計のファイバスロット(ファイバスロットS1及びファイバスロットS2)に関する力曲線を示すグラフ50である。力曲線は、ファイバスロット内での素地光ファイバの垂直(例えば半径方向)位置と、素地光ファイバに作用する、浮揚させる作用を有する流体の上向きの力との間の関数的関係を表す。トレース55はファイバスロットS1に関する力曲線を示し、トレース60はファイバスロットS2に関する力曲線を示す。ファイバスロットS1及びファイバスロットS2の設計は、図12Bに示されている。上向きの力は、流体流の、各ファイバスロットS1及びS2内に位置決めされた素地光ファイバに作用する部分に関連する力である。例示を目的として、ファイバスロットS1、ファイバスロットS2、及びドロー張力は、素地光ファイバがファイバスロットS1の頂部又はファイバスロットS2の頂部に位置決めされているとき、素地光ファイバに作用する流体の上向きの力が10gとなり、素地光ファイバがファイバスロットS1の底部又はファイバスロットS2の底部に位置決めされているとき、素地光ファイバに作用する流体の上向きの力が200gとなるように、構成した。10g〜200gの流体の上向きの力は、実際の動作時に一般的に出現する。
ファイバスロットの頂部は、ファイバスロットの開口(例えば図3A、4A、5A、及び6Aそれぞれの開口160、260、360、及び460)に対応する。ファイバスロットの底部は、ファイバスロットと流体スロットとの間の界面を表すファイバ支持チャネル境界(例えば図3A、4A、5A、及び6Aそれぞれのファイバ支持チャネル境界155、255、355、及び455)に対応する。ファイバの位置は、図12Aでは「ファイバスロット内での深さ(Depth in Fiber Slot)」と呼ばれ、ファイバスロットの頂部からファイバスロットの底部まで延在する。ファイバスロットの頂部の中央からファイバスロットの底部の中央への方向が、深さ方向である。例示を目的として、ファイバスロット内でのファイバの位置は任意単位で表現されている。例示的なファイバスロットS1及びS2の性能の基礎となる、本明細書で開示される原理は、全体として、いずれの深さ又は幅のファイバスロットに対して、及び図12Aに示す例示的な10g〜200gの態様以外の流体の上向きの力の態様に対して、適用される。
ファイバスロットS1は、図12Bにおいて実線として図示され、図3Aに示したタイプの設計を有する。ファイバスロットS1の内面は、頂部から底部に向かって一定の角度又は一定の勾配で先細になっている。ファイバスロットS1の底部は、先細部分の終端地点に存在し、これはファイバ支持チャネル境界及び流体スロットへの入口に対応する。ファイバスロットS2は、図12Bにおいて破線として図示され、頂部から底部に向かって一定の角度又は一定の勾配の内面を有する。より具体的には、ファイバスロットS2は、頂部に隣接する上側セクションS2Aと、底部に隣接する下側セクションS2Bとを含む。各セクションS2A及びS2Bは、一定の角度又は一定の勾配で先細になっているが、上記一定の角度及び一定の勾配は、セクションS2A及びS2Bに関して異なる。セクションS2A及びS2Bに関する力曲線は、図12Aにおいてそれぞれトレース65及び70として示されている。例示を目的として、ファイバスロットS1及びS2は、共通の流体スロットFSを有する。
ファイバスロットS2の内面の、セクションS2A及びS2Bに対応する部分は、本明細書ではファイバスロットS2の壁領域と呼ばれる。ファイバスロットS2の内面は、セクションS2Aに関連する壁領域と、セクションS2Bに関連する壁領域とを含み、ここで、セクションS2Aの壁領域の先細部分の角度及び勾配は、セクションS2Bの壁領域のものとは異なる。説明及び比較を目的として、先細部分の角度及び勾配は、ファイバスロットの中心軸に対する大きさに関して決定される。上記中心軸は、半径方向に延在し、ファイバスロットの幅方向においてセンタリングされている。上記中心軸に対して、セクションS2Aの壁領域の先細部分の角度は、セクションS2Bの壁領域の先細部分の角度より大きく、セクションS2Aの壁領域の勾配は、セクションS2Bの壁領域の勾配より大きい。
ファイバスロットS1及びS2は、同一の高さ(例えばファイバスロットの開口(頂部)とファイバ支持チャネル境界(底部)との間の同一の距離)、並びに頂部位置及び底部位置における同一の幅を有する。ファイバスロットS1及びS2は、素地光ファイバに作用する流体の上向きの力が、ファイバスロットS1及びS2の頂部(10g)及び底部(200g)において同一となるように構成される(図12Aを参照)。しかしながら、内面の形状の違いにより、頂部位置と底部位置との間の中間位置において素地光ファイバに作用する流体の上向きの力は、ファイバスロットS1及びS2に関して異なる。具体的には、ある所与の中間位置に関して、素地光ファイバに作用する流体の上向きの力は、ファイバスロットS1に関してよりもファイバスロットS2に関して大きい。流体の上向きの力は素地光ファイバの下向きの運動に抵抗するため、素地光ファイバをファイバスロット内の更に深い位置へと移動させるために必要な仕事は、ファイバスロットS1に関してよりもファイバスロットS2に関して大きい。流体の上向きの力に対抗して、素地光ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な全仕事は、ファイバスロット内での位置と、素地光ファイバの下向きの運動に対向する流体の上向きの力との間の関数的関係のグラフ表現の下側の面積によって与えられる。ファイバスロットS1に関して、素地光ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、力曲線55及び2つの座標軸によって囲まれた三角形の面積に対応する。ファイバスロットS2に関して、素地光ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、セクションS2A及びS2Bそれぞれに関する力曲線65及び70と、2つの座標軸とによって画定される、多角形の面積に対応する。
ファイバスロットS2に関する面積がファイバスロットS1に関する面積より大きいため、素地光ファイバをファイバスロットS2の頂部からファイバスロットS2の底部まで移動させるためには、素地光ファイバをファイバスロットS1の頂部からファイバスロットS1の底部まで移動させるために必要なものより大きな仕事が必要となる。よって、ドロー張力の瞬間的な増大によって誘発される下向きの変位を受けたとき、ファイバスロットS2内での素地光ファイバの位置は、ファイバスロットS1内においてよりも安定し、またファイバスロット又は流体スロットと機械的に接触する蓋然性が低くなる。
このように、理論によって制限されることを意図したものではないが、ファイバスロットS1及びS2の開口とファイバ支持チャネル境界との間のいずれの垂直位置における、ファイバスロットS2の力曲線の形状(流体の上向きの力に対する、半径方向のファイバ位置の関数的依存)により、ファイバスロット内の流体流による素地光ファイバに対する上向きの力は、ファイバスロットS1内においてよりもファイバスロットS2内において大きく、従って、距離にわたる力の積分(例えば力曲線の下側の面積に対応する仕事)は、ファイバスロットS1内においてよりもファイバスロットS2内において大きい。よって、素地光ファイバを開口からファイバ支持チャネル境界まで移動させるためには、ファイバスロットS1においてよりもファイバスロットS2において、大きな仕事が必要となる。換言すれば、ファイバスロットS2は、素地光ファイバがファイバスロット内のより深い位置へと移動して、ファイバが流体スロットに到達するまでに、素地光ファイバの瞬間的な運動エネルギをより多く散逸させることになり、従って、ファイバスロットS2内に配置された素地光ファイバは、ファイバスロットS1内に配置された素地光ファイバに比べて、流体スロットに入る又は機械的に接触する蓋然性がより低い。
更に、これもまた理論によって制限されることを意図したものではないが、ファイバ支持チャネルを通る流体流によって誘発される、光ファイバに対する上向きの力は、散逸性の力であり、従って、ファイバスロット内で素地光ファイバを下向きに移動させるために必要なエネルギは、経路に依存する。以下で説明する図7A〜11Bの各流体軸受は、流体の上向きの力に対するファイバ位置の関数的依存を提供するよう設計され、この関数的依存は、頂部位置から底部位置への一定の角度又は一定の勾配の先細部分と、頂部位置及び底部位置における同一の幅とを有する流体スロットの設計に対して、光ファイバを下向き方向に所与の距離だけ移動させるために必要な仕事を増大させる。従って、図7A〜11Bの流体軸受を用いると、(図12Aに示すファイバスロットS1の力曲線等の、ファイバスロットの頂部からファイバスロットの底部まで一定のテーパを有する力曲線として定義される)完全に直線状の力曲線を有する流体軸受設計と比較した場合に、素地光ファイバが流体スロットに入る又は機械的に接触するために必要な運動エネルギを(例えば約20%、又は約30%、又は約50%、又は約60%だけ)増大させることができる。更に、図12A及び12BのファイバスロットS2は、2勾配力曲線を備えるものとして図示されているが、力曲線の3つ、4つ、又はそれより多数の直線状セグメント(例えば力曲線内の3つ、4つ、又はそれより多数の勾配又はテーパ)、あるいは連続的に変化する凸状勾配の力曲線を備えるファイバスロットの設計が考えられる。換言すれば、力曲線の勾配の大きさが、ファイバ支持チャネル境界に近づくファイバスロット内の複数の位置において単調増加していれば、素地光ファイバが流体スロットに入る又は機械的に接触するために必要な仕事は大きくなる。
ファイバスロットS2に関して上述した、ファイバスロットS1と比較しての、下向きの変位の仕事の増大、ファイバ位置のより良好な安定性、及びファイバと流体スロットとの機械的接触の傾向の低減をもたらす原理は、凸状の力曲線を有するファイバスロット設計にも当てはまる。凸形状は、ファイバスロットの頂部及び底部における力が同一である完全に直線状の力曲線に対して、力曲線の下側の面積が増大した形状である。凸状力曲線は、直線状セグメント、湾曲したセグメント、又は直線状セグメントと湾曲したセグメントとの組み合わせを含むことができる。完全に直線状の力曲線に対して、凸状力曲線は、完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有する、直線状セグメント又は湾曲したセグメントを含む。力曲線又は力曲線セグメントを説明する目的のために、勾配は、上向きの力の関数としての、ファイバスロット内でのファイバの位置(これは半径方向位置に関して表現され、(例えば図12Aに示すように)ファイバスロットの頂部がファイバスロットの底部よりも大きな半径方向位置を有する)のプロットにおける力曲線又は力曲線セグメントの勾配を指す。勾配の大きさ(magnitude of slope又はslope magnitude)は、勾配の絶対値を指す。力曲線又は力曲線セグメントが急峻になるほど、(勾配の符号とは無関係に)勾配の大きさは大きくなる。直線状セグメントに関して、勾配はセグメントの勾配を指す。湾曲したセグメントに関して、勾配は、上記湾曲したセグメントの接線の勾配を指す。
直線状セグメント、又は湾曲したセグメントの接線の勾配は、上記直線状セグメント、又は湾曲したセグメントの上記接線の、ファイバスロットの中心軸に対する角度によって定義できる。直線状セグメント、又は湾曲したセグメントの接線の上記角度は、0°超、又は0.1°超、又は0.2°超、又は0.3°超、又は0.4°超、又は0°〜10°、又は0.1°〜9°、又は0.2°〜8°、又は0.3°〜7°、又は0.4°〜5°である。
図12Cは、直線状セグメントを有する凸状力曲線の例を示し、図12Dは、湾曲したセグメントを有する凸状力曲線の例を示す。図12C及び12Dでは、力曲線75は、基準として含まれている完全に直線状の力曲線である。完全に直線状の力曲線は、非凸状力曲線である。図12Cでは、力曲線76及び77は凸状力曲線であり、ファイバスロットの頂部及び底部において力曲線75と同一の力を有する。凸状力曲線76は2つの直線状セグメント(2つの勾配又は2つのテーパ)を有し、凸状力曲線77は3つの直線状セグメント(3つの勾配又は3つのテーパ)を有する。凸状力曲線77の下側の面積は、凸状力曲線76の下側の面積より大きく、凸状力曲線76の下側の面積は、完全に直線状の力曲線75の下側の面積より大きい。ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、凸状力曲線76に関してよりも凸状力曲線77に関して大きく、またファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、完全に直線状の力曲線75に関してよりも凸状力曲線76に関して大きい。更なる実施形態は、4つ以上の直線状セグメントを有する力曲線を含む。
一実施形態では、凸状力曲線は2つ以上の直線状セグメントを含み、ここで、直線状セグメントのうちの1つは、ファイバスロットの頂部及び底部において上記凸状力曲線と同一の力を有する完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有し、直線状セグメントのうちの別の1つは、ファイバスロットの頂部及び底部において上記凸状力曲線と同一の力を有する完全に直線状の力曲線の勾配の大きさより大きな勾配の大きさを有する。一実施形態では、完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有する直線状セグメントは、完全に直線状の力曲線の勾配の大きさより大きな勾配の大きさを有する直線状セグメントよりも、ファイバスロットの底部に近い。一実施形態では、完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有する直線状セグメントは、完全に直線状の力曲線の勾配の大きさより大きな勾配の大きさを有する直線状セグメントよりも、ファイバスロットの頂部に近い。
複数の直線状セグメントを有する凸状力曲線において、2つの隣接する直線状セグメントの角度の差は、0°超、又は0.1°超、又は0.2°超、又は0.3°超、又は0.4°超、又は0°〜10°、又は0.1°〜9°、又は0.2°〜8°、又は0.3°〜7°、又は0.4°〜5°である。
図12Dは、凸状力曲線78及び79を示す。凸状力曲線78及び79は、湾曲した力曲線である。凸状力曲線79の下側の面積は、凸状力曲線78の下側の面積より大きく、凸状力曲線78の下側の面積は、完全に直線状の力曲線75の下側の面積より大きい。ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、凸状力曲線78に関してよりも凸状力曲線79に関して大きく、またファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、完全に直線状の力曲線75に関してよりも凸状力曲線78に関して大きい。
一実施形態では、凸状力曲線は、2つ以上の点を含む湾曲した力曲線であり、ここで、点のうちの1つに対する接線は、ファイバスロットの頂部及び底部において上記凸状力曲線と同一の力を有する完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有し、点のうちの別の1つに対する接線は、ファイバスロットの頂部及び底部において上記凸状力曲線と同一の力を有する完全に直線状の力曲線の勾配の大きさより大きな勾配の大きさを有する。一実施形態では、完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有する点は、完全に直線状の力曲線の勾配の大きさより大きな勾配の大きさを有する点よりも、ファイバスロットの底部に近い。別の実施形態では、完全に直線状の力曲線の勾配の大きさより小さな勾配の大きさを有する点は、完全に直線状の力曲線の勾配の大きさより大きな勾配の大きさを有する点よりも、ファイバスロットの頂部に近い。
力曲線に沿った異なる複数の点における勾配が異なる少なくとも2つの接線を有する凸状の湾曲した力曲線において、上記少なくとも2つの接線の角度の差は、0°超、又は0.1°超、又は0.2°超、又は0.3°超、又は0.4°超、又は0°〜10°、又は0.1°〜9°、又は0.2°〜8°、又は0.3°〜7°、又は0.4°〜5°である。
図12E及び12Fは、非凸状力曲線の例を示す。完全に直線状の力曲線75は、非凸状力曲線の一例である。図12Eは、それぞれ2つ及び3つの直線状セグメントを有する非凸状力曲線81及び82を示す。非凸状力曲線82の下側の面積は、非凸状力曲線81の下側の面積より小さく、非凸状力曲線81の下側の面積は、完全に直線状の力曲線75の下側の面積より小さい。ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、非凸状力曲線81に関してよりも非凸状力曲線82に関して小さく、またファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、完全に直線状の力曲線75に関してよりも非凸状力曲線81に関して小さい。
図12Fは、1つ以上の湾曲したセグメントを有する非凸状力曲線83及び84を示す。凸状力曲線を有するファイバスロット及び非凸状力曲線を有するファイバスロットの頂部に同一の上向きの力が存在し、かつ凸状力曲線を有するファイバスロット及び非凸状力曲線を有するファイバスロットの底部に同一の上向きの力が存在する場合、非凸状力曲線を有するファイバスロット内でファイバを頂部から底部まで移動させるために必要な仕事は、凸状力曲線を有するファイバスロット内でファイバを頂部から底部まで移動させるために必要な仕事より小さい。
非凸状力曲線84の下側の面積は、非凸状力曲線83の下側の面積より小さく、非凸状力曲線83の下側の面積は、完全に直線状の力曲線75の下側の面積より小さい。ファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、非凸状力曲線83に関してよりも非凸状力曲線84に関して小さく、またファイバをファイバスロットの頂部からファイバスロットの底部まで移動させるために必要な仕事は、完全に直線状の力曲線75に関してよりも非凸状力曲線83に関して小さい。
図7A〜11B、及び13A〜14は、凸状力曲線を有するファイバスロット設計を示す。図7A及び7Bを参照すると、素地光ファイバ14を開口560からファイバ支持チャネル境界555まで移動させるために必要なエネルギを増大させるよう構成された流体軸受520が図示されている。特に、図7Aは流体軸受520の部分側面図を示し、図7Bは、第1のプレート530の外面543を示す流体軸受520の部分正面図を示す。図3A及び3Bの流体軸受120と同様に、流体軸受520はファイバ支持チャネル550を備え、これは、第1のプレート530及び第2のプレート532の円弧状外側表面538、539からファイバ支持チャネル境界555まで半径方向内向きに延在するファイバスロット552と、ファイバスロット552から半径方向内側に位置決めされた流体スロット554とを有する。流体軸受520はまた、第1のプレート530と第2のプレート532との間に配置されてこれらの間に間隙を設ける、内側部材536も含む。
図7Aに示すように、図3A及び3Bの流体軸受120と同様に、ファイバスロット552のチャネル幅WCはファイバスロット552の深さを通して可変であり、素地光ファイバ14がファイバ支持チャネル境界555に近づくに従って減少する。しかしながら、ファイバスロット552は内面542、544それぞれの2つのスロット壁領域542a、542b、544a、544bによって画定され、これらはZ軸(ファイバスロット552内での素地光ファイバ14の深さを画定する半径方向上向き/下向きの軸)に関して異なる角度で先細になっている。第1のスロット壁領域542a、544aは、それぞれ円弧状外側表面538、539から第2のスロット壁領域542b、544bまで延在し、第2のスロット壁領域542b、544bは第1のスロット壁領域542a、544aからファイバ支持チャネル境界555まで延在する。更に、内面542、544それぞれの第1のスロット壁領域542a、544aは第1の角度で先細になっており、内面542、544それぞれの第2のスロット壁領域542b、544bは第2の角度で先細になっており、上記第1の角度は、Z軸に関して上記第2の角度より大きい。換言すれば、第1のスロット壁領域542a、544aの勾配の大きさは、第2のスロット壁領域542b、544bの勾配の大きさより大きい。
ある例示的な例として、それぞれ開口160、560における等しいチャネル幅WC、及びファイバ支持チャネル境界155、555における等しいチャネル幅WCを備える、図3A及び3Bのファイバスロット152、並びに図7A及び7Bのファイバスロット552の実施形態では、ファイバスロット152、552内の流体流は、開口160、560において等しい上向きの力を誘発し、またファイバ支持チャネル境界155、555において等しい上向きの力を誘発する。しかしながら、ファイバスロット552を画定する複数のスロット壁領域542a、542b、544a、544b及びその勾配(ここで、ファイバ支持チャネル境界555に近い壁領域(例えば第2のスロット壁領域542b、544b)ほど勾配が小さい)により、開口560とファイバ支持チャネル境界555との間のファイバスロット552内の全ての位置において、より大きな上向きの力が流体流によって誘発され、従って、素地光ファイバ14が流体スロット552を通過して流体スロット554に機械的に接触する又は入るために必要な仕事の量は、ファイバスロット152よりも増大する。この増大した仕事の量は、ファイバスロット152の完全に直線状の力曲線に対する、ファイバスロット552に関連する凸状力曲線の結果である。更に、2つのスロット壁領域542a、542b、544a、544bが図示されているものの、いずれの個数のスロット壁領域であって、連続した各壁領域のうち、より低い(深い、半径方向内側に)あるものほど勾配の大きさが小さい、スロット壁領域が考えられることを理解されたい。
ここで図8A及び8Bを参照すると、素地光ファイバ14を開口660からファイバ支持チャネル境界655まで移動させるために必要なエネルギを増大させるよう構成された流体軸受620が図示されている。特に、図8Aは流体軸受620の部分側面図を示し、図8Bは、第1のプレート630の外面643を示す流体軸受620の部分正面図を示す。流体軸受620はファイバ支持チャネル650を備え、これは、第1のプレート630及び第2のプレート632の円弧状外側表面638、639からファイバ支持チャネル境界655まで半径方向内向きに延在するファイバスロット652と、ファイバスロット652から半径方向内側に位置決めされた流体スロット654とを有する。流体軸受620はまた、第1のプレート630と第2のプレート632との間に配置されてこれらの間に間隙を設ける、内側部材636も含む。図8Aに示すように、ファイバスロット652のチャネル幅WCは、ファイバスロット652の深さを通して一定である。例えば、ファイバスロット652のチャネル幅WCは、開口660及びファイバ支持チャネル境界655において同一である。
更に、流体軸受620は圧力解放領域670を備え、ファイバ支持チャネル650の内面642、644のうちの一方又は両方から外面(単一の外面643が図示されている)まで延在する、複数の逃し通気管672を備える。図8Bに示すように、複数の逃し通気管672は方位角方向に離間しており、これにより、素地光ファイバ14の、流体軸受620内に配置された部分が、逃し通気管672に隣接し、また素地光ファイバ14の部分が、ファイバスロット652を画定する内面642、644に隣接する。動作時、ファイバスロット652を通って流れる流体651の一部は、逃し通気管672を通って流れることにより、第1のプレート630及び第2のプレート632を通って流体軸受620を出ることができる。この実施形態では、ファイバスロット652内の間隙流(例えば素地光ファイバ14と、ファイバスロット652を画定する内面642、644との間の流れ)が依然として発生し、これにより、ファイバスロット652内に素地光ファイバ14を維持するために必要な上向きの力及びセンタリング力が生成される。
更に、図8Bに示す逃し通気管672は、可変である方位角方向の幅を備え、これにより各逃し通気管672は、頂部において(例えば円弧状外側表面638、639に近いほど)幅が広く、また底部において(例えばファイバ支持チャネル境界655に近いほど)幅が狭い。理論によって制限されることを意図したものではないが、底部において(例えばファイバ支持チャネル境界655に近いほど)よりも頂部において(例えば円弧状外側表面638、639に近いほど)大きい、可変である方位角方向の幅を備える逃し通気管672により、一定の方位角方向の幅を備える逃し通気管(例えば図4Bの逃し通気管272)によって誘発される上向きの力より大きな上向きの力が、開口660とファイバ支持チャネル境界655との間のファイバスロット652内の全ての位置において、流体流によって誘発され、従って素地光ファイバ14がファイバスロット652内で下向きに移動して流体スロット654に機械的に接触する又は入るために必要な仕事の量が増大する。
ある例示的な例として、流体軸受620は、約3インチ(7.62cm)の半径と、一定の幅WCを有するファイバスロット652とを備える。例示的な流体軸受620は、内面642、644からプレート630、632を通って外面(図8Bでは単一の外面643が図示されている)まで延在する、複数の逃し通気管672を含み、上記逃し通気管672は、頂部において、半径方向の高さが約0.030インチ(0.762mm)、方位角方向の幅が0.006インチ(152.4μm)であり、底部の一点に集束する。更に、内面642、644と外面との間の厚さは約0.3インチ(7.62mm)であり、方位角方向に約4°ずつ離間している。この例示的な例では、素地光ファイバを200グラムの張力でドロー加工する場合、素地光ファイバはファイバスロット652内において、逃し通気管672の底部と同一の垂直位置に位置決めされることになり、素地光ファイバを10グラムの張力でドロー加工する場合、素地光ファイバはファイバスロット652内において、逃し通気管672の頂部と同一の垂直位置に位置決めされることになる。
ここで図9A〜9Cを参照すると、素地光ファイバ14を開口760からファイバ支持チャネル境界755まで移動させるために必要なエネルギを増大させるよう構成された流体軸受720が図示されている。図9Aは流体軸受720の部分側面図を示し、図9Bは、第1のプレート730の外面743を示す流体軸受720の部分正面図を示し、図9Cは流体軸受720の部分上面図を示す。図5A〜5Cの流体軸受320と同様に、流体軸受720はファイバ支持チャネル750を備え、これは、第1のプレート730及び第2のプレート732の円弧状外側表面738、739からファイバ支持チャネル境界755まで半径方向内向きに延在するファイバスロット752と、ファイバスロット752から半径方向内側に位置決めされた流体スロット754とを有する。流体軸受720はまた、第1のプレート730と第2のプレート732との間に配置されてこれらの間に間隙を設ける、内側部材736も含む。図9Aに示すように、ファイバスロット752のチャネル幅WCは、ファイバスロット752の深さを通して一定である。
更に、図5A〜5Cの流体軸受320と同様に、流体軸受720は圧力逃し領域770を含み、これは、ファイバ支持チャネル境界755と円弧状外側表面738、739との間の複数の方位角方向に離間した位置において、プレート730、732の内面742、744内へと延在して、素地光ファイバ14によって妨げられない流体経路を提供する、逃しスロット774を含む。しかしながら、図5A〜5Cの逃しスロット374とは異なり、逃しスロット774は複数の逃しスロットセグメント774a、774bを備え、これらはそれぞれ、Z軸(例えば、素地光ファイバ14がファイバスロット752内でそれに沿って移動できる、ファイバスロット752内での深さに対応する半径方向上向き/下向きの軸)に関して異なる角度で先細になっている。第1の逃しスロットセグメント774aは、円弧状外側表面738、739から第2の逃しスロットセグメント774bまで延在する。第2の逃しスロットセグメント774bは、第1の逃しスロットセグメント774aからファイバ支持チャネル境界755まで延在する。更に、第1の逃しスロットセグメント774aは第1の角度で先細になっており、第2の逃しスロットセグメント774bは第2の角度で先細になっており、Z軸に関して、第1の角度は第2の角度より大きい。換言すれば、第1の逃しスロットセグメント774aの勾配は、第2の逃しスロットセグメント774bの勾配より大きい。
動作時、流体751は、ファイバスロット752へと加えられた流体751のいずれの所与の圧力に関して、逃しスロット774に接触すると、逃しスロット774から流出し、従って流体軸受720から流出するため、素地光ファイバ14をファイバスロット752内で支持する位置が高いほど(例えば素地光ファイバ14がファイバ支持チャネル750の開口760に近づくほど)、流体圧力は小さくなる。更に、逃しスロット774は、ファイバ支持チャネル境界755に近いほど勾配が低下する複数の逃しスロットセグメント774a、774bを備えるため、一定の勾配を有する同様のサイズの逃しスロット(例えば図5A〜5Cの逃しスロット374)に比べて、円弧状外側表面738、739にある開口760とファイバ支持チャネル境界755との間の流体流によって印加される上向きの力は増大し、従って、素地光ファイバ14がファイバスロット752を下向き方向に横断して流体スロット754に機械的に接触する又は入るために必要な仕事の量は増大する。更に、2つの逃しスロットセグメント774a、774bが図示されているが、いずれの個数の逃しスロットセグメントであって、連続した各逃しスロットのうち、より低く(深く)位置決めされた逃しスロットほど勾配が小さい、逃しスロットセグメント(例えばファイバ支持チャネル境界755に連続的に近づく逃しスロットセグメント)が考えられることを理解されたい。
ある例示的な例として、流体軸受720は:約3インチ(7.62cm)の半径と;素地光ファイバ14をファイバスロット752内でセンタリングしたときに、例示的な素地光ファイバ14と各内面742、744との間の間隙が約0.0005インチ(12.7μm)となるようにサイズ設定された、一定の幅WCを有するファイバスロット752とを備える。例示的な流体軸受720はまた、プレート730、732の内面742、744内へと延在する、複数の逃しスロット774を含み、これらは、半径方向の高さが約0.025インチ(0.635mm)、方位角方向の幅が0.015インチ(381μm)であり、円弧状外側表面738、739(例えば最も深い点)において内面742、744内へ約0.01インチ(0.254mm)の深さまで延在し、方位角方向に例えば約4°ずつ離間している。更に、逃しスロット774の第1の逃しスロットセグメント774aは、円弧状外側表面738、739から0.1インチ(0.254cm)の深さまで、(Z軸に関して)2.6°の角度で半径方向内向きに延在し、第2の逃しスロットセグメント774bは、第1の逃しスロットセグメント774aからファイバ支持チャネル境界755まで、(Z軸に関して)0.6°の角度で半径方向内向きに延在する。この例示的な例では、素地光ファイバをファイバスロット752の開口760からファイバ支持チャネル境界755まで移動させるには、単一の傾斜角を有する同様のサイズの逃しスロット(例えば図5A〜5Cの逃しスロット374)を有する流体スロットに比べて1.8倍の仕事が必要となる。
ここで図10A及び10Bを参照すると、素地光ファイバ14を開口860からファイバ支持チャネル境界855まで移動させるために必要なエネルギを増大させるよう構成された流体軸受820が図示されている。図10Aは流体軸受820の部分側面図を示し、図10Bは、第1のプレート830の外面843を示す流体軸受820の部分正面図を示す。図6A及び6Bの流体軸受420と同様に、流体軸受820はファイバ支持チャネル850を備え、これは、第1のプレート830及び第2のプレート832の円弧状外側表面838、839からファイバ支持チャネル境界855まで半径方向内向きに延在するファイバスロット852と、ファイバスロット852から半径方向内側に位置決めされた流体スロット854とを有する。流体軸受820はまた、第1のプレート830と第2のプレート832との間に配置されてこれらの間に間隙を設ける、内側部材836も含む。図10Aに示すように、ファイバスロット852のチャネル幅WCは、ファイバスロット852の深さを通して一定である。
更に、図6A及び6Bの流体軸受420と同様に、流体軸受820は圧力解放領域870を備え、これは、ファイバ支持チャネル850のファイバスロット852の半径方向位置において第1のプレート830及び第2のプレート832の内面842、844内に配置された、1つ以上の多孔質材料領域876を備え、これにより、流体851は、プレート830、832を内面842、844から外面843、845まで通って、ファイバスロット852から出ることができる。更に、図10Aに示すように、多孔質材料領域876は円弧状外側表面838、839に近い部分ほど幅が狭く、ファイバ支持チャネル境界855に近い部分ほど幅が広いため、ファイバスロット852の開口860に近い位置ほど(例えば素地光ファイバ14がファイバスロット852内で高い位置にあるほど)、より多くの流体851が多孔質材料領域876を通ってファイバスロット852を出ることができ、ファイバスロット852のファイバ支持チャネル境界855に近い位置ほど(例えば素地光ファイバ14がファイバスロット852内で低い(深い)位置にあるほど)、多孔質材料領域876を通ってファイバスロット852を出ることができる流体851が少ない。従って、素地光ファイバ14がファイバスロット852内で低く位置決めされているほど、大きな上向きの力が流体流によって誘発されることになり、従って、素地光ファイバ14が下向きに移動して流体スロット854に機械的に接触する又は入るために必要な仕事の量が増大する。
図10Aに示すように、多孔質材料領域876は、プレート830、832の傾斜した外面843、845により、円弧状外側表面838、839付近で狭くなるが、幅が可変の多孔質材料領域876を達成する他の構成も考えられる。例えば、平坦な外面843、845を備える実施形態では、多孔質材料領域876の多孔質材料は内面842、844から、ファイバ支持チャネル境界855付近では外面843、845まで延在できるが、円弧状外側表面838、839により近い位置では外面843、845まで延在できず、従って、多孔質材料領域876と円弧状外側表面838、839に近い外面843、845との間に位置する開放空間が増大する。あるいは、多孔質材料領域876の多孔率は、ファイバスロット852内での深さと共に変化してよい。一実施形態では、多孔質材料領域876の多孔率は、ファイバスロット852内での深さの増大と共に低下するため、多孔率が高い領域が開口860に隣接して存在し、多孔率が低い領域がファイバ支持チャネル境界855に隣接して存在する。
ここで図11Aを参照すると、素地光ファイバ14を開口960からファイバ支持チャネル境界955まで移動させるために必要なエネルギを増大させるよう構成された流体軸受920の部分側面図が図示されている。流体軸受920はまた、第1のプレート930と第2のプレート932との間に配置されてこれらの間に間隙を設ける、内側部材936を含む。図11Aでは、流体軸受920は圧力解放領域970を備え、これは1つ以上の多孔質材料領域976を備え、これらの多孔質材料領域976は、プレート930、932の内面942、944内へと延在して、プレート930、932の円弧状外側表面938、939まで延在するもののプレート930、932を通って延在することはなく、従って、多孔質材料領域976を横断した流体951は、プレート930、932の外面を通ってではなく、円弧状外側表面938、939を通って出てゆく。更に、多孔質材料領域976の、内面942、944内への貫入の深さは、ファイバ支持チャネル境界955に近い位置ほど減少し、従って、多孔質材料領域976を通る流体の経路は、素地光ファイバ14がファイバスロット952内で低い(深い)位置に移動するほど制限される。この制限により、素地光ファイバ14がファイバ支持チャネル境界955に近づくほど、多孔質材料領域976を通る流体の流れが減少し、間隙流が増大することにより、素地光ファイバに印加される上向きの力が増大し、従って、素地光ファイバ14がファイバスロット952内のより深い位置まで移動して流体スロット954に機械的に接触する又は入るために必要な仕事の量が増大する。
ここで図11Bを参照すると、素地光ファイバ14を開口1060からファイバ支持チャネル境界1055まで移動させるために必要なエネルギを増大させるよう構成された流体軸受1020の部分側面図が図示されている。流体軸受1020はまた、第1のプレート1030と第2のプレート1032との間に配置されてこれらの間に間隙を設ける、内側部材1036を含む。図11Bでは、流体軸受1020は圧力解放領域1070を備え、これは複数の多孔質材料領域1076a、1076b、1076cを備え、これらの多孔質材料領域は、プレート1030、1032の内面1042、1044内へと、プレート1030、1032の外面(図示せず)まで延在し、従って、多孔質材料領域1076a、1076b、1076cを横断した流体は、プレート1030、1032の外面を通って出てゆく。
更に、多孔質材料領域1076a、1076b、1076cは異なる密度を有し、従って、ファイバ支持チャネル境界1055に近い多孔質材料領域ほど、高密度の(低多孔率の)多孔質材料を有し、またプレート1030、1032の円弧状外側表面1038、1039に近い多孔質材料ほど、低密度の(高多孔率の)多孔質材料を有する。例えば、(第1の多孔質材料領域1076aと第3の多孔質材料領域1076cとの間に位置決めされた)第2の多孔質材料領域1076bは、(第2の多孔質材料領域1076bの上方に位置決めされた)第1の多孔質材料領域1076aよりも高い密度、かつ(第2の多孔質材料領域1076bの下方に位置決めされた)第3の多孔質材料領域1076cよりも低い密度を備える。理論によって制限されることを意図したものではないが、ファイバ支持チャネル境界1055に近いほど多孔質材料領域1076a、1076b、1076cの密度が上昇する(多孔率が低下する)ことにより、素地光ファイバ14がファイバ支持チャネル境界1055に近づくほど、多孔質材料領域1076a、1076b、1076cを通る流体1051の流れが減少し、間隙流が増大することにより、素地光ファイバに印加される上向きの力が増大し、従って、素地光ファイバ14がファイバスロッ1052内のより深い位置まで移動して流体スロット1054に機械的に接触する又は入るために必要な仕事の量が増大する。
ここで図13A〜14を参照すると、素地光ファイバが流体スロットに入る又は機械的に接触する蓋然性を低下させるよう構成された、流体軸受の更なる実施形態が図示されている。特に、図13A〜14の流体軸受は、ファイバ支持チャネル境界又はその付近に配置された、1つ以上の変位抑制用特徴部分を備え、これは、素地光ファイバに印加される上向きの力の急激な増大が発生する、ファイバ支持チャネル内の位置を画定する。この上向きの力の急激な増大は、素地光ファイバがファイバ支持チャネルの流体スロットに機械的に接触する及び/又は入るのを防止又は制限するよう作用する。
ここで図13A及び13Bを参照すると、1つ以上の変位抑制用特徴部分1180を備える流体軸受1120が図示されている。特に、図13Aは流体軸受1120の部分側面図を示し、図13Bは、第1のプレート1130の外面1143を示す、流体軸受1120の部分正面図を示す。図3A及び3Bの流体軸受120と同様に、流体軸受1120はファイバ支持チャネル1150を備え、これは、第1のプレート1130及び第2のプレート1132の円弧状外側表面1138、1139における開口1160からファイバ支持チャネル境界1155まで半径方向内向きに延在するファイバスロット1152と、ファイバスロット1152から半径方向内向きに位置決めされた流体スロット1154とを備える。流体軸受1120はまた、第1のプレート1130と第2のプレート1132との間に配置されて第1のプレート1130の内面1142と第2のプレート1132の内面1144との間に間隙を提供する、内側部材1136を含む。内面1142と内面1144との間のファイバスロット1152のチャネル幅WCは、ファイバスロット1152の深さを通して可変であり、素地光ファイバ14がファイバ支持チャネル境界1155に近づくにつれて減少する。
更に、図13A及び13Bに示すように、1つ以上の変位抑制用特徴部分1180は複数の境界孔1182を備え、これらは、ファイバ支持チャネル1150のファイバ支持チャネル境界1155又はその付近に位置決めされる(例えばファイバ支持チャネル境界1155が各境界孔1182を横断するように、又は境界孔1182が流体スロット1154若しくはファイバスロット1152内においてファイバ支持チャネル境界から離れた位置に(例えば流体スロット1154の比較的浅い領域若しくはファイバスロット1152の比較的深い領域に)位置決めされるように、位置決めされる)。様々な実施形態において、境界孔1182は、ファイバ支持チャネル境界1155が各境界孔1182の底部、中心又は頂部に接するように位置決めされるか;あるいはファイバ支持チャネル境界1155の上方若しくは下方、例えばファイバ直径の最大50倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置、若しくはファイバ直径の最大25倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置、若しくはファイバ直径の最大10倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置、若しくはファイバ直径の1〜100倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置、若しくはファイバ直径の1〜50倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置、若しくはファイバ直径の1〜25倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置、若しくはファイバ直径の最大1〜10倍だけファイバ支持チャネル境界1155の上方若しくは下方の位置に、位置決めされる。動作時、境界孔1182は、流体1151がファイバスロット1152に到達する前にファイバ支持チャネル1150を出るための経路を提供し、従って流体スロット1154内の流体流(より具体的には境界孔1182の下方の流体流)を、ファイバスロット1152内の流体流(より具体的には境界孔1182の上方の流体流)より大幅に大きくすることができる。よって、素地光ファイバ14をファイバ支持チャネル1150内の、境界孔1182に到達する深さまで変位させると、素地光ファイバ14は流量が大きな流体1151に接触し、これが、増大した上向きの力を素地光ファイバ14に印加するため、素地光ファイバ14が境界孔1182を通ってファイバ支持チャネル1150内のより深い位置へと移動する、又は流体スロット1154に機械的に接触する若しくは入るために必要な仕事の量が増大する。図13A、13Bに示す境界孔1182を備える流体軸受1120の実施形態は、先細になったファイバスロット1152を備えているものの、境界孔1182は、本明細書に記載の流体軸受の実施形態のうちのいずれに含まれていてもよいことを理解されたい。
ある例示的な例として、3インチ(7.52cm)の半径と;それぞれ直径0.006インチ(152.4μm)及び深さ0.04インチ(1.016mm)(例えばそれぞれ厚さ約0.04インチ(1.016mm)のプレート1130、1132を通って延在する)の、方位角方向に2°ずつ離間した境界孔1182とを有する、ある例示的な流体軸受1120では、境界孔1182のすぐ上において、ファイバスロット1152内の素地光ファイバ14に印加される上向きの力は約200グラムである。しかしながら、素地光ファイバ14が境界孔1182の下方へと移動すると、素地光ファイバ14に印加される上向きの力は2倍の400グラムとなり、流体スロット1154内のいずれの深さにおいても400グラムのままとなる(というのは、流体スロット1154が一定の深さを有するためである)。従って、境界孔1182を含むことは、素地光ファイバ14を境界孔1182の下方の位置へと変位させるために必要な仕事の量の急激な上昇を意味する。境界孔1182によって、素地光ファイバ14が変位して流体スロット1154に機械的に接触する又は入るのが阻止される。
ここで図14を参照すると、1つ以上の変位抑制用特徴部分1280を備える流体軸受1220の部分側面図が図示されている。図3A及び3Bの流体軸受120と同様に、流体軸受1220はファイバ支持チャネル1250を備え、これは、第1のプレート1230及び第2のプレート1232の円弧状外側表面1238、1239の開口1260からファイバ支持チャネル境界1255まで半径方向内向きに延在するファイバスロット1252と、ファイバスロット1252から(例えばファイバスロット1252の下方に)半径方向内向きに位置決めされた流体スロット1254とを備える。流体軸受1220はまた、第1のプレート1230と第2のプレート1232との間に配置されて、第1のプレート1230の内面1242と第2のプレート1232の内面1244との間に間隙を提供する、内側部材1236を含む。更に、ファイバスロット1252のチャネル幅WCはファイバスロット1252の深さを通して可変であり、素地光ファイバ14がファイバ支持チャネル境界1255に近づくにつれて減少する。異なる実施形態では、ファイバスロット1252の深さは、0.25インチ(6.35mm)超、又は0.40インチ(10.16mm)超、又は0.55インチ(13.97mm)超、又は0.70インチ(17.78mm)超、又は0.85インチ(21.59mm)超、又は0.25インチ(6.35mm)〜1.25インチ(31.75mm)、又は0.35インチ(8.89mm)〜1.05インチ(26.67mm)、又は0.45インチ(11.43mm)〜0.90インチ(22.86mm)、又は0.55インチ(13.97mm)〜0.85インチ(21.59mm)、又は0.60インチ(15.24mm)〜0.80インチ(20.32mm)、又は約0.65インチ(16.51mm)、又は約0.75インチ(19.05mm)である。
更に、図14に示すように、1つ以上の変位抑制用特徴部分1280は、ファイバ支持チャネル1250のファイバ支持チャネル境界1255又はその付近に位置決めされた、複数の挟み領域1284を備える。挟み領域1284は、プレート1230、1232の内面1242、1244の、ファイバ支持チャネル境界1255における部分であり、これらは、内面1242、1244の、ファイバスロット1252を画定する部分に比べて、Z軸(例えば、ファイバスロット1252内の素地光ファイバ14の深さ又は変位方向に対応する、半径方向上向き/下向きの軸)に関して大きな角度で先細になっている。換言すれば、内面1242、1244の、ファイバスロット1252を画定する部分の勾配の大きさは挟み領域1284の勾配の大きさより小さく、これにより、ファイバ支持チャネル1250が狭まり、流体1251の流れが利用できる範囲の幅が制限される。
動作時、挟み領域1284がファイバ支持チャネル1250を狭めるため、ファイバ支持チャネル1250内での素地光ファイバ14の変位の深さが挟み領域1284に到達すると、素地光ファイバ14を支持する(浮揚させる)よう作用する流体1251の流れの上向きの力が増大する。例えば、内面1242、1244のファイバスロット1252を画定する部分の、Z軸に関する角度が0.6°であり、挟み領域1284のZ軸に関する角度が2°である場合、素地光ファイバ14と内面1242、1244との間の間隙は、素地光ファイバ14が挟み領域1284に到達したときに、1/2に減少し、素地光ファイバ14に対する上向きの力は2倍になる。従って、挟み領域1284を含むことは、素地光ファイバ14が流体スロット1254に機械的に接触する又は入るために必要な仕事の量が増大することを意味する。
本明細書に記載のファイバチャネル構成の代替実施形態では、ファイバスロットは任意に、ファイバスロットの開口への入口に、平行の垂直な内壁を含むことが理解される。図面に明示されていないものの、本明細書で開示されているファイバスロットの実施形態のいずれは、任意に、半径方向外側位置に、1対の平行な内壁を含む。特定の実施形態では、ファイバスロットは、1つ以上の先細になった内壁と、1つ以上の垂直な内壁との組み合わせを含む。例えば図15は、図3Aに示したタイプの角度付き構成を有するファイバスロットであって、ファイバがファイバスロットに入る点の近傍において、半径方向外側位置に1対の平行な内壁を含む、ファイバスロットを示す。開口1360を有するファイバ支持チャネル1350は、流体スロット1354及びファイバスロット1352を含む。ファイバスロット1352は、角度αで先細になっている内壁1344と、垂直な内壁1346とを含み、これらはそれぞれ、図15に示すように、対向する内壁を有する。ファイバ14は、極めて低いドロー張力下では、ファイバスロットの、平行の垂直な内壁を有する部分にとどまり、ファイバの下向きの(半径方向内向きの)運動に対向する流体の力は、上記平行の垂直な内壁の間におけるファイバスロットの深さの関数として変化しない。しかしながら、ファイバスロットの、垂直な内壁を有する部分内で、ファイバを下向き(半径方向内向き)方向に移動させるには、仕事が必要となる。垂直な内壁1346と、その反対側の、対となった垂直な内壁とによって画定される平行なセクションの代表的な深さは、0.55インチ(1.397cm)である。内壁1344と、その反対側の、対となった内壁とによって画定される先細セクションの代表的な深さは、0.20インチ(5.08mm)である。開口1360からファイバ支持チャネル境界1355までの代表的な深さは、0.75インチ(1.905cm)である。
更に、素地光ファイバの下向きの変位を阻止するため、又は素地光ファイバがファイバ支持チャネルの流体スロットに機械的に接触する及び/又は入るのを防止若しくは制限するために、他の流体軸受の実施形態が考えられる。例えば、流体軸受を通る流体の流量を増大させる(例えば流体スロット又はファイバ支持チャネルに導入される流体流を増加させる)と、印加されるいずれの下向きの力に対する、素地光ファイバの平衡高さが増大し、従って、素地光ファイバがファイバ支持チャネル内で下向きに移動するため、又は流体スロットに機械的に接触する若しくは入るために必要な仕事の量が増大する。更に、ファイバ支持チャネルのファイバスロットの深さを増大させると、素地光ファイバがファイバ支持チャネルの流体スロットに機械的に接触する及び/又は入る蓋然性が低下する。
従って、本明細書に記載の流体軸受は、光ファイバの生産に非垂直経路を提供することを含む多くの機能を実現できる。この点に関して、流体軸受は、本明細書中で既に議論した光ファイバの輸送方法とのいずれの組み合わせで使用できる。更に、本明細書中で図示及び例示した流体軸受の実施形態は、光ファイバの生産中のいずれの段階で使用できることを理解されたい。コーティング塗布器の前に非垂直経路を実現することにより、流体軸受、及びこれらの流体軸受を組み込んだ光ファイバ生産システムは、従来のドロータワーに比べて利用空間が小さいシステムを提供しながら、光ファイバ生産システム内で構成部品を容易に操作及び交換できるという点で、設計の柔軟性を有する。更に、本明細書に記載の流体軸受の構成を使用すると、素地光ファイバを格納するようにサイズ設定及び構成されたファイバ支持チャネルのファイバスロット内に、素地光ファイバを維持でき、素地光ファイバがファイバ支持チャネルの流体スロットに機械的に接触する及び/又は入るのを防止できる。従って、本明細書に記載の流体軸受を組み込んだ光ファイバ生産システム、及び光ファイバの生産方法は、従来のシステム及び方法を上回る多数の利点を提供する。
本明細書において、範囲は、「約(about)」ある特定の値から、及び/又は「約」別の特定の値までとして表現され得る。このような範囲が表現されている場合、別の実施形態は、上記ある特定の値から、及び/又は上記別の特定の値までを含む。同様に、先行詞「約」を用いることにより、値が概数として表現されている場合、上記特定の値は別の実施形態を形成することが理解されるだろう。更に、各範囲の端点は、他方の端点との関連でも、他方の端点とは独立しても、重要であることが理解されるだろう。
本明細書中で使用される方向に関する用語、例えば上方(up)、下方(down)、右(right)、左(left)、前方(front)、後方(back)、頂部(top)、底部(bottom)、は、ここで図示されている状態の図面に関してのみ使用され、絶対的な配向を暗示することを意図したものではない。
特段の記載がない限り、本明細書に記載のいずれの方法が、そのステップを特定の順序で実施すること、又はいずれの装置の特定の配向を必要とするものとして解釈されることは、全く意図されていない。従って、ある方法クレームが、そのステップが従うべき順序を実際に列挙していない場合、又はいずれの装置クレームが、個々の構成部品に関する順序若しくは配向を実際に列挙していない場合、又はステップをある特定の順序に限定するべきであることが、特許請求の範囲若しくは説明中で具体的に言明されていない場合、又は装置の構成部品に関する特定の順序又は配向が列挙されていない場合、いかなる点においても、順序又は配向が推定されることは全く意図されていない。これは:ステップの構成、動作フロー、構成部品の順序、又は構成部品の配向に関する論理の問題;文法的な編成又は句読点に由来する単純な意味;及び本明細書に記載の実施形態の数又はタイプを含む、解釈のためのいずれの可能な非明示的根拠にも当てはまる。
本明細書中で使用される場合、単数形「ある(a、an)」及び「上記(the)」は、文脈がそうでないことを明らかに指示していない限り、複数の指示対象を含む。従って例えば、「ある」構成部品に関する言及は、文脈がそうでないことを明らかに指示していない限り、2つ以上の上記構成部品を有する態様を含む。
請求対象の主題の精神及び範囲から逸脱することなく、本明細書に記載の実施形態に対して様々な修正及び変形を実施できることは、当業者には明らかであろう。従って、本明細書は、本明細書に記載の様々な実施形態の修正及び変形が、添付の請求項及びその均等物の範囲内にある限りにおいて、このような修正及び変形を包含することが意図されている。
以下、本発明の好ましい実施形態を項分け記載する。
実施形態1
光ファイバの生産に使用するための流体軸受であって:
上記軸受は:
光ファイバ経路であって:
光ファイバは上記光ファイバ経路に沿って、ドロー張力によって上記流体軸受を通してドロー加工され;
上記流体軸受は、第1のプレートと第2のプレートとの間に配置されたファイバ支持チャネルを備え;
上記第1のプレートは、第1の内面、上記第1の内面に隣接する第2の内面、及び第1の外側表面を有し;
上記第2のプレートは、第3の内面、上記第3の内面に隣接する第4の内面、及び第2の外側表面を有し;
上記第1の内面、上記第2の内面、上記第3の内面、及び上記第4の内面は、上記ファイバ支持チャネルに対面し;
上記ファイバ支持チャネルは開口を有し;
上記ファイバ支持チャネルは、上記第1のプレートと上記第2のプレートとの間において、上記開口から深さ方向に延在し;
上記第1の内面及び上記第3の内面は、上記深さ方向に延在する軸に対して第1の勾配の大きさを有し;
上記第2の内面及び第4の内面は、上記深さ方向に延在する上記軸に対して第2の勾配の大きさを有し、上記第1の勾配の大きさは上記第2の勾配の大きさと異なり;
上記光ファイバは、上記開口を通って上記ファイバ支持チャネルに入る、光ファイバ経路と;
流体経路であって:
上記光ファイバが上記ファイバ支持チャネル内で上記光ファイバ経路に沿って上記流体軸受を通してドロー加工される際に、流体が、上記光ファイバに対抗する力を有して、上記流体経路に沿って配向され;
上記流体の上記力は、上記ドロー張力に対向して、上記光ファイバを、上記ファイバ支持チャネル内において、上記光ファイバが上記第1のプレート又は上記第2のプレートに接触しない位置に安定させる、流体経路と
を備える、流体軸受。
実施形態2
上記第1の内面、上記第2の内面、上記第3の内面、及び上記第4の内面は、直線状セグメントである、実施形態1に記載の流体軸受。
実施形態3
上記第1の内面は上記第1の外側表面に隣接し、上記第3の内面は上記第2の外側表面に隣接し、
上記第1の勾配の大きさは上記第2の勾配の大きさ未満である、実施形態1に記載の流体軸受。
実施形態4
上記第1の勾配の大きさは、上記深さ方向に延在する上記軸に関する第1の角度によって画定され、
上記第1の角度は0°超である、実施形態1に記載の流体軸受。
実施形態5
上記第1の角度は0.1°超である、実施形態4に記載の流体軸受。
実施形態6
上記第1の角度は0.3°超である、実施形態4に記載の流体軸受。
実施形態7
上記第1の角度は0.1°〜9°である、実施形態4に記載の流体軸受。
実施形態8
上記第2の勾配の大きさは、上記深さ方向に延在する上記軸に関する第2の角度によって画定され、
上記第2の角度は0°超である、実施形態4に記載の流体軸受。
実施形態9
上記第1の角度は0.2°超であり、上記第2の角度は0.1°超である、実施形態8に記載の流体軸受。
実施形態10
上記第1の角度は0.1°〜9°であり、上記第2の角度は0.3°〜7°である、実施形態8に記載の流体軸受。
実施形態11
上記第1の角度は上記第2の角度より少なくとも0.3°だけ大きい、実施形態8に記載の流体軸受。
実施形態12
光ファイバの生産に使用するための流体軸受であって:
上記軸受は:
光ファイバ経路であって:
光ファイバは上記光ファイバ経路に沿って、ドロー張力によって上記流体軸受を通してドロー加工され;
上記流体軸受は、第1のプレートと第2のプレートとの間に配置されたファイバ支持チャネルを備え;
上記第1のプレートは、第1の内面及び第1の外面を有し;
上記第2のプレートは、第2の内面及び第2の外面を有し;
上記第1の内面及び上記第2の内面は、上記ファイバ支持チャネルに対面し;
上記ファイバ支持チャネルは開口を有し;
上記ファイバ支持チャネルは、上記第1のプレートと上記第2のプレートとの間において、上記開口から深さ方向に延在し;
上記光ファイバは、上記開口を通って上記ファイバ支持チャネルに入る、光ファイバ経路と;
流体経路であって:
上記光ファイバが上記ファイバ支持チャネル内で上記光ファイバ経路に沿って上記流体軸受を通してドロー加工される際に、流体が、上記光ファイバに対抗する力を有して、上記流体経路に沿って配向され;
上記流体の上記力は、上記ドロー張力に対向して、上記光ファイバを、上記ファイバ支持チャネル内において、上記光ファイバが上記第1のプレート又は上記第2のプレートに接触しない位置に安定させ、
上記流体の上記力は、上記ファイバ支持チャネル内の上記光ファイバの深さに対する上記流体の上記力の依存度を記述する力曲線によって記述され;
上記ファイバ支持チャネルは、上記力曲線が凸状となるような構成を有する、流体経路と
を備える、流体軸受。
実施形態13
上記第1の内面は第1の複数の開口を含み、上記第2の内面は第2の複数の開口を含み、上記第1の複数の開口はそれぞれ、上記第1の内面から上記第1の外面に向かって延在し、上記第2の複数の開口はそれぞれ、上記第2の内面から上記第2の外面に向かって延在する、実施形態12に記載の流体軸受。
実施形態14
上記第1の複数の開口はそれぞれ、上記第1の内面から上記第1のプレートを通って上記第1の外面まで延在し、上記第2の複数の開口はそれぞれ、上記第2の内面から上記第2のプレートを通って上記第2の外面まで延在する、実施形態13に記載の流体軸受。
実施形態15
上記第1の複数の開口はそれぞれ、上記第1の内面内において第1の一定でない幅を有し、上記第2の複数の開口はそれぞれ、上記第2の内面内において第2の一定でない幅を有し、上記第2の内面、上記第1の一定でない幅と、上記第2の一定でない幅とは、上記深さ方向に減少する、実施形態13に記載の流体軸受。
実施形態16
上記第1の複数の開口はそれぞれ、上記第1の内面から上記第1の外面に向かう第1の伸長方向を有し、上記第2の複数の開口はそれぞれ、上記第2の内面から上記第2の外面に向かう第2の伸長方向を有し、上記第1の伸長方向は上記深さ方向に対して垂直であり、上記第2の伸長方向は上記深さ方向に対して垂直である、実施形態13に記載の流体軸受。
実施形態17
上記第1の複数の開口はそれぞれ、上記第1の伸長方向において第1の一定でない長さを有し、上記第2の複数の開口はそれぞれ、上記第2の伸長方向において第2の一定でない長さを有し、上記第1の一定でない長さ及び上記第2の一定でない長さは、上記深さ方向に減少する、実施形態16に記載の流体軸受。
実施形態18
上記第1の一定でない長さ及び上記第2の一定でない長さは、上記深さ方向において非直線状に変化する、実施形態17に記載の流体軸受。
実施形態19
上記第1の内面は第1の多孔質材料を含み、上記第2の内面は第2の多孔質材料を含み、上記第1の多孔質材料は、上記第1の内面から上記第1の外面に向かって延在し、上記第2の多孔質材料は、上記第2の内面から上記第2の外面に向かって延在する、実施形態12に記載の流体軸受。
実施形態20
上記第1の多孔質材料は、上記第1の内面から上記第1のプレートを通って上記第1の外面まで延在し、上記第2の多孔質材料は、上記第2の内面から上記第2のプレートを通って上記第2の外面まで延在する、実施形態19に記載の流体軸受。
実施形態21
上記第1の多孔質材料は、上記第1の内面から上記第1の外面に向かう第1の伸長方向を有し、上記第2の多孔質材料は、上記第2の内面から上記第2の外面に向かう第2の伸長方向を有し、上記第1の伸長方向は上記深さ方向に対して垂直であり、上記第2の伸長方向は上記深さ方向に対して垂直である、実施形態19に記載の流体軸受。
実施形態22
光ファイバを生産するための方法であって、上記方法は:
素地光ファイバを第1の経路に沿って流体軸受へと配向するステップであって:
上記流体軸受は、第1のプレート、第2のプレート、及び上記第1のプレートと上記第2のプレートとの間に配置されたファイバ支持チャネルを備え;
上記第1のプレートは、第1の内面、上記第1の内面に隣接する第2の内面、及び上記第1の内面に隣接した第1の外側表面を有し;
上記第2のプレートは、第3の内面、上記第3の内面に隣接する第4の内面、及び上記第3の内面に隣接した第2の外側表面を有し;
上記第1の内面、上記第2の内面、上記第3の内面、及び上記第4の内面は、上記ファイバ支持チャネルに対面し;
上記ファイバ支持チャネルは開口を有し;
上記ファイバ支持チャネルは、上記開口から深さ方向に延在し;
上記第1の内面及び上記第3の内面は、上記深さ方向に延在する軸に対して第1の勾配の大きさを有し、
上記第2の内面及び第4の内面は、上記深さ方向に延在する上記軸に対して第2の勾配の大きさを有し、上記第1の勾配の大きさは上記第2の勾配の大きさと異なり;
上記素地光ファイバは、上記開口を通って上記ファイバ支持チャネルに入る、ステップと;
上記ファイバ支持チャネルを通して、上記ファイバ支持チャネルの上記開口に向かって流体を流すステップであって、上記流体は、上記素地光ファイバに接触して、上記素地光ファイバに対して上向きの力を提供し、上記上向きの力は、上記ファイバ支持チャネル内の上記素地光ファイバの上記深さに対する上記上向きの力の依存度を記述する力曲線によって定義される、ステップと
を含む、方法。
実施形態23
上記配向するステップは、上記素地光ファイバを光ファイバプリフォームからドロー加工するステップを含む、実施形態22に記載の方法。
実施形態24
上記配向するステップは、上記素地光ファイバを50m/s超の速度で上記第1の経路に沿って搬送するステップを含む、実施形態22に記載の方法。
実施形態25
上記配向するステップは、上記素地光ファイバに張力を印加するステップを含む、実施形態22に記載の方法。
実施形態26
上記流体軸受は、上記素地光ファイバを上記第1の経路から第2の経路へと再配向する、実施形態22に記載の方法。