JP2020526514A - ムコ多糖症i型を治療するための遺伝子治療 - Google Patents

ムコ多糖症i型を治療するための遺伝子治療 Download PDF

Info

Publication number
JP2020526514A
JP2020526514A JP2020500131A JP2020500131A JP2020526514A JP 2020526514 A JP2020526514 A JP 2020526514A JP 2020500131 A JP2020500131 A JP 2020500131A JP 2020500131 A JP2020500131 A JP 2020500131A JP 2020526514 A JP2020526514 A JP 2020526514A
Authority
JP
Japan
Prior art keywords
vector
hidua
administration
human
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020500131A
Other languages
English (en)
Other versions
JP2020526514A5 (ja
Inventor
ヒンデラー,クリスチャン
ウイルソン,ジェームス・エム
Original Assignee
ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア filed Critical ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア
Publication of JP2020526514A publication Critical patent/JP2020526514A/ja
Publication of JP2020526514A5 publication Critical patent/JP2020526514A5/ja
Priority to JP2023108011A priority Critical patent/JP2023123760A/ja
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/005Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
    • A61K48/0058Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/34Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
    • A61K31/343Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide condensed with a carbocyclic ring, e.g. coumaran, bufuralol, befunolol, clobenfurol, amiodarone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/439Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom the ring forming part of a bridged ring system, e.g. quinuclidine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/47Hydrolases (3) acting on glycosyl compounds (3.2), e.g. cellulases, lactases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01076L-Iduronidase (3.2.1.76)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0083Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the administration regime
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14132Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14111Dependovirus, e.g. adenoassociated viruses
    • C12N2750/14141Use of virus, viral particle or viral elements as a vector
    • C12N2750/14143Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Abstract

hIDUA遺伝子及び2つ以上の免疫抑制剤を含有する発現カセットのAAV9媒介髄内/嚢内及び/または全身送達を含む共療法レジメンを本明細書に提供する。hIDUA欠損症(MPSI)、並びにハーラー症候群、ハーラー−シャイエ症候群及びシャイエ症候群に関連する症状を治療するために有用な方法も提供する。

Description

連邦政府の資金による研究の申告
本出願には、米国政府からの助成金、国立衛生研究所(NIH)番号R01DK54481、P40OD010939及びP30ES013508によってある程度支援された研究が含まれている。米国政府は本発明に特定の権利を有してもよい。
技術分野
本発明は、ハーラー症候群、ハーラー・シャイエ症候群及び/またはシャイエ症候群であると診断された患者を含むムコ多糖症I型(MPS I)を治療するための遺伝子治療のアプローチに関する。
ムコ多糖症は、ムコ多糖とも呼ばれるグリコサミノグリカン(GAG)の分解に関与する特定のリソソーム酵素の欠乏が原因で起きる遺伝性疾病の一群である。部分的に分解されたGAGの蓄積は細胞、組織及び臓器の機能の妨害を引き起こす。時間をかけてGAGは細胞内、血中、及び結合組織に蓄積し、結果的に細胞及び臓器の損傷を増やしていく。
ムコ多糖症(MPS)の最も重篤なものの1つであるMPS Iはα−L−イズロニダーゼ(IDUA)の欠乏が原因で生じる。具体的には、α−L−イズロニダーゼはヘパラン硫酸及びデルマタン硫酸と呼ばれる2つのGAGから末端のイズロン酸残基を取り除くと報告されている。α−L−イズロニダーゼは、様々な型の分子を消化し、再生利用する細胞内の区画であるリソソームにて見つけられる。IDUA遺伝子は、グリコサミノグリカン(GAG)と呼ばれる大型の糖分子の分解に必須であるα−L−イズロニダーゼを産生するための指示を提供すると報告されている。IDUA遺伝子における100を超える突然変異が見いだされ、ムコ多糖症I型(MPS I)を引き起こしている。1つのDNA構成要素(ヌクレオチド)を変化させる突然変異、単一ヌクレオチド多形または「SNP」が最も一般的である。
MPS Iを引き起こす突然変異はα−L−イズロニダーゼの機能を低下させ、または完全に取り除き、3種の臨床的症候群:ハーラー症候群、ハーラー・シャイエ症候群及びシャイエ症候群につながる。それぞれは常染色体劣性型で遺伝し、酵素欠乏の程度が臨床的表現型の重症度に直接関係する。ハーラー症候群がIDUA欠乏の最も重篤な発現を表し、普通、2つのヌル変異のために酵素活性の完全欠損の状況で発生する。臨床診断は2歳前に確定し、複数の身体的病状に関連する。加えて、自然史データは、ハーラー症候群遺伝子型の患者はCNS病変を有し、重度の認知障害及び精神遅滞につながることを確証している。ハーラー・シャイエ症候群は、普通2歳〜8歳の間で診断されるさらに減衰した形態である。ハーラー症候群とは対照的に、ハーラー・シャイエ症候群の患者は、臨床発現の遅い発症と疾患のさらに減衰した進行につながる(理論的に)少量の残留IDUA活性を有する。さらに減衰した表現型にもかかわらず、一部のハーラー・シャイエ患者はIQの低下によって証拠付けられるような神経認知の低下を含む、IDUAの欠乏に関連するCNS病変の複数の症状を経験する。シャイエ症候群はMPS Iの最も穏やかな形態である。症状は一般に5歳以降現れ始め、診断は最も一般的には10歳以降に下される。シャイエ症候群の小児は正常な知性を有し、または軽い学習障害を有してもよく;一部は精神医学上の問題を有してもよい。緑内障、網膜変性及び角膜混濁は視力を有意に損傷し得る。他の問題には、手根管症候群または他の神経圧迫、関節のこわばり、鷲手及び変形した足、短頸、及び大動脈弁疾患が挙げられる。一部の冒された個人は閉塞性気道疾患及び睡眠時無呼吸も有する。シャイエ症候群の人は成人期まで生きることができる。
臨床症候群に関しては、ハーラー症候群のケアの現在の標準は、たとえば、骨髄移植(BMT)または臍帯血移植(UCBT)のような造血系幹細胞の移植(HSCT)である。処置は出来るだけ早期に、2歳になる前に行われ、疾患の身体上及びCNS双方の態様に影響を与える。しかしながら、MPS IのためのHSCTは有意な量の病的状態及び20%の死亡率に関連したままである。移植が選択肢でなければ、そのときは、患者の命を救うための酵素の毎週の点滴を要する酵素補充療法(ERT)が開始されてもよい。ERTはCNS疾患の進行に影響を及ぼさないが、身体的発現を部分的に改善する。骨格系、眼及び心臓における疾患の態様は部分的に改善されるにすぎないが、臓器肥大症は有意に改善される。患者は、臀部及び膝を安定化し、手根管症候群及び指収縮を治療するために手術を必要としてもよい。最終的に手術が必要であってもよいが、心臓疾患は内科的に治療される。
MPS IのためのERTは、リソソームへの取り込み及びGAGの異化の上昇のために外来性の酵素を提供する。リソソームの酵素は内部で機能するが、細胞表面のマンノース−6−リン酸受容体はこれらの酵素を結合し、内部移行させ、リソソームに送達することができる。組換えIDUA(アルデュラザイム(登録商標),BioMarin)は、MPS Iのハーラー及びハーラー・シャイエの形態の患者のために、並びに中程度から重度の症状を有し、肺機能及び歩行能力を改善することが示されたシャイエ形態の患者のためにFDAによって認可されている。ERTは、MPS Iの患者にて肝腫脹を軽減すると共に尿中GAGのレベルを低減することも観察されている。しかしながら、静脈内酵素は容易には脳を横断しないので、ERTは一部のMPS I患者が経験する神経症状には現在対処していない。
ERTの複雑さは、軽度から本格的なアナフィラキシーに至り得る組換え酵素に対する免疫応答と共に局所及び全身性の炎症のような生涯にわたる末梢投与の複雑さを中心に展開する。それがどれくらい有効性に影響を及ぼすのかは明らかではないが、アルデュラザジムの投与を受けている患者の91%までが酵素に対する抗体を作り出す。さらに、ERTは病院において3〜8時間かけて投与される毎週のi.v.点滴を必要とし、それは患者の生活の質に十分に影響を及ぼし、高価であり、医療診療報酬制度における主要な重圧である。
これらの限界の観点から、MPS Iに関連する病的状態をさらに効果的に是正することができる治療は満たされない医学上のニーズのままである。
ムコ多糖症I型(MPS I)であると診断された患者(ヒト対象)のCNSにヒトα−L−イズロニダーゼ(hIDUA)遺伝子を送達するための複製欠損のアデノ随伴ウイルス(「AAV」)が本明細書で提供される。hIDUA遺伝子を送達するのに使用される組換えAAV(rAAV)ベクター(rAAV.hIDUA)はCNSに対して指向性を有するはずであり(たとえば、AAV9カプシドを運ぶrAAV)、hIDUA導入遺伝子は特異的な発現制御要素、たとえば、サイトメガロウイルス(CMV)のエンハンサとニワトリβアクチンのプロモータ(CB7)とのハイブリッドによって制御されるはずである。髄内及び嚢内の投与に好適な医薬組成物は、生理的に適合性の水性緩衝液と界面活性剤と任意の賦形剤とを含む製剤緩衝液にてrAAV.hIDUAベクターの懸濁液を含む。
ヒト患者におけるα−L−イズロニダーゼ欠損症の治療に有用な治療レジメンを提供する。特定の実施形態では、レジメンは、(a)AAV9カプシドを有する組換えAAV(rAAV)、及び患者においてその発現を指令する調節性配列の制御下にあるヒトα−L−イズロニダーゼ(hIDUA)をコードする配列を含む核酸であって、ヒトhIDUAコード配列が、機能的hIDUAをコードする配列番号1のヌクレオチド配列または配列番号1と少なくとも約80%同一である配列を有する、核酸;(b)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤;並びに(c)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤を患者に投与することを含み、ここで、免疫抑制剤の少なくとも一方の投与は、AAVベクターの送達の前または同日に開始し;免疫抑制剤の少なくとも一方の投与は、ベクター投与後少なくとも8週間継続する。患者には、最初に静脈内ステロイドを投与し、続いて経口ステロイドを投与することができる。特定の実施形態では、免疫抑制剤は、1つ以上のコルチコステロイド、及び任意に、ミコフェノール酸モフェチル(MMF)、及び/または1つ以上のマクロライドである。1つ以上のマクロライドは、カルシニューリン阻害剤(たとえば、タクロリムス)、mTOR阻害剤(たとえば、シロリムス、テムシロリムス、エベロリムス、または別のラパログ)、またはそれらの組み合わせであり得る。特定の実施形態では、患者へのステロイドの投与は、ベクター投与の12週間後に中止される。特定の実施形態では、ミコフェノール酸モフェチル(MMF)及びタクロリムスは、ベクター投与前に0〜15日間送達される。特定の実施形態では、免疫抑制剤は、ミコフェノール酸モフェチル(MMF)及びシロリムスである。特定の実施形態では、免疫抑制剤がタクロリムス及びシロリムスの両方を含む場合、各々の低用量を使用して、約4ng/mL〜約8ng/mL、または合計約8ng/mL〜約16ng/mLの血液トラフレベルを維持する。免疫補助剤がタクロリムスまたはシロリムスの一方のみを含む特定の実施形態では、総用量は約16ng/mL〜約24ng/mLの範囲である。タクロリムスまたはシロリムスの一方のみが使用される特定の実施形態では、初期負荷用量は約3mg/m2である。特定の実施形態では、免疫抑制療法は、ベクター投与前の約−14日から約−1日に開始される。特定の実施形態では、コードされたhIDUAは、(a)配列番号2(Genbank NP_000193)のアミノ酸約1〜約653;及び(b)配列番号2の約27〜約653の酸に融合した異種リーダー配列を含む合成ヒト酵素から選択される配列を有する。特定の実施形態では、核酸配列は、5’逆方向末端反復(ITR)配列、ニワトリβアクチンイントロン、CB7プロモータ、ポリAシグナル、及び/または3’ ITR配列をさらに含む。特定の実施形態では、rAAVは、6〜9のpHを有する懸濁液中にある。特定の実施形態では、rAAVは、髄内注入を介して送達される。特定の実施形態では、hIDUA遺伝子を含むrAAVは、静脈内投与される。特定の実施形態では、治療の有効性は、任意に聴覚脳幹試験によって、聴覚能力変化を測定することによって評価される。特定の実施形態では、rAAVは(i)≧4ヶ月齢〜<9ヶ月齢のヒト対象に約1.2×1012〜約6.0×1012GCまたは約6.0×1012〜約3.0×1013GC、(ii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に約2×1012〜約6.0×1013または約1.0×1013〜約5.0×1013GC、(iii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に約2.2×1012〜約1.1×1013GCまたは約1.1×1013〜約5.5×1013GCの総平坦用量を投与するために、ヒト対象への髄内注入用に製剤化される。
(a)≧4ヶ月齢〜<9ヶ月齢のヒト対象に約1.2×1012〜約6.0×1012GCもしくは約6.0×1012〜約3.0×1013GC;または(b)≧9ヶ月齢〜<18ヶ月齢のヒト対象に約2×1012〜約6.0×1013GCもしくは約1.0×1013〜約5.0×1013GC;または(c)≧9カ月齢〜<18カ月齢のヒト対象に約2.2×1012〜約1.1×1013GCもしくは約1.1×1013〜約5.5×1013GCの総平坦用量を投与するために、それを必要とするヒト対象への髄内注入のために製剤化された、ヒトα−L−イズロニダーゼ(hIDUA)をコードする異種核酸を含む組換えAAVベクターを含む組成物が提供される。特定の実施形態では、ヒトhIDUAコード配列は、機能的hIDUAをコードする配列番号1のヌクレオチド配列、または配列番号1と少なくとも約80%同一の配列を有する。特定の実施形態では、組成物は、(i)グルココルチコイド、ステロイド、代謝拮抗物質、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤、及び(ii)それらの少なくとも1つから選択される少なくとも第2の免疫抑制剤との共療法を使用し、免疫抑制剤の投与はベクターの送達の前または同日に開始し;免疫抑制剤の少なくとも一方との投与は、ベクター投与後少なくとも8週間継続する。
ヒトα−L−イズロニダーゼ(hIDUA)をコードする異種核酸を含む組換えAAVベクターとの併用療法において使用するための免疫抑制剤が提供される。特定の実施形態では、ヒトhIDUAコード配列は、機能的hIDUAをコードする配列番号1のヌクレオチド配列、または配列番号1と少なくとも約80%同一の配列を有する。特定の実施形態では、免疫抑制剤は、(a)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤を含む組成物;及び(b)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤を含む組成物を含み、免疫抑制剤の投与は、AAVベクターの送達の前または同日に開始し、免疫抑制剤の少なくとも一方の投与は、ベクター投与後少なくとも8週間継続する。特定の実施形態では、AAVベクターは、(i)≧4ヶ月齢〜<9ヶ月齢のヒト対象に約1.2×1012〜約6.0×1012GCもしくは約6.0×1012〜約3.0×1013GC、または(ii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に約2×1012〜約6.0×1013GCもしくは約1.0×1013〜約5.0×1013GC、または(iii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に約2.2×1012〜約1.1×1013GCもしくは約1.1×1013〜約5.5×1013GCの総平坦用量を投与するために、それを必要とするヒト対象への髄内注入用に製剤化される。
そのようなrAAV.hIDUAベクターの調製物を髄内/嚢内の注入によってヒト対象に投与し、CNSにて治療レベルのhIDUA発現を達成することができる。治療の候補者である患者は、MPS Iの及び/またはハーラー、ハーラー・シャイエ及びシャイエに関連する症状を持つ小児患者及び成人患者である。
そのようなrAAV.hIDUAベクターの調製物を髄内/嚢内の注入によってヒト対象に投与し、CNSにて治療レベルのhIDUA発現を達成することができる。治療の候補者である患者は、MPS Iの及び/またはハーラー、ハーラー・シャイエ及びシャイエに関連する症状を持つ小児患者及び成人患者である。
MPS I患者についてのrAAV.hIDUAの治療上有効な髄内/嚢内の用量は、約1×1011から7.0×1014GC(平坦用量)まで―109〜5×1010GC/患者の脳質量gの同等量に及ぶ。或いは、以下の治療上有効な平坦用量を指示した年齢群の患者に投与することができる。
・新生児:約1×1011〜約3×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・9ヵ月〜6歳:約6×1012〜約3×1014GC;
・3〜6歳:約1.2×1013〜約6×1014GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
別の実施形態では、以下の治療上有効な平坦用量が、年齢群のMPS患者に投与される:
・新生児:約3.8×1012〜約1.9×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・9ヵ月〜36ヵ月:1013〜約5×1013GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・3〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
特定の実施形態では、これらの範囲の1つ以上が任意の年齢の患者に使用され、1.2×1012総ゲノムコピー(GC)(2.0×109/脳質量g)または6×1012総GC(1×1010GC/脳質量g)の用量が、(≧)4ヵ月以上〜(<)9ヵ月未満の患者に投与される。特定の実施形態では、2×1012総GC(2.0×109GC/g脳質量)または1×1013総GC(1×1010GC/g脳質量)の平坦用量が(≧)9ヵ月以上〜(<)18ヵ月未満の患者に投与される。特定の実施形態では、2.2×1012総GC(2.0×109GC/g脳質量)または1.1×1013総GC(1×1010GC/g脳質量)の平坦用量が(≧)18ヵ月以上〜(<)3歳未満の患者に投与される。特定の実施形態では、6.0×1012(1.0×1010GC/g脳質量)または3×1013総ゲノムコピー(GC)(5×1010GC/g脳質量)の平坦用量が(≧)4ヵ月以上〜(<)9ヵ月未満の患者に投与される。特定の実施形態では、1.0×1013(1.0×1010GC/g脳質量)または5.0×1013総GC(5×1010GC/g脳質量)の平坦用量が(≧)9ヵ月以上〜(<)18ヵ月未満の患者に投与される。特定の実施形態では、1.1×1013(1.0×1010GC/g脳質量)または5.5×1013総GC(5×1010GC/g脳質量)の平坦用量が(≧)18ヵ月以上〜(<)3歳未満の患者に投与される。特定の実施形態では、2.6×1012ゲノムコピー(GC)(2.0×109GC/g脳質量)の平坦用量が6歳または6歳を超える患者に投与される。特定の実施形態では、1.3×1013(GC)(1.0×1010GC/g脳質量)の平坦用量が6歳または6歳を超える患者に投与される。一部の実施形態では、12歳以上のMPSI患者(18歳以上を含む)に投与される用量は、1.4×1013ゲノムコピー(GC)(1.1×1010GC/g脳質量)である。一部の実施形態では、12歳以上のMPS I患者(18歳以上を含む)に投与される用量は7×1013GC(5.6×1010GC/g脳質量)である。その上、さらなる実施形態では、MPS I患者に投与される用量は少なくとも約4×108GC/g脳質量〜約4×1011GC/g脳質量である。特定の実施形態では、MPS Iの新生児に投与される用量は、約1.4×1011から約1.4×1014GCまでに及び;3〜9ヵ月の乳児に投与される用量は、約2.4×1011から約2.4×1014GCまでに及び;9〜36カ月のMPS Iの幼児に投与される用量は、約4×1011から約4×1014GCまでに及び;3〜12歳のMPS Iの小児に投与される用量は、約4.8×1011から約4.8×1014GCまでに及び;12歳以上の小児及び成人に投与される用量は、約5.6×1011から約5.6×1014GCまでに及ぶ。
治療の目標は、rAAVに基づいたCNSを指向する遺伝子治療を介して患者の欠損したα−L−イズロニダーゼを機能的に置き換えて疾患を治療することである。治療法の有効性は、(a)MPS I患者における神経認知低下の防止、及び(b)疾患の生体マーカー、たとえば、CSF、血清及び/または尿におけるGAGレベル及び/またはIDUAまたはヘキソサミニダーゼ(Hex)の酵素活性、及び/または肝臓及び脾臓の容量を評価することによって測定することができる。神経認知は、知能指数(IQ)を測定することによって、たとえば、ハーラーの対象についてBayleyの乳児発達スケールによって測定されるように、またはハーラー・シャイエの対象についてWechsler短縮版知能検査(WASI)によって測定されるように判定することができる。神経認知の発達及び機能の他の適当な測定、たとえば、Bayleyの乳児発達スケール(BSID−III)を用いて発達指数(DQ)を評価すること、Hopkins言語学習試験を用いて記憶を評価すること、及びまたは注意変数試験(TOVA)を使用することが利用されてもよい。聴覚脳幹反応(ABR)試験により測定される聴覚能力変化。
治療に先立って、hIDUA遺伝子を送達するのに使用されるrAAVベクターのカプシドに対する中和抗体(Nab)についてMPS I患者を評価することができる。そのようなNabは形質導入効率を妨げ、治療の有効性を低下させる。≦1:5のベースライン血清Nab力価を有するMPS I患者はrAAV.hIDUA遺伝子治療プロトコールによる治療の良好な候補者である。>1:5の血清Nabの力価を持つMPS I患者の治療は、rAAV.hIDUAベクター送達による治療の前に及び/または治療中に併用療法、たとえば、免疫抑制剤による一時的な共治療を必要としてもよい。任意で、AAVベクターのカプシド及び/または製剤の他の成分に対する中和抗体を前もって評価することなく、予防措置として免疫抑制剤の共療法を使用してもよい。特定の実施形態では、特にIDUA活性のレベルを実際有さない、導入遺伝子の産物が「異物」として見られ得る患者では、hIDUA導入遺伝子の産物に対する有害な免疫反応を防ぐために前もっての免疫抑制療法が望ましくてもよい。以下の実施例に記載されているマウス、イヌ及びNHPにおける非臨床試験の結果は、hIDUAに対する免疫応答及び神経炎症の発生に一致している。類似の反応はヒト対象では起きないかもしれないが、予防措置として免疫抑制療法はrAAV−hIDUAのレシピエントすべてに推奨される。
hIDUAの全身性送達が伴うCNSへのrAAV.hIDUAの遺伝子治療送達の併用は本発明の方法によって包含される。全身性の送達は、ERT(たとえば、アルデュラザジム(登録商標)を使用すること)を用いて、または肝臓に指向性を持つrAAV.hIDUA(たとえば、AAV8カプシドを運ぶrAAV.hIDUA)を用いた追加の遺伝子治療によって達成することができる。
特定の実施形態では、患者がCNSにて治療濃度のhIDUAを発現する乳児、小児及び/または成人である場合、hIDUAに対して患者を寛容化するために肝臓指向性の注入を介して患者にAAV.hIDUAを投与し、続いて、髄内/嚢内の注入を介して患者にAAV.hIDUAを投与する。
動物試験におけるrAAV9.IDUAのIT投与がCNS内でのベクターの広範な分布を生じたことを立証している本発明の利益は以下の実施例によって説明されている。さらに、fIDUA、cIDUAまたはhIDUAを送達する単回用量のrAAV9ベクターは、3〜7ヵ月齢のネコ及び1ヵ月齢のイヌ双方の動物モデルにてCNSに関連するMPS Iの組織学的な及び生化学的な所見を用量依存性に改善するまたは完全に元に戻すことに成功した。同様に、単回IT投与のrAAV9.IDUAは注入後少なくとも2年間、乳児として注入された場合を含んでサルにて臨床的に上手く忍容された。動物におけるrAAV9.IDUA投与に関連する単なる有害効果は調べた種すべてにわたって導入遺伝子への免疫応答に関連した。
実施例で示すように、rAAV9.IDUA治療の有益な効果は抗IDUA抗体反応の発生によって限定された。寛容化されていないMPS Iイヌ(実施例3)またはアカゲザル(実施例7)で評価された最高用量では、有害効果が観察された。発症の変化及び時間の特徴はこれらの効果には導入遺伝子産物に対する免疫応答が介在することを示している。実施例3では、最高用量でのイヌは双方とも後肢虚弱を伴ってCSFの高いWBC及びタンパク質レベルを有した。これらの動物は、運動及び感覚ニューロンに発現された導入遺伝子に対する免疫応答に起因する脊髄及び後根神経節における組織病理の病変を有し、これらはより低い2用量の動物では観察されなかった。アカゲザルにおける毒性研究(実施例7)では、hIDUAに対する液性の免疫応答及び細胞介在性の免疫応答の双方が観察され、CSFにおける有核細胞数の上昇と抗IDUA抗体、及び末梢血における弱い抗IDUAのT細胞応答を特徴とした。イヌとは異なって、有害な臨床兆候は発生せず、脊髄内でのニューロンの壊死は観察されず、サルは治療を忍容すると思われた。しかしながら、白質後索における両側性の軸索変性から成るCNSの病変は90日目及び180日目での脊髄にて観察された。これらの軸索の変化は後根神経節におけるニューロンに対する免疫が介在する効果に続発すると見なされる。
非臨床種で観察されるヒトのタンパク質に対する後天性の免疫応答は、ヒトにおける同じ応答の性質または大きさを予測しなくてもよい。にもかかわらず、好まれる実施形態では、ヒト対象、特にhIDUAを発現していないのでこの酵素に対して寛容であると期待されない個人は免疫抑制剤で予防的に治療されるべきである。以下の実施例におけるデータは、rAAV9.IDUA構築物の投与に先立ってcIDUAまたはhIDUAに対して寛容化された新生仔のイヌ及び非ヒト霊長類では、持続した形質導入及びIDUAの発現が達成されたことを示している。対照的に、IDUAに対して予め寛容化されていない動物は一般にIDUA及びAAV9カプシド抗原の双方に対する免疫応答を開始した。要するに、実施例におけるデータは免疫抑制治療はrAAV9.IDUAの有効性も高め得ることを示している。
一部の実施形態では、一部の実施形態では、rAV9.IDUAを受容する対象はまた、コルチコステロイド(メチルプレドニゾロン10mg/kg、IV、1日目に1回の前投与、及び2日目に経口プレドニゾン0.5mg/kg/日で開始、12週目まで徐々に漸減及び中止)、目標血中濃度4〜8ng/mLでタクロリムス(1.0mg、1日2回PO、2日目〜24週目)、及び24週目〜32週目の間に8週間かけて漸減的、及びシロリムス(負荷用量1mg/m2、4時間毎×3回、−2日目、その後−1日目:シロリムス0.5mg/m2/日、1日2回に分割、目標血中濃度4〜8ng/mlで48週目まで投与)からなるISレジメンを受容する。一部の実施形態では、最初の併用免疫抑制療法は、最初にプレドニゾンを中止し、続いてタクロリムス及び最後にシロリムスを用いて、連続的に減少される。
本発明のさらなる他の態様及び利点は本発明の詳細な説明から明らかであろう。
本明細書に記載されているようにAAVにパッケージされているベクターゲノムの模式図である。ベクターゲノムでは、ベクターゲノムのAAVの5’及び3’逆方向末端反復(ITR)が隣接する発現カセットの主要構成成分が描かれている。これらには、サイトメガロウイルスの前初期エンハンサ、CB7プロモータ、キメライントロン、ヒトα−L−イズロニダーゼのコーディング配列(遺伝子)及びウサギβグロビンポリAシグナルが含まれる。 ヒトIDUAを発現するAAV9による髄内注入で処理したネイティブのMPS Iイヌ(図2A)または寛容化したMPS Iイヌ(図2B)におけるCSFのIDUA活性を示す図である。大槽へのベクターの髄内注入によって1ヵ月齢でイヌを処理した。その後のCSF試料にてIDUA活性を測定した。ベクターの用量(GC/kg)を各動物について示す。破線は髄内ベクターのみで処理した動物を表す。黒い記号の実線は肝臓特異的プロモータからヒトIDUAを発現する静脈内AAV8によって生後5日目に予備処理した動物を表す。白い記号の実線は組換えヒトIDUAの静脈内点滴で生後7日と14日に予備処理した動物を表す。動物I−665及びI−666は神経兆候のために36日目に安楽死させた。横の破線は正常なイヌにおけるCSFでの平均のIDUA活性を表す。点線は定量のアッセイ限界を示す。 ヒトIDUAに対するCSFでの抗体力価を示す図である。ヒトIDUAに対する抗体力価はベクター投与の50日後に採取したCSF試料におけるELISAによって測定した。I−665及びI−666から調べたCSF試料は剖検(注入の36日後)の時点で回収した。誤差棒=SEM。抗体力価は、ITベクターのみで処理した対照(I−604、I−608、I−605、I−665、I−666)に比べてAAV8ベクター(I−652、I−653、I−602、I−607、I−601、I−606)または組換えヒトIDUA(I−663、I−664)で新生仔として予備処理した動物にて有意に低かった(Mann−Whitney検定)。 AAV9の髄内注入に続くCSFの有核細胞数を示す図である。髄内AAV9で処理した投与を受けてことがないイヌ(図4A)と同様に髄内AAV9を受け取る前に全身性組換えヒトIDUA(I−663及びI−664)またはIDUAを発現するAAV8ベクターで新生仔として処理した動物(図4B)に由来するCSF試料にて有核細胞の総数を測定した。AAV8ベクターまたは組換えヒトIDUAで新生仔として処理したものに比べて投与を受けたことがない動物にてベクター注入の21日後、有核細胞数は有意に増えていた(Mann−Whitney検定)。 髄内AAV9で処理したヒトIDUAに寛容であるMPS Iイヌにおける脳のヘキソサミニダーゼ活性の正常化を示す図である。脳の6つの領域(前頭葉皮質、側頭葉皮質、後頭葉皮質、海馬、髄質及び小脳)から採取した試料にてHex活性を測定した。正常対照イヌ、未処理のMPS Iイヌ及びヒトIDUAを発現するAAV9の髄内注入で処理したhIDUAに寛容である8匹のイヌについて平均活性を示す。白い記号は組換えヒトIDUAの点滴によって寛容化された動物を示す。Hex活性は、未処理の対照に比べて高用量のコホートでは有意に低下した(Kruskal−Wallis検定、とその後のDunnの多重比較検定)。 ヒトIDUAを発現するAAV9の髄内注入によって処理したヒトIDUAに寛容であるイヌにおける脳蓄積病変の用量依存性の是正を示す図である。LIMP2及びGM3について脳の切片を作り、染色した。髄膜のGAGの蓄積はAlcianブルー染色を用いて画像化した。GM3(図6A)及びLIMP2(図6B)の陽性細胞の自動定量は皮質脳の画像にて行った(動物当たりn=10)。白い記号は組換えヒトIDUAの点滴によって寛容化された動物を示す。GM3及びLIMP2は未処理の対照に比べて高用量のコホートにて有意に低下した(Kruskal−Wallis検定、とその後のDunnの多重比較検定)。 ヒトIDUAを発現するAAV9の髄内注入によって処理した、投与を受けたことがないイヌにおける脳ヘキソサミニダーゼ活性の部分正常化を示す図である。ヘキソサミニダーゼ活性は6つの脳領域(前頭葉皮質、側頭葉皮質、後頭葉皮質、海馬、髄質及び小脳)から採取した試料にて測定した。平均活性は、正常な対照イヌ、未処理のMPS Iイヌ、及び1012GC/kgまたは1011GC/kgの用量で1ヵ月齢にてヒトIDUAを発現する髄内AAV9によって処理したイヌについて示す。 hIDUAに寛容であるイヌにおけるIT AAV9処理後のCSFのヘキソサミニダーゼ活性の正常化を示す図である。Hex活性は試験の終了時ヒトIDUAに寛容化されたMPS IイヌのCSFにて測定した。白い記号は組換えヒトIDUAの点滴によって寛容化された動物を示す。CSFのHex活性は未処理のMPS I対照に比べて処理した動物すべてで有意に低下した(Mann−Whitney検定)。 ヒトIDUAを発現する髄内AAV9で処理したhIDUAに寛容であるイヌにおける頸部髄膜肥厚の解消を示す図である。髄膜の平均総厚さは頸部脊髄のH&E染色切片にて測定した。白い記号は組換えヒトIDUAの点滴によって寛容化された動物を示す。髄膜の厚さは未処理のMPS I対照に比べて処理した動物すべてで有意に低下した(Mann−Whitney検定)。 ITでのAAV9によって処理したMPS Iマウスにおける酵素発現の比較及び脳蓄積病変の是正を示す図である。MPS Iマウスを2〜3ヵ月齢で3つの用量:3×108GC(低)、3×109GC(中)、または3×1010GC(高)の1つでのAAV9.CB.hIDUAのICV注入によって処理した。(図10A)ベクター注入の3週間後に屠殺した動物のコホートの1つであり、IDUA活性の測定のために脳を回収した。(図10B)注入の3週間後に屠殺した動物の第2のコホートであり、リソソーム膜タンパク質LIMP2について脳を染色した。LIMP2について陽性に染まった細胞は盲検化したレビュアーによって4つの皮質脳切片にて定量された。*p<0.05、一元ANOVAとその後のDunnett検定。 製造過程のフローチャートである。 10ccのベクター注射器(12)と、10ccの事前に充填した水洗注射器(14)と、T型コネクタ延長セット(配管(20)と、配管の末端でのクリップ(22)とコネクタ(24)とを含む)、22G×5”のクモ膜下穿刺針(26)と、任意の18G×3.5”の導入針(28)とを含む、同軸挿入法のための任意の導入針を含む医薬組成物の嚢内送達のための装置(10)を示す図である。説明しているのはまた旋回オスルアーロック付きの四方活栓(16)である。 嚢内注入の模式的説明を示す図である。 ICVでのAAV9によって処理したイヌにおける脳炎及び導入遺伝子特異的なT細胞応答を説明する図である。1歳のMPS Iイヌを、GFPを発現するAAV9のICV注入またはIC注入によって処理した。注入の12日後に死んでいるのが発見されたI−567を除いて動物はすべて注入の14日後に屠殺した。脳を冠状断面に分割し、それはICV処理した動物にて注入部位の近傍で(矢頭)肉眼的病変を示した。肉眼的病変を取り囲む脳領域の組織切片をヘマトキシリンとエオシンで染色した。剖検の時点でICV処理したイヌ1匹(I−565)から末梢血単核細胞を採取し、AAV9カプシド及びGFPタンパク質に対するT細胞応答をインターフェロン−γELISPOTによって測定した(図14)。完全なGFP配列を網羅する重なり合う15アミノ酸の長さのペプチドの単一プールを用いてGFP導入遺伝子産物に対するT細胞応答を測定した。AAV9カプシドタンパク質を含むペプチドは3つのプール(プールA〜Cと名付けた)に分割した。*=バックグランド(未刺激細胞)の>3倍及び100万個の細胞当たり55を超えるスポットとして定義される陽性反応。植物血球凝集素(PHA)及びホルボール12−ミリステート13−アセテート(PMA)を伴ったイオノマイシンはT細胞活性化の陽性対照として役立った。 ICVまたはICでのAAV9によって処理したイヌにおけるベクターの生体分布を示す棒グラフである。注入の12日後に剖検した動物I−567を除いて、GFPを発現するAAV9ベクターの単回ICVまたはIC注入による注入の14日後にイヌを屠殺した。定量的PCRによって組織試料にてベクターゲノムを検出した。値は2倍体細胞当たりのベクターゲノムのコピー(GC/2倍体ゲノム)として表す。海馬または大脳皮質から採取した脳試料はICV処理したイヌについては注入したまたは注入しない半球として示され、IC処理した動物については、これらはそれぞれ右半球と左半球である。動物I−567の注入した脳半球からはPCRのために試料を採取しなかった。 髄内AAV9で処理したNHPにおけるベクターの生体分布を示す棒グラフである。5mLのイオヘキソール180で希釈したAAV9の腰椎穿刺を介した髄内注入の14日後、NHPを屠殺した。動物のうち2匹を注入後10分間トレンデレンブルグ体位に置いた。定量的PCRによって組織試料にてベクターゲノムを検出した。値は2倍体細胞当たりのベクターゲノムのコピー(GC/2倍体ゲノム)として表す。 MPS Iにて上昇したCSFのスペルミンを示す図である。MPS Iイヌ(n=15)及び正常対照(n=15)に由来するCSF試料にて高処理能力のLC/MS及びGC/MSの代謝産物評価を行った。(17A)上位100の差次的に検出された代謝産物のヒートマップを示す(ANOVA)。MPS Iのコホートにて最若年の動物(28日齢)を星印で示す。(17B)6匹のMPS I幼若動物及び2匹の正常幼若動物に由来するCSF試料にて定量的アイソトープ希釈LC/MSアッセイによって測定されたスペルミン濃度を示すグラフである。 MPS Iのニューロンにおけるスペルミン依存性の異常な神経突起成長を示す図である。E18の野生型またはMPS Iのマウス胚から回収した皮質ニューロンをプレートに入れた24時間後、スペルミン(50ng/mL)またはスペルミンシンターゼ阻害剤APCHAで処理した。処理条件当たり2つ組の培養に由来する45〜65の無作為に選択したニューロンについて神経突起の数、長さ及び枝分かれが盲検的にレビュアーによって定量された。(図18A)野生型と比較したMPSI、MPSI+APCHAまたはMPSI+APCHA+スペルミンについて神経突起を提供する棒グラフである。(図18B)野生型と比較したMPSI、MPSI+APCHAまたはMPSI+APCHA+スペルミンについて分岐点を提供する棒グラフである。(図18C)野生型と比較したMPSI、MPSI+APCHAまたはMPSI+APCHA+スペルミンについて分枝の長さを提供する棒グラフである。***p<0.0001(ANOVAとその後のDunnettの検定)。(図18D)野生型と比較したスペルミンで処理した野生型について神経突起/細胞を比較する棒グラフである。(図18E)野生型と比較したスペルミンで処理した野生型について分岐点/細胞を比較する棒グラフである。(図18F)野生型と比較したスペルミンで処理した野生型について分枝の長さ/細胞を比較する棒グラフである。 遺伝子治療に続くMPS IイヌにおけるCSFスペルミンのレベル及び脳のGAP43発現の正常化を示す図である。5匹のMPS Iイヌを、イヌIDUAを発現するAAV9の1ヵ月齢での髄内注入によって処理した。イヌのうち2匹(I−549、I−552)は、一部のMPS IイヌにてIDUAに対して惹起される抗体反応を防ぐために出生の1日後に肝臓指向遺伝子治療によってIDUAに対して寛容化した。(図19A)髄内ベクター注入の6ヵ月後脳組織にて測定されたIDUA活性の結果を示す棒グラフである。(図19B及び19C)デンシトメトリーによってβ−アクチンに対して定量された皮質脳試料におけるGAP43の測定に続く結果を示すグラフである。CSFのスペルミンはアイソトープ希釈LC/MS(E)によって屠殺の時点で測定した。未処理のMPS Iイヌ(n=3)及び正常のイヌ(n=2)は対照として役立った。*p<0.05(Kruskal−Wallis検定とその後のDunnの検定)。 MPS IにおけるCNS指向の遺伝子治療の評価のためのCSFの生体マーカーとしてのスペルミンの使用を説明するグラフである。出生時にヒトIDUAに対して寛容化された6匹のMPS Iイヌを1ヵ月齢にてヒトIDUAを発現する髄内AAV9によって処理した(1012GC/kg、n=2,1011GC/kg,n=2,1010GC/kg,n=2)。(図20A)処理の6ヵ月後に測定したCSFのスペルミンのレベルの測定に続く結果を提供する。3匹のMPS Iのネコを、ネコIDUA(1012GC/kg)を発現する髄内AAV9によって処理した。(図20B)処理の6ヵ月後CSFスペルミンの定量に続く結果を提供する。未処理のMPS Iイヌ(n=3)及び正常のイヌ(n=2)は対照として役立った。 ランダムフォレスト解析によって特定された代謝産物についての予測精度の低下を示す図である。 実施例7に記載されるAAV9.hIDUAベクターを使用した非ヒト安全性試験のデータを提供する。0日目から90日目までの免疫抑制なし(ISなし)及び免疫抑制あり(IS)の非ヒト霊長類由来の血清及び脳脊髄液を示す。凡例の数字は個々の動物を反映している。 実施例7に記載されるAAV9.hIDUAベクターを使用した非ヒト安全性試験のデータを提供する。高用量(HD)、免疫抑制(IS)及び免疫抑制なしでのT細胞免疫応答に対する免疫抑制の影響を示す。ベクターカプシド(AAV9)及び導入遺伝子(hIDUA)に対してElisSpotsを実行した。細胞を、示されるように刺激した。結果は、スポット形成単位(SFU)/百万末梢血単核細胞(PBMC)で提供される。
ムコ多糖症I型(MPS I)であると診断された患者(ヒト対象)のCNSにヒトα−L−イズロニダーゼ(hIDUA)遺伝子を送達するための複製欠損のアデノ随伴ウイルス(「AAV」)が本明細書で提供される。hIDUA遺伝子を送達するのに使用される組換えAAV(rAAV)ベクター(rAAV.hIDUA)はCNSに対して指向性を有し(たとえば、AAV9カプシドを運ぶrAAV)、hIDUA導入遺伝子は特異的な発現制御要素、たとえば、サイトメガロウイルス(CMV)のエンハンサとニワトリβアクチンのプロモータ(CB7)とのハイブリッドによって制御される。特定の実施形態では、髄内、嚢内、及び全身性の投与に好適な医薬組成物が提供され、それは、生理的に適合性の水性緩衝液と界面活性剤と任意の賦形剤とを含む製剤緩衝液にてrAAV.hIDUAベクターの懸濁液を含む。rAAV懸濁液はさらに、
(i)rAAVゲノムコピー(GC)の力価が少なくとも1×109GC/mL〜1×1014GC/mL(+/−20%)であること;
(ii)SDS−PAGE解析(実施例6Dを参照のこと)によって測定されるとき、rAAVの中空粒子/完全粒子の比が0.01〜0.05(95%〜99%中空カプシドがない)の間である、または別の実施形態では、少なくとも約50%、少なくとも約80%、少なくとも約85%、もしくは少なくとも約90%中空カプシドがないこと;及び/または
(iii)少なくとも約4×108GC/g脳質量〜約4×1011GC/g脳質量のrAAV懸濁液の投与が効能を有すること
を特徴とする。
効能は、試験管内での細胞培養アッセイ、たとえば、細胞当たり既知の感染効率のrAAV GCでHuh7またはHEK293の細胞に形質導入し、形質導入の72時間後にIDUA活性について上清をアッセイする、実施例6Gに記載されている試験管内の効能アッセイによって測定することができる。hIDUAの機能(活性)及び/または効能は好適な試験管内のアッセイにおいて、たとえば、蛍光発生基質である4−メチルウンベリフェリルα−L−イズロニドを切断する能力によって測定されてもよい。記載されている条件下で測定すると比活性は>7,500ピコモル/分/μgである。www.RnDSystems.comでの活性のアッセイプロトコールを参照のこと。酵素活性を測定する他の好適な方法は、本明細書に記載されているものを含めて記載されている[たとえば、Kakkis,E.D.,et al(1994).Protein Expression Purif.5:225−232;Rome,L.H.,et al(1979).Proc.Natl.Acad.Sci.USA,76:2331−2334を参照のこと]。活性はまた、記載されている方法、たとえば、E.Oussoren,et al,Mol Genet Metab.2013,Aug;109(4):377−81.doi:10.1016/j.ymgme.2013.05.016.Epub,2013,Jun,4を用いて評価してもよい。
治療の候補者である患者は、MPS Iの及び/またはハーラー、ハーラー・シャイエ及びシャイエに関連する症状を持つ小児患者及び成人患者である。
MPSI患者のためのrAAV.hIDUAの治療上有効な髄内/嚢内用量は、1×1011〜7.0×1014GC(平坦用量)の範囲であり、これは109〜5×1010GC/患者の脳質量gと等価である。或いは、以下の治療上有効な平坦用量を指示した年齢群の患者に投与することができる。
・新生児:約1×1011〜約3×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・9ヵ月〜6歳:約6×1012〜約3×1014GC;
・3歳未満(新生児から3歳まで):約1×1011〜約1.2×1013GC
・3〜6歳:約1.2×1013〜約6×1014GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
別の実施形態では、以下の治療上有効な平坦用量が、以下の年齢群のMPS患者に投与される:
・新生児:約3.8×1012〜約1.9×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・9〜36ヵ月:約1013〜約5×1013GC;
・3歳未満(新生児から3歳まで):約1×1011〜約1.2×1013GC
・6〜12歳:約1.2×1013〜約6×1014GC;
・3〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
特定の実施形態では、これらの範囲の1つ以上が任意の年齢の患者に使用される。特定の実施形態では、1.2×1012総ゲノムコピー(GC)(2.0×109GC/g脳質量)または6×1012総GC(1×1010GC/g脳質量)の平坦用量が(≧)4ヵ月以上〜(<)9ヵ月未満の患者に投与される。特定の実施形態では、2×1012総GC(2.0×109GC/g脳質量)または1×1013総GC(1×1010GC/g脳質量)の平坦用量が(≧)9ヵ月以上〜(<)18ヵ月未満の患者に投与される。特定の実施形態では、2.2×1012総GC(2.0×109GC/g脳質量)または1.1×1013総GC(1×1010GC/g脳質量)の平坦用量が(≧)18ヵ月以上〜(<)3歳未満の患者に投与される。特定の実施形態では、6×1012(1.0×1010GC/g脳質量)または3×1013総ゲノムコピー(GC)(5×1010GC/g脳質量)の平坦用量が(≧)4ヵ月以上〜(<)9ヵ月未満の患者に投与される。特定の実施形態では、1.0×1013(1.0×1010GC/g脳質量)または5.0×1013総GC(5×1010GC/g脳質量)の平坦用量が(≧)9ヵ月以上〜(<)18ヵ月未満の患者に投与される。特定の実施形態では、1.1×1013(1.0×1010GC/g脳質量)または5.5×1013総GC(5×1010GC/g脳質量)の平坦用量が(≧)18ヵ月以上〜(<)3歳未満の患者に投与される。特定の実施形態では、2.6×1012ゲノムコピー(GC)(2.0×109GC/g脳質量)の平坦用量が6歳または6歳を超える患者に投与される。特定の実施形態では、1.3×1013(GC)(1.0×1010GC/g脳質量)の平坦用量が6歳または6歳を超える患者に投与される。一部の実施形態では、12歳以上のMPS I患者(18歳以上を含む)に投与される用量は1.4×1013ゲノムコピー(GC)(1.1×1010GC/g脳質量)である。一部の実施形態では、12歳以上のMPS I患者(18歳以上を含む)に投与される用量は7×1013GC(5.6×1010GC/g脳質量)である。その上、さらなる実施形態では、MPS I患者に投与される用量は少なくとも約4×108GC/g脳質量〜約4×1011GC/g脳質量である。特定の実施形態では、MPS Iの新生児に投与される用量は約1.4×1011から約1.4×1014GCまでに及び;3〜9ヵ月の乳児に投与される用量は、約2.4×1011から約2.4×1014GCまでに及び;9〜36カ月の幼児に投与される用量は、約4×1011から約4×1014GCまでに及び;3〜12歳の小児に投与される用量は、約4.8×1011から約4.8×1014GCまでに及び;12歳以上の小児及び成人に投与される用量は、約5.6×1011から約5.6×1014GCまでに及ぶ。
治療の目標は、疾患を治療するための実行可能なやり方としてrAAVに基づいたCNSを指向する遺伝子治療を介して患者の欠損したα−L−イズロニダーゼを機能的に置き換えることである。本明細書に記載されているrAAVベクターから発現されるので、CSF、血清、ニューロンまたは他の組織または流体で検出されるような正常レベルの少なくとも約2%の発現レベルが治療効果を提供してもよい。しかしながら、さらに高い発現レベルが達成されてもよい。そのような発現レベルは正常な機能的なヒトIDUAレベルの約2%〜約100%であってもよい。特定の実施形態では、正常な発現レベルよりも高いレベルがCSF、血清、または他の組織または流体で検出されてもよい。
本発明はまたrAAV.hIDUA医薬組成物の製造及び特徴付けも提供する(以下の実施例6)。
本明細書で使用されるとき、用語「髄内送達」または「髄内投与」は、それが脳脊髄液(CSF)に到達するように脊柱管、さらに具体的にはクモ膜下腔への注入を介した薬剤の投与の経路を指す。髄内送達には、腰椎穿刺、脳室内、後頭下/嚢内及び/またはC1−2の穿刺が挙げられてもよい。たとえば、腰椎穿刺の手段によってクモ膜下腔全体にわたる拡散のために物質が導入されてもよい。別の例では、注入は大槽内にであってもよい。
本明細書で使用されるとき、用語「嚢内送達」または「嚢内投与」は、さらに具体的には後頭下穿刺を介して、または大槽への直接注入によって、または永続的に置かれた管を介して直接脳室の脳脊髄液に、または大槽小脳延髄の中に投与する経路を指す。図13は嚢内注入がどのように行われるかについての説明を提供する。
本明細書で使用されるとき、「治療上有効な量」はMPS Iのハーラー症候群、ハーラー・シャイエ症候群及び/またはシャイエ症候群の症状の1以上を改善するまたは治療するのに十分な酵素の量を標的細胞に送達し、発現させるAAV9.hIDUA組成物の量を指す。「治療」には、MPS I症候群の1つの症状を悪化させるのを防ぐことが挙げられてもよく、たぶん、その症状の1以上の反転が挙げられてもよい。治療上の効果(有効性)を評価する方法は以下(たとえば、以下のセクション5.2.3を参照のこと)で詳細に記載されている。
ヒト患者にとって「治療上有効な量」は動物モデルに基づいて予測されてもよい。好適なネコモデル及び好適なイヌモデルの例は本明細書に記載されている。参照によって本明細書に組み入れられるC.Hinderer,et al,Molecular Therapy,(2014);22,12,2018−2027;A.Bradbury,et al,Human Gene Therapy Clinical Development.March,2015,26(1):27−37を参照のこと。イヌモデルに関しては、ヒト患者では投与は上手く忍容されるのに対してイヌにおける静脈内投与はヒトIDUAに対する強力で持続する抗体反応を引き出すことが観察されているので、モデルは通常免疫抑制された動物モデルまたは寛容化された動物である。これらのモデルでは、特定の症状の反転が観察されてもよく、及び/または特定の症状の進行の予防が観察されてもよい。たとえば、角膜混濁の是正が観察されてもよく、及び/または中枢神経系(CNS)の病変の是正が観察され、及び/または血管周囲及び/または髄膜のGAG蓄積の反転が観察される。
本明細書で使用されるとき、「機能的なヒトα−L−イズロニダーゼ」は、MPS Iがないまたは、たとえば、ハーラー症候群、ハーラー・シャイエ症候群及び/またはシャイエ症候群のような関連する症候群がないヒトにて正常に機能するヒトα−L−イズロニダーゼ酵素を指す。逆に、MPS Iまたはこれらの症候群の1つを引き起こすα−L−イズロニダーゼ酵素変異体は、機能的ではないと見なされる。一実施形態では、機能的なヒトα−L−イズロニダーゼは、Bremer,et al,Mol.Genet.Metab.104(3):289−294(2011)によって記載された野生型のヒトα−L−イズロニダーゼのアミノ酸配列を有し、配列番号2(653アミノ酸)で再生されるNCBI参照配列NP_000194.2を有する。しかしながら、この配列の幾つかの天然に存在する機能的な多形(変異体)が記載されており、本発明の範囲内に包含されてもよい。そのような変異体は記載されており;たとえば、参照によって本明細書に組み入れられるWO2014/151341と同様に参照によって組み入れられるUniProtKB/Swiss−Prot;www.uniprot.org/uniprot/P35475を参照のこと。
本明細書で使用されるとき、用語「Nab力価」は、その標的とされるエピトープ(たとえば、AAV)の生理的効果を中和する中和抗体(たとえば、抗AAV Nab)がどれほど多く産生されるかの測定値である。抗AAV Nab力価は、たとえば、参照によって本明細書に組み入れられるCalcedo,R.,et al.,Worldwide Epidemiology of Neutralizing Antibodies to Adeno−Associated Viruses.Journal of Infectious Diseases,2009.199(3):p.381−390にて記載されたように測定されてもよい。
本明細書で使用されるとき、「発現カセット」はIDUA遺伝子とプロモータとを含み、そのための他の調節性配列を含んでもよい核酸分子を指し、そのカセットは遺伝要素(たとえば、カプシド)を介してパッケージング宿主細胞に送達されてもよく、ウイルスベクター(たとえば、ウイルス粒子)のカプシドにパッケージされてもよい。通常、ウイルスベクターを生成するためのそのような発現カセットは、ウイルスゲノムのパッケージングシグナルが隣接するIDUAコーディング配列及び本明細書に記載されているもののような他の発現制御配列を含有する。
略記「sc」は自己相補性を指す。「自己相補性AAV」は、組換えAAV核酸配列によって運ばれるコーディング領域が分子内二本鎖DNA鋳型を形成するように設計されている構築物を指す。感染の際、第2の鎖の細胞が介在する合成を待つのではなく、scAAVの2つの相補性の半分ずつが会合して即時の複製及び転写の準備ができている1つの二本鎖DNA(dsDNA)単位を形成する。たとえば、D M McCarty,et al,“Self−complementary recombinant adeno−associated virus(scAAV)vectors promote efficient transduction independently of DNA synthesis”,Gene Therapy,(August,2001),Vol.8,Number,16,Pages,1248−1254を参照のこと。自己相補性AAVは米国特許第6,596,535号;同第7,125,717号;及び同第7,456,683号に記載されており、そのそれぞれが全体として参照によって本明細書に組み入れられる。
本明細書で使用されるとき、用語「操作可能に連結される」は対象とする遺伝子に隣接する発現制御配列及びトランスでまたは少し離れて対象とする遺伝子を制御するように作用する発現制御配列の双方を指す。
用語「異種の」はタンパク質または核酸を参照して使用される場合、タンパク質または核酸が自然界では互いに同じ関係では見いだされない2以上の配列または部分配列を含むことを示す。たとえば、新しい機能的な核酸を作るように配置される無関係な遺伝子に由来する2以上の配列を有する核酸は通常組換えで産生される。たとえば、一実施形態では、核酸は、異なる遺伝子に由来するコーディング配列の発現を指向するように配置される1つの遺伝子に由来するプロモータを有する。従って、コーディング配列を参照してプロモータは異種である。
「複製欠損ウイルス」または「ウイルスベクター」は、対象とする遺伝子を含有する発現カセットがウイルスのカプシドまたはエンベロープにパッケージされる合成のまたは人工的なウイルス粒子を指し、その際、ウイルスのカプシドまたはエンベロープの中にパッケージされるウイルスゲノムの配列も複製欠損であり、すなわち、それらは子孫ビリオンを生成することはできないが、標的細胞に感染する能力を保持する。一実施形態では、ウイルスベクターのゲノムは複製するのに必要とされる酵素をコードする遺伝子を含まない(ゲノムは、人工的ゲノムの増幅及びパッケージングに必要とされるシグナルが隣接する対象とする導入遺伝子のみを含有する―「パワー不足」であるように操作することができる)が、これらの遺伝子は産生の間に供給されてもよい。従って、複製に必要とされるウイルス酵素の存在を除いて子孫ビリオンの複製及び感染は起きないので、それは遺伝子治療での使用に安全であると見なされる。
本明細書で使用されるとき、「組換えAAV9ウイルス粒子」は、AAV9のカプシドを有するヌクレアーゼ耐性の粒子(NRP)を指し、カプシドは所望の遺伝子産物のための発現カセットを含む異種核酸分子をその中にパッケージしている。そのような発現カセットは通常遺伝子配列に隣接するAAVの5’及び/または3’の逆方向末端反復を含有し、該遺伝子配列は発現制御配列に操作可能に連結される。発現カセットのこれらの及び他の好適な要素は以下でさらに詳細に記載されており、或いは本明細書では導入遺伝子ゲノム配列と呼ばれてもよい。これはまた「完全な」AAVカプシドとも呼ばれてもよい。そのようなrAAVウイルス粒子は、それが発現カセットによって運ばれる所望の遺伝子産物を発現することができる宿主細胞に導入遺伝子を送達する場合、「薬学上活性がある」と称される。
多数の例では、rAAV粒子はDNA分解酵素耐性であると言われる。しかしながら、このエンドヌクレアーゼ(DNA分解酵素)に加えて、他のエンドヌクレアーゼ及びエキソヌクレアーゼも本明細書に記載されている精製工程で使用されて混入している核酸を取り除いてもよい。そのようなヌクレアーゼは一本鎖DNA及び/または二本鎖DNA及びRNAを分解するように選択されてもよい。そのような工程は単一のヌクレアーゼまたは異なる標的を指向するヌクレアーゼの混合物を含有してもよく、エンドヌクレアーゼまたはエキソヌクレアーゼであってもよい。
用語「ヌクレアーゼ耐性」は、宿主細胞に導入遺伝子を送達し、製造過程から存在してもよい混入している核酸を取り除くように設計されるヌクレアーゼインキュベート工程の間にパッケージされたゲノム配列を分解(消化)から保護するように設計される発現カセットの周囲でAAVカプシドが完全に組み立てられることを示す。
本明細書で使用されるとき、「AAV9カプシド」は、GenBank登録AAS99264のアミノ酸配列を有するAAV9を指し、参照によって本明細書に組み入れられ、AAVvp1カプシドタンパク質は配列番号7にて再現される。このコードされた配列からの一部の変動は本発明によって包含され、それは、GenBank登録AAS99264及びUS7906111(WO2005/033321)にて参照されるアミノ酸配列に対して約99%の同一性を有する配列(すなわち、参照された配列からの約1%未満の変動)を含んでもよい。そのようなAAVには、たとえば、天然の単離体(たとえば、hu31またはhu32)、または、たとえば、US9,102,949、US8,927,514、US2015/349911;及びWO2016/049230A1に記載された、AAV9のカプシドと並べた他のAAVのカプシドにおける相当する位置から「募った」代替残基から選択されるアミノ酸置換を含むが、これらに限定されないアミノ酸の置換、欠失または付加を有するAAV9の変異体が挙げられてもよい。しかしながら、別の実施形態では、上記の参照配列に対して少なくとも約95%の同一性を有するAAV9またはAAV9カプシドの他の変異体が選択されてもよい。たとえば、米国公開特許出願番号2015/0079038を参照のこと。カプシドを生成する方法、そのためのコーディング配列、及びrAAVウイルスベクターの製造のための方法は記載されている。たとえば、Gao,et al,Proc.Natl.Acad.Sci.U.S.A.100(10),6081−6086(2003)及びUS2013/0045186A1を参照のこと。
用語「AAV9中間体」または「AAV9ベクター中間体」はその中にパッケージされた所望のゲノム配列を欠いている組み立てられたrAAVカプシドを指す。これらはまた「中空」カプシドと呼ばれてもよい。そのようなカプシドは発現カセットの検出できないゲノム配列、または遺伝子産物の発現を達成するには不十分である部分的にしかパッケージされないゲノム配列を含有してもよい。これらの中空カプシドは宿主細胞に対象とする遺伝子を移すのに機能的ではない。
用語「a」または「an」は1以上を指す。そのようなものとして用語「a」(または「an」)、「1以上」及び「少なくとも1」は本明細書では相互交換可能に使用される。
単語「comprise」、「comprises」、及び「comprising」は独占的にではなく包括的に解釈されるべきである。単語「consist」、「consisting」及びその変形は包括的にではなく独占的に解釈されるべきである。本明細書における種々の実施形態が他の状況下で「comprising」言語を用いて提示されている一方で、関連する実施形態は「consisting of」または「consisting essentially of」言語を用いて解釈され、記載されることも意図される。
用語「約」は特定されない限り、±10%の範囲内で且つそれを含む変動を包含する。
本明細書で定義されない限り、本明細書で使用されている専門用語及び科学用語は、当業者によって及び出版された教科書を参照することによって一般に理解されるものと同じ意味を有し、それは本出願で使用されている用語の多数に対する一般的な指針を当業者に提供する。
5.1.AAV.hIDUAの構築物及び製剤
5.1.1.発現カセット
特定の実施形態では、配列番号1のヌクレオチド配列を有することを特徴とするhIDUA遺伝子を含有する発現カセットを含むAAVベクターが提供される。本発明者らによって開発されたこの配列は、配列番号2をコードするGenBankNP000194.2の公開された遺伝子コーディング配列と約83%の同一性を有する。別の実施形態では、発現カセットは配列番号1に対して少なくとも約80%同一であるヌクレオチド配列を有することを特徴とするhIDUA遺伝子を含有し、機能的なヒトα−L−イズロニダーゼをコードする。別の実施形態では、配列は配列番号1に対して少なくとも約85%同一性であり、または配列番号1に対して少なくとも約90%同一であり、機能的なヒトα−L−イズロニダーゼをコードする。一実施形態では、配列は、配列番号1に対して少なくとも約95%同一であり、配列番号1に対して少なくとも約97%同一であり、または配列番号1に対して少なくとも約99%同一であり、機能的なヒトα−L−イズロニダーゼをコードする。一実施形態では、これは、配列番号1の約1〜約78に相当するヒトα−L−イズロニダーゼ(すなわち、配列番号2のアミノ酸26付近またはアミノ酸27付近からアミノ酸653付近をコードする)のリーダーペプチド配列を含む完全長のhIDUA遺伝子を包含する。別の実施形態では、hIDUA遺伝子は、機能的なヒトα−L−イズロニダーゼ酵素、すなわち、配列番号2のアミノ酸27付近〜653付近または本明細書で特定されるその機能的な変異体の1つの分泌された部分に融合される異種リーダー配列を含む合成ペプチドである機能的な合成ヒトα−L−イズロニダーゼ酵素をコードする。その上さらなる発現カセットは配列番号5及び配列番号6で特定されるものを含む。それぞれでは、各発現カセットはAAV2の5’及び3’ITRが隣接する。さらに、それぞれはプロモータ、エンハンサ、hIDUA遺伝子、及びポリAを含有する。
別の実施形態では、機能的なヒトα−L−イズロニダーゼは、リーダー(シグナル)ペプチドに相当する配列番号2の最初の26アミノ酸の全部または一部が異種のリーダーペプチドで置き換えられている合成アミノ酸配列を含んでもよい。このリーダーペプチド、たとえば、インターロイキン2(IL−2)またはオンコスタチンに由来するリーダーペプチドは細胞から出て分泌経路を介して循環に入る酵素の輸送を改善することができる。好適なリーダーペプチドは必然ではないが、好ましくはヒト起源のものである。好適なリーダーペプチドは参照によって本明細書に組み入れられるproline.bic.nus.edu.sg/spdb/zhang270.htmから選択されてもよく、または選択されたタンパク質におけるリーダー(シグナル)ペプチドを決定するための種々のコンピュータプログラムを用いて決定されてもよい。限定されないが、そのような配列は長さ約15〜約50アミノ酸、または長さ約19〜約28アミノ酸であってもよく、または必要に応じてさらに長くてもよく、もしくはさらに短くてもよい。加えて、IDUA酵素の酵素活性を評価するのに有用であるとして少なくとも1つの試験管内の方法が記載されている[たとえば、Kakkis,et al,Mol.Genet.Metabol,2001,Mar;72(3):199−208を参照のこと]。
配列に関する同一性または類似性は、配列を並べ、必要に応じてギャップを導入し、最大の配列同一性百分率を達成した後、本明細書で提供されるペプチド及びポリペプチドの領域と同一である(すなわち、同一残基)または類似する(すなわち、共通の側鎖特性に基づく同一群に由来するアミノ酸残基)候補配列におけるアミノ酸残基の比率として本明細書では定義されている。パーセント(%)同一性は、そのヌクレオチド配列またはアミノ酸配列をそれぞれ比較することによって決定されるような2つのポリヌクレオチド間または2つのポリペプチド間での関係性の測定値である。一般に、比較される2つの配列は配列間で最大の相関を得るように並べられる。2つの配列の配列比較が調べられ、決定される2つの配列間での正確なアミノ酸またはヌクレオチドの対応を与える位置の数を配列比較の長さ全体で割り、100を掛けて%同一性の数字を得る。この%同一性の数字は比較される配列の全長にわたって決定されてもよく、それは、同一のまたは非常に類似した長さの配列及び高度に相同性である、またはさらに短い定義された長さにわたる配列に特に好適であり、不均等な長さ配列または低レベルの相同性を有する配列にさらに好適である。多数のアルゴリズム及びそれに基づいたコンピュータプログラムがあり、それらは文献で使用するのに利用でき、及び/または配列比較及びパーセント同一性を行うのに公的にまたは商業的に利用できる。アルゴリズムまたはプログラムの選択は本発明の限定ではない。
たとえば、Unixのもとでの、次いでBioeditプログラムにインポートされるソフトウエアCLUSTALW(Hall,T.A.1999,BioEdit:Windows95/98/NTのための使いやすい生物配列の配列比較エディタ及び解析プログラム.Nucl.Acids.Symp.Ser.41:95−98);Wisconsin配列解析パッケージ、バージョン9.1(Devereux,J.et al.,Nucleic Acids Res.,12:387−395,1984,Genetics Computer Group,Madison,Wis.,USAから利用可能)を含む好適な配列比較プログラムの例。プログラムBESTFIT及びGAPを用いて2つのポリヌクレオチド間での%同一性及び2つのポリペプチド配列間の%同一性を決定してもよい。
配列間の同一性及び/または類似性を決定するための他のプログラムには、たとえば、米国、Md、Bethesdaの全米バイオテクノロジー情報センター(NCB)から入手可能であり、www.ncbi.nlm.nih.govでのNCBIのホームページを介してアクセスできるプログラムのBLASTファミリー、GCG配列比較ソフトウエアパッケージの一部であるALIGNプログラム(バージョン2.0)が挙げられる。アミノ酸配列を比較するのにALIGNプログラムを利用する場合、PAM120残基重み付け表、12のギャップ長ペナルティ及び4のギャップペナルティを使用することができ;及びFASTA(Pearson,W.R.及びLipman,D.J.,Proc.Natl.Acad.Sci.USA,85:2444−2448,1988,Wisconsin配列解析パッケージの一部として利用可能)。SeqWebソフトウエア(ウェブに基づくGCG Wisconsinパッケージへのインターフェース:Gapプログラム)。
一部の実施形態では、カセットは組換えアデノ随伴ウイルスから発現されるように設計され、ベクターゲノムもAAVの逆方向末端反復(ITR)も含有する。一実施形態では、rAAVは偽型であり、すなわち、AAVのカプシドはITRを提供するAAVとは異なる供給源のAAVに由来する。一実施形態では、AAV血清型2のITRが使用される。しかしながら、他の好適な供給源に由来するITRが選択されてもよい。任意でAAVは自己相補性AAVであってもよい
本明細書に記載されている発現カセットはAAVの5’逆方向末端反復(ITR)及びAAVの3’ITRを利用した。しかしながら、これらの要素の他の構成が好適であってもよい。D−配列と末端分離部位(trs)を欠失させているΔITRと呼ばれる5’ITRの短縮型が記載されている。別の実施形態では、完全長のAAVの5’ITR及び/または3’ITRが使用される。偽型AAVが作製されるべきである場合、発現におけるITRはカプシドのAAV供給源とは異なる供給源から選択される。たとえば、AAV2のITRは、CNSまたはCNS内の組織もしくは細胞を標的とするのに特定の効率性を有するAAVのカプシドと共に使用するために選択されてもよい。一実施形態では、AAV2に由来するITR配列またはその欠失型(ΔITR)を都合上使用して規制当局の承認を加速する。しかしながら、他のAAV供給源に由来するITRが選択されてもよい。ITRの供給源がAAV2に由来し、AAVのカプシドが別のAAV供給源に由来する場合、得られるベクターは偽型と呼ばれてもよい。しかしながら、AAVのITRの他の供給源が利用されてもよい。
一実施形態では、発現カセットは、脳脊髄液及び脳を含む中枢神経系(CNS)での発現及び分泌のために設計される。特に所望の実施形態では、発現カセットはCNS及び肝臓の双方での発現に有用であり、それによってMPS I、ハーラー症候群、ハーラー・シャイエ症候群及び/またはシャイエ症候群の全身性の及びCNS関連双方の影響の治療を可能にする。たとえば、本発明者らは、特定の構成的なプロモータ(たとえば、CMV)は髄内送達された際、所望のレベルでの発現を促さず、それによって準最適なhIDUAの発現レベルを提供することを観察している。しかしながら、ニワトリのβアクチンプロモータは髄内送達及び全身性送達の双方で発現を十分に促す。従って、これは特に望ましいプロモータである。他のプロモータが選択されてもよいが、同じものを含有する発現カセットがニワトリのβアクチンプロモータによるものの利点のすべてを有さなくてもよい。種々のニワトリのβアクチンプロモータが単独で、または種々のエンハンサ要素(たとえば、CB7はサイトメガロウイルスのエンハンサ要素を伴ったニワトリのβアクチンプロモータであり、プロモータ、ニワトリのβアクチンの第1エクソンと第1イントロン及びウサギβグロビン遺伝子のスプライスアクセプターを含むCAGプロモータ)、CBhプロモータ[S.J. Gray,et al,Hu Gene Ther,2011,Sep;22(9):1143−1153]との組み合わせで記載されている。
組織特異的であるプロモータの例は、とりわけ、肝臓及び他の組織について周知である(アルブミン,Miyatake,et al.,(1997),J.Virol.,71:5124−32;B型肝炎ウイルスコアプロモータ,Sandig,et al.,(1996),Gene Ther.,3:1002−9;アルファ−フェトタンパク質(AFP),Arbuthnot,et al.,(1996),Hum.Gene Ther.,7:1503−14),骨オステオカルシン(Stein,et al.,(1997),Mol.Biol.Rep.,24:185−96);骨シアロタンパク質(Chen,et al.,(1996),J.Bone Miner.Res.,11:654−64),リンパ球(CD2,Hansal,et al.,(1998),J.Immunol.,161:1063−8;免疫グロブリン重鎖;T細胞受容体鎖),ニューロン特異的なエノラーゼ(NSE)プロモータのようなニューロン性(Andersen,et al.,(1993),Cell.Mol.Neurobiol.,13:503−15),ニューロフィラメント軽鎖遺伝子(Piccioli,et al.,(1991),Proc.Natl.Acad.Sci.USA,88:5611−5),及びニューロン特異的なvgf遺伝子(Piccioli,et al.,(1995),Neuron,15:373−84)。或いは、調節できるプロモータが選択されてもよい。たとえば、参照によって本明細書に組み入れられるWO2011/126808B2を参照のこと。
一実施形態では、発現カセットは1以上の発現エンハンサを含む。一実施形態では、発現カセットは2以上の発現エンハンサを含有する。これらのエンハンサは同一であってもよく、または異なっていてもよい。たとえば、エンハンサにはアルファmic/bikエンハンサまたはCMVエンハンサが挙げられてもよい。エンハンサは互いに隣接して位置する2コピーで存在してもよい。或いは、エンハンサの二重コピーは1以上の配列によって分離されてもよい。さらに別の実施形態では、発現カセットはさらにイントロン、たとえば、ニワトリβアクチンのイントロン、ヒトβグロブリンのイントロン、及び/または市販のプロメガ(登録商標)イントロンを含有する。他の好適なイントロンには、当該技術で既知のもの、たとえば、WO2011/126808にて記載されているものが挙げられる。
さらに、本発明の発現カセットには好適なポリアデニル化シグナルが提供される。一実施形態では、ポリA配列はウサギグロブリンのポリAである。たとえば、WO2014/151341を参照のこと。或いは、別のポリA、たとえば、ヒト成長ホルモン(hGH)のポリアデニル化配列、SV50ポリA、または合成ポリA。さらに他の従来の調節要素が追加的にまたは任意で発現カセットに含まれてもよい。
5.1.2.rAAV.hIDUAウイルス粒子の作製
特定の実施形態では、AAVカプシド、その中でパッケージされているAAV逆方向末端反復、その発現を制御する調節性配列の制御下でのヒトα−L−イズロニダーゼ(hIDUA)遺伝子を有する組換えアデノ随伴ウイルス(rAAV)粒子が提供され、その際、前記hIDUA遺伝子は配列番号1で示される配列または機能的なヒトα−L−イズロニダーゼをコードするそれと少なくとも約95%同一である配列を有する。図1の模式図も参照のこと。一実施形態では、hIDUAの発現カセットにはAAVの5’ITRとAAVの3’ITRが隣接する。別の実施形態では、AAVは一本鎖AAVであってもよい。
髄内送達については、AAV9が特に望ましい。AAV9の配列及びAAV9のカプシドに基づいてベクターを生成する方法は、参照によって本明細書に組み入れられるUS7,906,111;US2015/0315612;WO2012/112832に記載されている。任意で、本明細書に記載されているようなrAAV9.hIDUAベクターは肝臓を特異的に標的とするように設計されたベクターと共投与されてもよい。肝臓指向性をもつ多数のrAAVベクターのいずれかを使用することができる。rAAVのカプシドのための供給源として選択されてもよいAAVの例には、たとえば、rh10、AAVrh64R1、AAVrh64R2、rh8が挙げられる[たとえば、米国公開特許出願番号2007−0036760−A1;米国公開特許出願番号2009−0197338−A1;EP1310571]。WO2003/042397(AAV7及び他のサルAAV),米国特許7790449及び米国特許7282199(AAV8)、WO2005/033321及びUS7,906,111(AAV9)、及びWO2006/110689]、及びrh10[WO2003/042397],AAV3B;AAVdj[US2010/0047174]も参照のこと。特に望ましいrAAVの1つはAAV2/8.TBG.hIDUA.coである。
多くの例で、rAAV粒子はDNA分解酵素耐性と呼ばれる。しかしながら、このエンドヌクレアーゼ(DNA分解酵素)に加えて、他のエンドヌクレアーゼ及びエキソヌクレアーゼも本明細書に記載されている精製工程で使用されて混入している核酸を取り除いてもよい。そのようなヌクレアーゼを選択して一本鎖DNA及び/または二本鎖のDNA及びRNAを分解してもよい。そのような工程は単一のヌクレアーゼ、または異なる標的に向けられたヌクレアーゼの混合物を含有してもよく、エンドヌクレアーゼまたはエキソヌクレアーゼであってもよい。
AAVに基づくベクターを調製する方法は知られている。たとえば、参照によって本明細書に組み入れられる米国公開特許出願番号2007/0036760(2007年2月15日)を参照のこと。AAV9のAAVカプシドの使用は本明細書に記載されている組成物及び方法に特によく適している。さらに、AAV8の配列及びAAV8カプシドに基づいてベクターを生成する方法は、参照によって本明細書に組み入れられる米国特許7,282,199B2,US7,790,449、及びUS8,318,480に記載されている。しかしながら、他のAAVカプシドが本発明での使用のために選択されてもよく、または生成されてもよい。多数のそのようなAAVの配列が、上記で引用された米国特許第7,282,199 B2号、同第7,790,449号、同第8,318,480号及び同第7,906,111号にて提供されており、GenBankから利用できる。AAVカプシド母いずれかの配列は合成で、または種々の分子生物学及び遺伝子工学の技法を用いて容易に生成することができる。好適な製造方法は当業者に周知である。たとえば、Sambrook,et al,Molecular Cloning:A Laboratory Manual,Cold Spring Harbor Press(Cold Spring Harbor,NY)を参照のこと。或いは、ペプチド(たとえば、CDR)をコードするオリゴヌクレオチドまたはペプチド自体は、たとえば、周知の固相ペプチド合成法によって合成で生成することができる(Merrifield,(1962),J.Am.Chem.Soc.,85:2149;Stewart及びYoung,Solid Phase Peptide Synthesis,(Freeman,San Francisco,1969),pp.27−62)。これらの及び他の好適な製造方法は当業者の知識の範囲内にあり、本発明の限定ではない。
本明細書に記載されている組換えアデノ随伴ウイルス(AAV)は既知である技法を用いて生成されてもよい。たとえば、WO2003/042397;WO2005/033321、WO2006/110689;US7588772B2を参照のこと。そのような方法には、AAVカプシド;機能的なrep遺伝子;最小でもAAVの逆方向末端反復(ITR)と導入遺伝子とで構成される発現カセット;及び発現カセットのAAVカプシドタンパク質へのパッケージングを可能にするのに十分なヘルパー機能をコードする核酸配列を含有する宿主細胞を培養することが関与する。
中空粒子と完全粒子の含量を計算するために、選択された試料(本明細書試料では、たとえば、GCの数=粒子の数であるイオジキサノール勾配精製した調製物)についてのVP3のバンド容量を負荷したGC粒子に対してプロットする。得られる線形の方程式(y=mx+c)を用いて試験物品のピークのバンド容量における粒子の数を計算する。次いで、負荷した20μL当たりの粒子の数(pt)に50を乗じて粒子(pt)/mLを得る。GC/mLで割ったPt/mLが粒子のゲノムコピーに対する比(pt/GC)を与える。Pt/mL−GC/mLは中空Pt/mLを与える。Pt/mLで割った中空Pt/mLに100を掛けて中空粒子の比率を得る。
一般に、中空カプシド及びパッケージされたゲノムを伴うAAVベクター粒子をアッセイする方法は当該技術で既知である。たとえば、Grimm,et al.,Gene Therapy,(1999),6:1322−1330;Sommer,et al.,Molec.Ther.(2003),7:122−128を参照のこと。変性させたカプシドについて調べるために、方法には、3種のカプシドタンパク質を分離することができるゲル、たとえば、緩衝液にて3〜8%のトリス・酢酸塩を含有する勾配ゲルから成るSDS−ポリアクリルアミドゲル電気泳動に処理されたAAVストックを供することと、次いで試料物質が分離されるまでゲルを泳動させることと、ナイロンまたはニトロセルロース膜、好ましくはナイロンに対してゲルをブロットすることとが関与する。次いで、変性させたカプシドタンパク質に結合する一次抗体として、抗AAVカプシド抗体、好ましくは抗AAVカプシドモノクローナル抗体、最も好ましくはB1抗AAV2モノクローナル抗体が使用される(Wobus,et al.,J.Virol.(2000)74:9281−9293)。次いで、一次抗体に結合し、一次抗体との結合を検出する手段を含有するものである二次抗体、さらに好ましくは、それに共有結合する検出分子を含有する抗IgG抗体、最も好ましくは西洋ワサビのペルオキシダーゼに共有結合する抗マウスIgG抗体を使用する。結合を検出する方法を用いて一次抗体と二次抗体の間の結合を半定量的に決定し、好ましくは、検出方法は、放射性同位元素の放出、電磁放射、または比色変化を検出することができ、最も好ましくは化学発光検出キットである。たとえば、SDS−PAGEについては、カラム分画からの試料を取り出し、還元剤(たとえば、DTT)を含有するSDS−PAGE負荷緩衝液にて加熱し、プレキャストの勾配ポリアクリルアミドゲル(たとえば、Novex)にてカプシドタンパク質を分解した。銀染色は製造元の指示書に従ってSilverXpress(Invitrogen,CA)を用いて行ってもよく、または他の好適な染色法、すなわち、SYPROrubyまたはクマシー染色を行ってもよい。一実施形態では、カラム分画におけるAAVベクターゲノム(vg)の濃度は定量的リアルタイムPCR(Q−PCR)によって測定することができる。試料を希釈し、DNA分解酵素I(または他の好適なヌクレアーゼ)によって消化して外来性のDNAを取り除く。ヌクレアーゼの不活化の後、試料をさらに希釈し、プライマーとプライマー間でのDNA配列に特異的なTaqMan(商標)蛍光発生プローブを用いて増幅する。Applied Biosystems Prism7700配列検出システムにて各試料について蛍光の定義されたレベルに達するのに必要とされるサイクルの数(閾値サイクル、Ct)を測定する。AAVベクターに含有されるものと同一の配列を含有するプラスミドDNAを採用してQ−PCR反応における標準曲線を生成する。試料から得られるサイクルの閾値(Ct)の値を使用してプラスミドの標準曲線のCt値に対してそれを基準化することによってベクターゲノムの力価を決定する。デジタルPCRに基づいたエンドポイントアッセイも使用することができる。
態様の1つでは、スペクトルの広いセリンプロテアーゼ、たとえば、プロテイナーゼK(Qiagenから市販されているような)を利用する最適化されたq−PCRを使用する。さらに詳しくは、最適化q−PCRゲノム力価アッセイは、DNA分解酵素Iによる消化の後、試料をプロテイナーゼK緩衝液で希釈し、プロテイナーゼKで処理し、その後熱で不活化することを除いて、標準アッセイに類似する。好適には、試料は、試料サイズと同等の量でのプロテイナーゼK緩衝液で希釈される。プロテイナーゼK緩衝液は2倍以上に濃縮されてもよい。通常、プロテイナーゼK処理は約0.2mg/mLであるが、0.1mg/mL〜約1mg/mLまで変化してもよい。処理工程は一般に約55℃で約15分間行われるが、さらに低い温度(たとえば、約37℃〜約50℃)でさらに長い時間(たとえば、約20分間〜約30分間)、またはさらに高い温度(たとえば、約60℃まで)でさらに短い時間(たとえば、約5〜10分間)実施されてもよい。同様に、熱による不活化は一般に、約95℃で約15分間であるが、温度はさらに低下させてもよく(たとえば、約70℃〜約90℃)、時間は増やしてもよい(たとえば、約20分間〜約30分間)。次いで試料を希釈し(たとえば、1000倍)、標準アッセイで記載されたようなTaqMan解析に供する。
さらにまたは代わりに、ドロップレットデジタルPCR(ddPCR)が使用されてもよい。たとえば、ddPCRによって一本鎖及び自己相補性のAAVベクターゲノムの力価を測定する方法が記載されている。たとえば、M.Lock,et al,Hu Gene Therapy Methods,Hum Gene Ther Methods.2014,Apr;25(2):115−25.doi:10.1089/hgtb.2013.131.Epub,2014,Feb,14を参照のこと。
手短には、ゲノム欠損AAV9中間体からパッケージされたゲノム配列を有するrAAV9粒子を分離する方法には、組換えAAV9ウイルス粒子とAAV9カプシド中間体を含む懸濁液を高速液体クロマトグラフィに供することが関与し、その際、AAV9ウイルス粒子とAAV9中間体は10.2のpHで平衡化した強アニオン交換樹脂に結合し、約260及び約280での紫外線吸光度について溶出液をモニターしながら塩勾配に供される。rAAV9にとってあまり最適ではないが、pHは約10.0〜10.4の範囲であってもよい。この方法では、AAV9完全カプシドは、A260/A280の比が変曲点に達した際に溶出される分画から回収される。一例では、アフィニティクロマトグラフィ工程については、AAV2/9血清型を効率的に捕捉するCapture Select(商標)Poros− AAV2/9親和性樹脂(Life Technologies)に透析濾過した生成物を適用してもよい。これらのイオン条件下では、AAV粒子が効率的に捕捉される一方で、残留する細胞性のDNA及びタンパク質のかなりの割合がカラムを通過する。
rAAV.hIDUAベクターは図11で示すフローチャートで示されるように製造することができ、それは以下のセクション5.4及び実施例5にてさらに詳細に記載されている。
5.1.3.rAAV.hIDUAの医薬製剤
rAAV9.hIDUA製剤は、生理食塩水と界面活性剤と生理的に適合性の塩または塩の混合物とを含有する水溶液に懸濁された有効量のAAV.hIDUAベクターを含有する懸濁液である。好適には、製剤は、生理的に許容できるpHに、たとえば、pH6〜8、またはpH6.5〜7.5、pH7.0〜7.7、またはpH7.2〜7.8の範囲で調整される。脳脊髄液のpHは約7.28〜約7.32なので、髄内送達のためにはこの範囲内のpHが所望であってもよいのに対して、静脈内送達については、6.8〜約7.2のpHが所望であってもよい。しかしながら、最も広い範囲内及びこれら部分範囲内での他のpHが他の経路の送達のために選択されてもよい。
好適な界面活性剤または界面活性剤の組み合わせは非毒性である非イオン性界面活性剤の間から選択されてもよい。一実施形態では、1級ヒドロキシル基で終結する二官能性のブロックコポリマー界面活性剤、たとえば、中性のpHを有し、8400の平均分子量を有するポロキサマー188としても知られるプルロニック(登録商標)F68[BASF]が選択される。他の界面活性剤及び他のポロキサマー、すなわち、ポリオキシエチレン(ポリ(エチレンオキシド)の2つの親水性の鎖が隣接するポリオキシプロピレン(ポリ(プロピレンオキシド)の中央の疎水性の鎖で構成される非イオン性のトリブロックコポリマー、SOLUTOL HS 15(マクロゴール−15 ヒドロキシステアレート)、LABRASOL(ポリオキシカプリル酸グリセリド)、ポリオキシ10オレイルエーテル、TWEEN(ポリオキシエチレンソルビタン脂肪酸エステル)、エタノール及びポリエチレングリコールが選択されてもよい。一実施形態では、製剤はポロキサマーを含有する。これらのコポリマーは、文字「P」(ポロキサマーのための)に続く3つの数字によって共通して名付けられ、最初の2つの数字×100はポリオキシプロピレンのコアのおよその分子量を与え、最後の数字×10はポリオキシエチレン含量の比率を与える。一実施形態では、ポロキサマー188が選択される。界面活性剤は懸濁液の約0.0005%〜約0.001%までの量で存在してもよい。
一実施形態では、製剤は、たとえば、参照によって本明細書に組み入れられるM.Lock,et al,Hu Gene Therapy Methods,Hum Gene Ther.Methods.2014,Apr;25(2):115−25.doi:10.1089/hgtb.2013.131.Epub,2014,Feb.14にて記載されたようなoqPCRまたはデジタルドロップレットPCR(ddPCR)によって測定されるとき少なくとも約1×109GC/mL〜約3×1013GC/mLの濃度を含有してもよい。
一実施形態では、本明細書に記載されているような緩衝溶液におけるrAAVを凍結形態で含有する凍結組成物が提供される。任意で、1以上の界面活性剤(たとえば、プルロニックF68)、安定剤または保存剤がこの組成物に存在する。好適には、使用のために、組成物は解凍され、好適な希釈剤、たとえば、無菌の生理食塩水または緩衝化生理食塩水によって所望の用量に滴定される。
一例では、製剤は、水中にて、たとえば、塩化ナトリウム、重炭酸ナトリウム、デキストロース、硫酸マグネシウム(たとえば、硫酸マグネシウム・7H2O)、塩化マグネシウム塩化カリウム、塩化カルシウム(たとえば、塩化カルシウム・2H2O)、リン酸ナトリウム(たとえば、二塩基リン酸ナトリウム)、及びそれらの混合物の1以上を含む緩衝化生理食塩水溶液を含有してもよい。製剤は、本明細書に記載されるように、たとえばデキストロース及び/またはポロキサマーも含有し得る。好適には、髄内送達については、浸透圧は脳脊髄液(たとえば、約270〜約290)に適合する範囲内である。たとえば、emedicine.medscape.com/article/2093316−overview.を参照のこと。任意で、髄内送達については、市販の希釈剤を懸濁剤として、または別の懸濁剤及び他の任意の賦形剤との組み合わせで使用してもよい。たとえば、エリオットB(登録商標)[Lukare Medical]を参照のこと。
別の実施形態では、製剤は1以上の透過促進剤を含有してもよい。好適な透過促進剤には、たとえば、マンニトール、グリココール酸ナトリウム、タウロコール酸ナトリウム、デオキシコール酸ナトリウム、サリチル酸ナトリウム、カプリル酸ナトリウム、カプリン酸ナトリウム、ラウリル硫酸ナトリウム、ポリオキシエチレン−9−ラウレルエーテル、またはEDTAが挙げられてもよい。
特定の実施形態では、製剤にて懸濁された濃縮ベクター(任意で凍結された)と任意の希釈緩衝液と用具とを含むキットが提供され、髄内投与に必要とされる他の成分が提供される。別の実施形態では、キットは追加的にまたは代わりに静脈内送達のための成分を含んでもよい。一実施形態では、キットは注入を可能にするのに十分な緩衝液を提供する。そのような緩衝液は、濃縮されたベクターの1:1〜1:5またはそれ以上の希釈を可能にしてもよい。別の実施形態では、さらに多いまたはさらに少ない量の緩衝液または無菌水が含まれて、治療を行う医師による用量滴定及び他の調整を可能にする。さらに別の実施形態では、用具の1以上の成分がキットに含まれる。
特定の実施形態では、希釈は、以下のような無菌技術を使用して、臨床薬局において層流空気流キャビネット中で実施され得る。注射器及び無針瓶アダプターを使用して、AAV9.hIDUA(予め凍結されていてもよい)を含有する予め規定された容量の懸濁液を取り出し、次いで、プラスチック針シースで覆われた滅菌ステンレス鋼鈍針で注射器をキャップする。注射器及び無針瓶アダプターを使用して、予め規定された容量の希釈剤を取り出し、次いで、プラスチック針シースで覆われた滅菌ステンレス鋼鈍針で注射器をキャップする。希釈剤、次いでAAV9.hIDUAを含有する懸濁液を、無菌技術を使用して第3の「投与」シリンジに送達し、注射器の外側の無菌性が維持されることを確実にする。チップキャップを用いて注射器をキャップし、反転によって混合する。キャップを外し、所望の送達容量にプライミングし、キャップし、レッテルを付け、滅菌バッグ中に包装し、これは6時間以内に使用するために手術室に輸送され得る。
5.2.遺伝子治療プロトコール
5.2.1.標的患者集団
本明細書で提供されるのは、本明細書に記載されているような治療上有効な量の修飾されたhIDUAの発現カセットを送達することを含むI型ムコ多糖症を治療する方法である。特に、本明細書で提供されるのは、それを必要とする患者に治療上有効な量の本明細書に記載されているrAAV.hIDUAを送達することを含む、MPS Iであると診断された患者にて神経認知の低下を防ぐ、治療する及び/または改善する方法である。「治療上有効な量」の本明細書に記載されているrAAV.hIDUAベクターは以下の段落のいずれか1つで特定される症状の1以上を是正してもよい。
治療の候補者である患者は、MPS Iの及び/またはハーラー、ハーラー・シャイエ及びシャイエに関連する症状を持つ小児患者及び成人患者である。MPS I疾患は早期に重度の形態(ハーラー)から晩期の発症形態(シャイエ)までの疾患のスペクトルである。ハーラー症候群は通常、IDUA酵素活性がない(0%)ことを特徴とし、早期に診断され、発達遅滞、肝脾肥大症、骨格病変、角膜混濁、関節病変、難聴、心臓病変及び10歳までの死亡を特徴とする。ハーラー・シャイエの患者は、一部のIDUA酵素活性を有する(0%を超えるが、通常2%未満)ことが観察され、多様な知的結果、呼吸器疾患、閉塞性気道疾患、循環器疾患、関節のこわばり/痙縮、骨格の異常、視力の低下、及び十代または二十代での死亡を有する。シャイエ症候群の患者は通常、少なくとも2%の「正常な」IDUA酵素活性を有し、遅くなって診断され;そのような患者は通常、正常な知性を有するが、肝脾肥大症、関節の病変、神経絞扼、難聴、心臓の病変及び正常な寿命を有する。ムコ多糖症I型(MPS I)についての新生児スクリーニング:母子健康事務局のために作成された最終知見、最終バージョン1.1の証拠報告の体系的レビュー。www.hrsa.gov/advisorycommittees/mchbadvisory/−heritabledisorders/nominatecondition/reviews/mps1finalreport.pdfを参照のこと。
本発明の組成物は、軽度から本格的なアナフィラキシーに及び得る組換え酵素に対する免疫応答に関連する長期間の酵素補充療法(ERT)の合併症、と同様にたとえば、局所及び全身性の感染症のような長期間の末梢投与の合併症を回避する。ERTとは対照的に本発明の組成物は長期間の反復する毎週の注入を必要としない。理論によって束縛されることを望まないで、本明細書に記載されている治療方法は、CNS区画の外側で治療の影響力を提供する連続した高い循環IDUAのレベルを提供する高い形質導入効率のベクターによって得られる効率的で長期の遺伝子導入を提供することによってMPS I疾病に関連する少なくとも中枢神経系の表現型を是正することに有用であると考えられる。加えて、本明細書で提供されるのは、AAVが介在するCNSへの送達に先立って、タンパク質の形態またはrAAV.hIDUAの形態での酵素の直接的な全身性送達によることを含む、種々の経路による酵素に対する能動的寛容を提供し、抗体の形成を防ぐ方法である。
一部の実施形態では、ハーラー症候群であると診断された患者は本明細書に記載されている方法に従って治療される。一部の実施形態では、ハーラー・シャイエ症候群であると診断された患者は本明細書に記載されている方法に従って治療される。一部の実施形態では、シャイエ症候群であると診断された患者は本明細書に記載されている方法に従って治療される。一部の実施形態では、神経認知欠損を有するMPS Iの小児対象は本明細書に記載されている方法に従って治療される。
特定の実施形態では、新生児(3ヵ月齢未満)は本明細書に記載されている方法に従って治療される。特定の実施形態では、3ヵ月齢〜9ヵ月齢である乳児は本明細書に記載されている方法に従って治療される。特定の実施形態では、9ヵ月齢〜36カ月齢である幼児は本明細書に記載されている方法に従って治療される。特定の実施形態では、3歳〜12歳である小児は本明細書に記載されている方法に従って治療される。特定の実施形態では、12歳〜18歳である小児は本明細書に記載されている方法に従って治療される。特定の実施形態では、18歳以上である成人は本明細書に記載されている方法に従って治療される。
一実施形態では、患者はハーラー症候群を有してもよく、少なくとも3ヵ月齢から12ヵ月齢未満の男子または女子である。別の実施形態では、患者はMPSI状態を有してもよく、49ヵ月齢(4歳超)から約72ヵ月齢(6歳)であってもよい。別の実施形態では、患者は男子または女子のハーラー・シャイエ症候群であってもよく、少なくとも約6歳から18歳までであってもよい。別の実施形態では、対象は老齢であっても、または若年であってもよく、男子であっても、または女子であってもよい。
好適には、治療のために選択される患者には、以下の特徴:血漿、線維芽細胞または白血球で測定されたときIDUA活性の欠如または低下によって確認されたMPS Iの文書化された診断;以下、他の神経学的なまたは精神医学的な因子によって説明できなければ:IQ検査の平均値を1標準偏差下回るスコアもしくは神経心理学的機能(言語、記憶、注意または非言語能力)の1ドメインにおけるスコアのいずれかとして定義されるMPS Iによる早期の神経認知欠損の文書化された証拠、または逐次試験における1標準偏差を上回る低下の文書化された歴史的証拠の1以上を有するものが含まれてもよい。或いは、尿における高いGAGまたは遺伝子検査が使用されてもよい。
治療に先立って、対象、たとえば、乳児は好ましくは、MPS I患者、すなわち、hIDUAをコードする遺伝子に突然変異を有する患者を特定する遺伝子型判定を受ける。特定の集団において、対象はより年長であってもよく、たとえば3歳未満から72ヵ月齢(6歳)またはさらにより年長であってもよい。治療に先立って、MPS I患者は、hIDUA遺伝子を送達するのに使用されるAAV血清型に対する中和抗体(Nab)について評価され得る。特定の実施形態では、5以下であるAAVに対する中和抗体力価を持つMPS I患者は本明細書に記載されている方法の1以上に従って治療される。
治療に先立って、MPS I患者を、hIDUA遺伝子を送達するのに使用されるAAVベクターのカプシドに対する中和抗体(Nab)について評価することができる。そのようなNabは形質導入効率を妨害することができ、治療有効性を低下させることができる。≦1.5のベースライン血清Nab力価を有するMPS I患者は、rAAV.hIDUA遺伝子治療プロトコールによる治療について良好な候補者である。>1:5の血清Nabの力価を持つMPS I患者の治療は、rAAV.hIDUAベクターの送達による治療の前に及び/または治療中にたとえば、免疫抑制剤による一時的な共治療のような併用療法を必要としてもよい。任意で、免疫抑制剤の共療法は、AAVベクターのカプシド及び/または製剤の他の成分に対する中和抗体を前もって評価することなく、予防措置として使用されてもよい。特に、実際にIDUA活性のレベルを有さない、導入遺伝子の産物が「異物」として見られ得る患者では、hIDUA導入遺伝子の産物に対する有害な免疫応答の可能性を防ぐために、前もっての免疫抑制療法が望ましくてもよい。以下に記載されているマウス、イヌ及びNHPにおける非臨床試験の結果は、hIDUAに対する免疫応答及び神経炎症の発生に矛盾しない。類似の反応はヒト対象では起きないかもしれないが、予防免疫抑制療法はrAAV.hIDUAのレシピエントすべてに推奨される。
そのような共療法のための免疫抑制剤には、グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、及びアルキル化剤を含む細胞増殖抑制剤、代謝拮抗剤、細胞傷害性の抗生剤、抗体、またはイムノフィリンに対して活性のある作用物質が挙げられるが、これらに限定されない。選択される1つ以上のマクロライドは、免疫抑制剤である。特定の実施形態では、マクロライドは、非抗生物質免疫抑制剤である。これらの非抗生物質免疫抑制剤は、異なる作用機序を有し得る。特定の実施形態では、カルシニューリン阻害剤(たとえば、タクロリムス)、mTOR阻害剤(たとえば、シロリムス、テムシロリムス、エベロリムス、または別のラパログ)、またはそれらの組み合わせ。別の好適な非生物質免疫抑制剤は、ピメクロリムスであり得る。
免疫抑制剤には、ナイトロジェンマスタード、ニトロソウレア、白金化合物、メソトレキセート、アザチオプリン、ミコフェノール酸モフェチル、メトトレキサート、レフルノミド(アラバ)、シクロホスファミド、クロラムブシル(ロイケラン)、クロロキン(たとえば、ヒドロキシクロロキン)、硫酸キニーネ、メフロキン、アトバコン及びプログアニルの組み合わせ、スルファサラジン、メルカプトプリン、フルオロウラシル、ダクチノマイシン、アントラサイクリン、マイトマイシンC、ブレオマイシン、ミトラマイシン、IL−2受容体(CD25)またはCD3に向けられた抗体、抗IL−2抗体、アバタセプト(オレンシア)、アダリムマブ(ヒュミラ)、アナキンラ(キネレット)、セルトリズマブ(シムジア)、エタネルセプト(エンブレル)、ゴリムマブ(シンポニー)、インフリキシマブ(レミケード)、リツキシマブ(リツキサン)、トシリズマブ(アクテムラ)及びトファシチニブ(ゼルヤンツ)、シクロスポリン,タクロリムス、mTOR阻害剤(シロリムス(すなわちラパマイシン)、テムシロリムスまたはラパログ等)、IFN−β、IFN−γ、オピオイドまたはTNF−α(腫瘍壊死因子−アルファ)結合剤、並びにこれらの薬物の組み合わせが挙げられてもよい。特定の実施形態では、免疫抑制療法は遺伝子治療の投与の0、1、2、7日以上前に開始されてもよい。そのような治療法には、同一日における2以上の薬剤の共投与が関与してもよい。一実施形態では、2つ以上の薬物は、たとえば、1つ以上のコルチコステロイド(たとえば、プレドネリゾン(prednelisone)またはプレドニゾン)及び任意に、MMF、及び/またはカルシニューリン阻害剤(たとえば、タクロリムス)、及び/またはmTOR阻害剤(テムシロリムスまたはシロリムス(すなわちラパマアイシン))であり得る。一実施形態では、2つ以上の薬物は、ミコフェノール酸モフェチル(MMF)及び/またはシロリムスである。別の実施形態では、2つ以上の薬物は、たとえば、メチルプレドニゾロン、プレドニゾン、タクロリムス、及び/またはシロリムスであり得る。特定の実施形態では、免疫抑制レジメンは、コルチコステロイド、タクロリムス及びシロリムスからなる。特定の実施形態では、薬物は、MMF及びタクロリムスをベクター送達前の0〜15日間であり、MMFで約8週間、及び/またはタクロリムスでの追跡予約を通して維持する。これら薬剤の1以上が同一用量または調整された用量で、遺伝子治療の投与後に継続してもよい。特定の実施形態では、患者に最初にIVステロイド(たとえば、メチルプレドニゾロン)を投与して用量を負荷し、続いて経口ステロイド(たとえば、プレドニゾロン)を投与し、これは患者が12週目までになくなるように徐々に漸減させる。コルチコステロイド処置はタクロリムス(24週間)及び/またはシロリムス(12週間)により補充され、更にMMFで補充され得る。タクロリムス及びシロリムスの両方を使用する場合、各々の用量は、4ng/mL〜約8ng/mL、または合計約8ng/mL〜約16ng/mLの血液トラフレベルを維持するように調整された低用量である方がよい。特定の実施形態では、これらの薬剤の一方のみを使用する場合、タクロリムス及び/またはシロリムスについての総用量は、約16ng/mL〜約24ng/mLの範囲であり得る。薬剤の一方のみが使用される場合、ラベル用量(より高い用量);たとえば、12時間毎に2分割された用量として付与される、0.15〜0.20mg/kg/日のタクロリムス;及び1mg/m2/日のシロリムスを使用すべきであり;負荷用量は、3mg/m2であるべきである。MMFがレジメンに追加される場合、タクロリムス及び/またはシロリムスの用量は、作用機序が異なるため維持され得る。これら及び他の治療法は、約−14日目〜−1日目に開始され(たとえば、−2日目、0日目等)、約1週間(7日間)まで,または約60日間まで、または約12週間まで、または約16週間まで、または約24週間まで、または約48週間まで、または必要に応じてそれより長く継続し得る。特定の実施形態では、タクロリムスを含まない投与計画が選択される。
そうは言うものの、一実施形態では、以下の特徴の1以上を有する患者が主治医の裁量によって治療から排除されてもよい:
・以下のいずれかを含むIC注入について禁忌を有する:
〇ベースラインMRI検査の見直しがIC注入の禁忌を示す。
〇IC注入の禁忌を生じる頭部/頸部の手術の既往。
〇CT(または造影剤)または全身麻酔に対する禁忌を有する。
〇MRI(またはガドリニウム)に対する禁忌を有する。
〇<30mL/分/1.73m2の推定糸球体濾過量(eGFR)を有する。
・MPS Iに起因しない神経認知欠損を有する、または神経精神病状態も診断を有する。
・タクロリムス、シロリムス、プレドニゾロン、メチルプレドニゾロン、またはプレドニゾロンの1以上に対する過敏性反応の既往を有する。
・免疫抑制療法について適当ではない状態(たとえば、<1.3×103/μLの好中球の絶対数、<100×103/μLの血小板数及び<12g/dL(男)または<10g/dL(女)のヘモグロビン)を有する。
・腰椎穿刺に対する禁忌を有する。
・HSCTを受けている。
・治療の前6ヵ月以内にIT投与を介してラロニダーゼ投与を受けていた。
・どこかの時点でラロニダーゼIT投与を受け、患者を過度のリスクに置くIT投与に関連すると見なされる重大な有害事象を経験した。
・治療の前少なくとも3ヵ月間完全寛解になっていない、リンパ腫の既往、または皮膚の有棘細胞癌もしくは基底細胞癌以外の別の癌の既往。
・患者がギルバート症候群の以前既知の既往症及び総ビリルビンの<35%の結合ビリルビンを示す分画ビリルビンを有さない限り、>3×正常の上限(ULN)のアラニンアミノトランスフェラーゼ(ALT)またはアスパラギン酸アミノトランスフェラーゼ(AST)または>1.5×ULNの総ビリルビン。
・ヒト免疫不全ウイルス(HIV)陽性検査の既往、活動型または再発性のB型肝炎またはC型肝炎、またはB型肝炎、C型肝炎またはHIVの陽性スクリーニング検査の既往。
・妊娠中、出産後<6週、母乳授乳中、または妊娠を計画中(自己またはパートナー)。
・治療の前1年以内のアルコールまたは薬物の乱用の既往。
・患者の安全を脅かす深刻なまたは不安定な医学的または心理学的な状態を有する。
・制御不良の発作。
別の実施形態では、主治医は、これらの身体的な特徴(医学的既往)の1以上の存在が本明細書で提供されているような治療を除外すべきではないことを決定してもよい。
HSCTが米国のMPS Iの小児における標準的なケアであることを考慮すると、対象は18歳以上の成人であり得る。6歳以上の小児の登録は、この対象において、遺伝子治療後8週目に安全性の懸念が同定されない場合にのみ開始される。
他の国、たとえばブラジルでは、HSCT及び/またはERTは限られており、ハーラー症候群の患者における満たされていない医学的必要性は有意である。したがって、3歳未満の患者を登録することは、これらの患者がrAAV9.hIDUAによる治療から利益を得る最大の見通しを有するため、正当化される。適格な患者には、重篤な形態のMPS Iを有する患者が含まれ、初期段階の神経認知障害のリスクがある。AAV9.hIDUAの薬力学的効果は疾患のバイオマーカーを用いて測定することができ、ハーラー症候群の対象におけるAAV9.hIDUAの有効性は、認知機能を用いて測定することができる。
このような集団では、患者は以下の基準を満たし得る。特定の実施形態では、対象は、以下の選択基準のすべてを満たさなければならない:
1)3歳未満の男性または女性。
2)対象の法定保護者は、治験の性質が説明された後、治験に関連する手続きが行われる前に、署名付きのインフォームドコンセントを提供する意思があり、かつ提供することができる。
3)重度のMPS I−ハーラーと診断されたことが証明されている:
4)MPS I−ハーラーに適合する臨床的徴候及び症状の存在、及び/または
5)重度の表現型と排他的に関連する突然変異についてのホモ接合性もしくは複合ヘテロ接合性。
6)55以上の知能指数(IQ)スコアを有する
7)補助具の有無にかかわらず、必要なプロトコール試験を完了するのに十分な聴覚能力及び視覚能力を有し、該当する場合、試験日に補助具を着用することに従う意思がある。
特定の実施形態では、以下の除外基準のいずれかを満たす対象の処置は、処置に適格ではない。
8)以下のいずれかを含むIC注入には禁忌である:
a)神経放射線科医/神経外科医の判定委員会によるベースライン磁気共鳴画像法(MRI)検査のレビューは、IC注入の禁忌を示す。
b)神経放射線科医/神経外科医の判定委員会による入手可能な情報のレビューに基づき、IC注入を禁忌とした以前の頭部/頸部手術の既往歴。
c)コンピュータ断層撮影(CT)(または造影剤)または全身麻酔に禁忌である。
d)MRI(またはガドリニウム)に禁忌である。
e)推定糸球体濾過量(eGFR)<30mL/分/1.73m2である。
9)MPS Iに起因しない神経認知障害を有するか、またはPIの見解で研究結果の解釈を混乱させる可能性のある神経精神状態の診断を有する。
10)腰椎穿刺に禁忌である。
11)造血幹細胞移植(HSCT)を受けている
12)AAVベースの遺伝子治療製品による治療歴がある
13)任意の時間に髄内(IT)ラロニダーゼを投与され、PIの見解では対象を過度のリスクにさらすと考えられるIT投与に関連すると考えられる有意なAEを経験した。
14)スクリーニング前少なくとも3ヵ月間完全寛解していないリンパ腫の既往歴または皮膚の扁平上皮癌もしくは基底細胞癌以外の別の癌の既往歴がある。
15)最大の内科的治療にもかかわらず、制御されていない高血圧(収縮期血圧[BP]>180mmHg、拡張期血圧>100mmHg)。
16)血小板数<100,000/マイクロリットル(μL)である
17)対象にギルバート症候群の既往歴がない限り、スクリーニング時にアラニンアミノトランスフェラーゼ(ALT)またはアスパラギン酸アミノトランスフェラーゼ(AST)>3×正常上限(ULN)または総ビリルビン>1.5×ULNを有する。
18)ヒト免疫不全ウイルス(HIV)もしくはB型肝炎もしくはC型肝炎ウイルス感染の既往歴を有し、またはB型肝炎表面抗原もしくはB型肝炎コア抗体もしくはC型肝炎もしくはHIV抗体のスクリーニング検査陽性である。
19)インフォームド・コンセントフォーム(ICF)に署名する前の30日以内または5半減期以内(いずれか長い方)に治験薬を受容した
20)治験実施に関与する医療機関の従業員もしくはその他の個人の一等家族であるか、または治験実施に関与する医療機関の従業員もしくはその他の個人である。
21)PIの見解で、対象の安全性を損なう臨床的に有意なECG異常がある。
22)PIの見解で、対象の安全性、または治験への参加もしくは治験結果の解釈の成功を損なう重篤または不安定な医学的または心理的状態を有する。
23)医療機関の神経放射線科医/神経外科医の意見において、及びメディカルモニターとの議論において、対象の投与及び適切な投与に影響を及ぼし得る(脳)室シャント。
特定の実施形態では、対象は、免疫抑制療法に関連する以下の基準に基づいて、処置から排除(除外)され得る:
21)タクロリムス、シロリムスまたはプレドニゾンに対する過敏症反応の既往歴;
22)原発性免疫不全(たとえば、一般的な可変性免疫不全症候群)、脾臓摘出、または対象を感染症にかかりやすくするあらゆる基礎疾患の既往歴。
23)スクリーニングの少なくとも12週間前に完全には消失しなかった帯状疱疹、サイトメガロウイルス、またはエプスタインバーウイルス(EBV)感染。
24)来診2の少なくとも8週間前に消失しなかった入院または非経口抗感染薬による治療を必要とするあらゆる感染。
25)来診2前の10日以内に経口抗感染薬(抗ウイルス薬を含む)を必要とするあらゆる活動性感染。
26)活動性結核(TB)の既往歴またはスクリーニング中のクォンティフェロンTBゴールド検査の陽性。
27)ICFに署名する前の8週間以内のあらゆる生ワクチン。
28)ICFに署名する前の8週間以内の大手術または治験期間中に計画された大手術。
29)登録後6ヵ月以内にアデノイド切除術または扁桃摘出術の必要性を予測する。アデノイド切除術または扁桃摘出術が予測される場合は、スクリーニング前に実施すべきである。
30)絶対好中球数<1.3×103/μL。
31)臨床医が免疫抑制療法に適切ではないと考える任意の状態または実験室異常。
5.2.2.投与量及び投与の方式
患者への投与に好適な医薬組成物は、生理的に適合性の水性緩衝液と界面活性剤と任意の賦形剤とを含む製剤緩衝液におけるrAAV.hIDUAベクターの懸濁液を含む。特定の実施形態では、本明細書に記載されている医薬組成物は髄内に投与される。別の実施形態では、本明細書に記載されている医薬組成物は嚢内に投与される。別の実施形態では、本明細書に記載されている医薬組成物は静脈内に投与される。特定の実施形態では、医薬組成物は20分間(±5分間)にわたる点滴によって末梢静脈を介して送達される。しかしながら、この時間は必要に応じてまたは所望に応じて調整されてもよい。しかしながら、投与のさらに他の経路が選択されてもよい。代わりにまたはさらに、投与の経路は所望に応じて組み合わせてもよい。
rAAVの単回投与が有効であることが予測される一方で、投与は繰り返されてもよい(たとえば、特に新生児の治療では年に4回、年に2回、毎年または別の方法で必要に応じて)。任意で、点滴/注入を忍容するために対象の年齢及び能力を考慮して、治療上有効な量の初回用量は分割点滴/注入の期間にわたって送達されてもよい。しかしながら、完全な治療用量の反復毎週の注入は必要とされず、心地よさと治療結果の双方の点で患者に利点を提供する。
一部の実施形態では、rAAV懸濁液は少なくとも1×109GC/mLであるrAAVのゲノムコピー(GC)の力価を有する。特定の実施形態では、rAAV懸濁液におけるrAAVの中空粒子/完全粒子の比は0.01〜0.05の間である(95%〜99%中空カプシドはない)。一部の実施形態では、それを必要とするMPS I患者は、rAAV懸濁液の少なくとも約4×108GC/g脳質量〜約4×1011GC/g脳質量の用量を投与される。
MPSI患者に対する治療上有効なrAAV.hIDUAの髄内/嚢内用量は、約1×1011〜7.0×1014GC(平坦用量)(109〜5×1010GC/g患者の脳質量と等価)の範囲である。或いは、以下の治療上有効な平坦用量を指示した年齢群の患者に投与することができる。
・新生児:約1×1011〜約3×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・4ヵ月以上〜9ヵ月未満:約1.2×1012〜約6×1012
・9ヵ月以上〜18ヵ月未満:約2×1012〜約1.0×1013
・18ヵ月以上〜3歳未満:約2.2×1012〜約1.1×1013
・9ヵ月〜6歳:約6×1012〜約3×1014GC;
・3歳未満(新生児から3歳まで):約1×1011〜約1.2×1013GC;
・3〜6歳:約1.2×1013〜約6×1014GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
別の実施形態では、以下の治療上有効な平坦用量を年齢群のMPS患者に投与する:
・新生児:約3.8×1012〜約1.9×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・4ヵ月以上〜9ヵ月未満:約6.0×1012〜約3.0×1013
・9ヵ月以上〜18ヵ月未満:約1.0×1013〜約5.0×1013
・18ヵ月以上〜3歳未満:約1.1×1013〜約5.5×1013
・9〜36ヵ月:約1013〜約5×1013GC;
・3歳未満(新生児から3歳まで):約1×1011〜約1.2×1013GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・3〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
特定の実施形態では、これらの範囲の1つ以上が任意の年齢の患者に使用される。特定の実施形態では、1.2×1012総ゲノムコピー(GC)(2.0×109GC/g脳質量)または6×1012総GC(1×1010GC/g脳質量)の平坦用量が(≧)4ヵ月以上〜(<)9ヵ月未満の患者に投与される。特定の実施形態では、2×1012総GC(2.0×109GC/g脳質量)または1×1013総GC(1×1010GC/g脳質量)の平坦用量が(≧)9ヵ月以上〜(<)18ヵ月耳案の患者に投与される。特定の実施形態では、2.2×1012総GC(2.0×109GC/g脳質量)または1.1×1013総GC(1×1010GC/g脳質量)の平坦用量が(≧)18ヵ月以上〜(<)3歳未満の患者に投与される。特定の実施形態では、6.0×1012(1.0×1010GC/g脳質量)または3×1013総ゲノムコピー(GC)(5×1010GC/g脳質量)の平坦用量が(≧)4ヵ月以上〜(<)9ヵ月未満の患者に投与される。特定の実施形態では、1.0×1013(1.0×1010GC/g脳質量)または5.0×1013総GC(5×1010GC/g脳質量)の平坦用量が(≧)9ヵ月以上〜(<)18ヵ月未満の患者に投与される。特定の実施形態では、1.1×1013(1.0×1010GC/g脳質量)または5.5×1013総GC(5×1010GC/g脳質量)の平坦用量が(≧)18ヵ月以上〜(<)3歳未満の患者に投与される。特定の実施形態では、2.6×1012ゲノムコピー(GC)(2.0×109GC/g脳質量)の平坦用量が6歳以上の患者に投与される。特定の実施形態では、1.3×1013(GC)(1.0×1010GC/g脳質量)の平坦用量が6歳以上の患者に投与される。一部の実施形態では、12歳以上のMPSI患者(18歳以上を含む)に投与される用量は1.4×1013ゲノムコピー(GC)(1.1×1010GC/g脳質量)である。一部の実施形態では、12歳以上のMPSI患者(18歳以上を含む)に投与される用量は7×1013ゲノムコピー(GC)(5.6×1010GC/g脳質量)である。その上さらなる実施形態では、MPS I患者に投与される用量は約4×108GC/g脳質量〜約4×1011GC/g脳質量である。特定の実施形態では、MPS I新生児に投与される用量は約1.4×1011から約1.4×1014GCにまで及び;3〜9ヵ月の乳児に投与される用量は約2.4×1011から約2.4×1014GCにまで及び;9〜36カ月の幼児に投与される用量は約4×1011から約4×1014GCにまで及び;3〜12歳の小児に投与される用量は約4.8×1011から約4.8×1014GCにまで及び;12歳以上の小児及び成人に投与される用量は約5.6×1011から約5.6×1014GCにまで及ぶ。
これらの用量及び濃度の送達のために好適な体積は当業者によって決定されてもよい。たとえば、約1μL〜150mLの体積が選択されてもよく、高い体積は成人にために選択されてもよい。通常、新生児のためには好適な体積は約0.5mL〜約10mLであり、年長乳児については約0.5mL〜約15mLが選択されてもよい。幼児については約0.5mL〜約20mLの体積が選択されてもよい。小児については約30mLまでの体積が選択されてもよい。思春期前の子供及び十代については約50mLまでの体積が選択されてもよい。さらに別の実施形態では、患者は、選択される約5mL〜約15mL、または約7.5mL〜約10mLの体積で髄内投与を受けてもよい。他の好適な体積及び投与量が決定されてもよい。投与量は副作用に対して治療利益のバランスを取るように調整され、そのような投与量は、組換えベクターが採用される治療応用に応じて変化してもよい。
髄内送達についての一実施形態では、患者は成人対象であり、用量は約1×108GC〜5×1014GCを含む。別の実施形態では、用量は約3.8×1012〜約1.9×1014GCを含む。さらなる実施形態では、患者はハーラー症候群を有する少なくとも約3ヵ月齢から12ヵ月齢まで、少なくとも約3ヵ月から24ヵ月まで、または少なくとも約3ヵ月から36ヵ月まで、少なくとも約3ヵ月から6歳まで、少なくとも6ヵ月から6歳まで、少なくとも12ヵ月から6歳までの乳児対象であり、用量は4×108GCのrAAV9.hIDUA/g脳質量〜3×1012GCのrAAV9.hIDUA/g脳質量の少なくとも同等物を含む。別の例では、患者はハーラー・シャイエ症候群を有する3歳までの小児であり、用量は少なくとも4×108GCのrAAV9.hIDUA/g脳質量〜5×1010GCのrAAV9.hIDUA/g脳質量の同等物を含む。別の例では、患者はハーラー・シャイエ症候群を有する少なくとも約6歳から18歳までの小児であり、用量は少なくとも4×108GCのrAAV9.hIDUA/g脳質量〜3×1012GCのrAAV9.hIDUA/g脳質量の同等物を含む。
5.2.3.モニタリング有効性
治療法の有効性は、(a)MPS I患者における神経認知低下の予防、及び(b)疾患の生体マーカー、たとえば、CSF、血清及び/または尿におけるGAGのレベル及び/または酵素活性の低下、及び/または肝臓及び脾臓の容量を評価することによって測定することができる。神経認知は、知能指数(IQ)を測定することによって、たとえば、ハーラーの対象についてBayleyの乳児発達スケールによって測定されるように、またはハーラー・シャイエの対象についてWechsler短縮版知能検査(WASI)によって測定されるように判定することができる。神経認知の発達及び機能の他の適当な測定、たとえば、Bayleyの乳児発達スケール(BSID−III)を用いて発達指数(DQ)を評価すること、Hopkins言語学習試験を用いて記憶を評価すること、及び/または注意変数試験(TOVA)を使用することが利用されてもよい。聴力脳幹反応(ABR)検査により測定される聴覚能力の変化。他の神経心理学的機能、たとえば、vineland適応行動尺度(たとえば、Vineland II)、視覚処理、微細運動、コミュニケーション、社会化、日常生活技能、及び情動や行動上の健康がモニターされる。容量測定の拡散テンソル画像(DTI)を取得するための脳の磁気共鳴画像診断(MRI)、及び休息状態のデータ、超音波検査による平均神経断面積、脊髄圧迫の改善、安全性、肝臓サイズ及び脾臓サイズも管理される。
任意で、有効性の他の測定には、生体マーカー(たとえば、スペルミン及び本明細書に記載されているような他のポリアミン)及び臨床的転帰の評価が挙げられてもよい。尿は、GAGの総含量、クレアチニンと比べたGAGの濃度、と同様にMPS Iに特異的なpGAGについて評価される。血清及び/または血漿は、IDUA活性、抗IDUA抗体、pGAG、及びヘパリン補因子II・トロンビン複合体及び炎症のマーカーの濃度について評価される。CSFは、IDUA活性、抗IDUA抗体、ヘキソサミニダーゼ(hex)活性、及びpGAG(たとえば、ヘパラン硫酸及びデルマタン硫酸)について評価される。ベクター(たとえば、AAV9)に対する中和抗体及び抗IDUA抗体への結合抗体の存在はCSF及び血清にて評価されてもよい。ベクターのカプシド(たとえば、AAV9)またはhIDUA導入遺伝子産物に対するT細胞応答はELISPOTアッセイによって評価されてもよい。血清及び尿におけるIDUA発現の薬物動態と同様にベクター濃度(AAV9DNAに対するPCR)もモニターされてもよい。
hIDUAの全身性の送達が伴うrAAV.hIDUAのCNSへの遺伝子治療送達の併用は本発明の方法によって包含される。全身性送達は、ERT(たとえば、アルデュラザイム(商標)を用いて)を用いて、または肝臓に指向性を持つrAAV.hIDUA(AAV8カプシドを運ぶrAAV.hIDUA)を用いた追加の遺伝子治療を用いて達成することができる。
全身性送達に関連する臨床有効性の追加の測定には、たとえば、整形外科の測定、たとえば、二重エネルギーX線吸収測定法(DXA)によって測定される骨塩密度、骨塩量、骨の形状及び強度、骨密度;高さ(身長/年齢別臥位長についてのZスコア);骨代謝のマーカー;血清オステオカルシン(OCN)及び骨特異的アルカリホスファターゼ(BSAP)、コラーゲンI型のカルボキシ末端テロペプチド(ICTP)及びコラーゲンI型のカルボキシ末端テロペプチドα1鎖(CTX)の測定;柔軟性及び筋力;6分間歩行試験を含むバイオデックス及び理学療法(バイオデックスIII等速性筋力試験システムを用いて各参加者について膝及び肘での筋力を評価する);能動的関節可動域(ROM);小児健康状態質問票/健康状態質問票(CHAQ/HAQ)身体障害指標スコア;個々の心肺適応度をモニターするための筋電図(EMG)及び/または酸素の利用;運動試験中のピーク酸素取り込み(VO2ピーク);無呼吸・低呼吸指数(AHI);強制肺活量(FVC);左心室重量(LVM)が挙げられてもよい。
特定の実施形態では、患者にてMPS Iを診断する、及び/または治療する、または治療をモニターする方法が提供される。方法には、MPS Iを有することが疑われるヒト患者から脳脊髄液または血漿の試料を得ることと、試料にてスペルミンの濃度レベルを検出することと、1ng/mLを超えるスペルミン濃度を有する患者にてMPS Iから選択されるムコ多糖症であると患者を診断することと、たとえば、本明細書に記載されているような用具を用いて本明細書で提供されるように診断された患者に有効量のヒトα−L−イズロニダーゼ(hIDUA)を送達することとが関与する。
別の態様では、方法にはMPS I治療法をモニターし、調整することが関与する。そのような方法には、MPS Iについて治療を受けているヒト患者から脳脊髄液または血漿の試料を得ることと、質量スペクトル分析を行うことによって試料におけるスペルミンの濃度レベルを検出することと、MPS I治療剤の投与レベルを調整することとが関与する。たとえば、「正常な」ヒトスペルミン濃度は脳脊髄液では1ng/mL以下である。しかしながら、未治療のMPS Iを有する患者は2ng/mLを超えて約100ng/mLまでのスペルミン濃度レベルを有してもよい。もし、患者が正常レベルに近づくレベルを有するのであれば、併用ERTの投与を減らしてもよい。逆に患者が所望より高いスペルミンのレベルを有するのであれば、さらに高い用量または追加の治療法、たとえばERTが患者に提供されてもよい。
スペルミン濃度は好適なアッセイを用いて決定されてもよい。たとえば、J.Sanchez−Lopez,et al,“Underivatives polyamine analysis is plant samples by ion pair liquid chromatography coupled with electrospray tandem mass spectrometry,”Plant Physiology and Biochemistry,47(2009):592−598,オンラインで利用可能,2009年2月28日;MR.Hakkinen,et al,“Analysis of underivatized polyamines by reversed phase liquid chromatography with electrospray tandem mass spectrometry”,J.Pharm.Biomec.Analysis,44(2007):625−634に記載されているアッセイ、定量的同位元素希釈液体クロマトグラフィ(LC)/質量分光分析(MS)アッセイ。他の好適なアッセイが使用されてもよい。
一部の実施形態では、本明細書に記載されている治療剤の有効性は、早期の神経認知欠損を有するMPS Iの小児対象にて投与の52週後に神経認知を評価することによって判定される。一部の実施形態では、本明細書に記載されている治療剤の有効性は、MPS I患者にてCSFのグリコサミノグリカン(GAG)の神経認知との関係を評価することによって判定される。一部の実施形態では、本明細書に記載されている治療剤の有効性は、磁気共鳴画像解析(MRI)によって、たとえば、灰白質及び白質及びCFS脳室の容量分析によって測定されるようなMPS I患者におけるCNSへの物理的変化に対する治療剤の効果を評価することによって判定される。一部の実施形態では、本明細書に記載されている治療剤の有効性は、MPS I患者の脳脊髄液(CSF)、血清及び尿における生体マーカー(たとえば、GAG、HS)に対する治療剤の薬物動態効果を評価することによって判定される。一部の実施形態では、本明細書に記載されている治療剤の有効性は、MPS I患者における生活の質(QOL)に対する治療剤の影響を評価することによって判定される。一部の実施形態では、本明細書に記載されている治療剤の有効性は、MPS I患者における運動機能に対する治療剤の影響を評価することによって判定される。一部の実施形態では、本明細書に記載されている治療剤の有効性は、MPS I患者における成長及び発達の診査事項に対する治療剤の効果を評価することによって判定される。
本明細書に記載されているrAAVベクターから発現されるように、CSF,血清または他の組織にて検出されるとき、少なくとも約2%の発現レベルが治療効果を提供してもよい。しかしながら、さらに高い発現レベルが達成されてもよい。そのような発現レベルは正常で機能的なヒトIDUAレベルの2%から約100%までであってもよい。特定の実施形態では、正常の発現よりも高いレベルがCSF,血清または他の組織にて検出されてもよい。
特定の実施形態では、本明細書に記載されているMPS I及び/またはその症状を治療する、予防する及び/または改善する方法は、ハーラー対象のためのBayleyの乳児発達スケールを用いて評価されるとき、治療された患者にて知能指数(IQ)における有意な上昇を生じる。特定の実施形態では、本明細書に記載されているMPS I及び/またはその症状を治療する、予防する及び/または改善する方法は、ハーラー・シャイエ対象のためのWechsler短縮版知能検査(WASI)によって測定されるとき、治療された患者にて神経認知IQにおける有意な上昇を生じる。特定の実施形態では、本明細書に記載されているMPS I及び/またはその症状を治療する、予防する及び/または改善する方法は、Bayleyの乳児発達スケールを用いて評価されるとき、治療された患者にて神経認知DQにおける有意な上昇を生じる。
特定の実施形態では、本明細書に記載されているMPS I及び/またはその症状を治療する、予防する及び/または改善する方法は、機能的なヒトIDUAレベルにて有意な上昇を生じる。特定の実施形態では、本明細書に記載されているMPS I及び/またはその症状を治療する、予防する及び/または改善する方法は、患者の血清、尿及び/または脳脊髄液(CSF)の試料で測定されるとき、GAGのレベルにて有意な上昇を生じる。
5.3.併用療法
hIDUAの全身性送達を伴うCNSへのrAAV.hIDUAの遺伝子治療送達の併用は本発明の方法によって包含される。全身性送達はERT(たとえば、アルデュラザイム(登録商標)を用いて)、または肝臓に指向性を持つrAAV.hIDUA(AAV8カプシドを持つrAAV.hIDUA)を用いた追加の遺伝子治療が伴われ得る。
特定の実施形態では、rAAV9.hIDUAの髄内投与は、たとえば、肝臓を指向する第2のAAV.hIDUA注入と共に共投与される。そのような例では、ベクターは同一であってもよい。たとえば、ベクターは同じカプシド及び/または同じベクターゲノム配列を有してもよい。或いは、ベクターは異なってもよい。たとえば、ベクターストックのそれぞれは異なる調節性配列(たとえば、異なる組織特異的プロモータを伴うそれぞれ)、たとえば、肝臓特異的なプロモータ及びCNS特異的なプロモータと共に設計されてもよい。さらにまたは代わりに、ベクターストックのそれぞれは異なるカプシドを有してもよい。たとえば、肝臓に向けられるベクターストックは、とりわけ、AAV8、AAVrh64R1、AAVrh64R2、rh8、rh10、AAV3B、またはAAVdjから選択されるカプシドを有してもよい。そのような投与計画では、各ベクターストックの用量は、髄内で送達されるベクターの合計が約1×108GC〜1×1014GCの範囲内であるように調整されてもよく;別の実施形態では、双方の経路によって送達される組み合わせたベクターが1×1011〜1×1016の範囲内である。或いは、各ベクターは約108GC〜約1012GC/ベクターの量で送達されてもよい。そのような用量が実質的に同時に、または異なった時間に、たとえば、約1日〜約12週間離して、もしくは約3日〜約30日離して、もしくは他の好適な時に送達されてもよい。
一部の実施形態では、患者は肝臓指向型の注入と髄内注入を介してAAV.hIDUAを共投与される。一部の実施形態では、治療方法は、(a)MPS I及び/またはハーラー症候群、ハーラー・シャイエ症候群及びシャイエ症候群に関連する症状を有する患者に十分量のhIDUA酵素または肝臓を指向するrAAV.hIDUAを投与して導入遺伝子に特異的な寛容を誘導することと、(b)患者のCNSにrAAV9.hIDUAを投与することとを含み、rAAV.hIDUAは患者にて治療レベルのhIDUAの発現を指向する。
さらなる実施形態では、MPS I及び/またはハーラー症候群、ハーラー・シャイエ症候群及びシャイエ症候群に関連する症状を有する患者を十分量のhIDUA酵素または肝臓を指向するrAAV.hIDUAによって寛容化して導入遺伝子特異的な寛容を誘導し、その後、CNS指向性のrAAVが介在するhIDUAの患者への送達が続くことが関与する、MPS I及び/またはハーラー症候群、ハーラー・シャイエ症候群及びシャイエ症候群に関連する症状を有するヒト患者を治療する方法が提供される。特定の実施形態では、たとえば、患者が4週齢未満(新生児段階)または乳児である場合、患者をhIDUAに対して寛容化するために患者は肝臓指向型の注入を介してrAAV.hIDUAを投与され、患者が乳児、小児及び/または成人である場合、患者は髄内注入を介してその後rAAV.hIDUAが投与され、CNSにて治療濃度のhIDUAを発現させる。
一例では、MPS I患者は、出生の約2週間以内、たとえば、約0日〜約14日以内、または約1日〜12日、または約3日〜約10日以内、約5日〜約8日以内に患者にhIDUAを送達することによって寛容化され、すなわち、患者は新生児である。別の実施形態では、年長乳児が選択されてもよい。hIDUAの寛容化用量はrAAVを介して送達されてもよい。しかしながら、別の実施形態では、用量は酵素の直接送達(酵素補充療法)によって送達されてもよい。チャイニーズハムスターの卵巣(CHO)細胞にて組換えhIDUAを、及びタバコ細胞[LH Fu,et al,Plant Science,(Impact Factor:3.61).12/2009;177(6):668−675]にてまたは植物種子[X He,et al,Plant Biotechnol J.2013,Dec;11(9):1034−1043]にて可溶性hIDUAを作る方法は文献に記載されている。
さらに、組換えhIDUAはアルデュラザイム(登録商標)(ラロニダーゼ)として商業的に製造されており、抗ヒトインスリン受容体モノクローナル抗体とα−L−イズロニダーゼの融合タンパク質[AGT−181;ArmaGen,Inc]が有用であってもよい。現在あまり好まれてはいないが、酵素は「裸の」DNA、RNAまたは別の好適なベクターを介して送達されてもよい。一実施形態では、酵素は患者の静脈内に及び/または髄内に送達される。別の実施形態では、投与の別の経路が使用される(たとえば、筋肉内、皮下等)。一実施形態では、寛容化のために選択されるMPS I患者は寛容化投与の開始に先立って検出可能な量のhIDUAを発現することはできない。組換えヒトIDUA酵素が送達される場合、髄内rhIDUA注入は、注入(たとえば、静脈内または髄内)当たり約0.58mg/kg体重または約0.25mg〜約2mgの合計rhIDUAから成ってもよい。たとえば、3ccの酵素(たとえば、およそ1.74mgのアルデュラザイム(登録商標)(ラロニダーゼ))は9ccの合計注入のために6ccのエリオットB(登録商標)によって希釈される。或いは、さらに多いまたはさらに少ない用量が選択される。同様に、ベクターから発現される場合、低い発現タンパク質のレベルが送達されてもよい。一実施形態では、寛容化のために送達されるhIDUAの量は治療上有効な量よりも少ない。しかしながら、他の用量が選択されてもよい。
通常、寛容化用量の投与に続いて、たとえば、寛容化投与ののち約3日〜約6ヵ月以内に、さらに好ましくは寛容化投与ののち約7日〜約1ヵ月以内に、治療用量が対象に送達される。しかしながら、さらに長いまたはさらに短い待ち時間であってもよいように、これらの範囲内で他の時点が選択されてもよい。
特定の実施形態では、免疫共療法は、本明細書に記載される唯一の遺伝子治療ベクターまたは遺伝子治療ベクターの組み合わせと組み合わせて送達され得る。ベクター投与の前に、最中に及び/またはそれに続いて、代替として、免疫抑制療法がベクターに加えて与えられてもよい。免疫抑制療法には、上記に記載されているように、プレドニゾロン、ミコフェノレートモフェチル(MMF)及びタクロリムスまたはシロリムスを挙げることができる。別の実施形態では、免疫抑制療法は、ベクター投与の約2日前に開始されてもよく、ベクターの約2日前の単回静脈内用量のメチルプレドニゾロン、プレドニゾンの経口用量、タクロリムスの経口用量、及びシロリムスの経口用量を含むことができる。プレドニゾンは、ベクター投与の約2日前から、処置から約16週目まで毎日経口投与される。タクロリムスは、ベクター投与の約2日前から、処置から約24週目まで毎日経口投与される。特定の実施形態では、以下に記載されているタクロリムスを含まない投与計画が好まれてもよい。シロリムスは、ベクター投与の約2日前から、処置から約48週目まで毎日経口投与されてもよい。
特定の実施形態では、ヒト患者におけるα−L−イズロニダーゼ欠損症の治療に有用な治療レジメンは、(a)AAV9カプシド及び患者においてその発現を指令する調節性配列の制御下にあるヒトα−L−イズロニダーゼ(hIDUA)をコードする配列を含む核酸であって、ヒトhIDUAコード配列は、機能的hIDUAをコードする配列番号1のヌクレオチド配列または配列番号1と少なくとも約80%同一である配列を有する、核酸を有する組換えAAV(rAAV);(b)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤;並びに(c)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤を患者に投与することを含み、ここで、少なくとも1つの免疫抑制剤の投与は、AAVベクターの送達の前または同日に開始し;少なくとも1つの免疫抑制剤の投与は、ベクター投与後少なくとも8週間継続する。患者には、最初に静脈内ステロイドを投与し、続いて経口ステロイドを投与することができる。特定の実施形態では、免疫抑制剤の組み合わせは、1つ以上のコルチコステロイド、及び任意に、ミコフェノール酸モフェチル(MMF)、及び/またはカルシニューリン阻害剤、及び/またはmTOR阻害剤を含む。1つ以上のカルシニューリン阻害剤は、タクロリムスであってもよい。1つ以上のmTOR阻害剤は、テムシロリムスまたはシロリムス、または別のラパログ(たとえば、エベロリムス)であってもよい。特定の実施形態では、患者へのステロイドの投与は、ベクター投与の12週間後に中止される。特定の実施形態では、ミコフェノール酸モフェチル(MMF)及びタクロリムスは、ベクター投与前に0〜15日間送達される。特定の実施形態では、免疫抑制剤は、ミコフェノール酸モフェチル(MMF)及びシロリムスである。
免疫抑制剤がタクロリムス及びシロリムスの両方を含む実施形態では、各々の低用量を使用して、約4ng/mL〜約8ng/mL、または合計約8ng/mL〜約16ng/mLの血液トラフレベルを維持することができる。免疫支持剤がタクロリムスまたはシロリムスの一方のみを含む実施形態では、総用量は約16ng/mL〜約24ng/mLの範囲である。タクロリムスまたはシロリムスの一方のみが使用される特定の実施形態では、初期負荷用量は約3mg/m2であり得る。
特定の実施形態では、免疫抑制療法は、ベクター投与前の約−14日から約−1日に開始される。
特定の実施形態では、コードされたhIDUAは、(a)配列番号2(Genbank NP_000193)のアミノ酸約1〜約653;または(b)配列番号2の約27〜約653の酸に融合した異種リーダー配列を含む合成ヒト酵素から選択される配列を有する。
特定の実施形態では、AAVカプシドにパッケージされた核酸配列は、5’逆方向末端反復(ITR)配列、ニワトリβアクチンイントロン、CB7プロモータ、ポリAシグナル、及び/または3’ ITR配列をさらに含む。
特定の実施形態では、rAAVは、6〜9のpHを有する懸濁液中にある。
特定の実施形態では、rAAVは、髄内注入を介して送達される。
特定の実施形態では、レジメンは、hIDUA遺伝子を含むrAAVを静脈内に共投与することをさらに含む。
特定の実施形態では、治療の有効性は、任意に聴覚脳幹試験によって、聴覚能力変化を測定することを含む。
特定の実施形態では、治療レジメンにおける使用のための、ヒトα−L−イズロニダーゼ(hIDUA)をコードする異種核酸を含む組換えAAVベクターを含む組成物が提供され、ここで、ヒトhIDUAコード配列は、機能的hIDUAをコードする配列番号1のヌクレオチド配列または配列番号1と少なくとも約80%同一である配列を有し、該組成物は、(b)の少なくとも1つから選択される少なくとも第1の免疫抑制剤、及び(c)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤をさらに含み、ここで、免疫抑制剤の投与は、AAVベクターの送達の前または同日に開始し;免疫抑制剤の少なくとも一方の投与は、ベクター投与後少なくとも8週間継続する。特定の実施形態では、マクロライドは、1つ以上の抗カルシニューリン阻害剤、1つ以上のmTOR阻害剤、またはそれらの組み合わせである。
特定の実施形態では、ヒトα−L−イズロニダーゼ(hIDUA)をコードする異種核酸を含む組換えAAVベクターとの併用療法において使用するための少なくとも1つの免疫抑制剤を含む1つ以上の組成物が提供され、ここで、ヒトhIDUAコード配列は、機能的hIDUAをコードする配列番号1のヌクレオチド配列または配列番号1と少なくとも約80%同一である配列を有し、免疫抑制剤は、(a)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤を含む組成物、及び(b)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤を含む組成物を含み、ここで、免疫抑制剤の少なくとも一方の投与は、AAVベクターの送達の前または同日に開始し;免疫抑制剤の少なくとも一方の投与は、ベクター投与後少なくとも8週間継続する。特定の実施形態では、マクロライドは、1つ以上の抗カルシニューリン阻害剤、1つ以上のmTOR阻害剤、またはそれらの組み合わせである。
5.4.製造
本発明は本明細書に記載されている(以下の実施例5)rAAV.hIDUA医薬組成物の製造を提供する。説明に役立つ製造プロセスは図11に提供されている。rAAV.hIDUAベクターは図11に示すフローチャートで示すように製造することができる。手短には、好適な細胞培養によって細胞を製造する(たとえば、HEK293細胞)。本明細書に記載されている遺伝子治療のベクターを製造する方法には、遺伝子治療のベクターの作製に使用されるプラスミドDNAの生成、ベクターの生成及びベクターの精製のような当該技術で周知の方法が含まれる。一部の実施形態では、遺伝子治療のベクターはAAVベクターであり、生成されるプラスミドは、AAVゲノムと対象とする遺伝子とをコードするAAVシス−プラスミド、AAVrep及びcap遺伝子を含有するAAVトランス−プラスミド、及びアデノウイルスヘルパープラスミドである。ベクター生成のプロセスは、たとえば、細胞培養の開始、細胞の継代、細胞の播種、プラスミドDNAによる細胞への形質移入、形質移入後の無血清培地への培地交換、及びベクター含有細胞及び培養培地の回収のような方法工程を含むことができる。回収されたベクター含有細胞及び培養培地は本明細書では粗細胞回収物と呼ばれる。
粗細胞回収物はその後、たとえば、ベクター回収物の濃縮、ベクター回収物の透析濾過、ベクター回収物のマイクロ流動化、ベクター回収物のヌクレアーゼ消化、流動化された中間体の濾過、クロマトグラフィによる粗精製、超遠心による粗精製、接線流濾過による緩衝液交換、及び/または大量のベクターを調製するための製剤化及び濾過のような方法工程に供されてもよい。
高塩濃度での2段階アフィニティクロマトグラフィ精製とそれに続くアニオン交換樹脂クロマトグラフィを用いてベクター薬剤生成物を精製し、中空カプシドを取り除く。これらの方法は、参照によって本明細書に組み入れられる2016年12月9日に出願された国際特許出願番号PCT/US2016/065970及びその優先権書類である2016年4月13日に出願された米国特許出願番号62/322,071及び2015年12月11日に出願され、「AAV9についての拡張可能な精製法」と題する同62/226,357にてさらに詳細に記載されている。AAV8についての精製法、2016年12月9日に出願された国際特許出願番号PCT/US2016/065976及びその優先権書類である2016年4月13日に出願された米国特許出願番号62/322,098及び2015年12月11日に出願された62/266,341及びrh10、2016年12月9日に出願された国際特許出願番号PCT/US16/66013及びその優先権書類である2016年4月13日に出願された米国特許出願番号62/322,055、及び「AAVrh10についての拡張可能な精製法」と題する、2015年12月11日に出願された同62/266,347、並びにAAV1については、2016年12月9日に出願された国際特許出願番号PCT/US2016/065974及びその優先権書類である2016年4月13日に出願された米国特許出願番号62/322,083及び「AAV1についての拡張可能な精製法」と題する、2015年12月11日に出願された同62/26,351はすべて参照によって本明細書に組み入れられる。
5.5.医薬組成物の脳脊髄液への送達のための装置及び方法
態様の1つでは、本明細書で提供されるベクターはこのセクションで提供され、実施例及び図12にてさらに記載されている方法及び/または用具を介して髄内に投与されてもよい。代わりに、他の用具及び方法が選択されてもよい。方法は、患者の大槽の中にクモ膜下穿刺針を進める工程と、クモ膜下穿刺針の近位ハブに柔軟な配管の全長を接続し、柔軟な配管の近位末端に弁の出力ポートを接続する工程と、前記進める工程と接続する工程の後、患者の脳脊髄液で配管が自給されるのを可能にした後、ある量の等張溶液を含有する第1の容器を弁の水洗入口部に接続し、その後、ある量の医薬組成物を含有する第2の容器を弁のベクター入口部に接続する工程とを含む。第1と第2の容器を弁に接続した後、流体流動のための経路は弁のベクター入口部と出口部の間で開放され、医薬組成物がクモ膜下穿刺針を介して患者に注入され、医薬組成物を注入した後、流体流動のための経路は弁の水洗入口部と出口部の間で開放され、クモ膜下穿刺針を介して等張溶液が注入され、医薬組成物を患者のなかへ洗い流す。
別の態様では、医薬組成物の嚢内送達のための用具が提供される。用具には、ある量の医薬組成物を含有する第1の容器と、等張溶液を含有する第2の溶液と、それを介して医薬組成物が用具から患者の大槽内の脳脊髄液の中に直接噴出されてもよいクモ膜下穿刺針とが含まれる。用具にはさらに、第1の容器に相互接続される第1の入口部と、第2の容器に相互接続される第2の入口部と、クモ膜下穿刺針に相互接続される出口部と、クモ膜下穿刺針を介して医薬組成物と等張溶液の流動を制御するルアーロックとを有する弁が含まれる。
本明細書で使用されるとき、用語、コンピュータ断層撮影(CT)は、身体構造の三次元画像が軸に沿って作製される一連の平面断面画像からコンピュータによって構築されるX線写真を指す。
図12で示すような装置または医療用具10には、弁16を介して相互接続される1以上の容器12及び14が含まれる。容器12及び14はそれぞれ、医薬組成物、薬剤、ベクターまたは類似の物質の新鮮な供給源及び生理食塩水のような等張溶液の新鮮な供給源を提供する。容器12及び14は流体の患者への注入を可能にする医療用具の任意の形態であってもよい。
例として、各容器12及び14は注射器、カニューレ等の形態で提供されてもよい。たとえば、説明されている実施形態では、容器12はある量の医薬組成物を含有する別個の注射器として提供され、本明細書では「ベクター注射器」と呼ばれる。単に例示の目的で、容器12は約10ccの医薬組成物等を含有してもよい。
同様に、容器14は、ある量の生理食塩水溶液を含有する別個の注射器、カニューレ等の形態で提供されてもよく、「水洗注射器」と呼ばれてもよい。単に例示の目的で、容器14は約10ccの生理食塩水溶液を含有してもよい。
代替として、容器12及び14は注射器以外の形態で提供されてもよく、単一用具に統合されてもよく、そのような統合された医療用注入用具は、一方が医薬組成物用であり、一方が生理食塩水溶液用である別個のチャンバーのペアを有する。また、チャンバーまたは容器のサイズは所望の量の流体を含有するように必要に応じて提供されてもよい。
説明されている実施形態では、弁16は旋回オスルアーロック18を有する四方活栓として提供される。弁16は容器12と容器14(すなわち、説明されている実施形態におけるベクター注射器及び水洗注射器)を相互接続し、旋回オスルアーロックは、弁16を通る経路が容器12及び容器14のそれぞれに対して開放され、または閉鎖されるのを可能にする。このように、弁16を通る経路は、ベクター注射器及び水洗注射器の双方に対して閉鎖されてもよいし、またはベクター注射器及び水洗注射器の選択された一方に対して開放されてもよい。四方活栓に対する代替として、弁は三方活栓または流体制御用具であってもよい。
説明されている実施形態では、弁16は延長配管20または流体に対する類似の水路の全長の一方の端に接続される。配管20は所望の長さまたは内部体積に基づいて選択されてもよい。単に例として、配管は長さ約6〜7インチであってもよい。
説明されている実施形態では、配管12の反対側の端22は、その次にクモ膜下穿刺針26に接続されるT型コネクタ延長セット24に接続される。例として、針26は5インチの22または25ゲージのクモ膜下穿刺針であってもよい。加えて、選択肢として、クモ膜下穿刺針26は、たとえば、3.5インチで18ゲージの導入針のような導入針28に接続されてもよい。
使用中、クモ膜下穿刺針26及び/または任意の導入針28は大槽に向かって患者の中で患者の中に進めてもよい。針の前進の後、針26及び/または28及び関連組織(たとえば、腰部傍脊柱筋、骨、脳幹及び脊髄)の視覚化を可能にするコンピュータ断層撮影(CT)画像を入手してもよい。針ハブにおける脳脊髄液(CSF)の観察及び大槽内での針先端の視覚化によって正しい針の配置を確認する。その後、相対的に短い配管20を挿入されたクモ膜下穿刺針26に連結し、次いで四方活栓16を配管20の反対側の端に連結してもよい。
上記の構築は患者のCSFで「自給される」ようになるのを可能にする。その後、予め充填した生理食塩水の水洗注射器14を四方活栓16の水洗入口部に連結し、次いで医薬組成物を含有するベクター注射器を四方活栓16のベクター入口部に連結する。その後、活栓16の出力ポートをベクター注射器12に対して開放し、ベクター弁及び構築装置を介して時間をかけて注射器の内容物をゆっくり患者に注入してもよい。単に例示の目的で、この時間はおよそ1〜2分間であってもよく、及び/または望みの他の時間であってもよい。
ベクター注射器12の内容物を注入した後、連結された予め充填した水洗注射器14を用いて所望の量の生理食塩水で活栓16及び針構築を洗い流すことができるように、活栓16における旋回ロック18を第2の位置に回す。単に例として、必要に応じてさらに多いまたは少ない量が使用されてもよいが、1〜2ccの生理食塩水が使用されてもよい。生理食塩水は、医薬組成物がほとんどまたは全く構築用具には残らないように医薬組成物のすべてまたはほとんどが構築用具を介して患者の中に注入されるのを強いることを保証する。
構築用具が生理食塩水で洗い流された後、針(複数可)、延長配管、活栓及び注射器を含む構築用具全体をゆっくり対象から取り外し、バイオハザード廃棄物容器または硬質容器(針(複数可)用)の中に廃棄するための外科用トレイに置く。
最終的に嚢内(IC)処置につながってもよいスクリーニング過程は治験責任医師によって取り組まれてもよい。治験責任医師は、対象(または指定された介護人)が完全に情報を提供されるために、過程、処置、投与手順自体、及び可能性のある安全性のリスクすべてを記載してもよい。既往歴、併用薬物、身体検査、生命兆候、心電図(ECG)及び臨床検査の結果が入手され、または実施され、IC処置のための対象の適格性のスクリーニング評価で使用するために、神経放射線科医、神経外科医、及び麻酔科医に提供される。
適格性を再検討する適当な時間を持たせるために、以下の手順を最初のスクリーニング来診と試験来診に先立つ1週間までの間の任意の時間で行ってもよい。たとえば、「0日目」にガドリニウム(すなわち、eGFR>30mL/分/1.73m2)の有無での頭頚部の磁気共鳴画像診断(MRI)が得られてもよい。頭頚部のMRIに加えて、治験医師は屈曲/拡張試験を介した頸部のさらなる評価の必要性を判定してもよい。MRIプロトコールはT1、T2、DTI、FLAIR及びCINEのプロトコール画像を含んでもよい。
加えて、CSFの流動の適正な評価及びCSF空間の間での連絡の考えられる切断または欠如の特定を可能にする頭/頸のMRA/MRVが施設のプロトコールによって得られてもよい(すなわち、硬膜内/経硬膜手術の既往を持つ対象は除外されてもよく、またはさらなる検査(たとえば、放射線ヌクレオチド大槽造影法)を必要としてもよい)。
神経放射線科医、神経外科医、及び麻酔科医は、利用できる情報(走査、既往歴、身体検査、臨床検査等)すべてに基づいてIC処置のための各対象の適格性を最終的に議論し、決定する。気道、頸部(短縮した/肥厚した)及び頭部の可動域(頸部の屈曲の程度)の詳細な評価を提供する麻酔の手術前評価も「−28日目」〜「1日目」に得られてもよく、MPS対象の特定の生理的ニーズに留意する。
IC処置に先立って、CT室は存在する以下の設備及び薬物が存在することを確認するであろう:
成人の腰椎穿刺(LP)キット(施設によって供給される);
BD(Becton Dickinson)の22または25ゲージ×3−7”のクモ膜下穿刺針(Quincke bevel);
インターベンション医師の指示で使用される同軸導入針(クモ膜下穿刺針の導入用);
旋回(回転)オスルアーロック付き四方小口径活栓;
メスルアーロックアダプター付きTコネクタ延長セット(配管)、6.7インチのおよその長さ;
髄内投与用のオムニパック180(イオヘキソール);
静脈内(IV)投与用のヨウ素化造影剤;
注入用の1%リドカイン溶液(成人LPキットで供給されなければ);
予め充填された生理食塩水(無菌)の10ccの水洗注射器;
X線不透過性マーカー(複数可);
外科用調製器具/髭剃り用かみそり刃;
挿管された対象の適正な位置決めを可能にする枕/支持体;
気管内挿管器具、一般的な麻酔器及び人工呼吸器;
手術中の神経生理学的モニタリング(IONM)器具(及び必要な人材);並びに
ベクターを含有する10ccの注射器;別個の調剤学マニュアルに従って調製され、CT/手術室(OR)の部屋に運ばれる。
処置についてのインフォームドコンセントが確認され、カルテ及び/または試験ファイルの中で文書化される。放射線科及び麻酔科のスタッフからの処置についての別個のコンセントが施設の要件によって得られる。対象は、施設の指針に従って適当な病院での看護ユニット内で配置される静脈内アクセス(たとえば、2つのIVアクセス部位)を有する。静脈内流体は麻酔科医の裁量で投与される。麻酔科医の裁量で及び施設の指針によって、対象は誘導され、適当な患者看護ユニット、保持領域または外科/CT処置室にて全身麻酔の投与と共に気管内挿管を受ける。
腰椎穿刺を行い、先ず、5ccの脳脊髄液(CSF)を取り出し、その後、造影剤(オムニパック180)を髄内に注入して大槽の視覚化を助ける。対象の適当な位置決め操作を行って大槽への造影剤の拡散を促す。
手術中の神経生理学的モニタリング(IONM)器具を対象に取り付ける。対象は、腹臥位または側臥位にてCTスキャナー台の上に載せられる。運搬及び位置決めの間で対象の安全を確保するために適当なスタッフが存在しなければならない。適切と見なされれば、手術前の評価の間に安全であると判定される程度に頸部の屈曲を提供する方法で、及び位置決めの後で文書化される正常な神経生理学的モニターシグナルによって対象が位置決めされてもよい。
以下のスタッフが現場で存在し、特定されることが確認されてもよい:処置を実施するインターベンション医師/神経外科医;麻酔科医及び呼吸器科技師(複数可);看護師及び医師助手;CT(またはOR)技師;神経生理学技師;及び施設コーディネーター。「タイムアウト」は合同委員会/病院のプロトコールによって完了させ、正しい対象、処置、部位、位置決め、及び室内で必要な器具すべての存在を検証してもよい。次いで主要現場治験医師はスタッフと共に彼/彼女が対象を準備することを進めてもよいことを確認してもよい。
頭蓋底の下の対象の皮膚は適宜剃毛される。CTスカウト画像を撮り、その後、必要であると見なされれば、インターベンション医師によるIV造影剤を伴った処置前の計画CTが続き、標的位置を局在化し、脈管構造を画像化する。標的部位(大槽)が特定され、針の軌跡が計画された後、皮膚を準備し、施設の指針のとおりに無菌の技法を用いて手術用覆布で覆う。インターベンション医師によって指示されたように標的皮膚の位置にX線不透過マーカーを置く。マーカーの下の皮膚は1%リドカインの浸潤を介して麻酔する。同軸導入針を使用する選択肢と共に、22Gまたは25Gのクモ膜下穿刺針を次いで大槽に向かって進める。
針を進めた後、施設の器具を用いて実行可能な最も薄いCTスライスの厚さ(理想的には≦2.5mm)を用いてCT画像を得る。針及び関連する軟組織(たとえば、腰部傍脊柱筋、骨、脳幹及び脊髄)の適正な視覚化を可能にすることが可能である最低放射線量を用いた連続CT画像が得られる。針ハブにおけるCSFの観察及び大槽内での針先端の視覚化によって正しい針の配置を確認する。
インターベンション医師は、ベクター注射器が滅菌野に近いが、その外側に位置することを確認する。ベクター注射器における医薬組成物を取り扱うことまたは投与することに先立って、手袋、マスク及び眼の保護が滅菌野内での処置を手助けするスタッフによって身に付けられる。
延長配管が挿入されたクモ膜下穿刺針に取り付けられ、次いでそれは四方活栓に取り付けられる。この装置がいったん対象のCSFによって「自給される」と、10ccの予め充填された生理食塩水の水洗注射器が四方活栓の水洗入口部に取り付けられる。次いでベクター注射器がインターベンション医師に提供され、四方活栓のベクター入口部に取り付けられる。
活栓の旋回ロックを第1の位置に置くことによって活栓の出口部がベクター注射器に対して開放された後、注入の間注射器のプランジャーに過剰な力をかけないように注意を払って、ベクター注射器の内容物をゆっくり(およそ1〜2分にわたって)注入する。ベクター注射器の内容物が注入された後、活栓及び針の構築が取り付けられた予め充填された水洗注射器を用いて1〜2ccの生理食塩水で洗い流され得るように活栓の旋回ロックを第2の位置に回す。
準備ができると、インターベンション医師は次いでスタッフに彼/彼女が装置を対象から取り外すことを注意喚起する。単一の動きで、針、延長配管、活栓及び注射器を対象からゆっくり取り外し、バイオハザード廃棄物容器または硬質容器(針用)の中に廃棄するための外科用トレイに置く。
針の挿入部位は出血またはCSFの漏出の兆候について調べ、治験医師によって指示されたように処理する。指示されたように、ガーゼ、外科用テープ及び/またはTegaderm包帯を用いて部位を手当てする。次いで対象はCTスキャナーを出て、仰臥位でストレッチャーに乗る。運搬及び位置決めの間、対象の安全を確保するための適正なスタッフが存在する。
麻酔が中断され、対象は麻酔後看護についての以下の施設の指針について看護される。神経生理的モニターを対象から取り外す。回復の間、対象が横たわるストレッチャーの頭部をやや高くすべきである(約30度)。対象は施設の指針のとおりに好適な麻酔後看護ユニットに移される。対象が適正に回復した意識を有し、安定した状態にある後、彼/彼女はプロトコールが命じる評価のために適当なフロア/ユニットに収容されるであろう。神経学的な評価がプロトコールのとおりに続くであろうし、主任治験医師が病院及び研究スタッフと共同で対象の看護を監督する。
一実施形態では、本明細書で提供される組成物の送達の方法は、患者の大槽にクモ膜下穿刺針を進める工程と、柔軟な配管の全長をクモ膜下穿刺針の近位ハブに接続し、弁の出力ポートを柔軟な配管の近位端に接続する工程と、前記進める工程と接続する工程の後及び配管が患者の脳脊髄液で自給されるのを可能にした後、ある量の等張溶液を含有する第1の容器を弁の水洗入口部に接続し、その後、ある量の医薬組成物を含有する第2の容器を弁のベクター入口部に接続する工程と、前記第1と第2の容器を弁に接続した後、弁のベクター入口部と出口部の間での流体流動の経路を開放し、クモ膜下穿刺針を介して医薬組成物を患者に注入する工程と、医薬組成物を注入した後、弁の水洗入口部と出口部を通る流体流動のための経路を開放し、クモ膜下穿刺針の中に等張溶液を注入して患者への医薬組成物を洗い流す工程とを含む。特定の実施形態では、方法はさらに、配管と弁をクモ膜下穿刺針のハブに接続する前に大槽内でクモ膜下穿刺針の遠位先端の正しい配置を確認することを含む。特定の実施形態では、確認する工程は、コンピュータ断層撮影(CT)によって大槽内でのクモ膜下穿刺針の遠位先端を視覚化することを含む。特定の実施形態では、確認する工程はクモ膜下穿刺針のハブにて患者の脳脊髄液の存在を観察することを含む。
上記に記載されている方法では、弁は、ベクター入口部から出口部までの流動を可能にする一方で同時に水洗入口部を通る流動を遮断する第1の位置に、及び水洗入口部から出口部までの流動を可能にする一方で同時にベクター入口部を通る流動を遮断する第2の位置に回すように適合させた旋回ルアーロック付きの活栓であってもよく、その際、旋回ルアーロックは、前記医薬組成物が患者に注入される場合前記第1の位置に配置され、且つ前記医薬組成物が等張溶液によって前記患者の中に洗い流される場合前記第2の位置に配置される。特定の実施形態では、等張溶液をクモ膜下穿刺針に注入して医薬組成物を患者の中に洗い流した後、クモ膜下穿刺針は、構築としての配管、弁及びそれに接続された容器と共に患者から引き出される。特定の実施形態では、弁は旋回オスルアーロック付き四方活栓である。特定の実施形態では、第1と第2の容器は別個の注射器である。特定の実施形態では、Tコネクタはクモ膜下穿刺針のハブに設置され、配管をクモ膜下穿刺針に相互接続する。任意で、クモ膜下穿刺針はクモ膜下穿刺針の遠位端で導入針を含む。クモ膜下穿刺針は5インチで22または24ゲージのクモ膜下穿刺針である。特定の実施形態では、導入針は3.5インチで18ゲージの導入針である。
特定の態様では、方法は、最少でも、ある量の医薬組成物を含有する第1の容器と;等張溶液を含有する第2の容器と;それを介して医薬組成物が用具から直接患者の大槽内の脳脊髄液に押し出されてもよいクモ膜下穿刺針と;第1の容器に相互接続される第1の入口部と第2の容器に相互接続される第2の入口部とクモ膜下穿刺針に相互接続される出口部とクモ膜下穿刺針を介した医薬組成物及び等張溶液の流動を制御するためのルアーロックとで構成される用具を利用する。特定の実施形態では、弁は、第1の入口部から出口部までの流動を可能にする一方で同時に第2の入口部を通る流動を遮断する第1の位置に、及び第2の入口部から出口部までの流動を可能にする一方で同時に第1の入口部を通る流動を遮断する第2の位置に回すように適合させた旋回ルアーロック付きの活栓である。任意で、弁は旋回オスルアーロック付き四方活栓である。特定の実施形態では、第1と第2の容器は別個の注射器である。特定の実施形態では、クモ膜下穿刺針は柔軟な配管の全長を介して弁に相互接続される。Tコネクタは配管をクモ膜下穿刺針に相互接続してもよい。特定の実施形態では、クモ膜下穿刺針は5インチで22または24ゲージのクモ膜下穿刺針である。特定の実施形態では、用具はさらにクモ膜下穿刺針の遠位端に接続される導入針を含む。任意で、導入針は3.5インチで18ゲージの導入針である。
この方法及びこの用具はそれぞれ任意で、本明細書で提供されている組成物の髄内送達に使用されてもよい。代わりに、他の方法及び送達がそのような髄内送達に使用されてもよい。
以下の実施例は説明の役立つのみであり、本明細書に記載されている本発明での限定ではない。
実施例1:ヒト対象の治療のためのプロトコール
この実施例はMPS Iを有する患者のための遺伝子治療の処置に関する。この実施例では、遺伝子治療のベクターである、野生型のhIDUA酵素をコードする修飾されたhIDUA遺伝子を発現する複製欠損のアデノ随伴ウイルスベクター9であるAAV9.CB7.hIDUAがMPS I患者の中枢神経系(CNS)に投与される。AAVベクターの用量が全身麻酔下でCNSに直接注入される。本明細書に記載されているように、神経認知の発達及び/または生体マーカーを含む代理マーカーの臨床測定、たとえば、対象のCSFまたは血清における病原性GAG及び/またはヘキソサミニダーゼの濃度の低下を用いて治療の有効性を評価する。
A.遺伝子治療のベクター
説明に役立つ遺伝子治療のベクターであるAAV9.CB.hIDUAが実施例3に記載されている。導入遺伝子のカセットからの発現は、CMVの前初期エンハンサ(C4)とニワトリのβアクチンプロモータのハイブリッドであるCB7プロモータによって推進される一方で、このプロモータからの転写はニワトリのβアクチンのイントロン(CI)の存在によって増強される。発現カセットのためのポリAシグナルはRBGポリAである。ベクターは製剤緩衝液(エリオットB溶液、0.001%プルロニックF68)に懸濁される。製造過程は以下の実施例5にて詳細に記載されている。
B.投与及び投与の経路
6歳以上である患者は、2.6×1012GC(2.0×109GG/g脳質量)(低用量)または1.3×1013GC(1.0×1010GC/g脳質量)(高用量)のrAAV9.CB7.hIDUAの単回の髄内/嚢内投与を受ける。ベクターの投与については、患者は全身麻酔下に置かれる。腰椎穿刺を行い、先ず5ccのCSFを取り出し、続いてITで造影剤を注入して大槽の視覚化を助ける。CT(造影剤による)を利用して針の挿入及び後頭下の空間へのrAAV9.CB7.hIDUAの投与を導く。
別の実施形態では、ハーラー症候群をもたらすことが既知の突然変異により確認され得る、重度のMPIS表現型(ハーラー症候群)を有する3歳未満(<3)の対象は、0.001%プルロニック(登録商標)F68を含む改変エリオットB(登録商標)溶液中のrAAV9.CB7.hIDUAで処置され得る。特定の実施形態では、組成物は、2つの投与レベル: 1×1010GC/g脳質量及び5×1010GC/g脳質量のうちの1つで、嚢内投与を介して単回用量として投与される。1用量を超えるIPを受容する対象はいない。ベクター投与は、上述した通りである。提案される開始臨床用量は、1×1010GC/g脳質量である。出発用量は、MPS Iを有する処理されたことがない(寛容化されていない)イヌにおいて毒性が観察された用量(1×1011GC/g脳質量)より100倍低く、GLP毒性試験におけるNHPにおいて試験された最低用量(1.1×1010GC/g脳質量)と同様である。要約すると、出発用量として1×1010GC/g脳質量を選択することは以下の理由で正当化される:a)これは臨床的利益の妥当な見込みを有する最低用量である、b)MPS Iのイヌモデルにおいて毒性が観察された用量に対して妥当な安全域を維持する、c)NHPにおいてNOAELが同定されなかったが、組織病理学的所見に関連する用量応答がない場合、用量を低下させることはこの潜在的有害所見のリスクを変化させるとは予想されない。重要なことに、NHPのいずれも、組織病理学的所見に関連する臨床症状を示さなかった。5×1010GC/g脳質量のより高い用量は、MPS Iイヌにおいて毒性が観察された用量(1×1012GC/g脳質量)より約20倍低く、本明細書に記載のGLP毒性試験においてNHPにおいて試験された最高用量(1.1×1011GC/g脳質量)より約2倍低い。
年齢による総投与用量
AAV9.hIDUAを、希釈剤(組成が製剤緩衝液と同様)を用いて無菌的に希釈して、用量調製物の一部としてpHを生理学的に近い状態に調整する。より低い用量及びより高い用量の両方について送達される生成物の総容量は、投与前に適切な希釈を行った後、10mL以下である。
以下の治療上有効な平坦用量が、指示した年齢群の患者に投与される;
・新生児:約1×1011〜約3×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・9ヵ月〜6歳:約6×1012〜約3×1014GC;
・3〜6歳:約1.2×1013〜約6×1014GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
別の実施形態では、以下の治療上有効な平坦用量が、年齢群のMPS患者に投与される:
・新生児:約3.8×1012〜約1.9×1014GC;
・3〜9ヵ月:約6×1012〜約3×1014GC;
・9ヵ月〜36ヵ月:約1013〜約5×1013GC;
・6〜12歳:約1.2×1013〜約6×1014GC;
・3〜12歳:約1.2×1013〜約6×1014GC;
・12歳以上:約1.4×1013〜約7.0×1014GC;
・18歳以上(成人):約1.4×1013〜約7.0×1014GC。
患者に投与されるrAAV9.CB7.hIDUAの用量から中空カプシドが確実に取り除かれるために、本明細書の実施例5にて考察されるように、塩化セシウムの勾配超遠心によって、またはベクター精製過程の間のイオン交換クロマトグラフィによって、中空カプシドをベクター粒子から分離する。
ベクターに加えて免疫抑制療法が付与されてもよい。免疫抑制療法には、コルチコステロイド(メチルプレドニゾロン10mg/kg静脈内[IV]を−2日目に1回、及び経口プレドニゾンを0.5mg/kg/日で−1日目に開始し、徐々に漸減させ、16週目までに中止する)、タクロリムス(0.2mg/kg/日経口[PO]を−2日目〜24週目)、及びシロリムス(−2日目から48週目の来診まで毎日1回[QD])が含まれる。例示的なシロリムス用量としては、(−2日目の6mgPO、次いで−1日目から48週目の来診まで2mgQD)が挙げられる。シロリムス用量の調整を行って16〜24ng/mL以内の全血トラフ濃度を維持することができる。調整はレジメンにおける他の薬物にも行うことができ、該調整には、より短期間または長期間の薬物の送達が含まれる。ほとんどの対象では、用量投与は方程式:新しい用量=現在の用量×(標的濃度/現在の濃度)に基づくことができる。対象は、濃度のモニタリングによるさらなる投与量の調整の前に少なくとも7〜14日間新しい維持用量を継続することができる。任意で、患者は静脈内酵素補充療法(ERT、たとえば、アルデュラザイム(商標)[ラロニダーゼ])の安定な投与計画、と同様に対処療法(たとえば、理学療法)にとどまることが許され得る。重篤な有害事象には、「Hyの法則」と呼ばれる約3×ULNのALT及び約2×ULNのビリルビン(>35%直接)として定義される高ビリルビン血症を伴う、考えられる薬剤誘発の肝障害が挙げられてもよい。
一部の実施形態では、免疫抑制療法レジメンは、以下の通りである:
コルチコステロイド
ベクター投与の朝(投与前1日目)に、患者は、少なくとも30分間にわたってメチルプレドニゾロン10mg/kg IV(最大500mg)を受ける。メチルプレドニゾロンは、腰椎穿刺及びrAAV9.CB7.hIDSの髄内(IC)注入の前に投与される。アセトアミノフェン及び抗ヒスタミン薬による前投与は任意である。
2日目に、12週目までにプレドニゾンを中止することを目的として、経口プレドニゾンを開始する。プレドニゾンの用量は以下の通りである:2日目から2週目の終わりまで:0.5mg/kg/日。3及び4週目:0.35mg/kg/日。5〜8週目:0.2mg/kg/日。9〜12週目:0.1mg/kg。
プレドニゾンは12週後に中止する。プレドニゾンの正確な用量は、次に高い臨床的に実際的な用量に調整することができる。
シロリムス:ベクター投与の2日前(−2日目):4時間毎に1mg/m2のシロリムスの負荷用量×3用量を投与する。−1日目から:シロリムス0.5mg/m2/日を、4〜8ng/mlの標的血中濃度で1日2回投与に分割した。シロリムスは48週目の来診後に中止する。
タクロリムス:タクロリムスを2日目(rAAV9.CB7.hIDUA投与の翌日)に1mgの用量で1日2回で開始し、24週間血中濃度4〜8ng/mLを達成するように調整する。24週目の来診から、タクロリムスを8週間かけて漸減する。24週目に、用量を約50%減少させる。28週目に、用量をさらに約50%減少させる。タクロリムスは32週目に中止する。
別の実施形態では、3歳未満の患者に関する免疫抑制療法は、以下の通りである:
コルチコステロイド
・ベクター投与の朝(投与前1日目)に、患者は、少なくとも30分間にわたってメチルプレドニゾロン10mg/kg IV(最大500mg)を受ける。メチルプレドニゾロンは、腰椎穿刺及びrAAV9.CB7.hIDSのIC注入の前に投与される必要がある。アセトアミノフェン及び抗ヒスタミン薬による前投与は、研究者の裁量により任意である。
・2日目に、12週目までにプレドニゾンを中止することを目的として、経口プレドニゾンを開始する。プレドニゾンの用量は以下の通りである:
2日目から2週目の終わりまで:0.5mg/kg/日
3及び4週目:0.35mg/kg/日
5〜8週目:0.2mg/kg/日
9〜12週目:0.1mg/kg
プレドニゾンは12週後に中止する。プレドニゾンの正確な用量は、次に高い臨床的に実際的な用量に調整することができる。
シロリムス
・ベクター投与の2日前(−2日目):4時間毎に1mg/m2のシロリムスの負荷用量×3用量を投与する。
・−1日目から:シロリムス0.5mg/m2/日を、1〜3ng/mlの標的血中濃度で1日2回投与に分割した。
・シロリムスは48週目の来診後に中止する。
タクロリムス
・タクロリムスを2日目(rAAV9.CB7.hIDUA投与の翌日)に0.05mg/kgの用量で1日2回で開始し、24週間血中濃度2〜4ng/mLを達成するように調整する。
・24週目の来診から、タクロリムスを8週間かけて漸減する。24週目に、用量を約50%減少させる。28週目に、用量をさらに約50%減少させる。タクロリムスは32週目に中止する。
・タクロリムス及びシロリムス血中濃度のモニタリング
C.患者亜集団
好適な患者には、
血漿、線維芽細胞または白血球で測定されたとき酵素活性によって確認されたMPS Iの文書化された診断を有するもの;
他の神経学的なまたは精神医学的な因子によって説明できなければ、以下:IQ検査の平均値を下回る2:1標準偏差のスコアもしくは神経心理学的機能(言語の理解力、記憶、注意または知覚的推論)の1ドメインにおけるスコアのいずれかとして定義されるMPS Iによる早期の神経認知欠損の文書化された証拠(カルテ)、
逐次試験における1標準偏差を上回る低下の文書化された歴史的証拠(カルテ)を有するもの;
補助具の有無にかかわらず、試験日に該当する場合、必要とされるプロトコール試験を完成させ、進んで補助具を装用することに従うのに十分な聴覚能力及び視覚能力を有するものが挙げられてもよく、
任意で、少なくとも6ヵ月間のERT(たとえば、アルデュラザイム(登録商標)[ラロニダーゼ]IV)の安定な投与計画上にある。
治療に先立って、患者はスクリーニングされ、以下基準の1以上は、この治療法が患者にとって好適ではないことを示してもよい。
・以下のいずれかを含むIC注入について禁忌を有する:
ベースラインMRI検査の見直しがIC注入の禁忌を示す
IC注入の禁忌を生じる以前の頭部/頸部の手術の既往
CT(または造影剤)または全身麻酔に対する禁忌を有する
MRI(またはガドリニウム)に対する禁忌を有する
<30mL/分/1.73m2の推定糸球体濾過量(eGFR)を有する
・MPS Iに起因しない神経認知欠損または神経精神病の状態を有する
・シロリムス、MMFまたはプレドニゾロンに対する過敏性反応の既往を有する
・免疫抑制療法について適当ではない状態(たとえば、<1.3×103/μLの好中球の絶対数、<100×103/μLの血小板数及び<12g/dL[男]または<10g/dL[女]のヘモグロビン)を有する
・腰椎穿刺に対する禁忌を有する
・HSCTを受けている
・治療の前6ヵ月以内にIT投与を介してラロニダーゼ投与を受けていた
・どこかの時点でラロニダーゼIT投与を受け、患者を過度のリスクに置くIT投与に関連すると見なされる有意な有害事象を経験した
・治療の前少なくとも3ヵ月間完全寛解になっていない、リンパ腫の既往、または皮膚の有棘細胞癌または基底細胞癌以外の別の癌の既往
・患者がギルバート症候群の以前既知の既往症及び総ビリルビンの<35%の結合ビリルビンを示す分画ビリルビンを有さない限り、>3×正常の上限(ULN)のアラニンアミノトランスフェラーゼ(ALT)またはアスパラギン酸アミノトランスフェラーゼ(AST)または>1.5×ULNの総ビリルビン
・ヒト免疫不全ウイルス(HIV)陽性検査の既往、活動型または再発性のB型肝炎またはC型肝炎、またはB型肝炎、C型肝炎またはHIVの陽性スクリーニング検査の既往
・妊娠中、出産後<6週、母乳授乳中、または妊娠を計画中(自己またはパートナー)
・治療の前1年以内のアルコールまたは薬物の乱用の既往
・患者の安全を脅かす深刻なまたは不安定な医学的または心理学的な状態を有する。
・制御不良の発作。
好適な患者には
・新生児;
・3〜9ヵ月齢;
・4ヵ月齢以上〜9ヵ月齢未満;
・9ヵ月齢以上〜18ヵ月齢未満;
・9〜36ヵ月齢;
・18ヵ月齢以上〜3歳未満;
・3〜12歳;
・12歳以上;
・18歳以上の年齢での男女の対象が挙げられる。
特定の実施形態では、好適な患者には、3歳未満の男性または女性、及び以下の1つ以上またはすべてが挙げられる:
1)対象の法定保護者は、治験の性質が説明された後、治験に関連する手続きが行われる前に、署名付きのインフォームドコンセントを提供する意思があり、かつ提供することができる。
2)重度のMPS I−ハーラーと診断されたことが証明されている:
a)MPS I−ハーラーに適合する臨床的徴候及び症状の存在、及び/または
b)重度の表現型と排他的に関連する突然変異についてのホモ接合性もしくは複合ヘテロ接合性。
3)55以上の知能指数(IQ)スコアを有する
4)補助具の有無にかかわらず、必要なプロトコール試験を完了するのに十分な聴覚能力及び視覚能力を有し、該当する場合、試験日に補助具を着用することに従う意思がある。
以下の除外基準のいずれかを満たす対象は、治験の参加に適格ではない。
5)以下のいずれかを含むIC注入には禁忌である:
a)神経放射線科医/神経外科医の判定委員会によるベースライン磁気共鳴画像法(MRI)検査のレビューは、IC注入の禁忌を示す。
b)神経放射線科医/神経外科医の判定委員会による入手可能な情報のレビューに基づき、IC注入を禁忌とした以前の頭部/頸部手術の既往歴。
c)コンピュータ断層撮影(CT)(または造影剤)または全身麻酔に禁忌である。
d)MRI(またはガドリニウム)に禁忌である。
e)推定糸球体濾過量(eGFR)<30mL/分/1.73m2である。
6)MPS Iに起因しない神経認知障害を有するか、または医師の見解で研究結果の解釈を混乱させる可能性のある神経精神状態の診断を有する。
7)腰椎穿刺に禁忌である。
8)造血幹細胞移植(HSCT)を受けている
9)AAVベースの遺伝子治療製品による治療歴がある
10)任意の時間に髄内(IT)ラロニダーゼを投与され、医師の見解では対象を過度のリスクにさらすと考えられるIT投与に関連すると考えられる有意なAEを経験した。
11)スクリーニング前少なくとも3ヵ月間完全寛解していないリンパ腫の既往歴または皮膚の扁平上皮癌もしくは基底細胞癌以外の別の癌の既往歴がある。
12)最大の内科的治療にもかかわらず、制御されていない高血圧(収縮期血圧[BP]>180mmHg、拡張期血圧>100mmHg)。
13)血小板数<100,000/マイクロリットル(μL)である
14)対象にギルバート症候群の既往歴がない限り、スクリーニング時にアラニンアミノトランスフェラーゼ(ALT)またはアスパラギン酸アミノトランスフェラーゼ(AST)>3×正常上限(ULN)または総ビリルビン>1.5×ULNを有する。
15)ヒト免疫不全ウイルス(HIV)もしくはB型肝炎もしくはC型肝炎ウイルス感染の既往歴を有し、またはB型肝炎表面抗原もしくはB型肝炎コア抗体もしくはC型肝炎もしくはHIV抗体のスクリーニング検査陽性である。
16)インフォームド・コンセントフォーム(ICF)に署名する前の30日以内または5半減期以内(いずれか長い方)に治験薬を受容した
17)治験実施に関与する医療機関の従業員もしくはその他の個人の一等家族であるか、または治験実施に関与する医療機関の従業員もしくはその他の個人である。
18)PIの見解で、対象の安全性を損なう臨床的に有意なECG異常がある。
19)PIの見解で、対象の安全性、または治験への参加もしくは治験結果の解釈の成功を損なう重篤または不安定な医学的または心理的状態を有する。
20)医療機関の神経放射線科医/神経外科医の意見において、及びメディカルモニターとの議論において、対象の投与及び適切な投与に影響を及ぼし得る(脳)室シャント。
免疫抑制療法に関連する除外基準:
21)タクロリムス、シロリムスまたはプレドニゾンに対する過敏症反応の既往歴;
22)原発性免疫不全(たとえば、一般的な可変性免疫不全症候群)、脾臓摘出、または対象を感染症にかかりやすくするあらゆる基礎疾患の既往歴。
23)スクリーニングの少なくとも12週間前に完全には消失しなかった帯状疱疹、サイトメガロウイルス、またはエプスタインバーウイルス(EBV)感染。
24)来診2の少なくとも8週間前に消失しなかった入院または非経口抗感染薬による治療を必要とするあらゆる感染。
25)来診2前の10日以内に経口抗感染薬(抗ウイルス薬を含む)を必要とするあらゆる活動性感染。
26)活動性結核(TB)の既往歴またはスクリーニング中のクォンティフェロンTBゴールド検査の陽性。
27)ICFに署名する前の8週間以内のあらゆる生ワクチン。
28)ICFに署名する前の8週間以内の大手術または治験期間中に計画された大手術。
29)登録後6ヵ月以内にアデノイド切除術または扁桃摘出術の必要性を予測する。アデノイド切除術または扁桃摘出術が予測される場合は、スクリーニング前に実施すべきである。
30)絶対好中球数<1.3×103/μL。
31)臨床医が免疫抑制療法に適切ではないと考える任意の状態または実験室異常。
D.臨床目的を評価すること
主要な臨床目的には、MPSI欠損に関連する神経認知の低下を防ぐこと及び/もしくは任意で元に戻すこと、並びに/または神経発達低下を遅延もしくは停止させることが挙げられる。臨床目的は、たとえば、ハーラーの対象についてBayleyの乳児及び幼児発達スケール(Bayley Scale of Infant and Toddler Development)、第3版(Bayley III)、並びに/またはWechslerのプレスクール及びプライマリー知能スケール(Wechsler Preschool and Primary Scales of Intelligence)、第4版(WPPSI−IV)]、並びに適応行動(Vineland−2)によって測定されるような、またはハーラー・シャイエの対象についてWASIによって測定されるような、知能指数(IQ)を測定することによって判定される。神経認知の発達及び機能の他の適当な測定、たとえば、Bayleyの乳児発達スケール(BSID−III)を用いて発達指数(DQ)を評価すること、Hopkins言語学習試験を用いて、並びに/またはWASI−I及び/もしくはBayler−III、並びに/または注意変数試験(TOVA)を用いて記憶を評価することが利用される。
二次的な評価項目には、生体マーカー及び臨床転帰の評価が挙げられる。尿は、グリコサミノグリカン(GAG)総含量と同様にMPS Iに特異的なpGAGについて評価される。血清は、IDUA活性、抗IDUA抗体、pGAG、ヘパリン補因子II・トロンビン複合体の濃度について評価される。動物データは全身的効果があり得ることを示すので、血漿をバイオマーカー(GAG及びIDUA)についてモニターする。CSFは、IDUA活性、抗IDUA抗体、ヘキソサミニダーゼ(hex)活性、及びpGAGについて評価される。ベクター(たとえば、AAV9)に対する中和抗体及びIDUAに対する結合抗体の存在はCSF及び血清にて評価されてもよく、ベクターのカプシド(たとえば、AAV9)に対するT細胞応答はELISPOTアッセイによって評価されてもよく、CSF、血清及び尿におけるIDUA発現の薬物動態と同様にベクターの濃度(AAV9のDNAに対する定量的PCR(qPCR))がモニターされてもよい。CSF、血漿及び尿中のベクター排出がモニターされてもよい。
探索的エンドポイントには:免疫原性測定、たとえば、CSF及び血清中のAAV9に対する中和抗体及びIDUAに対する結合抗体、酵素結合免疫スポット(ELISPOT)アッセイ:AAV9及びIDUAに対するT細胞応答、並びにフローサイトメトリー:AAV及びIDUA特異的調節T細胞のうちの1つ以上が含まれる。他の探索的エンドポイントには、脳の磁気共鳴画像法(MRI)によって評価されるCNS構造異常;腹部の超音波によって評価される肝臓及び脾臓容積;聴覚脳幹反応(ABR)試験によって測定される聴覚能力変化;血漿(GAG及びIDUA)、CSF(GAG、IDUA及びスペルミン)及び尿(GAG)中のバイオマーカー;ウイルス排出:CSF、血清及び尿中のベクター濃度(AAV9.hIDUAデオキシリボ核酸[DNA]に対する定量的ポリメラーゼ連鎖反応[qPCR]);疾患の全身症状(CSFと比較して)及び生活の質に対する効果が含まれ得る。
実施例2:新生仔の全身性AAVはMPS Iイヌ及び非ヒト霊長類にてCNS遺伝子治療に対する寛容を誘導する
この実施例は、イヌ及び非ヒト霊長類の双方において、新生仔におけるアデノ随伴ウイルス(AAV)ベクターを用いた肝指向型の遺伝子導入は導入遺伝子に対する免疫寛容の持続した状態を誘導し、中枢神経系(CNS)を標的とするその後のベクター投与の有効性を実質的に改善することを実証している。このアプローチは、酵素α−L−イズロニダーゼ(IDUA)の活性の欠損のための進行性のCNS疾患を特徴とするリソソーム蓄積症であるムコ多糖症I型(MPS I)のイヌモデルに適用された。1ヵ月齢のイヌにおける髄内AAV送達を用いたCNSを標的とする遺伝子導入はイヌIDUAに対する抗体の誘導を生じ、それは脳の病変の改善を部分的に減衰させた。1週齢にてイヌIDUAを発現しているベクターによって全身性に処理されたMPS Iイヌは酵素に対する抗体を発生させず、1ヵ月齢での髄内AAV送達の際、CNSにて強固な発現を示し、脳の蓄積症の完全な是正を生じた。ヒトIDUAを発現するAAVベクターで全身性に処理された新生仔アカゲザルは同様に導入遺伝子に対して寛容を発生し、劇的に高いCSFでのIDUAの発生及びその後のCNSでの遺伝子治療後の抗体誘導の非存在を生じた。これらの知見は、免疫学的な発達の決定的な期間の間に導入遺伝子に対する寛容を誘導することによって遺伝子治療の有効性及び安全性を改善する可能性を示唆している。
A.材料及び方法
1.ベクターの作製
被験物質は、ニワトリβアクチンプロモータ(CB7)とキメライントロン(CI)とコドンを最適化させたイヌIDUA導入遺伝子(cIDUA)とポリアデニル化シグナル(RBG)から成る発現カセットをパッケージするAAV9のカプシドから成った。発現構築物にはAAV血清型2の逆方向末端反復が隣接した。このベクターは、AAV2/9.CB7.CI.cIDUA.RBGまたはAAV9.CB7.CI.cIDUA.RBGと名付けられる。一部の動物は新生仔のとき異なるベクターによって静脈内で処理されてイヌIDUAタンパク質に対する寛容を誘導した。このベクターは、肝臓特異的な甲状腺ホルモン結合グロブリンプロモータ(TBG)と人工イントロン(PI)とコドンを最適化させたイヌIDUA導入遺伝子(cIDUA)とポリアデニル化シグナル(RBG)から成る発現カセットをパッケージするAAV8のカプシドから成った。発現構築物にはAAV血清型2の逆方向末端反復が隣接した。ベクターは293細胞の三重形質移入によって作製し、以前記載された[L.Wang,et al,Human gene therapy,22,1389−1401,(2011);published online EpubNov]ようなイオジキサノール勾配で精製した。
2.動物
MPS Iイヌのコロニーは、研究における動物の飼育及び使用に関するNIH及びUSDAのガイドラインのもとでペンシルベニア大学獣医学部で維持された。MPS Iイヌの試験プロトコールはすべてペンシルベニア大学の施設内実験動物委員会によって承認された。新生仔MPS Iイヌにおけるベクター注入については、AAV8ベクターを0.5〜1mLの無菌生理食塩水にて希釈し、頸静脈を介して注入した。AAV9ベクターの髄内注入及びCSFの回収は、以前記載された[C.Hinderer,et al,Intrathecal Gene Therapy Corrects CNS Pathology in a Feline Model of Mucopolysaccharidosis I.Molecular therapy:the journal of the American Society of Gene Therapy,(2014);published online EpubJul,16]ような後頭下のアプローチを介して行った。合計9匹のMPS Iイヌがこの研究に含まれた。遺伝子型はPCR及び血清の酵素アッセイによって出生時に確認した。6匹のイヌが、1日齢(N=3)または7日齢(N=3)でAAV血清型8ベクター(5×1012ゲノムコピー/kg[GC/kg]体重)のIV注入を投与された。1匹は出生後3日で死亡した。処理した残り5匹の動物と同様に3匹の未処理のMPS Iイヌを1ヵ月齢で髄内AAV9(1012GC/kg)によって処理した。最初の7週齢まで毎週、その後毎月、血液を末梢血管から採取した。CSF(1mL)は、髄内注入のとき(1ヵ月齢)、注入の7及び21日目、及びその後毎月採取した。ナトリウムペントバルビタール80mg/kg、IV)の投与によって安楽死を行った。5匹の動物は9ヵ月齢で安楽死させ、残りは11カ月齢で安楽死させた。未処理のMPS I及び対照は6ヵ月齢〜26カ月齢の間で安楽死させた。組織を採取し、以前記載[Hinderer,et al,2014]されたように処理した。
動物福祉法に準拠する動物の処置はすべて実施に先立ってカリフォルニア大学デービス校の実験動物委員会によって承認された。動物飼育に関する活動はカリフォルニア国立霊長類研究センターの操作手順に従って実施した。正常な周期の成熟メスのアカゲザル(Macaca mulatta;N=4)を、確立された方法[AF Tarantal,in The Laboratory Primate.(2005),pp.317−352]を用いて繁殖させ、妊娠として特定した。研究のために選択された母親はすべて予めスクリーニングしてそれらがAAV抗体について血清反応陰性であることを保証した。妊娠中、胎仔を超音波でモニターして正常な発育及び発生を確認し[AF Tarantal(2005)]、確立されたプロトコール[A.F.Tarantal,et al,Mol.Ther.12,87−98(2005);published online EpubJul]に従って予定日(160±2日の妊娠)に帝王切開によって新生仔を分娩させた。新生仔を分娩後保温器に入れ、研究のために人工保育した。確立したプロトコールに従って新生仔室にて乳児の健康、食物摂取及び体重を毎日または毎週(年齢に応じて)記録した。全動物が出生した時点で選択されたAVVベクターIVを投与した。出生後1ヵ月目及びその後毎月の起点で(導入の2ヵ月後まで、今まで)、すべて無菌条件下にてCSFの採取(約0.5mL;注入前、次いで毎週または毎月)及び髄内注入に備えて乳児動物は、ケタミン(筋肉内で10mg/kg、IM)とデクスメデトミジン(0.015〜0.075mg/kg、IM)によって鎮静状態にした(約0.5mL、CSF採取後1ヵ月及び直ちに)。CBC及び臨床検査パネルをモニターするために及び血清や血漿を採取するために末梢血管から血液試料(約3〜6mL)を出生時、次いで毎月採取した。試料採取が完了した際、デクスメデトミジンに匹敵する用量で反転アチパメゾールをIMで与えた。
DNAを組織から単離し、記載されている[L.Wang,2011]ようなTaqManPCRによってベクターゲノムを定量した。IDUA及びHexの活性についてのアッセイは記載されている[Hinderer,et al,2014]ように行った。
CSFのpGAGの測定は、以前記載された方法[R.Lawrence,et al,Nature chemical biology,8,197−204(2012);published online EpubFeb]を用いてカリフォルニア大学サンディエゴ校のGlycotechnology Coreによって実施された。手短には、CSF試料からGAGを抽出し、ヘパリナーゼI、II及びIIIで二糖類に消化した。還元カップリングによるアニリン12Cで二糖類にタグを付け、それをスピードバックで乾燥させた。乾燥させた試料をLC−MS等級の水にて再構成し、既知の濃度のアニリン12Cでタグを付けた標準に混ぜ合わせた。Thermo Scientific Ultimate 3000 HPLCシステムを備えたLTQ Orbitrap Discoveryエレクトロスプレーイオン化質量分光計(Thermo Scientific)にて試料を解析した。
イヌIDUAに対する抗体についてのELISAは、甲状腺ホルモン結合グロブリンプロモータの制御下でイヌcDNAに含有される発現構築物及びcIDUAタンパク質がHuh7細胞で産生されることを除いて、記載されている[Hinderer,et al,2014]ように実施した。使用された検出抗体はHRPを結合したヒツジ抗イヌ(Pierce,Rockford,IL)だった。アカゲザルにおけるヒトIDUAに対する抗体についてのアッセイは、アルデュラザイム(Genzyme,Cambridge,MA)10μg/mLをコーティング抗原に使用し、検出抗体がポリクローナルヤギ抗ヒト(Jackson ImmunoResearch Laboratories,West Grove,PA)であったことを除いて同一だった。
MPS Iイヌの脳の組織学的な解析は、モノシアロジヘキソシルガングリオシド(GM3)について陽性のニューロン、コレステロール及びリソソーム膜タンパク質(LIMP2)の蓄積を定量するための以下の改変と共に以前記載された[C.Hinderer,2014]ように実施し;LIMP2及びフィリピンで染色した大脳皮質の切片の画像は、層I(分子層)と層IIの間の境界が画像の上縁を形成するように10×の対物レンズで撮影した。各動物から合計10枚の画像を取得した。GM3で染色した脳の切片の画像は、脳の分子層を含む大脳皮質表面に直下の領域から4×対物レンズで撮影した。各動物からの7枚の画像を解析した。画像はすべて以前記載された[M.Aldenboven,et al,Biology of Blood and Marrow Transplantation,14,485−498(2008);published online EpubMay]ように「閾値」及び「粒子を解析する」モジュールを用いてImageJソフトウエア(Rasband,W. S.,National Institutes of Health,USA;rsb.info.nih.gov/ij/)によって処理した。
B.結果
1.MPS Iイヌにおける髄内AAV9が介在する遺伝子導入の後のイヌIDUAに対する抗体の誘導
MPS Iイヌモデルはヒト疾患の症状の多数を忠実に繰り返す[E.Kakkis,et al,Molecular genetics and metabolism,83,163−174(2004);published online EpubSep−Oct;R.M.Shull,et al,Am.J.Pathol.114,487−495(1984)]。これらの動物は、IDUAの第1イントロンの保持を生じるスプライス部位の突然変異のせいで検出可能なIDUA活性を有さない[K.Menon,et al,(Genomics,14,763−768(1992)]。これらの動物には検出可能なIDUA発現がないことを考えて、これらの個体は一般に完全長ではないIDUAを産生する対立遺伝子を運び、そのタンパク質に対してそれらが免疫的に遭遇したことがないままであるので、我々はそれらが、MPS Iの重篤形態の患者で生じる髄内遺伝子治療に対する免疫応答をモデル化することを予想した[N.J.Terlato,G.F.Cox,Can mucopolysaccharidosis type I disease severity be predicted based on a patient’s genotype? A comprehensive review of the literature.Genetics in medicine:official journal of the American College of Medical Genetics 5,286−294(2003);published online EpubJul−Aug]。MPS Iイヌの脳は、ニューロンにおけるGM3のようなガングリオシドの広範な蓄積、と同様にコレステロールとLIMP2を含むリソソームの膜タンパク質との異常な蓄積を含む、MPS Iに関連する特徴的な病態を示す[R.M.Shull,et al,Am.J.Pathol.114,487−495(1984)]。MPS Iイヌはまた、髄膜におけるグリコサミノグリカン(GAG)の顕著な蓄積を示し、一部のMPS I患者における脊髄圧迫に寄与する過程である有意な髄膜肥厚を生じる[E.Kachur,et al,Neurosurgery,47,223−228(2000);published online EpubJul;A.Taccone,et al,Pediatric Radiology,23,349−352(1993);published online EpubSep;S.Vijay,J.E.Wraith,Clinical presentation and follow−up of patients with the attenuated phenotype of mucopolysaccharidosis type I.Acta Paediatrica,94,872−877(2005)]。
普遍型プロモータの制御下でイヌIDUA配列を運ぶAAV9ベクターの髄内注入によって3匹のイヌを1ヵ月齢で先ず処理した。注入はすべての動物で上手く忍容され、研究全体にわたって臨床兆候は観察されなかった。CSFの分析は一般に平凡であり、CSFのリンパ球の軽度にすぎない一時的な上昇が2匹の動物で生じた。1匹の動物における単回のCSF試料は主として単球に似た細胞から成る顕著な髄液細胞増加症を示した。その後の穿刺は髄液細胞増加症の証拠を示さず、安楽死の時点では、処理した動物のいずれにおいても脳または脊髄にて炎症の組織学的な証拠はなかった。ベクターはCNS全体にわたって分布し、脳及び脊髄の分析した領域すべてにおける細胞に形質導入していた。動物はすべてCSFにてIDUAの超生理学的な発現を示し、それは3ヵ月の経過にわたって1匹の動物では正常範囲に低下し、2匹では正常レベルを下回り、その後CSFの酵素レベルは動物を安楽死させるまで5ヵ月間、本質的に安定だった。臨床兆候、ベクターゲノムの喪失、または脳炎の組織学的な証拠が存在しないことは、CSFのIDUA活性の低下が細胞傷害性Tリンパ球による形質導入された細胞の殺傷のせいではないことを示し、それはまた、持続的に残留するCSFのIDUA活性によっても支持された。代わりに、CSFのIDUA活性の低下はイヌIDUAに対する高力価の抗体の誘導に関連した。
B.新生仔遺伝子導入によるIDUAに対する寛容の誘導
MPS IイヌにおいてイヌIDUAの新生仔発現がその酵素に対する免疫寛容を誘導し得るかどうかを判定するために、出生後1日目(N=3)または7日目(N=3)に肝臓選択性のプロモータからイヌIDUAを発現するAAV血清型8ベクターのIV注入によって6匹のイヌを処理した。出生日に処理したイヌのうち1匹は処理の2日後に死亡した。生き残った新生仔のイヌは全体として未処理のMPS Iイヌについての病歴データに類似し、最初の2週齢でおよそ20%の死亡率を有する[Vite,R.et al,Molecular therapy:the journal of the American Society of Gene Therapy 15,1423−1431(2007);published online EpubAug]。MPS Iイヌにおけるこの早期の死亡率の原因は究明されていない;この処理された動物では、死体の検視はMPS Iに典型的な全身性の病変と同様に全身性の細菌感染の可能な証拠を示した。処理した動物は血清IDUAの上昇とそれに続く迅速な低下を明らかにした。これは、新生仔における肝臓遺伝子導入に非統合性のベクターを利用する以前の研究における肝細胞の分裂の間でのベクターゲノムの喪失による一時的な発現の観察に一致する[L.Wang,et al,Human gene therapy,23,533−539(2012);published online EpubMay]。
1ヵ月齢にて、1週齢でIVのAAV8投与を受けた5匹の生き残りのイヌに髄内アプローチを用いてAAV9ベクターを注入した。5匹の動物すべてが、ベクターの髄内注入に続いてCSFにてIDUAの正常レベルの30倍を超えるピークレベルを示し、未処理の動物で達成されるのものより3〜100倍高い長期のCSF酵素レベルだった。イヌIDUAに対する抗体が出生後1日目で処理されたイヌのCSFでは検出できず、出生後7日目で処理された動物では検出限界をやや上回ったに過ぎなかったということは、双方の群における酵素に対する免疫寛容の状態を示唆している。
2.MPS IイヌのCNSにおける生化学的な及び組織学的な異常の是正
リソソーム酵素であるヘキソサミニダーゼ(Hex)はMPS I動物の組織で上方調節され、脳組織及びCSFの双方で上昇したHex活性はIDUA欠乏の下流で生じる異常な細胞性の過程についての有用なマーカーとして役立つ[Hinderer,et al.(2014)]。ベクターの髄内送達のとき(生後約1ヵ月)のCSFのHex活性の測定は、MPS Iイヌすべてにて異常に上昇したHex活性を示した。髄内AAV9のみで処理した動物はHex活性で中程度の低下を示し、最高の残留IDUA発現を伴う動物のみが正常範囲のHex活性に達した。新生仔で全身性の遺伝子導入によって処理され、その後ベクターの髄内投与を受けた5匹の動物はすべてCSFのHexの完全な正常化を実証した。2匹の髄内の処理のみを受けた最低のCSFのIDUAレベルの動物では効果はやや低下したが、脳組織試料におけるHex活性はCSFのHexよりも治療に大きな応答を示し、処理した動物すべてにおいて脳のHex活性の実質的な低下を伴った。
CSFにおけるGAG濃度は、IDUA欠乏のせいで蓄積する病的GAG(pGAG)の非還元末端に特異的なアッセイを用いて測定した[R.Lawrence,et al;Nature chemical biology,8,197−204(2012);published online EpubFeb]。AAVの髄内注入の3週間後、動物はすべてCSFのpGAG濃度の顕著な低下を示した。IDUAに対して免疫寛容ではないイヌは免疫寛容のイヌよりもCSFの高い残留pGAG維持したが、この低下は112日目で持続していた。組織学的な解析は、未処理のMPS Iイヌの脳全体にわたる重度の蓄積病変を明らかにし、GM3、コレステロール及びLIMP2の広範なニューロンでの蓄積を伴った。CSFでの最高のIDUAを伴う動物のみがニューロン蓄積の完全な解消を経験したが、髄内AAV9のみで処理した動物は蓄積病変の実質的な改善を実証した。他の2匹の髄内処理したイヌは残留する蓄積病変を有した。新生仔でAAV8全身性の遺伝子導入によって処理され、その後AAV9の髄内投与を受けた5匹のイヌすべてにおいてCNSの蓄積病変は完全に元に戻った。脳実質における蓄積病変に加えて、未処理のMPS Iイヌはアルシアンブルー染色によって眼に見える髄膜にてGAGの蓄積を示した。この髄膜のGAG蓄積及び結果として生じる髄膜の肥厚は外科的介入を必要とする脊髄圧迫の多数の症例に関与し、CSF再吸収の正常な経路を妨害することによって一部のMPS I患者における交通性水頭症の発症に寄与する可能性もある。処理された動物はすべて髄膜のGAG蓄積での改善の証拠を示した。寛容のイヌすべて及び非寛容のイヌ1匹において髄膜はほぼ完全に正常であると思われた一方で、CSFの最低のIDUA活性を持つ2匹の非寛容の動物は一部のGAG蓄積を保持した。
3.新生仔アカゲザルにおけるヒトIDUAに対する寛容の誘導
MPS Iイヌにおいて観察された免疫寛容誘導のための新生仔の時間帯が霊長類にて見いだされ得るかどうかを評価するために、新生仔アカゲザル(N=4)にて類似の研究を行った。これらの動物はIDUA欠乏ではないので、ヒトIDUA導入遺伝子を用いて、活性のある内在性遺伝子を欠いている患者にて種特異的な導入遺伝子に対して予想され得る免疫応答をモデル化した。2匹の新生仔アカゲザルに肝臓特異的なプロモータからヒトIDUAを発現するAAV8ベクターをIVで出生時投与した。双方とも血清IDUA活性の一時的な上昇を明らかにした。2匹の追加の新生仔に無関係な導入遺伝子(ヒト第IX因子)を発現するAAV8ベクターをIVで出生時投与した。4匹の動物すべてに、1ヵ月齢で髄内注入によってヒトIDUAを発現するAAV9ベクターを投与した。MPS Iイヌに類似して、IDUA未処理の動物は注入の3週間後、CSFのIDUA活性の低下を示し、投与後2ヵ月までにほぼベースラインレベルに戻った。これらの動物はまたCSFにおいて導入遺伝子特異的な抗体を発生した。出生時にIDUA遺伝子導入をIVで投与した2匹の動物はCSFにてヒトIDUAに対する抗体を発生させず、AAV9の髄内投与の2ヵ月後、正常の10倍を超える高いCSFの酵素活性を維持した。動物はすべて研究期間の間、頑丈で健康のままであり、有害事象の証拠はなく、年齢に基づいて且つ既往対照と比べて正常な成長の軌跡、及び完全な血球数(CBC)及び正常限界範囲内の生化学検査を伴った。
C.考察
野生型の治療用タンパク質に対する免疫活性化は劣性疾患についての潜在的な懸念である。抗体は静脈内で送達される酵素の分布及び取り込みを妨害することができるので、タンパク質補充療法に対する抗体反応は一部のLSDについて特に難易度が高い[E.J.Langereis,et al,Molecular genetics and metabolism,(2014);published online EpubOct,29]。抗体は形質導入された細胞から分泌される酵素が介在する相互是正を妨害し得るので、抗体はこれらの疾患を標的とする遺伝子治療にとって同等に問題がある。
この研究は、AAV9の髄内送達がイヌのCNS全体にわたって細胞を効果的に標的とすることができ、大型動物の脳におけるMPS Iに関連する生化学的な及び組織学的な異常を是正するように十分な発現を達成する。ベクターの生体分布データは、脳における細胞当たり1未満のベクターゲノムがあることを示すということは、観察された蓄積病態における広範な軽減が分泌される酵素による交差是正のせいであることを示している。しかしながら、髄内ベクターのみで処理した3匹の動物のうち、2匹が十分に強固な抗導入遺伝子抗体反応を発生してCNSの蓄積病変の完全な解消を妨げた。導入遺伝子に対する抗体誘導の後CSFでのほぼ正常なIDUA活性を維持した動物のみがCNSの遺伝子治療に対して完全な応答を示した。この結果から、CSFにおけるIDUA活性は髄内遺伝子導入に続く有効性の理に適った予測因子であり、完全な治療利益にはほぼ正常なレベルが求められると結論付けられる。このことはMPS Iのネコにおける髄内遺伝子治療による我々の知見に一致している[Hinderer(2014)]。MPS Iのネコは一般にMPS Iイヌよりも髄内遺伝子導入に対して弱い抗体反応を示し、CSFのさらに安定したIDUA活性を示す。MPS Iのネコは不活性の変異体IDUAを発現し、潜在的にその酵素に対してそれらを部分的に免疫寛容にしているので、これは2つのモデルにおける根底にある突然変異に関係してもよい。重要なことに、MPS Iイヌにおける現在のデータは、イヌと同様に残留IDUA活性を有さない重篤な疾患のMPS I患者についてさえ、髄内遺伝子導入の後で生じる可能性がある抗導入遺伝子抗体反応は有害な臨床事象を生じず、抗体反応にもかかわらず、実質的な有効性は保持されることを示している。しかしながら、これらのデータはまた、CNSにおけるIDUAに対する抗体反応を防ぐことがMPS Iのための髄内遺伝子治療の有効性を改善することも示唆している。
肝指向性の遺伝子導入を用いて、髄内遺伝子治療後のあとに続く免疫応答でIDUAに対する早期曝露の効果を調べた。新生仔のIDUA発現はMPS Iイヌにて酵素に対する寛容を誘導したが、それは1ヵ月齢での髄内遺伝子治療によって非常に高いCSF酵素のレベルが達成されていた。免疫寛容群におけるCSFの高いIDUAレベルは一貫して神経病理の完全な反転を生じ、妨害する抗体反応が克服されるとLSDの髄内遺伝子治療によって可能である有効性の強力な例を提供する。導入遺伝子に対する免疫寛容の誘導のための新生仔の時間帯が非ヒト霊長類にも存在するという知見は、病院への変換について有望であると思われる。本研究に対する幾つかの重要な限界がある。新生仔MPS I患者にてベクターの髄内注入を行うことに関連する高いリスクのために、新生仔では、寛容を誘導する手段としてCNS指向型の遺伝子治療ではなく全身性の遺伝子導入が使用されている。
この実施例で使用されているアプローチは、髄内遺伝子治療が実験群すべてにおいて同一の方法及び同じ年齢で実施され、異なる年齢の動物における形質導入の効率の差異の効果を混同することなく、動物間でCSFのIDUAレベルの直接比較を可能にするという利点を有した。この研究は、ベクターの髄内注入の時点でこれらの動物ではCSFにてIDUAは検出できないことを考えるとこれはありそうにないと思われるが、以前の肝指向性遺伝子治療が免疫寛容の動物における脳の病態の改善された是正に寄与する可能性も除外しなかったし、CSFのHex活性及びpGAGの濃度は髄内遺伝子導入の前での是正の証拠を示さなかった。このことは、極端に高い血清IDUA活性は脳の病変に効果を有さなかったMPS Iのネコにおける以前の研究と一致している[C.Hinderer,PNAS,111:14894−14899(2014)]。検出可能な抗体は出生後7日目で処理されたMPS Iイヌで現れ始めたという観察に基づいて、この期間はわずか1〜2週間続くと推定され、それはヒト研究にとって有用な出発点として役立ち得る。
ヒト新生児が、イヌ及び非ヒト霊長類にて本明細書で実証されている導入遺伝子に特異的な免疫寛容について同じ潜在力を有するのであれば、新生児遺伝子導入は免疫応答が治療の安全性または有効性を限定している多数の遺伝性疾患を治療する膨大な可能性を有し得る。臨床試験を実現可能にするためには、このアプローチが有効であるには十分早期の患者を特定するために出生前及び新生児のスクリーニングが必須であろう。MPS Iについては、新生児のスクリーニングが今や実施されており、ヒト初回投与試験を行う機会の可能性を提供している[PV Hopkins,et al,J.Pediatr,(2014);published online EpubOct.18]。
実施例3:導入遺伝子に特異的な免疫寛容の誘導はイヌ疾患モデルにおけるヒト遺伝子治療の正確な評価を可能にする。
A.材料及び方法
ベクターは、ヒトのイズロニダーゼ(hIDUA)を発現する血清型9の非複製組換えアデノ随伴ウイルス(AAV)である。AAV9血清型はIC投与に続いてCNSでのhIDUA産物の効率的な発現を可能にする。
1.ベクターの作製
AAV−hIDUAベクターゲノムのプラスミドであるpAAV.CB7.CI.hIDUAco.RBG(p3032)は7,165bpのサイズである。このプラスミドに由来するベクターゲノムは、hIDUA発現カセットに隣接するAAV2に由来するITRを伴った一本鎖DNAゲノムである。導入遺伝子カセットからの発現は、CMVの前初期エンハンサ(C4)とニワトリのβアクチンプロモータの間のハイブリッドであるCB7プロモータによって推進される一方で、このプロモータからの転写はニワトリのβアクチンのイントロン(CI)の存在によって増強される。発現カセットのためのポリAシグナルはRBGポリAである。プラスミドはコドンを最適化し、hIDUA配列を合成することによって構築され、得られた構築物は次いでプラスミド、pENN.AAV.CB7.CI.RBG(p1044)、CB7とCIとRBGを含有するAAV2のITRが隣接する発現カセットの発現要素にクローニングされてpAAV.CB7.CI.hIDUAco.RBG(p3032)を得た。
配列要素の記載
逆方向末端反復(ITR):AAVのITR(GenBank #NC001401)は両端で同一であるが、逆向きである配列である。AAV2のITR配列は、AAVとアデノウイルスのヘルパー機能がトランスで提供されると、双方ともベクターDNAの複製の開始点及びベクターゲノムのパッケージングシグナルとして機能する。そのようなものとして、ITR配列はベクターゲノムの複製及びパッケージングに必要とされるシス配列のみを表す。
CMV前初期エンハンサ(382bp,C4;GenBank #K03104.1):この要素はベクターゲノムのプラスミドに存在する。
ニワトリβアクチンプロモータ(282bp;CB;GenBank #X00182.1):プロモータであり、且つ高レベルのhIDUAの発現を推進するのに使用される。
ニワトリβアクチンイントロン:ニワトリβアクチン遺伝子(GenBank #X00182.1)に由来する973bpのイントロンはベクターの発現カセットに存在する。イントロンは転写されるが、スプライシングによって成熟メッセンジャーRNA(mRNA)から取り外され、そのいずれかの側の配列に接合する。発現カセットにおけるイントロンの存在は核から細胞質へのmRNAの輸送を促すことが示されているので翻訳のための定常レベルのmRNAの蓄積を向上させる。これは高いレベルの遺伝子発現を目的とする遺伝子ベクターで共通する特徴である。この要素は双方のベクターゲノムプラスミドに存在する。
α−L−イズロニダーゼのコーディング配列:hIDUAの配列(Genbank NP_000194)がコドンで最適化され、合成された[配列番号1]。コードされたタンパク質は73kDの予想分子量とSDS−PAGEによる83kDの見かけの分子量を持つ653のアミノ酸[配列番号2]である。
ポリアデニル化シグナル:127bpのウサギβグロビンのポリアデニル化シグナル(GenBank #V00882.1)は抗体mRNAの効率的なポリアデニル化のためにシス配列を提供する。この要素は、転写終結、新生転写物の3’末端での特異的な切断事象及び長いポリアデニル尾部の付加のためのシグナルとして機能する。この要素は双方のベクターゲノムプラスミドに存在する。
逆方向末端反復(ITR):AAVのITR(GenBank #NC001401)は両端で同一であるが、逆向きである配列である。AAV2のITR配列は、AAVとアデノウイルスのヘルパー機能がトランスで提供されると、双方ともベクターDNAの複製の開始点及びベクターゲノムのパッケージングシグナルとして機能する。そのようなものとして、ITR配列はベクターゲノムの複製及びパッケージングに必要とされるシス配列のみを表す。
構築物をAAV9カプシドにパッケージし、M.Lock,et al,Human Gene Ther,21:1259−1271(2010)にて以前記載されたように精製し、滴定した。
2.動物の処置
MPS Iイヌのコロニーは、研究における動物の飼育及び使用に関するNIH及びUSDAのガイドラインのもとでペンシルベニア大学獣医学部で維持された。試験プロトコールはすべてペンシルベニア大学の施設内実験動物委員会によって承認された。組換えヒトIDUAの点滴については、使用直前にラロニダーゼ(Genzyme)を生理食塩水で5倍に希釈した。末梢静脈のカテーテルを介して点滴は2時間にわたって行った。AAV9ベクターの髄内注入及びCSFの採取は、以前記載された[C.Hinderer,et al,(Mol.Ther.J.Am.Soc.Gene Ther.22,2018−2027(2014)]ように後頭下のアプローチを介して行った。ナトリウムペントバルビタール(80mg/kg、IV)の投与によって安楽死を行った。以前記載された[Hinderer(2014)]ように組織を採取し、処理した。
3.酵素アッセイ
以前記載された[C.Hinderer,et al,(Mol.Ther.J.Am.Soc.Gene Ther.22,2018−2027(2014))]ように組織溶解物及びCSFにてIDUA及びHexの活性を測定した。
4.抗IDUAのELISA
リン酸緩衝液pH5.8にて5μg/mLに希釈した組換えヒトIDUA(Genzyme)によって4度で一晩ポリスチレンのELISAプレートをコーティングした。プレートを洗浄し、pH5.8のリン酸緩衝液中の2%BSAでブロックした。PBSにて1:50に希釈したCSF試料と共にプレートを室温で1時間インキュベートした。プレートを洗浄し、2%BSAを伴ったリン酸緩衝液にて1:10,000に希釈したHRPを結合した抗イヌIgG(Pierce,Rockford,IL)によって結合抗体を検出した。テトラメチルベンジジン基質で15分間ELISAを発色させ、次いで2Nの硫酸で反応を止め、450nmにて吸光度を測定した。連続希釈した陽性試料の標準曲線から力価を算出した。
5.組織学、生体分布及び統計
脳の組織学的な解析は、GM3について陽性のニューロン、コレステロール及びLIMP2の蓄積を定量するための以下の改変と共に以前記載された[C.Hinderer,2014]ように実施し;LIMP2及びフィリピンで染色した大脳皮質の切片の画像は、層I(分子層)と層IIの間の境界が画像の上縁を形成するように10×の対物レンズで撮影した。各動物から合計10枚の画像を取得した。GM3で染色した脳の切片の画像は、脳の分子層を含む大脳皮質表面に直下の領域から4×対物レンズで撮影した。各動物からの7枚の画像を解析した。画像はすべて以前記載された[M.Aldenboven,et al,Biology of Blood and Marrow Transplantation,14,485−498(2008);published online EpubMay]ように「閾値」及び「粒子を解析する」モジュールを用いてImageJソフトウエア(Rasband,W. S.,National Institutes of Health,USA;rsb.info.nih.gov/ij/)によって処理した。頸部髄膜の肥厚の定量は頸部脊髄のH&E染色した切片で実施した。300μm間隔でスライド当たり髄膜の全厚さの15の測定を行った。
ベクターの生体分布は以下のように評価した。DNAを組織から単離し、以前記載された[L.L.Wang,et al,Impact of Pre−Existing Immunity on Gene Transfer to Nonhuman Primate Liver with Adeno− Associated Virus 8 Vectors.Human gene therapy,22,1389−1401,(2011);published online EpubNov]ようなTaqManPCRによってベクターゲノムを定量した。データは適宜、Kruskal−Wallisの検定、とその後のDunnの検定またはMann−Whitneyの検定を用いて評価した。p<0.05を統計的に有意と見なした。統計的解析はすべてPrism6.0(GraphPadソフトウエア)を用いて行った。
B.結果
1.ヒトIDUAを発現する髄内AAV9はMPS Iイヌにて導入遺伝子に特異的な強力な免疫を引き出す。
MPS Iイヌは、即時停止コドンを作り出す、成熟mRNAにて第1イントロンの包含を生じるIDUAの突然変異を保有する。MPS Iイヌにおける突然変異は検出できないIDUA活性を生じる[KP.Menon,et al,Genomics,14:763−768(1992);NJ.Terlato,et al,Genet Med,5:286−294(2003);XX.He,et al,Mol.Genet Metab,67:106−112(1999)]。リソソームIDUA活性の非存在下で分解されないGAGが細胞に蓄積する[GN.Sando,et al,Cell,12:619−627(2011)]。冒された組織におけるこの主要なGAG蓄積物質はアルシアンブルー染色によって直接、組織学的に検出することができる[C.Hinderer,et al,Mol.Ther.J.Am.Soc.Gene Ther.22,2018−2027(2014);NJ Terloato,et al.(2003);R.M.Shull,et al,Am.J.Pathol.114,487−95(1984);R.M.Shull,et al,Proc.Natl.Acad.Sci.U.S.A.91,12937−12941(1994);L.A.Clarke,et al.,Pediatrics,123,229−40(2009);N.M.Ellinwood,et al.,Mol.Genet.Metab.91,239−250(2007);M.E.Haskins,et al,Am.J.Pathol.112,27(1983);A.Chen,et al,Apmis,119,513−521(2011)]。主要なGAGの蓄積病変に加えて、リソソームGAGの蓄積は特徴的なカスケードの細胞性の異常につながる。上方調節されたGAGはリソソーム拡張の原因となり、それはLIMP2のようなリソソーム膜タンパク質についての強染色によって組織学的に眼に見える。ニューロンはまた、たとえば、ガングリオシド(たとえば、GM3)及びエステル化されていないコレステロールのような物質の二次蓄積も示す。リソソームの蓄積は、たとえば、ヘキソサミニダーゼ(Hex)のようなリソソーム酵素の異常な過剰発現も誘導する。
ヒトIDUAを発現する臨床候補であるAAV9ベクターの大槽への単回髄内注入によって1ヵ月齢でMPS Iイヌを処理した。ベクターの用量は、1011ゲノムコピー/kg(GC/kg)(n=2)から1012GC/kg(n=1)までに及ぶ。手順は対象すべてにて上手く忍容された。CSFにおけるIDUA活性はベクター投与に続いて迅速に上昇し、7日目までに正常対照のそれを超えた(図2A、未処理)。しかしながら、ベクター投与後21日目までにCSFのIDUAのレベルはベースラインまで低下し、CSFの抗hIDUA抗体力価での上昇が伴った(図2A、未処理)。21日目のCSF試料はすべての動物でリンパ球性の髄液細胞増加症も示した(図4A、未処理)。このコホートでは、上昇したCSFの抗体及び細胞数は臨床兆候及び他の臨床検査の異常とは関連せず、髄液細胞増加症は自然に解消した。注入の6ヵ月後の剖検時、組織学的な評価は脳または脊髄にて病状の証拠を示さなかった。ベクターの生体分布は広範なCNSの形質導入及びベクターゲノムの持続性を実証した。
それはいずれの用量でも正常化されなかったが、脳のヘキソサミニダーゼの過剰発現は未処理のMPS Iイヌに比べて低下した(図7)。組織学はまた、LIMP2及びGM3の免疫染色によって脳の蓄積病変の部分的な解消も示したが、それは用量依存性であるとは思われなかった。
これらのイヌで観察された好都合な安全性プロファイルに基づいて、10倍高い用量(1013GC/kg)のベクターで追加の2匹のMPS Iイヌを処理した。これらのイヌは、さらに低い2つの用量で処理した動物と類似の動態でCSFの髄液細胞増加症を発生した(図4A、未処理);しかしながら、これら2匹の対象では、反応はさらに顕著であり、髄液細胞増加症は神経学的な兆候の発症と一時的に関連した。ベクター投与の21日後で始まって、動物は後肢の反射低下及び虚弱、及び頸部の屈曲の際の疼痛を示した。疼痛及びCSFの髄液細胞増加症は鎮痛剤及びコルチコステロイドによる治療に続いて解消し始めた;しかしながら、後肢の虚弱は持続し、症状発症の2週間後、動物を安楽死させた。組織病理は、脊髄運動ニューロン、特に腰部脊髄の強い形質導入、及び形質導入したニューロンの周囲のリンパ球の浸潤を実証した。脳及び脊髄全体にわたる切片の系統的な評価は、時折の浸潤は脳で観察されるが、病態は主として腰部脊髄に局在することを確認した。
2.肝臓遺伝子導入を介したヒトIDUAへの新生仔曝露はその後の髄内遺伝子導入に対する寛容を誘導する
導入遺伝子に対する誇張された免疫応答の非存在下でヒトIDUAを発現するAAV9ベクターを評価するために、我々は新生仔曝露を介してヒトタンパク質に対する免疫寛容を誘導しようと試みた。出生5日後に、肝特異的プロモータからヒトIDUAを発現するAAV血清型8ベクター(AAV8)の単回静脈内注入によって6匹のMPS Iイヌを処理した。1ヵ月齢にて、以下:1010、1011及び1012GC/kgのような3つのコホート(コホート当たりn=2の動物)においてヒトIDUAを発現する異なる用量のAAV9ベクターの大槽内への髄内注入によって動物を処理した。動物はすべて寛容化されていない動物に類似してCSFのIDUA活性の用量依存性の上昇を示した(図2A)が、このコホートではCSF酵素の発現は21日目を超えて持続し、実験が持続する間検出可能なままだった(図2B、寛容化)。CSFの抗体反応は、処理を経験したことがない(すなわち、寛容化されていない)動物が髄内ベクターを投与された場合に見られるものと比べて鈍く;寛容化されたコホートにおける2匹(I−602及びI−606)だけが検出可能な力価を示し、それは同等のベクター用量で処理した処理未経験動物よりもおよそ20倍低かった(図3)。このコホートで最高の抗体力価を持つイヌ(I−606)だけが処理未経験動物よりも低レベルにもかかわらず、21日目でCSFでの高いリンパ球を示した(図4A及び4B)。これらのコホートでは臨床的な有害事象はなかった。
3.髄内AAV9が介在するhIDUAの発現は脳の生化学的異常及び蓄積病変の用量依存性の是正を達成する
新生仔遺伝子導入を介してヒトIDUAに対して寛容化した6匹のMPS IイヌをAAV9の髄内注入の6ヵ月後に屠殺した。脳の溶解物はベクターの最高用量でヘキソサミニダーゼ活性の完全な正常化を実証し、最低用量での部分的な是正を伴った(図5)。ヘキソサミニダーゼ活性はベクター用量のすべてにおいてCSFにて正常化された(図8)。MPS I患者における脊髄圧迫に寄与し得る頸部髄膜の肥厚は、すべての用量で処理された動物にて元に戻った(図9)。脳の組織学的な評価は、hIDUAに寛容のイヌではLIMP2及びGM3の蓄積での用量依存性の低下を示した(図6A、6B)。最高のベクター用量で処理した動物は正常対照に類似するLIMP2及びGM2の染色を示し;最低用量では、一部のマーカー(LIMP2及びHex)では測定できる改善がなかったのに対してGM2の蓄積は明らかには低下しなかった。従って、1010GC/kgの低用量は最小効果用量(MED)であると思われた。
ヒトタンパク質に対する混乱する免疫応答の非存在下で有効性を評価するために以前ヒトIDUAに対して寛容化された8匹のMPS IイヌにてITでのAAV9.CB7.hIDUAのMEDを確立した。1ヵ月齢にてイヌをITでのAAV9.CB7.hIDUAによって処理し、6ヵ月後、脳の蓄積病変の評価のために安楽死させた。MEDの確立は、LIMP2及びGM3を含むCNS組織におけるMPS I疾患のよく特徴付けられた組織学的な基準を利用した。リソソームの蓄積病変の基準すべてが評価された最高用量(1012GC/kg体重)にて正常化された。このコホートの動物はGM3またはLIMP2の蓄積の正常範囲に達しなかったが、一貫した改善は10倍低い用量(1011GC/kg体重)でも観察された。最低用量群(1010GC/kg体重)では、リソソーム蓄積の組織学的な証拠は、LIMP2染色による中程度の改善及びGM3の蓄積における最小限の改善を示した。従って、我々は1010GC/kg体重がITでのAAV9.CB7.hIDUAのMEDであると推定した。脳の蓄積病変の用量依存性の解消がCSFのIDUA活性に相関し、CSFのスペルミン濃度に逆相関したということは、CSFのIDUA活性及びCSFのスペルミンが臨床試験にてAAV9.CB7.hIDUAの薬物動態の評価のための有用な生体マーカーであり得ることを示している。
これらのデータはMPS IイヌではAAV9.CB7.hIDUAのMEDは1010GC/kgであることを示している。
処理未経験のMPS IイヌにてAAV9.CB7.hIDUAの投与も評価した。MPS Iイヌ(5匹)が1ヵ月齢でAAV9.MPS I試験ベクターの髄内注入を受け
た。1011GC/kg体重及び1012GC/kg体重で処理された動物はすべて軽い自然治癒性のリンパ球性髄液細胞増加症を示した。これらの動物は研究全体にわたって健康であると思われ、注入の6ヵ月後の剖検では、脳、脊髄または髄膜における炎症の証拠はなかった。1013GC/kg体重の用量で処理された2匹のイヌは、当初調子が良いと思われたが、注入の3ヵ月後、さらに重篤な髄液細胞増加症及び形質導入した細胞に対するT細胞の応答の組織学的な証拠と一致して神経兆候を発症し、腰部脊髄にて死んだ運動ニューロンを単核細胞が取り囲んでいた。これらの結果は、形質導入した脊髄の運動ニューロンを標的とするリンパ球が介在する用量依存性の免疫毒性に一致する。ヒトとイヌのIDUAタンパク質の間での配列の差異を考慮して、ヒトIDUAがイヌにおいて免疫原性であることは驚くべきではない。
寛容化されていないMPS Iイヌでは、MTDは1012GC/kgだった。MTDはヒトのタンパク質に対するイヌの免疫応答に基づいているので、これはMTDの控えめな推定値である。1ヵ月齢のイヌの45gの脳質量に合わせ、且つ2kgの平均体重を伴って、この用量は、成人(GC/kg脳質量ベースでの約5×イヌMED)における9×1010合計または2×109GC/g脳質量、またはおよそ1.4×1013GC合計(1.1×1010GC/g脳質量)GCに相当する。
4.新生仔MPS Iイヌにおける組換えhIDUAの点滴は髄内AAV9が介在するhIDUAの発現に対する寛容を誘導するのに十分である
ヒトIDUAの肝臓発現が寛容の誘導に必要であるかどうかを判定するために、我々は、1ヵ月齢でのAAV9の髄内注入の前、出生後7及び14日目に組換えヒトIDUA(0.58mg/kg)の点滴によって2匹のMPS Iイヌ(I−663及びI−664)を処理した。ヒトIDUAを発現するベクターで新生仔として処理されたイヌに類似して、酵素処理したイヌは高レベルのCSF IDUA活性(図2A、2B)及びヒトIDUAに対する最小の抗体反応(図2)またはCSFの髄液細胞増加症(図4A−4B3)を持続して示した。双方の動物で脳のヘキソサミニダーゼ活性は低下し(図5)、蓄積病変は効果的に一掃された(図6A、6B)。
C.考察
MPS Iの治療のための髄内AAV9送達の有効性を評価することは、CSFへの注入を介して達成され得るベクターの分布及び疾患特異的なマーカーに対する形質導入のその程度の影響の双方の評価を必要とした。これらの研究は、十分に類似するサイズ及び生体構造も示して臨床的な送達法及び得られるベクター分布の意味ある評価を可能にしつつ、疾患の病態生理を正確に反映し得る動物モデルの使用を必要とした。MPS Iイヌモデルはヒトの表現型を忠実に複製し、同じ生化学的な及び組織学的な病変だけでなく、同じ臨床所見も示す[KP.Menon,et al,Genomics,14:763−8(1992);RM.Shull,et al,(1984);RM.Shull,et al,(1994);C.Ciron,et al,Ann Neurol,60:204−213(2006);P.Dickson,et al,Ann.Neurol,60:204−213(2006)]。ヒトにおけるMPS Iに対する表現型の類似性のゆえに、MPS Iイヌは全身性疾患の治療のための酵素補充療法の開発で広範に使用された[RM.Shull,et al,PNAS,91:12937−12941(1994);P.Dickson,et al,J.Clin.Invest,118:2868−2876(2008)]。MPS Iイヌはまた、散発的に脊髄圧迫及び水頭症を発生する疾患のCNS所見も模倣する[P.Dickson,et al,Mol.Genet.Metab.99,S15−S15(2010);P.I.Dickson,et al,Mol.Genet.Metab.98,70−70(2009);C.H.Vite,et al,Comp.Med.63,163−173(2013)]。MPS Iイヌについて認知試験は報告されていないけれども、脳における組織学的な及び生化学的な所見は十分に特徴付けられ、その疾患の重篤な形態を持つヒトにおける知見を忠実に反復している[RM Shull(1984);C.Ciron(2006);SU Walkley,et al,Acta Neuropathol.(Berl.)75,611−620(1988)]。MPS Iイヌの脳はリソソーム膜タンパク質(LIMP2)及びガングリオシド(GM3)の蓄積並びにヘキソサミニダーゼ(Hex)のようなリソソーム酵素の上方調節を明示している。ガングリオシドの蓄積はMPS I及び他のリソソーム蓄積疾患における認知機能と相関するので、疾患の重症度及び治療転帰を評価するための重要なマーカーである[S.U.Walkley,M.T.Vanier,Secondary lipid accumulation in lysosomal disease, Biochim.Biophys.Acta BBA−Mol.Cell Res.1793,726−736(2009);G.Constantopoulos,et al,J.Neurochem.34,1399−1411(1980)]。MPS Iイヌはまた患者で特定されるものに類似するニューロンの形態における変化も示す[SU Walkley,(1988)]。これらの著しい類似性によってこれはヒトにおけるMPS IのCNS所見に対する新規の治療法としてのAAVの髄内送達の評価のための説得力のあるモデルになった。ITでのAAV9の送達のために臨床的に使用される投与の経路を反復する大型動物モデルの能力と同様に得られるベクターのCNSにおける分布はさらに、これらの研究にとってのMPS Iイヌの妥当性を支持した。
MPS Iイヌは臨床ベクターの評価について優れたモデルであると思われたが、ヒトIDUAに対する免疫応答は決定的な障害を提示した。以前の研究から、MPS IイヌにおけるヒトIDUAに対する免疫応答は患者で観察されるものよりもはるかに極端であることは明らかである。イヌ及びMPS I患者の双方におけるタンパク質の静脈内送達は抗体を誘発することが多いが、イヌでは、これらの反応はさらに強力であり、連続投与の際、低下しそうになく、それに続く点滴に対するアナフィラキシー反応に関連することが多い[RM.Shull,et al,1994);E.Kakkis,et al,Proc.Natl.Acad.Sci.UA.101,829−34(2004)]。CNSにおけるヒトIDUAに対する免疫応答の差異は一層さらに顕著であり;酵素の髄内点滴で処理されたMPS Iイヌは髄膜炎と同様にCSFで検出可能な抗体反応の証拠を示す。対照的に、タンパク質の反復IT点滴によって治療された小児及び成人のMPS I患者双方については、類似の有害効果はなく、IDUAに対するCSF抗体について治療された5人の患者のうち、たった1人が陽性であった[C.Ciron(2006);P.Dickson,et al,(2010);P.I.Dickson,et al,Mol.Genet.Metab.98,70−70(2009);P.I.Dickson,et al,Mol.Genet.Metab.101,115−122(2010);P.I.Dickson,et al,Mol.Genet.Metab.93,247−247(2008);E.Kakkis,et al,Mol.Genet.Metab.83,163−174(2004);T.C.Lund,et al,Mol.Genet.Metab.111,S74(2);M.Vera,et al,Pediatr.Res.74,712−720(2013)]。興味深いことに、MPS Iイヌは、ヒト酵素に対するよりも低レベルであるが、イヌIDUAに対してもCSF抗体を発生させるということは、このモデルがIDUAに対する免疫に向けた全体的に大きな傾向を有することを示唆しており、それは種特異的ではないタンパク質の使用によって悪化する。MPS Iイヌ及び患者におけるヒトIDUAの静脈内送達及び髄内送達双方の転帰におけるこれらの際立った差異は、MPS IイヌにおけるヒトIDUAに対する一貫して悪化した免疫応答を示し、この応答を防ぐことがヒトにて予想されるベクター活性を反復させるのに必要であることを示唆している。新生仔曝露を介してタンパク質に対する寛容を誘導することが、悪化した免疫応答の介入なしでこのモデルにてヒトベクターの有効性の評価を可能にした。これは、最も妥当な動物モデルにてヒト初回遺伝子治療試験の設計で必須の因子である最小有効用量の正確な決定を可能にする重要情報を提供した。さらに詳しくは、広範な投与量決定試験をMPS Iイヌにて実施した。最小有効用量は免疫寛容の動物で決定されたが、本明細書に記載されているoqPCR法によって決定されたように2×109GC/g脳質量の用量であると推定される。用量漸増安全性試験は免疫能力のある(すなわち、IDUAにもAAVにも遭遇していない)イヌにて実施し、毒性は1012GC/gの用量で観察された。免疫介在性毒性の厳密なイヌモデルにおける1012GC/gでの用量制限毒性試験(DLT)の知見に基づいて、アカゲザルにおける公式の医薬品安全性試験実施基準(GLP)の毒性試験にて10倍低い用量を投与するであろう。公式のGLP非ヒト霊長類(NHP)毒性試験で評価される用量は1.1×1011GC/g脳質量であろう。毒性に遭遇しなければ、臨床の出発用量は1.1×1010GC/g脳質量であろう。この出発用量はイヌMPS Iモデルにおける最小有効用量(MED)よりもほぼ5倍多く、MPS Iイヌ及びネコの研究にて信頼できる組織学的反応を明示した用量とほぼ同じであるということは、この用量の臨床有効性の理に適った期待を支持している。出発用量はまたMPS Iイヌで毒性が観察された用量よりもほぼ90倍少なく、非ヒト霊長類で調べられた用量よりも10倍少ないということは、ベクターまたは導入遺伝子に関連する毒性に対してさらに大きな感受性を示すヒト対象の潜在力を説明する許容できる安全性限界を提供している。これらのデータに基づいて、出発用量は許容できる利益:リスクのプロファイルを表し、その際、用量は治療範囲内にある(従って臨床利益を提供してもよい)と予想されるが、毒性ベクター用量を下回る(従ってそれなりに安全であるはずである)と予想される。以下の計算はイヌにおける用量をヒトにおける出発用量にどのように外挿するかを示す:1ヵ月齢のイヌの脳=45グラム;処理されたことがないイヌ:MED9×1010GC合計(2×109GC/g脳質量);成人の脳=1300グラム;ヒトの出発用量(5×イヌMED)、1.4×1013GC合計(1.1×1010GC/g脳質量)。このアプローチがなければ、唯一の選択肢は種特異的導入遺伝子によるベクターからの有効性データを外挿することであり、それは効能に重要な差異を有してもよく、またはヒトタンパク質に対してさらに免疫寛容であるあまり代表的ではない動物モデルに研究を動かし得る。新生仔寛容の誘導プロトコールが免疫抑制剤の二次的な結末を回避する明瞭な利点を有するけれども、この設定では薬理学的な免疫抑制も採用することができる。
有効性の評価は、ヒトベクターで処理された非寛容のイヌでは免疫応答及び循環IDUAの喪失によって混乱させられたが、一部の有用なデータをこれらの動物から導き出すことができる。強力な免疫応答がヒトでの免疫応答を表しそうにはない一方で、それは、免疫が介在する毒性の重要な特徴を明示することによってヒト初回投与試験のためのモニタリング計画に同調し得る。この場合、我々は、免疫が介在する毒性が用量依存性であり、免疫応答のピークがベクター投与の3週間後に発生し、脊髄運動ニューロンの高度な形質導入のせいであると思われる局所運動症状を呈し、CSFの髄液細胞増加症が伴うことを観察した。免疫が介在する毒性及びベクター投与後数週間延長する神経症状の広範なモニタリング、及び注入後2〜4週間生じる髄液細胞増加のCSFでの分析によるこれらの知見をフェーズIの試験プロトコールに直接統合してもよい。髄液細胞増加が伴う神経症状がヒト試験対象における類似の動態で現れたならば、処理未経験のイヌにおける知見は、毒性が免疫応答によるものであり(たとえば、過剰発現の毒性とは対照的に)、治療の決断を導き得ることを示唆している。
ヒトIDUAに対して寛容化されているMPS Iイヌではベクターの用量、CSFの酵素レベル及び脳の蓄積病変の是正の間で強力な相関が出現した。CSFにおけるIDUA活性と脳の病変の是正との間の関係は、このアプローチがヒト試験に進むとき有益な観察であってもよく、その際、CSFにて検出されるIDUA活性は臨床反応の有用な予測因子であってもよい。一層さらに有用であるのは、CNSの蓄積病変の重症度を直接反映するCSFマーカーの特定である。CSF生体マーカーはMPS I患者にて潜在するCNS病変の是正を評価するための有益なツールであり、イヌモデルはそのようなマーカーの特定のための理想的な系であってもよい。この研究では、我々は可能性がある1つのCSF生体マーカーである酵素ヘキソサミニダーゼを評価した。MPS Iイヌの脳組織ではHex活性は実質的に上昇する一方で、CSFでは穏やかに上昇するにすぎない。組織反応の程度にかかわらず、CSFのHexは処理した動物すべてにおいて正常化した。従って、CSFのHexは臨床試験にてベクター活性を確認するのに有用であってもよいが、治療反応を予想しそうにはない。MPS Iイヌのモデルを用いた将来の研究が追加のCSFマーカーの評価及び脳の蓄積病変とのそれらの相関を可能にしてもよく、それらは最終的にMPS IにおけるCNS病変の重症度を非侵襲的に評価する強力な新しいツール及び新規治療法の効果を生じ得る。
本知見は、酵素の2つの異なる供給源を用いてヒトIDUAへの新生仔曝露が寛容を誘導することができることを示している。実施例3はAAV介在の発現が新生仔にて導入遺伝子に特異的な寛容を誘導してもよいことを示す一方で、この実施例は組換え酵素の点滴も寛容を誘導してもよいことを示す。このアプローチが他のタンパク質に一般化できるのであれば、それは動物モデルにおける多数のヒト治療剤のさらに正確な前臨床評価に有用であってもよい。さらに、類似のアプローチがヒト新生児にて外来性のタンパク質に対する寛容を誘導し得るのであれば、それは、正常なタンパク質に対する抗体反応が有効性を限定する疾患についてのタンパク質補充療法の有効性を改善する膨大な潜在力を有し得る。ほとんどのMPS I患者はIDUAの髄内点滴に寛容であると思われる一方で、大半は静脈内の酵素補充に対して血清抗体を発生させ、これらの抗体は治療への反応を低下させることができる。新生児での寛容の誘導を遺伝子補充療法またはタンパク質補充療法と併用することが患者の転帰を実質的に改善してもよい。認可された組換え酵素の利便性によってMPS Iがこのアプローチの最初のヒト試験での優れた候補者になる。ヒト新生児が寛容の誘導のために1〜2週間の同様の時間帯を示すのであれば、上手く行く介入に十分早期の患者を特定するために新生児のスクリーニングが必須である。従って、MPS I及び他のリソソーム蓄積疾患についての新生児スクリーニングの進行中の実施は新生児寛容の誘導プロトコールの臨床的評価に決定的に重要であろう。
実施例4:幼若アカゲザルにおける髄内AAVが介在するヒトIDUA遺伝子導入
A.髄内送達
この研究の目的は、6〜9ヵ月齢のヒト乳児に発達上類似するモデルである1ヵ月齢のアカゲザルにてヒトIDUAを発現するAAV9ベクターであるAAV2/9.CB7.CI.hIDUAco.RBGの髄内(IT)投与の安全性を評価することだった。加えて、この研究は血清または脳脊髄液(CSF)における導入遺伝子産物に対する抗体がベクター投与の安全性及びヒトIDUAの活性に影響を及ぼすかどうかを評価した。
この研究には4匹のアカゲザルが含まれた。予備研究はアカゲザルがヒトα−L−イズロニダーゼ(IDUA)に対する抗体を作ることができることを示した。アカゲザルではヒトIDUA導入遺伝子産物に対する抗体反応が予想されたので、動物のうち2匹は肝特異的プロモータからヒトIDUAを発現するAAV8ベクター(AAV2/8.TBG.PI.COhIDUA.nRBG)の静脈内(IV)投与によって出生時に寛容化した。手順の影響及びAAV8ベクターに対する曝露について制御するために、他の2匹のアカゲザルには無関係な導入遺伝子(ヒト第IX凝固因子)を発現するAAV8ベクター(AAV2/8.LSP.IVS2.hFIXco.WPRE.BGH)を出生時にIVで投与した。1ヵ月齢で、ヒトIDUAを発現するAAV9ベクターであるAAV2/9.CB7.CI.hIDUAco.RBGを3×1012GC/kgの用量にて4匹の動物すべてにIT注入によって投与した。動物は投与後16カ月間、報告書の発行の時点で観察したが、少なくともさらに1年間は研究中のままであろう。研究全体にわたって評価した評価項目には、一般的観察、体重、及び包括的な臨床病状(分画を伴う血球数及び血清臨床検査値)が挙げられる。加えて、IDUA酵素活性及び導入遺伝子に対する抗体反応をCSFで測定した。
この研究はベクターに関連する病変及び臨床的続発症(0)を明らかにしなかった。動物はすべて正常な成長軌跡を示した。血清臨床検査値及び血球数は匹敵する年齢及び飼育条件の歴史的対照アカゲザルの正常範囲の範囲内だった。導入遺伝子に対する抗体は2匹の非寛容化動物ではCSFにて検出されたが、新生仔としてヒトIDUAに対して寛容化された2匹の動物では検出されなかった。IDUAに寛容化した双方の動物では、ベースラインレベルよりも少なくとも15%高いIDUA活性が研究全体にわたってCSFにて検出可能だった。非寛容化動物では、CSFのIDUA活性はAAV9.MSPI試験ベクターの投与後迅速に上昇したが、抗体の誘導に続いてベースラインに低下した。CSFにおける導入遺伝子に特異的な抗体の存在はITでのAAV9.CB7.hIDUAの投与の安全性に影響を及ぼさなかったが、CSFにおけるヒトIDUAのレベルを検出する能力に影響を及ぼした。
結論として、単回用量のAAV9.CB7.hIDUAの髄内投与は3×1012GC/kgの用量で1ヵ月齢のアカゲザルにて上手く忍容された。この用量では、出生時ヒトIDUAに対して寛容化されている動物のCSFにおいてベースラインを少なくとも15%超えるレベルのhIDUAが検出可能だった;寛容化されていない動物はCSFにて検出可能であるhIDUAに対する抗体反応を発生し、hIDUAの発現と負に相関した。抗IDUA抗体について陽性である動物及び抗体陽性ではない動物のいずれにおいても成長、行動、または臨床検査値または血液パラメータに対する処理に起因する影響は観察されなかった。
A.材料及び方法
この研究で使用したベクターには、rAAV9.hIDUA、rAAV8.hIDUA及び無関係な導入遺伝子(hFIX)を有するAAV8ベクターが含まれる。
それが臨床使用で提案された経路なので、後頭下穿刺を介した髄内(IT)投与が選択された。この研究は動物の体重に合わせた単回のベクター用量を評価した。ヒトIDUAに対して免疫寛容を誘導するために、出生後1日目(研究では0日目)にて2匹の動物にrAAV8.hIDUA(1012GC/kg)のIV注入を投与した。対照動物には、出生後1日目にて肝特異的プロモータから無関係な導入遺伝子(ヒト第IX因子)を発現する対照ベクター(rAAV8.hFIX)を投与した。次いで、動物はすべて1ヵ月齢(研究の30日目)にて後頭下穿刺によってITでのAAV9.MPSI試験ベクターを投与した。
B.結果及び結論
4匹の1ヵ月齢のアカゲザル(M.mulatta)に3×1012GC/kgのrAAV9.hIDUAをITで投与し、ベクター投与の後1年を超えてモニターした。これらの動物のうち2匹はヒトIDUAタンパク質に対して出生時寛容化した。
体重または体重増に対する処理に関連した影響はなく、処理に関連した臨床兆候もなかった。臨床検査値または血液パラメータに対する処理に関連した影響はなかった。導入遺伝子産物に対する抗体は、ヒトタンパク質に対する寛容を誘導するよう予め処理しなかった2匹の動物のCSFにて検出可能だった。寛容化した動物と寛容化しなかった動物の間で評価した評価項目(臨床兆候、体重、血液学及び臨床検査値)に差異がなかったということは、タンパク質に対するCSFの抗体は明らかな毒性に関連しなかったことを示している。IDUAに寛容の動物では、1匹の動物でCSFにてベースラインレベルの2倍を超える持続したIDUAの発現があり、他の動物でベースラインをおよそ15%超えていた。
結論として、単回用量のrAAV9.CB7.hIDUAの髄内投与は、3×1012GC/kgの用量で1ヵ月齢のアカゲザルにて上手く忍容された。この用量では、出生時ヒトIDUAに対して寛容化されている動物のCSFにてベースラインの115〜200%のレベルのhIDUAが検出可能だった;寛容化されていない動物はCSFにて検出可能であるhIDUAに対する抗体反応を発生し、hIDUAの発現と負に相関した。抗IDUA抗体について陽性である動物及び抗体陽性ではない動物のいずれにおいても成長、行動、または臨床検査値または血液パラメータに対する処理に起因する影響は観察されなかった。
実施例5:カニクイザルにおける髄内AAVが介在するヒトIDUA遺伝子の導入
ベクターは、サイトメガロウイルスのプロモータ(CMV)とキメライントロン(PI)とコドンを最適化したヒトIDUA導入遺伝子(hIDUA)とポリアデニル化シグナル(SV40)とから成る発現カセットをパッケージするAAV9カプシドから成った。発現カセットにはAAV血清型2の逆方向末端反復が隣接した。この研究ではベクターは1つ使用されたが、このベクターは、AAV2/9.CMV.PI.hIDUA.SV40、AAV2/9.CMV.PI.hIDUAco.SV40、AAV2/9.CMV.PI.hIDUAco.SV40PAまたはAAV9.CMV.PI.hIDUA.SV40のいずれかとして示される。
A.材料と方法
この研究には、2匹のメスのカニクイザル(ID06−09及び07−19)が含まれた。双方のカニクイザルは1012ゲノムコピー/kg体重(GC/kg)のAAV2/9.CMV.PI.hIDUAco.SV40PAの投与を受けた。それが臨床使用で提案された経路なので、後頭下穿刺を介した髄内(IT)投与が選択された。
1.脳質量のグラム当たりの用量は90gの脳に基づく。
B.結果及び結論
2匹のメス成熟カニクイザルをCNVプロモータからヒトIDUAを発現するAAV9ベクターの髄内注入によって処理した。ベクター投与ののち研究の1、7、14、28、91、118、147、182、208、239、261、294、322、350、378、413、434、462、490、518、561、589、624、及び636日目に、体重、身体検査、及び血球数及び血清臨床検査値を評価し、その後、組織病理及びベクターの生体分布の解析のために動物を剖検した。ベクターに関連した臨床的な有害事象はなかった。1匹の動物がベクター投与の600日後に大腿動脈瘤を発症した。これは反復した採血に続発すると考えられ、処理関連でありそうにない。最終CSFパラメータを含む臨床病理パラメータに対する処理関連の影響はなかった。組織病理はCNS病変の証拠を示さず、末梢器官における明らかなベクター関連の異常を示さなかった。生体分布の解析は、例外1つを伴って末梢器官よりも1〜2桁多い、双方のNHPSの脳及び脊髄におけるベクターの沈着を示した。AAV9カプシドに対する予め存在する中和抗体がない動物1匹にて有意な肝臓分布が生じ、その際、ベクターに対する血清抗体が予め存在する動物は最小限の肝臓の形質導入を示した。双方の動物からの脳切片の免疫染色はヒトIDUAの発現を明らかにした。
この研究はITでのAAV9が介在する遺伝子導入は脳におけるIDUAの長期発現を可能するという証拠を提供した。この研究はまたこのアプローチの安全性の予備的な証拠も提供した。
実施例6:hIDUAに対する既存の免疫の状況でのマウスにおけるAAV9.hIDUAの脳室内(ICV)送達
処理に遭遇したことがないマウスと同様に導入遺伝子産物であるヒトのイズロニダーゼ(IDUA)に対する既存の抗体を持つマウスにおいてAAV9.hIDUAの脳室内(ICV)投与に続く毒性の証拠を評価するように予備研究が設計された。
被験物質は、ニワトリβアクチンプロモータ(CB7)とキメライントロン(CI)とコドンを最適化したヒトIDUA導入遺伝子(hIDUAco)とポリアデニル化シグナル(RBG)とから成る発現構築物をパッケージしているAAV9カプシドから成った。発現構築物にはAAV血清型2の逆方向末端反復が隣接した。このベクターはAAV9.CB7. CI.hIDUA.RBGと表される。最終産物はエリオット製剤緩衝液(EFB)で希釈した。
この非GLP研究は予め免疫されたマウスにおけるGLP毒性研究を設計する補助として元々計画されたが、正常マウスにおける非種特異的タンパク質に対する免疫に基づいた実験は酵素補充療法(ERT)で以前治療された患者を代表しそうにないというFDAのフィードバックに基づいてGLP研究は実施されなかった。予め免疫されたマウスにおけるGLP毒性研究を行うことに対する決定が下された時点で、最初の予備研究はすでに進行中だった。予備研究の結果はこの報告に含まれる。
この研究には100匹の成熟C57BL/6マウス(50/性別)が含まれた。動物の半分は、アジュバント(TiterMax)中の組換えヒトIDUA(アルデュラザイム(登録商標))の筋肉内(IM)注入によってヒトIDUAに対して免疫した。免疫の6ヵ月後、免疫した動物及び免疫に遭遇したことのない動物の双方は2種の用量(5×1010GCまたは2.5×1011GC)の一方でのAAV9.hIDUAのICV注入によって処理した。ベクター投与後の5つの時点(7、14、30、60または90日目)の1つにて各処理群の動物を屠殺した。脳、脊髄、心臓、肺、肝臓、脾臓、腎臓及び生殖腺を組織病理のために回収した。
免疫に遭遇したことのない(非免疫)コホート(n=50、25/性別)では、予定された剖検の前に動物は死亡せず、臨床的な異常を示さなかった。脳の組織病理は、一部の動物で側脳室及び眼に見える針経路の膨張を示し、投与のICV経路に一致した。50匹のうち12匹で髄膜及び/または脳実質への最小限から軽度のリンパ球の浸潤が生じ、それはベクターの用量または注入後の時間との明瞭な相関を示さなかった。用量依存性で且つベクター投与後の時間に相関して肝炎が発生した。ベクター投与の14日後に屠殺した高用量のコホートでの5匹の動物すべてにおいて最小限から中程度の肝炎が発生した。7、30、60または90日で屠殺した高用量の動物にて最小限にすぎない肝炎が観察された。低用量コホートでは、最小限にすぎない肝炎が観察され、これは8匹の動物で発生し、ベクター投与後の時間とは明瞭な相関はなかった。ベクター投与後60日の高用量コホートでは1匹の動物に中程度の心筋炎が発生した;高用量コホートにおける3匹の追加の動物はベクター投与後30日または90日で最小限の心筋炎を示した。低用量コホートの2匹の動物は最小限の心筋炎を示し、1匹は軽度の心筋炎を示し、すべてベクター投与後60日で発生した。免疫に遭遇したことのない(非免疫)コホートでは、他の潜在的にベクターに関連する異常は観察されなかった。
ベクター投与の前にヒトIDUAに対して免疫したコホート(n=50、25/性別)では、3匹(オス2、メス1);高用量(2.5×1011GC)のAAV9.CB7.hIDUAの投与を受けた2匹と低用量(5×1010GC)の投与を受けた1匹が死亡した。3匹はすべて研究の18または19日目に死亡した。免疫群における組織病理は、末梢器官における形質導入された細胞に対する激しい細胞介在性の免疫応答に一致し、中程度から重度の心筋炎が50匹の動物のうち8匹に発生し、中程度から重度の肝炎が50匹の動物のうち8匹に発生した。双方の知見はベクターの用量及びベクター投与のタイミングと相関し、最も重度の知見はベクター投与の14日後に発生した。脳における知見はさほど重度ではなく;中程度の髄膜炎または脳炎が高ベクター用量で処理した3匹の動物及び低ベクター用量で処理した1匹の動物で発生した。これらの知見はベクター投与の時間と相関しなかった。脳における他の知見は最小限または軽度だった。
全体的に、免疫に遭遇したことがない(非免疫)コホートにおける結果は、肝臓及び軽度での心臓へのリンパ球の浸潤によって証拠付けられるように、ヒト導入遺伝子に対する免疫応答の誘導に一致したが、双方の臓器はIT注入に続いて末梢循環に逃れているAAV9によって形質導入される1,2。この状況では、評価された最高用量(2.5×1011GC)にて毒性は明らかだった。
予め免疫したコホートでは、免疫戦略は導入遺伝子に対する強力な細胞介在性免疫応答を誘導すると思われ、一部のベクター処理動物にて中程度から重度の心筋炎及び肝炎を生じた。毒性はベクターの用量に相関した。実験設計は正常マウスにおける非種特異的タンパク質に対する免疫に基づいたので、ERTで以前治療された患者への適用可能性は不明瞭である。
実施例7:非ヒト霊長類にて髄内(IT)に注入されたAAV9.CB7.hIDUAベクター
以下の非ヒト霊長類(NHP)の安全性研究は、2用量を使用する蛍光透視ガイド下後頭下注入(大槽)を含んだ。低用量(LD)は1.1×1010GC/gであり、高用量(HD)は1.1×1011GC/g(イヌ最大耐量(MTD)と同等)であった。免疫抑制を伴うHD(IS)を伴うアームについては、プロトコールは以下のようにMMF及びシロリムスの共投与を含んだ:MMFは21日目から60日目まで、及びシロリムスは−21日目から90日目まで。試験したNHPでは、臨床所見はなく、血清化学または血液学的パラメータに臨床的に有意な異常はなかった。抗AAV及び抗hIDUA免疫応答並びに免疫介在性軸索障害の証拠があった。これらのデータは、図22〜23及び以下の表に提供される。
組織学的所見は示されていない。高用量での背側柱(上行感覚管)における軸索障害は、軸索障害(axonopthy)スコア2(0〜4スケール)を有することが見出された(ビヒクル対照、正常)。高用量の後根神経節神経炎(ganglia gangioneuritis)は、ニューロン周囲炎症細胞、ニューロン変性、サテライト細胞活性化及び増殖(ビヒクル対照、正常)を有することが観察された。
AAV9.hIDUAについては、ニューロン変性はDRGに限定される(データは示さず)。免疫抑制を伴わない高用量の頚髄(腹側角)については、運動ニューロン発現hIDUAの周りの炎症の徴候は観察されない。免疫抑制を伴わない高用量の頸部(DRG)については、hIDUAを発現するDRGニューロンの周囲に炎症が観察される。100個当たり約1〜2個のニューロンの有病率が観察される。炎症性浸潤は主にCD 20陽性Bリンパ球及びCD3陽性Tリンパ球であり、CD68陽性マクロファージはほとんどないことが示されている。リンパ球はhIDUA陽性形質導入ニューロンの周りに集まった。欠損したニューロンを置換する小さな炎症性結節。
免疫抑制は改善したが、免疫介在性DRG神経節神経突起(gangioneurite)を均一には妨げなかった(データは示さず)。図示された結果は3匹の異なる動物からの4つの画像であり、すべてが同じベクターを受けているが、それらの免疫応答にバリエーションがある。免疫抑制を伴う高用量のRA1404頸部(DRG)については、MMRは36日目に停止し、軸索障害スコアは0であり、累積は0である。hIDUAを発現するDRGニューロンの周りの炎症は観察されない。免疫抑制を伴う高用量のRA0747頸部(DRG)、軸索障害スコア(頸部1、累積4)については、hIDUAを発現するDRGニューロンの周りに炎症が観察される。CD3+ Tリンパ球は、組織化もクラスター化もされていない。CD20+陽性Bリンパ球は、浸潤物中に観察されない。免疫抑制を伴う高用量の第3の動物(RA1528)の子宮頸部(DRG)については、軸索障害(axonapthy)スコアは、子宮頸部1、累積4であった。炎症は、hIDUAを発現するDRGニューロンの周囲で観察される。CD3+ Tリンパ球及びCD20+陽性Bリンパ球がクラスターで観察される。
免疫抑制は改善したが、免疫介在性DRG神経節神経突起(gangioneurite)を均一には妨げなかった。データは表形式で示され、対照、低用量、高用量、及び免疫抑制を伴う高用量を含む。
A.安全性及び生体分布
この研究は、アカゲザルにおける画像誘導の後頭下穿刺法によって投与後180日までのAAV9.CB7.hIDUAの安全性及び生体分布を評価した。成熟アカゲザル(n=9、メス6、オス3、1A、B及びC群)に画像誘導の後頭下穿刺法によって1.1×1011GC/g脳質量の用量に近似的に相当する1013GCのAAV9.CB7.hIDUAの単回用量を投与した。追加の3匹の動物(メス2、オス1、2A及びB群)に画像誘導の後頭下穿刺法によって溶媒(エリオットB(登録商標)+0.001%プルロニック(登録商標)F68)の単回用量を投与した。被験物質または対照物質の投与ののち14日目(1A及び2A群)、90日目(1B及び2B群)または180日目(1C群)に動物を安楽死させ、剖検した。毒性は、研究の0、3、7、14、21、30、45、60及び90日目に毎日の観察によって、及び身体検査、CBCや血清の化学パネル、凝固パネル、及びCSFの細胞数の解析、タンパク質やグルコースの濃度によって評価した。剖検では、病理学者が肉眼病変について組織を評価し、顕微鏡で調べた。ベクターのカプシド及び導入遺伝子産物に対するT細胞応答はELISPOTによって評価し、導入遺伝子産物に対する抗体反応はELISAによって血清及びCSFにて測定した。ベクターの生体分布はqPCRによって評価した。
投与処置に関連した有害事象(AE)はなかった。評価された最初の時点である研究の14日目からベクターゲノムは処理した動物すべての脳及び脊髄全体にわたって検出することができ(104GC/μgDNA前後のレベル)、90日目及び180日目で安楽死させ、剖検した動物の脳及び脊髄にて同じレベルで持続した。末梢器官、特に肝臓及び脾臓(105〜106GC/μgDNA)、細網内皮系組織(リンパ節及び骨髄103〜104GC/μgDNA)及び心臓(103〜104GC/μgDNA)への有意なベクターの分布もあった。これらのデータはベクターが末梢に広がり、ベクターの髄内送達に続いて肝臓の形質導入が可能であることを示唆している。
液性及びT細胞介在性の双方の免疫応答がヒトIDUAタンパク質に対して引き出された。この応答は、CSFでの一時的な単核細胞増加及び脊髄背側白質の軸索変性症(90日目及び180日目の脊髄全体にわたって観察された)の組織学的所見に相関すると思われた。これらの知見は臨床的な異常または脊髄背側索以外の組織への損傷の組織学的な証拠に関連しなかった。これらの知見に基づいて、無毒性量(NOAEL)はカニクイザルでは1013GC(およそ1.1×1011GC/g脳質量)の単回用量の試験によっては定義できなかった。
1.材料及び方法
AAV9.hIDUA試験ベクター(エリオットB(登録商標)+0.001%プルロニック(登録商標)F68における)を評価した。この研究には12匹のアカゲザルが含まれた。動物は無作為に5群に割り当てた。オス1及びメス2から成る試験群1A、1B及び1Cを試験ベクターで処理し、それぞれ、研究の14±2日目、90±2日目、または180±2日目に安楽死させ、剖検した。2A群及び2B群の動物は溶媒(エリオット製剤緩衝液)で処理し、それぞれ14±2日目または90±2日目に安楽死させ、剖検した。
それが臨床使用のための提案された経路なので、画像誘導の後頭下穿刺法を介したIT経路を選択した。この用量がMPS Iイヌでの最大忍容された用量に類似し(グラム脳質量ベース当たりの用量で)、初回ヒト投与研究に提案された出発用量よりも10倍多いので1013GCの用量を選択した。
研究の0日目に、動物を麻酔し、CSFの採取及び大槽への投与のために頭部を曲げて側臥位にてX線台に置いた。注入の部位を無菌的に準備した。無菌法を用いて、21〜27ゲージで1〜1.5インチのQuinckeクモ膜下穿刺針(Becton Dickinson)をCSFの流動が観察されるまで後頭下空間に進めた。ベースライン解析のために1.0mLまでのCSFを採取した。蛍光顕微鏡(OEC9800 C−Arm,GE)を用いた脊髄造影法を介して針の正しい配置を検証した。CSFを採取した後、ルアーアクセスの延長カテーテルをクモ膜下穿刺針に接続してイオヘキソール(商品名:オムニパック180mg/mL、General Electric Healthcare)造影剤と被験物質または対照物質の投与を促した。カテーテルとクモ膜下穿刺針を介して1mLまでのイオヘキソールを投与した。大槽における造影剤の観察によって針の正しい配置を確認したのち、試験物質または溶媒(1.4mLの容量、1mLに注射器の体積とリンカーのデッドスペースを加えたものに等しい)を含有する注射器を柔軟なリンカーに接続し、20〜60秒にわたってゆっくり注入した。針を取り出し、穿刺部位に直圧を適用した。
2.結果
ベクターの投与処置に関連した有害事象はなかった。AAVベクターゲノムは、AAV9.hIDUA試験ベクターで処理した動物すべての脳及び脊髄の全体にわたって測定した時点すべてにおいて検出され、レベルはこれらの組織では時間を超えて同等だった。末梢臓器、特に肝臓にて有意なベクターの分布もあり、末梢組織におけるベクターゲノムのレベルは時間を超えて同等だった。溶媒対照にも14日で安楽死させた試験ベクター動物にも臨床的な、肉眼でのまたは組織学的な知見はなかった。軽い一時的なCSFでの単核細胞増加症が5/6のAAV9.hIDUA処理動物で観察され、ピークは投与後30日前後だった。
hIDUA(導入遺伝子産物)に対する血清及びCSFでの抗体は21日目の6/6のAAV9.hIDUA試験ベクター処理動物で検出され、hIDUAペプチドに対する末梢T細胞の応答は4/6の試験ベクターで処理した90日の動物及び1/3の処理した180日の動物にて観察された。顕微鏡上では、6/6のAAV9.hIDUA試験ベクター処理動物にて、後根神経節(組織学的評価には利用できないDRG)の感覚ニューロン内での細胞体損傷を示唆する脊髄の背面感覚白質路における最小限から中程度の軸索変性症があった。上行背面感覚路における軸索変性症の解剖学的位置は、後根神経節からの感覚ニューロンの特異的な関与を示唆している。それらのニューロンはAAVの髄内投与ののち普通相当に形質導入されるという事実及びCSF抗体(21日からの)とCSFの髄液細胞増加(30日でピーク)の経時変化、及び90日での動物の大半における導入遺伝子特異的なT細胞応答の存在は、hIDUAに対する細胞介在性の細胞傷害性免疫応答が後根神経節で生じたことを示唆している。
B.NHP毒性
この探索的GLP研究の目的は、1×1012GC合計(1.1×1010GC/g脳質量)及び1×1013GC合計(1.1×1011GC/g脳質量)の2用量レベルでのIC投与AAV9.hIDUA試験ベクターの安全性を評価し、高用量でのIC投与R AAV9.hIDUA試験ベクターの安全性に対する免疫抑制療法の効果を評価することであった。免疫抑制レジメンは、シロリムス(ラパマイシン)及びミコフェノール酸モフェチル(MMF)を、AAV9.hIDUA試験ベクター投与の少なくとも2週間前から開始し、60日目(MMF)及び90日目(シロリムス)まで、シロリムスについては、血漿トラフレベルを可能な限り10〜15μg/Lに近く、ミコフェノール酸(MMFの活性代謝産物)については、2〜3.5μg/mLに維持する用量で継続して投与することからなっていた。
成体アカゲザル(N=9、雄6匹及び雌3匹、群2〜4)に、画像ガイド下後頭下穿刺により、1×1012または1013GC全AAV9.hIDUAのいずれかを単回用量を投与した。追加の雄動物(群1)に、画像ガイド下後頭下穿刺によりビヒクル(エリオットB(登録商標)+0.001%プルロニック(登録商標)F68)の単回用量を投与した。本実施例のパートAの試験と一致して、投与手順に関連するAEが認められ、臨床全般所見、体重変化、CBC、血清化学、または凝固パラメータに対する処置関連の影響は認められなかった。ISは、主に体重及びCBCに予想される影響を及ぼした。
AAVベクターゲノムは、すべてのAAV9.hIDUA試験ベクター処置動物の脳、脊髄、及び後根神経節全体にわたって検出された。1匹を除くすべてのAAV9.hIDUA試験ベクター処置動物は、用量依存性ではないhIDUAに対する体液性免疫応答及びT細胞免疫応答の両方を発現した。ISは、hIDUAに対する体液性免疫応答のみを阻害した。ISは、hIDUAまたはAAV9カプシドに対するIS動物の2/3において、60日目と90日目との間に生じた細胞性免疫応答を妨げない。処置に関連した所見は組織学的分析で観察され、用量依存性ではない最小から軽度の脊髄後柱軸索障害からなっていた。後柱に突出するニューロン細胞体を含む後根神経節では、単核細胞浸潤を伴う最小から中等度のニューロン細胞体変性があった。AAV9.hIDUAの用量レベルは、脊髄及び後根神経節における所見の存在及び強度に影響を与えなかった。ISは、ISを受けた大多数の動物において軸索障害を排除しなかった。これらのデータは、MPS IのCNS症状を逆転させるためのAAV9.hIDUAのIC投与の潜在的有効性を支持するが、最適な有効性及び安全性を達成するために臨床設定においてISが必要であり得ることも示唆する。
hIDUAを発現する感覚ニューロン周辺のDRGニューロン変性、T細胞及びBリンパ球浸潤、並びにhIDUAに対する体液性及びT細胞免疫応答の観察された知見に基づいて、後根神経節における形質導入された感覚ニューロンの小部分の免疫介在性破壊が、損傷したDRGニューロンに属する軸索の変性(ダイバック現象)によって、最小から軽度の背柱軸索障害を導くと結論付けられた。
低用量群(1×1012GC)と高用量群(1×1013GC)では、DRG神経変性と脊柱軸索障害の所見は、同程度の発生率と重症度で認められた。この知見に基づいて、AAV9.hIDUA試験ベクターをIT注入したアカゲザルでは、NOAELを定義することができなかった。高用量(1×1013GC)IS群では、所見の発生率及び重症度が低下し、この所見の原因は免疫関連であることが示唆された。
C.試験の概要と結論
これらのデータは、DRGニューロンの免疫介在性破壊が軸索障害を引き起こし得ることを示す。hIDUAを発現するDRGニューロン及びニューロン死の周りに、ニューロン周囲炎症性浸潤が観察された。DRG由来の上行軸索を含む背側索で軽度から中等度の軸索障害が観察された。異常な所見を有する動物は、すべて、導入遺伝子産物に対する体液性応答及びT細胞応答の両方を有する。動物は、研究を通して臨床的に正常であった。使用した免疫抑制レジメン(MMF+シロリムス)は、導入遺伝子に対する免疫応答を減弱したが、一貫して防ぐことはなかった。軸索障害と抗AAV9応答との間に相関は見られなかった。このことから、AAV9.hIDUAを用いた最初の研究では、ニューロン細胞に対する免疫介在性損傷のリスクを最小限に抑えるために免疫抑制が必要であると結論付けられた。結論として、前臨床試験は、MPS I(AAV9.hIDUA)における神経認知症状に対処するためのIT AAV9ベースの遺伝子治療の開発を支持する。前臨床試験の結果は、免疫介在性毒性のリスクを最小限に抑えるために、AAV9.hIDUAによる治療とともに免疫抑制を含めることを必要とする。
実施例8:rAAV9.CB7.hIDUAベクターの製造
rAAV9.CB7.hIDUAは、(i)hIDUAベクターゲノムプラスミドと、(ii)AAVのrep2とcap9の野生型遺伝子を含有するpAAV29と呼ばれるAAVヘルパープラスミドと、(iii)pAdΔF6(Kan)と呼ばれるヘルパーアデノウイルスプラスミドとのヒトHEK293MCB細胞への三重形質移入によって作製する。パッケージされたベクターゲノムのサイズは4344ntである。
上記プラスミドpAAV.CV7.CI.hIDUAco.RGBのクローニング:プラスミドは7,165bpのサイズである。このプラスミドに由来するベクターゲノムは、hIDUA発現カセットに隣接するAAV2に由来するITRを伴った一本鎖のDNAゲノムである。導入遺伝子のカセットからの発現はサイトメガロウイルス(CMV)の前初期エンハンサ(C4)とニワトリのβアクチンプロモータとの間のハイブリッドであるCB7プロモータによって推進される一方で、このプロモータからの転写はニワトリのβアクチンのイントロン(CI)の存在によって増強される。発現カセットのためのポリAシグナルはウサギβグロビン(RBG)のポリAである。プラスミドはコドンを最適化し、hIDUA配列[配列番号1]を合成することによって構築され、得られた構築物は次いでプラスミド、pENN.AAV.CB7.CI.RBG(p1044)、CB7とCIとRBGを含有するAAV2のITRが隣接する発現カセットの発現要素にクローニングされてpAAV.CB7.CI.hIDUAco.RBG(p3032)を得た。
シスプラスミドpAAV.CB7.CI.hIDUA.RBG.KanRのクローニング:PacI制限酵素を用いてベクターゲノムをp3032から切り出し、カナマイシン耐性遺伝子を含有するpKSS基準のプラスミド主鎖(p2017)にクローニングした。最終的なベクターゲノムプラスミドはpAAV.CB7.CI.hIDUAco.RBG.KanRである。
AAV2/9ヘルパープラスミドpAAV29KanRRep2
AAV2/9ヘルパープラスミドpAAV29KanRRepは4つの野生型AAV2repタンパク質とAAV9に由来する3つの野生型AAV VPカプシドタンパク質をコードする。キメラパッケージ構築物を作り出すために、先ず、野生型AAV2のrep及びcap遺伝子を含有するプラスミドp5E18からAAV2のcap遺伝子を取り出し、肝臓DNAから増幅したAAV9のcap遺伝子のPCR断片で置き換えた。得られたプラスミドは識別子pAAV2−9(p0008)を与えられた。正常ではrepの発現を推進するAAVのp5プロモータがこの構築物ではrepの5’末端からcapの3’末端に動かされることに留意のこと。この配置は、プロモータとrep遺伝子(すなわち、プラスミドの主鎖)の間にスペーサーを導入し、repの発現を下方調節し、ベクターの作製を支援する能力を高めるのに役立つ。p5E18におけるプラスミドの主鎖はpBluescriptKSに由来する。AAV2/9ヘルパープラスミドpAAV29KanRRep2は4つの野生型AAV2repタンパク質と3つの野生型AAV VPカプシドタンパク質とカナマイシン耐性とをコードする。
pAdDeltaF6(Kan)アデノウイルスヘルパープラスミドは15,770bpのサイズである。プラスミドは、AAVの複製に重要であるアデノウイルスゲノムの領域、すなわち、E2A、E4、及びVA RNA(アデノウイルスE1機能は293細胞によって提供される)を含有するが、他のアデノウイルスの複製遺伝子または構造遺伝子を含有しない。プラスミドはアデノウイルスの逆方向末端反復のような複製に重要なシス要素を含有しないので感染性アデノウイルスが生成されることは予想されない。それはAd5のE1、E3が欠失した分子クローン(pBHG10、pBR322に基づくプラスミド)に由来した。Ad5のDNAに欠失を導入して不必要なアデノウイルスの遺伝子の発現を取り除き、アデノウイルスDNAの量を32Kbから12kbに減らした。最終的にアンプリコン耐性遺伝子をカナマイシン耐性遺伝子で置き換えてpAdΔF6(Kan)を得た。AAVベクターの作製に必要なE2、E4及びVAIのアデノウイルス遺伝子の機能的な要素はこのプラスミドに残る。アデノウイルスのE1必須遺伝子の機能はHEK293細胞によって供給される。DNAプラスミドの配列決定はQiagen Genomic Servicesによって実施され、参照配列pAdDeltaF6(Kan)p1707FH−Qの以下の重要な機能的要素:E4 ORF6 3692−2808bp;E2A DNA結合タンパク質11784−10194bp;VA RNA領域12426−13378bpとの100%の相同性を示した。
製造過程を要約しているフローチャートを図11にて提供する。
細胞の播種:適格のヒト胚性腎臓293細胞株が作製過程で使用されるであろう。BDSロット当たりのベクター作製のための50までのHS−36に播種するのに十分な細胞塊を生成させるCorningTフラスコとCS−10を用いて細胞を5×109〜5×1010個まで増やすであろう。ガンマ線照射したUSが供給源の10%ウシ胎児血清(FBS)を補完したダルベッコ改変イーグル培地(DMEM)で構成される培地にて細胞が培養されるであろう。細胞は足場依存性であり、細胞の解離は動物産物を含まない解離試薬であるTrypLE Selectを用いて達成されるであろう。細胞の播種は無菌で使い捨てのバイオプロセスバッグ及び配管セットを用いて達成されるであろう。細胞は、37℃(±2℃)で5%(±0.5%)CO2の雰囲気にて維持されるであろう。細胞培養培地は新鮮な無血清のDMEM培地で置き換えられ、最適化されたPEIに基づく形質導入法を用いて3種の作製プラスミドで形質移入されるであろう。作製過程で使用されるプラスミドはすべてCMO品質システム並びにcGMP製造の最も際立った特徴;追跡可能性、文書管理及び材料分離を利用する基礎構造という背景において作製されるであろう。
十分なDNAプラスミド形質移入複合体がBSCにて調製されて50までのHS−36(BDSバッチ当たり)に形質移入するであろう。最初に、7.5mgのpAAV.CB7.CI.hIDUAco.RBG.KanRベクターゲノムのプラスミドと、150mgのpAdDeltaF6(Kan)と、75mgのpAAV29KanRRep2 AAVヘルパープラスミドと、GMP等級のPEI(PEIPro,PolyPlus Transfection SA)とを含有するDNA/PEI混合物が調製されるであろう。このプラスミド比は少量の最適化試験でのAAVの作製に最適であると判定された。よく混合した後、溶液を室温で25分間静置し、次いで無血清培地を加えて反応を止め、次いでHS−36に加える。形質移入混合物をHS−36の36層すべての間で均衡化し、細胞を37℃(±2℃)で5%(±0.5%)CO2の雰囲気にてインキュベートする。
細胞培地の回収:使い捨てのバイオプロセスバッグを用い、ユニットの外に培地を無菌的に引き出すことによって、形質移入された細胞及び培地が各HS−36から回収されるであろう。培地の回収に続いて、約80リットル容量が2mMの最終濃度までMgCl2(ベンゾナーゼの補因子)で補完され、ベンゾナーゼヌクレアーゼ(カタログ番号:1.016797.0001,Merck Group)が25単位/mlの最終濃度まで添加されるであろう。生成物(使い捨てのバイオプロセスバッグの中の)をインキュベータにて37℃で2時間インキュベートし、形質移入の手順の結果、回収物に存在する残留した細胞性の及びプラスミドのDNAの酵素消化のために十分な時間を提供するであろう。この工程を実施して最終ベクターにおける残留DNAの量を出来るだけ抑える。インキュベート時間の後、NaClが500mMの最終濃度で加えられ、濾過及び下流の接線流濾過(以下の工程4及び5を参照のこと)の間、生成物の回収に役立つであろう。
清澄化:ペリスタポンプによって駆動される閉鎖配管とバッグのセットとして順に接続された深層濾過器カプセルを(1.2μm/0.22um)用いて細胞及び細胞残渣が生成物から除かれるであろう。清澄化は下流のフィルター及びクロマトグラフィカラムが汚染から保護されるのを保証し、汚染微生物数低減濾過は、フィルター回路の端部で、上流の作製過程の間に導入された可能性がある汚染微生物数を下流の精製の前に取り除くことを保証する。回収物質はSartorius Sartoguard PES カプセルフィルター(1.2/0.22μm)(Sartorius Stedim Biotech Inc.)を通過するであろう。
大規模接線流濾過:清澄化した生成物の容量低下(10倍)は、特注の無菌の閉鎖バイオプロセス配管、バッグ及び膜等を用いた接線流濾過(TFF)によって達成されるであろう。TFFの原理は好適な多孔性の膜に平行な圧力下で溶液を流すことである(100kDa)。膜の孔より大きな分子を保持する一方で、圧力差が膜を通ってサイズの小さい分子を運び、廃棄の流れに運び込む。溶液を再循環させることによって、平行な流れが膜表面を掃き、膜孔の汚染を防ぐ。適当な膜孔サイズ及び表面積を選択することによって所望の分子を保持し、濃縮する一方で液体試料は容量が急速に減らされてもよい。TFF適用における透析濾過には、新鮮な緩衝液の液体が膜を通過する同じ速度で再循環している試料への及び廃棄の流れへの添加が関与する。透析濾過の体積の増加に伴って、増量した小分子が再循環している試料から除かれる。これは、清澄化した生成物の控えめな精製を生じるが、後に続くアフィニティクロマトグラフィ工程と適合性である緩衝液交換も達成する。従って、我々は20mMのトリスpH7.5と400mMのNaClで構成される緩衝液の4容量でその後透析濾過される濃縮のための100kDaのPES膜を利用する。透析濾過された生成物は4℃で一晩保存され、さらに、1.2μm/0.22umの深層濾過器カプセルによって清澄化し、析出物質を取り除くであろう。
アフィニティクロマトグラフィ:透析濾過された生成物は、AAV2/9血清型を効率的に捕捉するCapture SelectTM Poros−AAV2/9アフィニティ樹脂(Life Technologies)に適用されるであろう。これらのイオン条件下で、有意な比率の残留する細胞性のDNA及びタンパク質がカラムを通って流れる一方で、AAV粒子は効率的に捕捉される。適用に続いて、カラムを洗浄して追加の供給不純物を取り除き、その後に10分の1の容量の中和緩衝液(Bis Tris Propane,200mM,pH10.2)への回収によって即座に中和される低pH工程の溶出(400mMのNaCl、20mMのクエン酸ナトリウム、pH2.5)が続く。
アニオン交換クロマトグラフィ:中空AAV粒子を含む製造過程の不純物のさらなる減少を達成するために、Poros−AAV2/9溶出プールを50倍(20mMのビストリスプロパン、0.001%プルニックF68;pH10.2)に希釈し、イオン強度を低下させてCIMultus Qモノリスマトリクス(BIA Separations)への結合を可能にする。低塩洗浄に続いて、60CVのNaCl線形塩勾配(10〜180mMのNaCl)を用いてベクター生成物を溶出する。この浅い塩勾配は、ベクターゲノムを含有する粒子(完全粒子)からベクターゲノムのないカプシド粒子(中空粒子)を効率的に分離し、完全なカプシドについて濃縮された調製物を生じる。100分の1容量の0.1%プルロニックF68と27分の1容量のビストリスpH6.3を含有する試験管に分画を回収して、それぞれ試験管への非特異的な結合及び高pHへの曝露の長さを出来るだけ抑えるであろう。適当なピーク分画を回収し、およそのベクター収量を決定するためにピーク面積を評価し、以前のデータと比較するであろう。
BDSを得るための最終的な製剤化及び無菌濾過:TFFを使用してプールしたAEX分画にて100kDaの膜によって最終的な製剤化を達成するであろう。これは、4容量の製剤緩衝液(エリオットB溶液、0.001%プルロニックF68)による透析濾過によって達成され、それによって、≧5×1013GC/mlの力価を達成する濃度因子を推定するためにアニオン交換クロマトグラフィに由来するピーク面積を以前のデータと比較するであろう。BDS試験のために試料を取り出すであろう(以下のセクションに記載される)。濾過した精製バルクを無菌のポリプロピレン管に保存し、最終充填のための公開まで隔離場所にて≦−60℃で凍結するであろう。予備的な安定性研究は、DPは我々が提案した製剤緩衝液では凍結及び融解に続いて活性を失わないことを示している。−80℃での長期保存の後の安定性を評価する追加の研究が進行中である。
最終充填:凍結したBDSを解凍し、プールし、最終製剤緩衝液を用いて標的力価に希釈し、バイアル当たり≧0.6ml〜≦2.0mlの充填容量で13mmのストッパーとシール付きのWest Pharmaceuticalの「すぐ使える」(予め滅菌した)2mlのガラス製バイアルに0.22umのフィルター(Millipore,Billerica,MA)を介して充填するであろう。個々にラベルを付けたバイアルが以下の仕様に従って標識されるであろう。ラベルを付けたバイアルは≦−60℃で保存される。
ベクター(薬剤製品)は単一の固定濃度でバイアルに詰められ、唯一の変数はバイアル当たりの容量であろう。低用量濃度を達成するには、薬剤製品をエリオットB溶液、0.001%プルロニックF68で希釈するであろう。高用量のベクターは希釈せずに直接使用される一方で、低用量のベクターは投与のとき薬局によって実施されるであろう製剤緩衝液での1:5の希釈を必要とするであろう。
実施例9:ベクターの検査
血清型の同一性、中空粒子の含量及び導入遺伝子産物の同一性を含む特徴付けアッセイが行われる。アッセイの説明は以下に現れる。
A.ベクターゲノムの独自性:DNA配列決定
ウイルスベクターのゲノムDNAを単離し、プライマーウォーキングを用いた2倍配列包括度によって配列が決定されるであろう。配列比較が行われ、予想配列と比較されるであろう。
B.ベクターカプシドの独自性:VP3のAAVカプシドの質量分光分析
ベクターのAAV2/9血清型の確認は、質量分光分析(MS)によるVP3カプシドタンパク質のペプチドの解析に基づいたアッセイによって達成される。方法には、SDS−PAGEゲルから切り出したVP3タンパク質のバンドの多重酵素消化(トリプシン、キモトリプシン、及びエンドプロテイナーゼGlu−C)、とその後のカプシドタンパク質の配列決定を行うためのQ−Exactive Orbitrap質量分光計におけるUPLC−MS/MSでの性状分析が関与する。宿主タンパク質生成物の差し引き及び質量スペクトルから導き出したカプシドタンパク質の配列を可能にする直列質量スペクトル(MS)法が開発された。
C.ゲノムコピー(GC)の力価
oqPCRに基づいたゲノムコピー力価が連続希釈の範囲にわたって決定され、同族のプラスミド標準(pAAV.CB7.CI.hIDUAco.RBG.KanR)と比較されるであろう。oqPCRはDNA分解酵素I及びプロテイナーゼKによる逐次消化とそれに続くqPCR解析を利用して、カプシドに包まれたベクターゲノムのコピーを測定する。DNAの検出は、RBGポリA領域とハイブリッド形成する蛍光でタグを付けたプローブと組み合わせたこの同じ領域を標的とする配列特異的なプライマーを用いて達成されるであろう。プラスミドDNAの標準曲線との比較はPCR後の試料の操作を必要とすることなく力価の決定を可能にする。多数の標準、検証試料及び対照(バックグランド及びDNAの混入のための)がアッセイに導入されている。このアッセイは現在制限されていないが、CMOによって制限されるであろう。アッセイは、感度、検出の限界、制限の範囲、及びアッセイ内やアッセイ間の精度を含むアッセイのパラメータを確立し、定義することによって制限されるであろう。内部AAV9参照ロットが確立され、適格性試験に使用されるであろう。我々の以前の経験は、ここに記載されている最適化されたqPCRによって得られる力価が前臨床データの生成で使用された我々の標準qPCRによって達成されたものよりも一般に2.5倍高いことを示唆していることに留意のこと。
D.中空粒子対完全粒子の比
薬剤製品の粒子総含量はSDS−PAGE解析によって決定されるであろう。イオジキサノール勾配で精製される参照ベクターの調製物は種々の方法(分析用超遠心、電子顕微鏡、及び260/280nmでの吸光度)によって解析され、調製物が>95%のゲノム含有(完全)粒子を含有することを立証する。この参照物質を既知のゲノムコピー数(従って延長上で考えると粒子数)に連続希釈し、類似の希釈系列の薬剤製品と共にSDS−PAGEゲルにて泳動する。参照物質及び薬剤製品VP3タンパク質のバンド双方のピーク領域の体積をデンシトメトリーによって測定し、参照物質の体積を粒子数に対してプロットする。薬剤物質の粒子総濃度はこの曲線からの外挿によって決定され、次いでゲノムコピー(GC)力価を差し引いて中空粒子の力価を得る。中空粒子の完全粒子に対する比は中空粒子力価に対するGC力価の比である。
E.感染力価
感染力価(IU)を用いてRC32細胞(rep2を発現しているHeLa細胞)におけるベクターの生産的取り込み及び複製を判定する。以前公開されたものに類似する96穴終点形式が採用されている。手短には、rAAV9.CB.hIDUAの連続希釈及び各希釈でrAAVの12の複製を伴う単一希釈のAd5によってRC32細胞を同時に感染させる。感染の72時間後、細胞を溶解し、qPCRを行ってrAAVベクターの入力に比べた増幅を検出する。TCID50算出の終点希釈(Spearman−Karber)を行ってIU/mlとして表される複製力価を決定する。「感染力」の値は細胞と接触する粒子、受容体結合、内部移行、核への輸送及びゲノム複製に左右されるので、それらは、アッセイの構造、及び使用される細胞株における適当な受容体及び結合後の経路の存在によって影響を受ける。受容体及び結合後の経路は普通、不死化された細胞株では維持されないので、感染力アッセイの力価は存在する「感染性」粒子の数の絶対測定値ではない。しかしながら、カプシドに包まれたGCの「感染性単位」に対する比(GC/IU比として記載される)はロットからロットの間での製品一貫性の測定値として使用することができる。
GC/IU比は製品一貫性の測定値である。oqPCRの力価(GC/ml)を「感染性単位」(IU/ml)で割って算出されたGC/IU比を得る。
F.複製能力のあるAAV(rcAAV)のアッセイ
作製過程で生じる可能性があり得る複製能力を持つAAV2/9(rcAAV)の存在について試料が解析されるであろう。細胞に基づく増幅及び継代とそれに続くリアルタイムqPCRによるrcAAVのDNAの検出(cap9標的)から成る3継代アッセイが開発されている。細胞に基づく成分は、試験試料及び野生型ヒトアデノウイルス5型(Ad5)の希釈物を伴うHEK293細胞の植菌単層(P1)から成る。1010GCのベクター生成物が調べた生成物の最大量であろう。アデノウイルスの存在のゆえに、複製能力のあるAAVは細胞培養にて複製するであろう。2日後、細胞溶解物を生成し、Ad5を熱不活化する。清澄化した溶解物を次いで2回目の細胞(P2)に入れ、(再びAd5の存在下で)感度を高める。2日後、細胞溶解物を生成し、Ad5を熱不活化する。清澄化した溶解物を次いで3回目の細胞(P3)に入れ、(再びAd5の存在下で)感度を最大化する。2日後、細胞を溶解し、DNAを遊離させ、次いでそれをqPCRに供し、AAV9 cap配列を検出する。Ad5依存性の様子でのAAV9 cap配列の増幅はrcAAVの存在を示す。AAV2rep遺伝子とAAV9cap遺伝子とを含有するAAV2/9代理陽性対照の使用は、アッセイの検出限界(LOD)が決定される(0.1、1、10及び100IU)のを可能にし、rAAV9.CB7.hIDUAベクターの連続希釈(1×1010、1×109、1×108、1×107GC)を用いて試験試料に存在するrcAAVのおよそのレベルを定量することができる。
G.試験管内の効能
qPCRのGC力価を遺伝子発現に関連付けるために、既知の感染効率の細胞当たりのGCによってHuh7またはHEK293細胞に形質導入し、形質導入の72時間後IDUA活性について上清をアッセイすることによって試験管内のバイオアッセイが行われるであろう。IDUA活性は、0.1mlの水で希釈した試料を100ミリモル/Lの4MU−イズロニド0.1mlと共に37度で1〜3時間インキュベートすることによって測定される。290ミリモル/Lのグリシン2ml、180ミリモル/Lのクエン酸ナトリウムpH10.9の添加によって反応を止め、4MUの標準希釈に対する蛍光を比較することによって遊離した4MUを定量する。高度に活性がある前臨床及びtoxのベクター調製物は製品活性の解釈を可能にするであろう。
H.総タンパク質、カプシドタンパク質、タンパク質純度の決定及びカプシドタンパク質比
ビシンコニン酸アッセイを用いたウシ血清アルブミン(BSA)の標準曲線に対する総タンパク質についてベクター試料を先ず定量する。キットで提供されているMicro−BCA試薬と等量の試料を混合することによって測定は行われる。同じ手順がBSA標準の希釈に対して適用される。混合物を60℃でインキュベートし、吸光度を562nmで測定する。4パラメータ適合を用いて既知の濃度の標準吸光度から標準曲線を生成する。4パラメータ回帰に従って未知の試料が定量される。
AAVの純度の半定量的な決定を提供するために、次いで試料をゲノム力価について基準化し、還元条件下でSDS−ポリアクリルアミド(SDS−PAGE)ゲル上で5×109GCを分離する。次いでゲルをSYPRO Ruby色素で染色する。レーン当たり25、50及び100ngのタンパク質の同時に電気泳動したBSA標準と比較することによって不純物のバンドをデンシトメトリーにより定量する。これらの量はAAVの総タンパク質試料の1%、2%及び4%を表す。3つのAAV特異的なタンパク質VP1、VP2及びVP3の添加で出現する染色されたバンドはタンパク質の不純物と見なされる。不純物のバンドはすべて参照タンパク質と比較し、不純物の質量パーセントと同様におよその分子量が報告される。SDS−PAGEゲルを用いてVP1、VP2及びVP3タンパク質を定量し、その比も決定するであろう。
実施例10:生体分布及び脳酵素
成熟カニクイザルに1×1012GC/kgのAAV9.CMV.hIDUAを後頭下で注入し、636日後、組織を回収し、即座に−80℃に凍結する。QIAamp DNA Mini Kit(Qiagen,Valencia,CA,USA)を用いて細胞性の全DNAを組織から抽出する。抽出したDNAにおけるベクターゲノムの検出及び定量は、SV40ポリA内の配列を標的とするプライマー及びプローブのセットを用いたリアルタイムPCR(TaqMan Universal Master Mix, Applied Biosystems,Foster City,CA,USA)によって実施する。PCR条件は、それぞれ鋳型としての100ngの細胞性の全DNA、300nMのプライマー及び200nMのプローブで設定する。サイクルは、95.8℃で10分間、95.8℃で15秒間と60.8℃で1分とを40サイクルだった。
成熟MPS Iノックアウトマウスに3×108、3×109、または3×1010GC/マウスのAAV9.CB7.hIDUAを右側脳室で注入する。21日後、脳全体を回収し、直ちに−80℃に凍結する。組織試料を溶解緩衝液(0.2%Triton−X100、0.9%NaCl、pH4.0)にてホモジネートし、手短に超音波処理する。次いで試料を凍結融解し、遠心分離によって清澄化する。BCAアッセイによってタンパク質濃度を決定する。IDUA活性は、IDUA緩衝液(0.15モル/LのNaCl、0.05%のTriton−X100、0.1モル/Lの酢酸ナトリウム、pH3.58)にて100ミリモル/Lの4MU−イズロニド(Toronto Research Chemicals,Toronto,Canada;Glycosynth,Warrington,England)0.1mLと共に、0.1mLの水で希釈された試料を37℃で1〜3時間インキュベートすることによって測定する。290ミリモル/Lのグリシン2ml、180ミリモル/Lのクエン酸ナトリウムpH10.9の添加によって反応を止める。4MUの標準希釈に対する蛍光を比較することによって遊離した4MUを定量する。単位は、タンパク質のmg当たり時間当たり遊離したナノモルの4MUとして与えられる。
実施例11:MPS Iの生体マーカー
本研究では、MPS Iイヌに由来するCSF試料の代謝産物のプロファイリングを行ったが、それはCSFのメタボロームにおける実質的な疾患関連の変化を明らかにした。最も顕著な差異は正常対照に比較したスペルミンのレベルでの30倍の上昇だった。この知見はMPS I患者の試料と同様にMPS Iのネコモデルで確認された。スペルミンはHSに結合し、スペルミンの細胞への取り込みはこの相互作用に依存する[M.Belting,S.Persson,L.−Å.Fransson,Proteoglycan involvement in polyamine uptake.Biochemical Journal,338,317−323(1999);J.E.Welch,P.Bengtson,K.Svensson,A.Wittrup,G.J.Jenniskens,G.B.Ten Dam,T.H.Van Kuppevelt,M. Belting,Single chain fragment anti−heparan sulfate antibody targets the polyamine transport system and attenuates polyamine−dependent cell proliferation.International journal of oncology,32,749−756(2008);published online EpubApr]。グリピカン−1のような細胞表面のプロテオグリカンはそのHS部分を介してスペルミンを結合することができ、グリピカンタンパク質のエンドサイトーシスの後、HS鎖の細胞内切断は結合したスペルミンを細胞内で遊離させる(K.Ding,S.et al,The Journal of biological chemistry,276,46779−46791,(2001);published online EpubDec,14)。従って、インタクトなHSの再生利用はスペルミンの取り込みに必須である。MPS Iでは、細胞外のスペルミンの蓄積は、不十分なHSの再生利用のゆえのこの取り込みメカニズムの阻害を介して、またはMPSで蓄積する細胞外GAGへのスペルミンの単純な結合を介して生じ、スペルミン結合の平衡をシフトさせて細胞外分布をより好む。さらなる研究はMPS IのCSFにおけるスペルミン蓄積に対するこれらのメカニズムの相対的な寄与に対処すべきである。
我々は、スペルミン合成の阻害剤がMPSのニューロンにて過剰な神経突起成長を阻止すること、及び神経突起成長が患者のCSFで見いだされるものに類似するスペルミン濃度によってWTのニューロンで誘導され得ることを見いだした。MPS Iイヌモデルにおける遺伝子治療がスペルミンの蓄積を反転し、GAP43の発現を正常化したということは同じ経路が生体内で影響を受けることを示唆している。利用できる阻害剤が血管脳関門を交差しないので、我々は生体内でのスペルミン合成阻害の効果を直接評価することができず、出生からの慢性で直接のCNS投与は我々の動物モデルでは実現可能ではない。我々の試験管内の知見がMPS Iにおける異常な神経突起成長でのスペルミンの役割を支持する一方で、スペルミン合成を阻害することは表現型を完全に反転しなかったし、正常ニューロンへのスペルミンの添加はMPS Iのニューロンのレベルまで神経突起成長を増やさなかったことを言及するのは重要である。スペルミン調節の効果は治療の相対的に短い期間によって限定されていてもよい。スペルミンの蓄積がMPS Iにおける神経突起の伸長に寄与する唯一のメディエータではないことも可能である。特に、多数の神経栄養因子はHSが修飾した受容体を介して結合し、細胞外マトリクスにおけるHSとの相互作用は神経突起成長に影響を与えることができる[D.Van Vactor,et al,Heparan sulfate proteoglycans and the emergence of neuronal connectivity.Current opinion in neurobiology,16,40−51(2006);published online EpubFeb(10.1016/j.conb.2006.01.011)]。従って、スペルミンの蓄積はMPS Iにおける異常な神経突起成長を促進する幾つかの因子の1つであってもよい。
スクリーニングした15のMPS Iイヌの試料のうち、たった1つだけがスペルミン濃度の正常範囲内に入った。28日齢にてこれは研究に含まれた最も幼若な動物だった。この知見はスペルミンの蓄積は年齢依存性であってもよいことを示している。将来の研究はMPS患者にてCSFのスペルミンのレベルを長期にわたって評価すべきである。MPS患者においてスペルミンが年齢と共に増加するのであれば、ほとんど患者が発達遅滞の発症前に1〜2年の正常な発達を経験するので、これは認知低下の動態を説明し得る。
ニューロン成長を変える代謝産物の蓄積を誘発する損傷したHS代謝の可能性が、MPS Iにおいて酵素欠乏と異常な神経突起成長の表現型との間の新規の関連性を指し示してもよく、それはこの疾患に関連する認知不全を説明してもよい。これらの知見はまた、CSFのスペルミンがMPS Iのための新規のCNS指向型の治療の薬物力学を評価するための非侵襲性の生体マーカーとして有用であってもよいことも示している。
材料及び方法
実験設計:この研究は当初、健常対照に由来する試料に比べてMPS I患者のCSF試料にて有意に異なるレベルで存在する代謝産物を検出するように設計された。MPS IHの小児及び健常対照に由来するCSF試料の限定された利用可能性のせいで、その後ヒト試料にて候補生体マーカーを評価するつもりで、当初の評価は多数が利用できるMPS Iイヌに由来するCSF試料を用いて実施した。個々の未処理のMPS Iイヌに由来する合計15のCSF試料が分析に利用可能であり、追加の15試料は健常対照から得られた。前向き代謝産物評価におけるMPS IイヌのCSFにて上昇したスペルミンを特定した後、遺伝子治療によって処理されたMPS Iイヌ及びネコの以前の研究に由来するCSF試料と同様に患者の試料にてスペルミンを後向きに測定した。これらの分析のための各群に含まれる対象の数は試料の利用性によって限定され、統計的考慮に基づかなかったので、場合によっては数は統計的比較には不十分である。各状態について定量された細胞の数は、状態当たり>30細胞が細胞当たりの分枝長、神経突起数または神経突起分岐で20%の差異を検出するのに必要とされることを示した予備実験に基づいた。細胞をプレートに入れ、指定された薬剤で処理した後、ウェルをコード化し、細胞画像の取得及び神経突起長や分岐の手動での定量が盲検化したレビュアーによって実施された。異なる基材(チャンバースライド(SigmaS6815)ではなくポリ−L−リシン(Sigma)でコーティングされた組織培養プレート)を用いて野生型とMPSのマウスのニューロンの比較を繰り返し、類似の結果だった。双方の基材を用いて、スペルミン添加の有無で野生型ニューロンの比較を4回行い、類似の結果だった。CSF代謝産物のプロファイリング:CSF代謝産物のプロファイリングはMetabolonによって行った。
処理まで試料を−80℃で保存した。Microlab Star(登録商標)システム(Hamilton Company)を用いて試料を調製した。QC目的での抽出過程における第1の工程に先立って回収標準を加えた。2分間の激しい撹拌のもとでメタノールによってタンパク質を沈殿させ、その後遠心分離した。得られた抽出物を5つの分画:陽イオンモードエレクトロスプレーイオン化を伴った逆相(RP)UPLC−MS/MSによる解析のための1つ、陰イオンモードエレクトロスプレーイオン化を伴った(RP)UPLC−MS/MSによる解析のための1つ、陰イオンモードエレクトロスプレーイオン化を伴った親水性相互作用クロマトグラフィ(HILIC)/UPLC−MS/MSによる解析のための1つ、GC−MSによるによる解析のための1つ、及びバックアップのために取っておいた試料1つに分割した。試料を手短にTurboVap(登録商標)(Zymark)に載せ有機溶媒を取り除いた。LCについては、解析についての調製の前に試料を一晩窒素のもとで保存した。GCについては、解析についての調製の前に各試料を一晩真空下で乾燥させた。
プラットフォームのLC/MS部分は、WatersのACQUITY超高速液体クロマトグラフィ(UPLC)と、加熱エレクトロスプレーイオン化(HESI−II)源及び35,000の質量分解能で操作されるOrbitrap質量分析計と適合させたThermo Scientific Q−Exactive高分解能/精密質量分光計とに基づいた。試料抽出物は乾燥させ、LC/MS法のそれぞれに適合性の溶媒で再構成した。各再構成溶媒は固定した濃度での一連の標準を含有して注入及びクロマトグラフィの一貫性を保証した。RPクロマトグラフィについては、一方のアリコートは酸性の陽イオンで最適化した条件を用いて解析し、他方は塩基性の陰イオンで最適化した条件を用いて解析した。各方法は別々の専用のカラム(Waters UPLC BEH C18−2.1×100mm,1.7μm)を利用した。酸性条件で再構成した抽出物は0.1%のギ酸を含有する水とエタノールを用いて勾配溶出した。塩基性抽出物はメタノールと水を用いて、しかし、6.5mMの重炭酸アンモニウムによって同様に溶出した。第3のアリコートは、陰性イオン化とその後の10mMのギ酸アンモニウムを伴った水とアセトニトリルから成る勾配を用いたHILICカラム(Waters UPLC BEH Amide2.1×150mm,1.7μm)からの溶出を介して解析した。MS解析はMSと動的排除を用いたデータ依存性のMSn走査との間で交互に行った。走査範囲は方法間でやや変化したが、80〜1000m/zを対象とした。
GC−MSによる解析に定められた試料は、ビストリメチル−シリルトリフルオロアセトアミドを用いて乾燥窒素のもとで誘導体化されるのに先立って、最低18時間真空下で乾燥させた。誘導体化した試料は、ヘリウムをキャリア気体として60℃〜340℃の温度範囲で17.5分間で5%ジフェニル/95%ジメチルポリシロキサン溶融石英カラム(20m×0.18mm ID;0.18umの膜厚)にて分離した。電子衝撃イオン化(EI)を用い、単位質量分解能で操作されるThermo− Finnigan Trace DSQ高速走査シングル四重極質量分析計で試料を解析した。走査範囲は50〜750m/zだった。
幾つかの種類の対照が実験試料と併せて解析された:データセット全体を通して技術的複製として役立つ各実験試料の少量を採取することによって生成されるプールしたマトリクス試料;工程ブランクとして役立つ抽出された水試料;及び分析した試料ごとに混入した内在性の化合物の測定を妨害しないように慎重に選択され、設備性能のモニタリングを可能にし、クロマトグラフィの調整を助けるQC標準のカクテル。設備の変動性は質量分析計に注入するのに先立って各試料に加えられる標準についての中央値相対標準偏差(RSD)を計算することによって決定された。全体的な過程の変動性は、プールしたマトリクス試料の100%に存在する内在性の代謝産物(すなわち、非設備性標準)すべてについて中央値RSDを計算することによって決定された。実験試料はプラットフォームでの測定にわたって無作為化し、QC試料は注入の間で均等に間隔を空けた。
代謝産物は、保持時間、分子量(m/z)、好まれる付加体、及び内部調達の断片と同様に関連するMSスペクトルを含む、及びMetabolonにて開発されたソフトウエアを用いた品質管理のための目視検査によってキュレートされる化学標準項目の参照ライブラリに実験試料におけるイオンの特徴を自動的に比較することによって特定された。既知の化学項目の特定は精製した標準のメタボロミクスライブラリの項目との比較に基づく。曲線下面積の測定を用いてピークを定量した。各試料における各代謝産物についての生面積の計算を基準化して各測定日についての中央値、従って、各測定について1.0の中央値を設定することによって設備の日間調整の差異の結果生じる変動を補正した。これは試料間の変動を防いだが、同じグラフ尺度で比較される広く異なる生ピーク面積の代謝産物を許した。欠測値は基準化の後に観察された最小値に帰属させた。
定量的MSアッセイ:CSF試料(50μL)をスペルミン−d8内部標準(IsoSciences)と混合した。4倍過剰のメタノールと混合し、4℃にて12,000×gで遠心分離することによって試料からタンパク質を除去した。上清を窒素の流れのもとで乾燥させ、次いで50μLの水に再懸濁した。5μLのアリコートをLC−MS解析に供した。Xbridge(登録商標)C18カラム(3.5μm,150×2.1mm)を備えたWatersのACQUITY UPLCシステム(Waters Corp.,Milford,MA,USA)を用いてLC分離を行った。流速は0.15mL/分であり、溶媒Aは0.1%ギ酸であり、溶媒Bは0.1%ギ酸を伴った98/2のアセトニトリル/H2O(v/v)だった。溶出条件は以下のとおりであった:0分で2%B、2分で2%B、5分で60%B、10分で80%B、11分で98%B、16分で98%B、17分で2%B、22分で2%B;カラム温度は35℃だった。Finnigan TSQ Quantum Ultra分光計(Thermo Fisher,San Jose,CA)を用いて以下のパラメータ:4000Vでのスプレー電圧、270℃でのキャピラリー温度、35任意単位でのシース気体圧、2任意単位でのイオンスイープ気体圧、10任意単位での補助気体圧、200℃の気化器温度、50でのチューブレンズオフセット、35でのキャピラリーオフセット及び0でのスキマーオフセットによる陽イオンモードでMS/MSを実施した。0.002m/zの走査幅及び0.15秒の走査時間で以下の推移:203.1/112.1(スペルミン);211.1/120.1(スペルミン−d8)をモニターした。
動物の処置:動物のプロトコールはすべてペンシルベニア大学の施設内実験動物委員会によって承認された。CSFの代謝産物のスクリーニングについては、試料は、3〜26カ月齢の正常イヌ及び1〜18ヵ月齢のMPS Iイヌにおける後頭下穿刺法によって採取した。MPS Iイヌ及びネコにおける遺伝子導入研究は以前記載された(20、22)ように実施した。CSF試料はベクター投与の6〜8カ月後に採取した。マウスの皮質ニューロン実験については、E18のIDUA−/−またはIDUA+/+胚から初代皮質ニューロン培養物を調製した。
患者の試料:CSFの代謝産物のプロファイリング:代謝産物のプロファイリングは記載された(Metabolon、参照)ように行った。各患者の両親または法定後見人からインフォームドコンセントを得た。プロトコールはミネソタ大学施設内治験審査委員会によって承認された。CSFは腰椎穿刺によって採取した。MPS I患者はすべてハーラー症候群の診断を有し、試料採取に先立って酵素補充療法または造血幹細胞移植を受けていなかった。MPS I患者は6〜26ヵ月齢だった。健常対照は36及び48ヵ月齢だった。
統計的解析:ランダムフォレスト解析及びヒートマップ生成はMetaboAnalyst 3.0を用いて行った[R.G.Kalb,Development,120,3063−3071(1994);J.Zhong,et al,Journal of neurochemistry,64,531−539(1995),D.Van Vactor,D.P.W,et al,Current opinion in neurobiology,16,40−51(2006);published online EpubFeb(10.1016/j.conb.2006.01.011)。生ピークデータを対数変換し、正常試料の値の平均値に対して基準化した。他の統計的解析はすべてGraphPad Prism6で行った。培養したニューロンの分枝長、神経突起数、及び分岐をANOVAとその後のDunnettの検定によって比較した。CSFのスペルミン及び皮質のGAP43はKruskal−Wallisの検定とその後のDunnの検定によって比較した。
GAP43のウエスタン:Qiagen Tissuelyserを用いて30Hzで5分間、0.2%TritonA−100にて前頭皮質の試料をホモジネートした。4℃での遠心分離によって試料を清澄化した。タンパク質濃度は上清にてBCAアッセイによって決定した。試料はDTT(Thermo Fisher Scientific)を伴ったNuPAGE LDS緩衝液でインキュベートし、MOPS緩衝液中のビストリス4〜12%のポリアクリルアミドゲル上で分離した。タンパク質をPVDF膜に移し、5%脱脂粉乳で1時間ブロックした。5%脱脂粉乳で1μg/mLに希釈したウサギポリクローナル抗GAP43抗体(Abcam)とその後の5%脱脂粉乳で1:10,000に希釈したHRP結合ポリクローナル抗ウサギ抗体(Thermo Fisher Scientific)によって膜を探査した。SuperSignal West Pico基質(Thermo Fisher Scientific)を用いてバンドを検出した。ImageLab5.1(Bio−Rad)を用いてデンシトメトリーを行った。
神経突起成長アッセイ:18日齢の胚性皮質ニューロンを上記で記載されているように回収し、B27(Gibco)によって補完された無血清の神経基礎培地(Gibco)にて100,000個/mLの濃度でチャンバースライド(Sigma S6815)またはポリ−L−リシン(Sigma)をコーティングした組織培養プレートに播いた。播いた24時間後、2つ組ウェルに処理を適用した(1日目)。600ミリ秒の手動露出と高コントラストでの1.70×ゲインを用いて20倍でNikon Eclipse Tiにて定量のための位相差画像を撮影した。処理条件に対する個々の盲検によってウェル当たり10〜20枚の画像を捕捉し、それらをコード化した。盲検化されたレビュアーによって画像はImageJ(NIH)にて8ビット形式に変換され、NeuronJにてトレースされた。細胞体直径、神経突起数、分岐点及び分枝長を手動でトレースした。NeuronJでトレースされた画像を画像サイズに基づく変換因子を用いてマイクロメートルに変換し、0.17マイクロメートル/画素の変換因子を用いて2560×1920画素の画像をマイクロメートルに変換した。
組織学:脳組織の処理及びLIMP2の免疫蛍光法は以前記載された[C.Hinderer,et al,Molecular therapy:the journal of the American Society of Gene Therapy,22,2018−2027,(2014);published online EpubDec,(10.1038/mt.2014.135)]ように行った。
RT−PCR:3匹の正常イヌ及び5匹のMPSイヌに由来する前頭皮質の試料を剖検の際、ドライアイスで即時凍結した。TRIzol試薬(Thermo Fisher Scientific)によってRNAを抽出し、室温にて20分間、DNA分解酵素I(Roche)で処理し、製造元の指示書に従ってRNeasyキット(Qiagen)を用いて精製した。ランダムヘキサマープライマーと共に高性能cDNA合成キット(Applied Biosystems)を用いて、精製したRNA(500ng)を逆転写した。Applied Biosystems7500を用いたSybr greenPCRによって、アルギナーゼ、オルニチン脱炭酸酵素、スペルミンシンターゼ、スペルミジンシンターゼ、スペルミン・スペルミジンアセチル転換酵素、及びグリセルアルデヒドリン酸脱水素酵素についての転写物を定量した。
リアルタイムPCRシステム:個々の試料すべてで構成されるプールした標準の4倍希釈を用いて各標的遺伝子について標準曲線を生成した。最高の標準に任意の転写物番号を割り当て、個々の試料についてのCt値を標準曲線に基づいて転写物番号に変換した。値はGAPDH対照に比べて表す。
統計的解析:MetaboAnalyst 3.0[J.Xia,et al,MetaboAnalyst,2.0−a comprehensive server for metabolomic data analysis.Nucleic Acids Research,(2012);published online EpubMay,2,2012(10.1093/nar/gks374);J.Xia,et al.,MetaboAnalyst:a web server for metabolomic data analysis and interpretation.Nucleic Acids Research,37,W652−W660(2009);published online EpubJuly,1,2009(10.1093/nar/gkp356).J.Xia,et al,MetaboAnalyst 3.0−making metabolomics more meaningful.Nucleic Acids Research,(2015);published online EpubApril,20,2015(10.1093/nar/gkv380)]を用いてランダムフォレスト解析及びヒートマップ生成を行った。代謝産物の評価において検出できない値はデータセットで観察された最小値に帰属させた。生ピークデータを正常試料の値の平均値に対して基準化し、対数変換した。他の統計的解析はすべてGraphPad Prism6で行った。培養したニューロンの分枝長、神経突起数、及び分岐はANOVAとそれに続くDunnettの検定によって比較した。CSFのスペルミン及び皮質のGAP43はKruskal−Wallisの検定とその後のDunnの検定によって比較した。
結果
1.代謝産物のプロファイリングを介した上昇したCSFスペルミンの特定
CSF代謝産物の当初の評価はMPS Iのイヌモデルを用いて行った。これらの動物はIDUA遺伝子にてスプライス部位に突然変異を持ち、酵素発現の完全な喪失及びMPS I患者のそれに類似する臨床的及び組織学的な特徴の発達を生じる(K.P.Menon,et al,Genomics,14,763−768,(1992);R.Shull,et al.,The American journal of pathology,114,487(1984))。CSF試料は15匹の正常イヌ及び15匹のMPS Iイヌから採取した。CSF試料はLC及びGC−MSによって代謝産物の相対的な量について評価した。質量分光計によってCSF試料にて合計281の代謝産物を陽性で特定することができた。これらのうち、47(17%)は対照に比べてMPS Iイヌで有意に上昇し、88(31%)は対照に比べて低下していた。群間で最も異なる50代謝産物のヒートマップを図17Aに示す。代謝産物のプロファイリングは、MPS Iイヌと正常イヌとの間でポリアミン、スフィンゴ脂質、アセチル化アミノ酸及びヌクレオチドの代謝において顕著な差異を特定した。ランダムフォレストクラスター化解析は、MPS Iイヌと正常イヌとの間における代謝産物の差異への最大の寄与因子としてポリアミンスペルミンを特定した(図21)。試料採取の時点で1ヵ月齢未満だったMPS Iイヌ1匹を除いて、MPS Iイヌでは平均でスペルミンは30倍を超えて上昇した。CSFにおけるスペルミンを定量的に測定するために安定同位元素希釈(SID)−LC−MS/MSアッセイが開発された。ハーラー症候群の6人の幼児(6〜26ヵ月齢)及び2人の健常対照(36及び48ヵ月齢)に由来する試料を評価した。双方の健常対照はアッセイの定量限界(1ng/mL)を下回るCSFのスペルミンのレベルを有したのに対して、MPS I患者に由来するCSF試料は平均で定量限界を10倍上回った(図17B)。MPS IH患者におけるスペルミンの上昇は、スペルミンの結合と取り込みにおけるHSの既知の役割に矛盾しないと思われた[M.Belting,et al,Journal of Biological Chemistry,278,47181−47189(2003);M.Belting,et al,Proteoglycan involvement in polyamine uptake.Biochemical Journal,338,317−323(1999);J.E.Welch,et al,International journal of oncology,32,749−756(2008))]。正常イヌ及びMPS Iイヌの脳試料はポリアミン合成経路における転写上調節される酵素について類似のmRNA発現レベルを有するので、上昇した合成は上昇したCSFスペルミンの原因ではありそうにないと思われた。
2.MPSに関連する異常な神経突起成長におけるスペルミンの役割
軸索の損傷に続いて、ニューロンはポリアミン合成を上方調節し、それは神経突起の伸長を促進する(D.Cai,et al,Neuron,35,711−719(2002);published online EpubAug,15;K.Deng,et al,The Journal of neuroscience,:the official journal of the Society for Neuroscience,29,9545−9552(2009);published online EpubJul,29;Y.Gao,et al,Neuron,44,609−621(2004);published online EpubNov,18;R.C.Schreiber,et al.,Neuroscience,128,741−749(2004))。従って我々は、MPSのニューロンで記載されている異常な神経突起過剰成長の表現型におけるスペルミンの役割を評価した(Hocquemiller,S.,et al,Journal of neuroscience research,88,202−213(2010))。MPS Iマウスに由来するE18皮質ニューロンの培養はコロニーの野生型マウスに由来するニューロンよりも培養にて4日後、大きな神経突起数、分岐及び合計分枝長を示した(図19A〜F)。スペルミン合成の阻害剤であるAPCHAによるMPSニューロンの処理は神経突起成長と分岐を有意に減らした。この効果はスペルミンを置き換えることによって反転できた(図18A〜F)。同じ濃度のAPCHAは正常ニューロンの成長に影響を及ぼさなかった。生体内で特定されたものに類似する濃度で野生型ニューロンの培養にスペルミンを添加することは神経突起成長と分岐において有意な増加を生じた(図18A〜F)。
3.CSFでのスペルミン及びGAP43の発現に対する遺伝子治療の効果
生体内でのGAP43の発現及びスペルミンの蓄積に対するIDUA欠乏の効果を評価するために、我々は、未処理のMPS Iイヌと同様にCNS指向型の遺伝子治療で処理したものにてCSFのスペルミンのレベル及び脳のGAP43のレベルを測定した。我々は以前、イヌIDUA導入遺伝子を運ぶアデノ随伴ウイルス血清型9ベクターの髄内注入で処理した5匹のMPS Iイヌを記載した(C.Hinderer,et al,Molecular therapy:the journal of the American Society of Gene Therapy,23,1298−1307(2015);published online Epub Aug)。MPS Iイヌは正常なIDUA酵素に対する抗体を発生することができるので、イヌのうち2匹は新生仔として肝臓IDUA遺伝子導入で予備処理してそのタンパク質に対する免疫寛容を誘導した。寛容化されたイヌは双方とも、AAV9処理に続く正常を十分に上回る脳IDUA活性を示した。3匹の寛容化されなかったイヌは様々なレベルの発現を示し、1匹の動物は正常より大きいレベルに達し、他の2匹はほぼ正常の発現を示した(図19A〜D)。CSFのスペルミン低下は脳のIDUA活性に反比例し、最低のIDUA発現の2匹のイヌでは未処理の動物に比べて3倍の低下を示し、最高の発現の動物では20倍を超える低下があった(図19A〜D)。GAP43はMPS Iイヌの前頭皮質では上方調節され、発現はベクターで処理した動物すべてにおいて正常化された(図19A〜19D)。
我々はさらに、様々なベクター用量で処理したMPS IイヌにおけるCSFのスペルミンのレベルとIDUAの再構成との間の関係性を評価した。新生仔肝臓遺伝子導入によってヒトIDUAに対して予め寛容化したMPS Iイヌを3つの用量(1010、1011、1012GC/kg、用量当たりn=2)のうち1つでのヒトIDUAを発現するAAV9ベクターの髄内注入によって処理した(C.Hinderer,et al,Neonatal tolerance induction enables accurate evaluation of gene therapy for MPS I in a canine model.Molecular Genetics and Metabolism,dx.doi.org/10.1016/j.ymgme.2016.06.006))。注入の6ヵ月後、CSFのスペルミンを評価した(図20A−20B)。CSFのスペルミンの低下は用量依存性であり、中程度及び高い用量の動物は正常範囲に達したのに対して低用量の動物ではCSFのスペルミンは部分的に低下するに過ぎなかった。IDUA欠乏とCSFスペルミンの蓄積の間での関係を独立して検証するために、我々はMPS IのネコモデルにてCSFスペルミンのレベルを評価した。我々が以前報告した遺伝子治療研究に由来するCSF試料を用いて、我々は、未処理のMPS Iネコは高いCSFスペルミンを示すことを見いだした(図20A、20B)(C.Hinderer,et al,Molecular therapy:the journal of the American Society of
Gene Therapy.22,2018−2027(2014);published online EpubDec(10.1038/mt.2014.135))。ネコIDUAを発現する高用量のAAV9の髄内投与はCSFスペルミンのレベルを正常化した(図20A)。
C.考察
本研究で我々はMPS Iイヌに由来するCSF試料の代謝産物のプロファイリングを行い、それはCSFメタボロームにおける実質的な疾患関連の変化を明らかにした。最も顕著な差異は正常対照に比べたスペルミンのレベルでの30倍を超える上昇だった。この知見はMPS I患者と同様にMPS Iのネコモデルにて確認された。スペルミンは高親和性でHSに直接結合し、スペルミンの細胞取り込みはこの相互作用に左右される(M.Belting,S.PERSSON,L.−A.Fransson,Proteoglycan involvement in polyamine uptake. Biochemical Journal,338,317−323(1999);J.E.Welch,et al,International journal of oncology,32,749−756(2008))。グリピカン−1のような細胞表面のプロテオグリカンはそのHS部分を介してスペルミンを結合することができ、グリピカンタンパク質のエンドサイトーシスの後、HS鎖の細胞内切断は結合したスペルミンを細胞内で遊離させる(Belting,et al.上記で引用;K.Ding,S.et al,The Journal of biological chemistry,276,46779−46791,(2001);published online EpubDec,14)。従って、インタクトなHSの再生利用はスペルミンの取り込みに必須である。IDUAの欠乏のゆえの不十分なHSの再生利用はこのスペルミンの取り込みメカニズムを阻害し、細胞外スペルミンの蓄積をもたらす。或いは、細胞外GAGがスペルミンを隔離し、平衡をシフトさせて細胞外分布に有利に働いてもよい。この研究におけるLC−MSの試料調製で採用されるメタノール脱タンパク質工程も可溶性HSを沈殿させるということは、CSFで検出されるスペルミンは結合していないので、GAGの結合ではなく取り込みの阻害が細胞外スペルミンの蓄積の原因であることを示唆している(N.Volpi,Journal of chromatography.B,Biomedical applications,685,27−34(1996);published online EpubOct,11)。神経ネットワークの形成及び維持は神経突起成長及びシナプス形成の正確な制御を必要とする。発生の間、CNSの環境は神経突起の形成に対してだんだん阻害性になっていき、ミエリン関連タンパク質が成人の脳では神経突起成長を大きく遮断している。神経突起成長の低下に向かうこの発生上のシフトはGAP43の発現と平行する(S.M.De la Monte,et al,Developmental Brain Research,46,161−168(1989);published online Epub4/1/)。MPSのニューロンが示す持続するGAP43の発現及び誇張された神経突起の伸長が阻害と成長の促進シグナルのこの正常な均衡を妨げ、その結果、異常な結合性及び損傷された認知を生じてもよい(Hocquemiller,et al,上記で引用)。HSの蓄積が神経突起成長の増加にどのようにつながるのかは解明されていない。多数の研究が神経突起の伸長にポリアミンを関与させ;軸索の損傷に続いて、スペルミン及びその前駆体であるプトレシン及びスペルミジンの合成についての律速酵素が上昇し、ミエリンからの阻害性シグナルが存在しても神経突起の伸長の増強を可能にする(Cia(2002),Deng(2009),Gao(2004)すべて上記で引用)。さらに、プトレシンによるニューロンの処理はCSFに直接注入されると神経突起成長を誘導し、効果はスペルミン合成の阻害剤によって阻止される(Deng(2009);上記で引用)。ポリアミンが神経突起成長に対して効果を発揮するメカニズムは知られていない。可能性のある標的の1つは、NMDA受容体であり、その活性化はスペルミンの結合によって強化される。(J.Lerma,Neuron,8,343−352(1992);published online Epub2//(dx.doi.org/10.1016/0896−6273(92)90300−3))。NMDAのシグナル伝達は神経突起の伸長を誘導し、受容体のスペルミン感受性のサブユニットは発生の間、高度に発現される(D.Georgiev,et al,Experimental cell research,314,2603−2617(2008);published online EpubAug,15(10.1016/j.yexcr.2008.06.009);R.G.Kalb,Regulation of motor neuron dendrite growth by NMDA receptor activation. Development,120,3063−3071(1994);J.Zhong,et al,Journal of neurochemistry,64,531−539(1995))。とりわけ、多数の神経栄養因子はHSが修飾した受容体を介して結合し、細胞外マトリクスにおけるHSとの相互作用は神経突起成長に影響を及ぼすことができる(D.Van Vactor,et al,Current opinion in neurobiology,16,40−51(2006);published online EpubFeb(10.1016/j.conb.2006.01.011))。従って、スペルミンの蓄積はMPS Iにおける異常な神経突起成長を促進する幾つかの因子の1つであってもよい。CSF試料が評価された15匹のMPS Iイヌのうち、1匹だけがスペルミン濃度の正常範囲内に入った。28日齢で、これは研究に含まれた最も幼若な動物だった。この研究はそれがハーラー症候群の乳児で6ヵ月齢までにすでに上昇することを実証しているが、この知見はスペルミンの蓄積が年齢依存性であってもよいことを示している。将来の研究はMPS患者にてCSFスペルミンのレベルを長期にわたって評価すべきである。ほとんどの患者は発達遅滞の発症に先立って1〜2年の正常な発達を経験するので、もし、スペルミンがMPS患者の年齢と共に増加するのであれば、これは認知低下の動態を説明し得る。神経突起成長を変化させる代謝産物の蓄積を誘発する損傷されたHS代謝の可能性は、MPSにおける酵素の欠乏と異常な神経突起成長の表現型との間での新規の関係性を指し示し、それはこれらの疾患に関連する認知不全を説明してもよい。将来の研究は他のMPSにおけるスペルミンの上昇を確認すべきである。これらの知見はまた、CSFのスペルミンが、MPSのための新規のCNS指向型の治療法の薬物動態を評価するための非侵襲性の生体マーカーとして有用であることも示している。CNS指向型の治療法についての将来の試験は認知評価項目とCSFスペルミンの変化との間の相関を評価すべきである。
実施例12:CT誘導のICV送達装置
A.前処置スクリーニングの評価
1.プロトコール来診1:スクリーニング
治験責任医師は、対象(または指定された介護者)がインフォームドコンセントにサインする際、完全に情報が与えられるために嚢内(IC)処置、投与処置自体及び可能性のある安全性リスクすべてにつながるスクリーニング過程を記載するであろう。
IC処置、既往歴、併用薬物、身体検査、生命兆候、心電図(ECG)及び臨床検査成績についての対象の適格性のスクリーニング評価において以下が実施され、神経放射線科医/神経外科医/麻酔科医に提供されるであろう。
2.間隔:スクリーニングから試験来訪2まで
適格性をよく調べる適当な時間を与えるために、最初のスクリーニング来訪と試験来訪2(0日目)前の1週間までの間の時間で以下の手順が行われるべきである。
・ガドリニウムの有無での頭部/頸部の磁気共鳴画像診断(MRI)[注:対照はガドリニウムを受け取る好適な候補者でなければならない(すなわち、eGFR>30mL/分/1.73m2)]
・頭部/頸部のMRIに加えて、治験医師は屈曲/伸長試験を介した頸部のさらなる評価の必要性を判定するであろう
・MRIプロトコールにはT1、T2、DTI、FLAIR及びCINEのプロトコール画像が含まれるであろう
・CSFの流れの適切な評価及びCSF空間の間での連絡の考えられる遮断または喪失の特定を可能にする頭部/頸部のMRA/MRV(注:硬膜内/経硬膜手術の既往を持つ対象は除外されてもよく、またはさらなる検査(たとえば、放射線ヌクレオチド大槽造影法)を必要としてもよい)
・神経放射線科医/神経外科医の対象処置評価会議:3施設からの代表者が電話会議(またはウェブ会議)を有して利用できる情報(走査、既往歴、身体検査、臨床検査等)に基づいてIC処置について各対象の適格性を議論するであろう。あらゆる試みを行って対象を損なうIC処置または評価に向かう手続きの際の合意を達成すべきである(すなわち、各メンバーは行われた決断を受け入れる準備万端であるべきである)
・麻酔術前評価、MPS患者の特定の生理的必要性に留意しながら、気道、頸部(短縮した/肥厚した)及び頭部の可動域(頸部屈曲の程度)の詳細な評価を伴った−28日目〜1日目
3.1日目:コンピュータ断層撮影室及び投与用のベクターの調製
IC処置に先立って、CT室は以下の設備及び薬物が存在することを確認するであろう:
・成人腰椎穿刺キット(施設ごとに供給される)
・BD(Becton Dickinson)22または25ゲージ×3〜7”のクモ膜下穿刺針(Quincke先端部)
・インターベンション医師の裁量で使用される(クモ膜下穿刺針の導入のための)同軸導入針(たとえば、18G×3.5”)
・旋回(回転)オスルアーロック付きの四方小口径活栓
・メスルアーロックアダプター付きのTコネクタ延長セット(配管)、およそ6.7”の長さ
・オムニパック180(イオヘキソール)、クモ膜下腔内投与用
・静脈内(IV)投与用のヨウ素化造影剤
・注入用の1%リドカイン溶液(成人LPキットで供給されなければ)
・予め充填された10cc生理食塩水(無菌)の水洗注射器
・X線不透過性マーカー(複数可)
・外科用準備装備/髭剃り刃
・挿管された対象の正しい位置決めを可能にする枕/支持体
・気管内挿管の装置、全身麻酔用の機械、及び人工呼吸器
・手術中の神経生理学的なモニタリング(IONM)装置(及び必要な人材)
・別々の薬局マニュアルに従って調製され、CT/手術室(OR)の部屋に運ばれるAAV9.hIDUAを含有する10ccの注射器
4.1日目:対象の準備及び投与
・試験及び手順についてのインフォームドコンセントが確認され、カルテ及び/または試験ファイルの中で文書化されるであろう。放射線科及び麻酔科のスタッフからの手順に関する別々の合意が施設内要件によって得られるであろう。
・試験対象は施設内指針に従って適当な病院内看護ユニットにて取り付けられる静脈内アクセスを有するであろう(たとえば、2つのIVアクセス部位)。静脈内流体は麻酔科医の裁量で投与されるであろう。
・麻酔科医の裁量で及び施設内指針ごとに、試験対象は、適当な患者看護ユニット、保持区域または外科/CTの処置室に誘導され、そこで全身麻酔の投与と共に気管内挿管を受けるであろう。
・腰椎穿刺を行い、先ず5ccの脳脊髄液(CSF)を取り出し、その後髄内に造影剤(オムニパック180)を注入して大槽の視覚化を助けるであろう。患者の適当な位置決め操作を行って造影剤の大槽内への拡散を促す。
・すでにそのように行われていないのであれば、手術中神経生理学的モニタリング(IONM)装置を対象に取り付けるであろう。
・対象は腹臥位または側臥位でCTスキャナー台に載せられるであろう。
・適当と見なされれば、対象は、術前評価の間安全であると判定される程度に頸部屈曲を提供し、且つ位置決めの後文書化される正常な神経生理学的なモニターシグナルを提供する方法で位置決めされるであろう。
・以下の試験スタッフ及び治験医師(複数可)が存在することを確認し、施設内で特定されるであろう。
〇処置を行うインターベンション医師/神経外科医
〇麻酔科医及び呼吸器技師
〇看護師及び医師助手
〇CT(またはOR)技師
〇神経生理学技師
〇現場研究コーディネーター
・頭蓋底の下の患者の皮膚は適宜剃られるであろう。
・CTスカウト画像化を行い、その後、必要とみなされればインターベンション医師よる処置前計画のIV造影剤でのCTを行い標的の位置を突き止め、脈管構造を画像化するであろう。
・いったん標的部位(大槽)が特定され、針の軌道が計画されると、皮膚が用意され、施設内指針のとおりに無菌技法を用いて手術用覆布で覆われるであろう。
・インターベンション医師によって指示されたようにX線不透過性マーカーが標的皮膚の位置に置かれるであろう。
・マーカーの下の皮膚は1%リドカインの浸潤を介して麻酔されるであろう。
・同軸導入針を使用する選択肢と共に、22Gまたは25Gのクモ膜下穿刺針が大槽に向かって進められるであろう。
・針を進めた後、施設内設備を用いて実現可能な最薄のCTスライス厚さ(理想的には≦2.5mm)を用いてCT画像が得られるであろう。連続CT画像は、針及び関連する軟組織(たとえば、傍脊柱筋群、骨、脳幹及び脊髄)の適切な視覚化を可能にする可能な最低放射線量を使用すべきである。
・正しい針の配置は、針ハブにおけるCSFの観察及び大槽内での針の視覚化によって確認されるであろう。
・インターベンション医師は、ベクターを含有する注射器が滅菌野に近いが、その外側に置かれることを確認するであろう。ベクターを取り扱う、または投与することに先立って、施設は、滅菌野内での処置を支援するスタッフによって手袋、マスク及び眼の保護が行われることを確認するであろう(滅菌野の外側の他のスタッフはこれらの手順を取る必要はない)。
・短い(約6”)の延長配管を挿入されたクモ膜下穿刺針に取り付け、それを次いで四方活栓に取り付けるであろう。この装置が対象のCSFでいったん自給されると、10ccの予め充填された生理食塩水の水洗注射器が四方活栓に取り付けられるであろう。
・ベクターを含有する注射器がインターベンション医師に手渡され、四方活栓のポートに取り付けられるであろう。
・ベクターを含有する注射器に対する活栓のポートがいったん開放されると、注入の間に過剰な力がプランジャーにかからないように注意を払いながら、注射器の内容物はゆっくり(およそ1〜2分間かけて)注入されるべきである。
・AAV9.hIDUA試験ベクターを含有する注射器の内容物がいったん注入されると、取り付けられた予め充填された注射器を用いて活栓と針の構築が1〜2ccの生理食塩水で洗い流され得るように活栓が回されるであろう。
・準備ができると、インターベンション医師は彼/彼女が対象から装置を取り外すことをスタッフに注意喚起する。
・1回の動きで、針、延長配管、活栓及び注射器が対象からゆっくり取り外され、バイオハザード廃棄物容器または硬質容器(針用)の中に廃棄するための外科用トレイに置く。・針の挿入部位は出血またはCSFの漏出の兆候について調べ、治験医師によって指示されたように処理されるであろう。指示されたように、ガーゼ、外科用テープ及び/またはTegaderm包帯を用いて部位が手当てされるであろう。
・対象はCTスキャナーを出て、仰臥位でストレッチャーに乗るであろう。
・麻酔が中断され、麻酔後の看護についての以下の施設内指針について対象が看護されるであろう。神経生理モニターはこの研究対象から取り除かれる。
・回復の間、対象が横たわるストレッチャーの頭部をやや高くすべきである(約30度)。
・対象は、施設内指針のとおりに好適な麻酔後看護ユニットに移されるであろう。
・対象が適正に意識を回復し、安定な状態になった後、彼/彼女はプロトコールが命じる評価のために適当なフロア/ユニットに収容されるであろう。神経学的な評価がプロトコールのとおりに続き、治験責任医師は病院スタッフ及び研究スタッフと共同で対象の看護を監督する。
実施例13:大型動物における投与の髄内経路の評価
この研究の目的は、脳室内(ICV)注入及び腰椎穿刺を介した注入を含む、CSFへの投与のさらに日常的な方法を評価することであった。手短には、この研究では、ICVとICのAAV投与をイヌで比較した。ベクターの投与を非ヒト霊長類にて腰椎穿刺を介して評価し、一部の動物はベクターの頭蓋分布を改善することが示唆されている手順である、注入後のトレンデレンブルグ体位に置いた。イヌの研究では、ICV及びICのベクター投与は脳及び脊髄の全体を通して類似する効率的な形質導入を生じた。しかしながら、ICVコホートの動物は、明らかに導入遺伝子産物に対する重度のT細胞応答のせいで脳炎を発症した。ICVコホートのみでのこの導入遺伝子に特異的な免疫応答の発生は導入遺伝子発現の部位での注入手順に由来する局在化した炎症の存在に関連することが疑われる。NHPの研究では、腰椎槽へのベクター投与に続く形質導入効率は、極度に大きな注入容量(CSF総容量のおよそ40%)を用いることによって我々の以前の研究に比べて改善した。しかしながら、このアプローチはIC投与よりも依然として効率が悪い。注入の後トレンデレンブルグ体位に動物を置くことは追加の利益を提供しなかった。しかしながら、大きな注入容量はベクターの頭蓋分布を改善できることが見いだされた。
AAVの髄内送達の有効性を最大化するためには、CSFへのベクター投与の最適な経路を決定することが決定的であろう。我々は以前、後頭下穿刺法による大槽(脳髄槽)へのベクターの注入は非ヒト霊長類にて有効なベクター分布を達成するのに対して、腰椎穿刺を介した注入は脊髄の実質的に低い形質導入を生じ、脳に分布せず、投与の経路の重要性を強調することを報告した[Hinderer,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1]。他は、一般的な臨床処置である側脳室へのベクター送達は効果的なベクター分布を生じることを示唆している[Haurigot,et al,J.Clin.Invest.,Aug,2013;123(8):3254−3271]。腰椎穿刺を介した送達は、注入後トレンデレンブルグ体位に動物を置いて頭蓋のベクター分布を促すことによって改善できることも報告されている[Meyer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Oct,31,2014]。この研究では、イヌにおける緑色蛍光タンパク質(GFP)レポーター遺伝子を発現するAAV9ベクターの脳室内及び嚢内の投与を比較した。脳室内送達は導入遺伝子特異的な免疫応答の追加のリスクを運んでもよいが、我々は、双方の経路がCNS全体にわたる有効な分布を達成することを見いだした。我々はまたNHPにおける腰椎穿刺によるベクター送達、及び注入後トレンデレンブルグ体位に動物を置くことの効果も評価した。我々は大きな注入容量がベクターの頭蓋分布を改善できることを見いだしたが、注入後の位置決めの明瞭な効果はなかった。
A.材料及び方法
1.ベクターの作製:GFPベクターは、サイトメガロウイルスの前初期エンハンサを伴ったニワトリβアクチンプロモータと、人工イントロンと、増強緑色蛍光タンパク質cDNAと、ウッドチャック肝炎ウイルス転写後調節因子と、ウサギβグロビンポリアデニル化配列とを含む発現カセットを運ぶAAV血清型9のカプシドから成った。GUSBベクターは、サイトメガロウイルスの前初期エンハンサを伴ったニワトリβアクチンプロモータと、人工イントロンと、イヌGUSBのcDNAと、ウサギβグロビンポリアデニル化配列とを含む発現カセットを運ぶAAV血清型9のカプシドから成った。ベクターはHEK293細胞の三重形質移入によって作製し、以前記載された[Lock,et al,Human gene therapy.Oct,2010;21(10):1259−1271]ようにイオジキサノール勾配で精製した。
2.動物実験
イヌはすべて、研究における動物の飼育と使用に関する国立衛生研究所とUSDAの指針のもとでペンシルベニア大学獣医学部のヒト遺伝性疾患の動物モデルのための国立委託センターで育てられた(NIH OD P40−010939)。
3.NHPの研究
この研究には9歳〜12歳の間の6匹のカニクイザルが含まれた。動物は1回につき4〜8kgの間で注入された。注入に先立ってベクター(2×1013GC)を5mLのオムニパック(イオヘキソール)180造影剤で希釈した。腰椎穿刺を介したベクターの注入は以前記載された[Hinderer,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1]ように行った。髄内空間への正しい注入は蛍光透視法によって検証した。トレンデレンブルグ群の動物については、ベッドの頭部を注入の直後10分間30度下げた。安楽死及び組織採取は以前記載された[Hinderer,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1]ように行った。
4.イヌの研究
この研究には1歳のMPS Iイヌ6匹が含まれた。ICV処理したイヌすべてにおいてベースラインMRIを行い、注入の組み合わせを計画した。嚢内注入は以前記載された[Hinderer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Aug,2015;23(8):1298−1307]ように行った。ICVの注入については、静脈内プロポフォールでイヌを麻酔し、気管内挿管し、イソフルランで麻酔下を維持し、定位固定枠に入れた。皮膚を無菌で準備し、注入部位の上で切開した。注入部位で単一の穿頭孔を開け、それを介して26ゲージの針を所定の深さに進めた。CSFの戻りで配置を確認した。ベクター(1mL中で1.8×1013GC)をゆっくり1〜2分かけて注入した。安楽死及び組織採取は以前記載された[Hinderer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Aug,2015;23(8):1298−1307]ように行った。
5.組織学
GPFの発現の評価について記載されたように脳を処理した[Hinderer,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1]。GUSB酵素の染色及びGM3の染色は以前記載された[Gurda,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Oct,8,2015.]ように行った。
6.ELISPOT
剖検のとき、ベクターで処理したイヌからヘパリン処理した試験管に血液を採取した。Ficoll勾配遠心分離によって末梢血単核細胞を単離した。AAV9カプシドペプチド及びGFPペプチドに対するT細胞応答はインターフェロンガンマのELISPOTによって評価した。AAV9及びGFPのペプチドライブラリは10アミノ酸が重複した15量体として合成した(Mimotopes)。AAV9ペプチドライブラリは3つのプール:ペプチド1〜50のプールA、ペプチド51〜100のプールB及びペプチド101〜146のプールCにグループ分けした。GFPペプチドライブラリも3つのプールにグループ分けした。ホルボール12−ミリステート13−アセテートに加えたイオノマイシン塩(PMA+ION)を陽性対照として使用した。DMSOを陰性対照として使用した。細胞をペプチドで刺激し、記載されたようにインターフェロンガンマの分泌を検出した。応答が100万個のリンパ球当たり双方とも55スポット形成単位(SFU)を超え、且つDMSO陰性対照の少なくとも3倍であった場合、応答を陽性と見なした。
7.生体分布
剖検のとき、生体分布についての組織をドライアイスで即座に凍結した。DNAの単離及びTaqManPCRによるベクターゲノムの定量は記載された[Wang,et al,Human gene therapy.Nov,011;22(11):1389−1401]ように行った。
8.GUSB酵素アッセイ
GUSB活性は記載された[Gurda,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Oct,8,2015]ようにCSFにて測定した。
B.結果
1.イヌにおける脳室内及び嚢内のベクター送達の比較
リソソーム蓄積症であるムコ多糖症I型(MPS I)のイヌモデルを用いた我々の以前の研究は、大槽へのAAV9の注入は脳及び脊髄全体を効果的に標的とすることができることを実証した[Hinderer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Aug,2015;23(8):1298−1307]。この研究では、我々は、成熟MPS Iイヌの大槽または側脳室に投与されたGFPレポーター遺伝子を発現するAAV9ベクターの分布を比較した。ベクター(1.8×1013ゲノムコピー)の大槽への1mLの単回注入によって3匹のイヌを処理した。追加の3匹のイヌは側脳室への同じベクターの単回ベクター注入を受けた。ICV注入によって処理したイヌについてはベースラインMRIを行って注入のためのさらに大きな側脳室を選択し、目標座標を定義する。定位固定枠を用いて注入を行い、指定された脳室を正確に標的とした。
ICベクター注入で処理した3匹のイヌは研究全体にわたって健常に見えた。ベクターの生体分布及び導入遺伝子の発現を評価するためにベクター注入の2週間後、それらを安楽死させた。IC処理したイヌでは、肉眼で、または顕微鏡で脳の病変は観察されなかった(図14)。定量的PCRによるベクターゲノムの測定は脳の採取した領域及び脊髄すべての全体を通してベクターの沈着を明らかにした(図15)。ベクターゲノムの分布と一致して、大脳皮質のほとんどの領域と同様に脊髄全体にわたって導入遺伝子の強力な発現が検出できた。脊髄の組織学はアルファ運動ニューロンの強い形質導入について顕著であり、形質導入の勾配は胸椎及び腰椎のセグメントをより好んだ。
ICV注入のベクターで処理した3匹のイヌは当初、処置に続いて健常に見えた。しかしながら、1匹の動物(I−567)は注入の12日後死体で見つかった。1匹の動物(I−565)は安楽死の前に混迷状態になり、他方(I−568)は顔面筋の衰弱を示し始めたが、この2匹は指定された14日目の剖検の時点まで生き延びた。これらの臨床的知見は有意な肉眼的な脳の病変に相関した。3匹の動物すべてに由来する脳は、死体で見つかった動物における関連する出血と共に、針跡周囲の変色を示した。組織学的な評価は注入部位周辺の領域での重度なリンパ球性炎症を明らかにした。血管周囲のリンパ球の浸潤も各動物の脳全体にわたって観察された。免疫毒性についてのこの証拠を考えると、AAV9カプシドタンパク質及びGFP導入遺伝子の双方に対するT細胞応答は、剖検の際にICV処理イヌの1匹(I−565)から採取した末梢血試料で評価された。インターフェロンガンマELISPOTはGFPに対して向けられた強力なT細胞応答を示したが、カプシドペプチドに対する応答の証拠はなかった。このことは観察された脳炎が導入遺伝子産物に対する細胞介在性の免疫応答によって引き起こされたことを示唆している。
脊髄での形質導入はICコホートにおいて幾分多かったが、ICVで処理した動物におけるベクターの分布はIC処理群で見られたものと類似した(図15)。GFPの発現はICVで処理した動物で調べたCNSの領域全体にわたって観察された。
GFPを発現しているAAV9ベクターのICV投与に関連する毒性は導入遺伝子産物に対する免疫応答に一致した。そのような免疫応答は、GFP導入遺伝子が全体として異物であるので特に深刻であり得る;動物は内在性タンパク質に類似する導入遺伝子に対してさらに免疫的に寛容であってもよい。
2.NHPにおける腰椎穿刺によるAAV9投与の後のCNSの形質導入に対するトレンデレンブルグ体位の効果
我々は以前、NHPの大槽または腰椎槽へのAAV9の注入を比較し、腰椎経路は脊髄を標的とするのに10倍効率が低く、脳を標的とするのに100倍効率が低いことを見いだした[C.Hinderer,et al,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1]。その後、他の研究者が、腰椎穿刺によるAAV9の投与を用いたさらに良好な形質導入を実証し、ベクターの頭蓋分布の改善は注入後、動物をトレンデレンブルグ体位に置くことによって達成された[Myer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Oct,31,2014]。このアプローチでは、ベクターは過剰容量の造影剤に希釈され、溶液の密度を高め、トレンデレンブルグにある間、重力が推進する分布を促進する。L3−4間隙にてGFPを発現するAAV9(2×1013ゲノムコピー)の単回注入で6匹の成熟カニクイザルを処理した。ベクターは最終容量5mLのイオヘキソール180造影剤に希釈した。動物のうち4匹は、注入直後の10分間、処置台の頭側を−30度の角度の状態で置いた。10分後、蛍光透視画像を捕捉してCSFにおける造影剤分布を検証した。とりわけ、この大きな注入容量(動物のCSF総容量のおよそ40%)[Reiselbach,et al,New England Journal of Medicine.1962;267(25):1273−1278]に伴って、トレンデレンブルグ体位に置かれていない動物においてでさえ造影剤は脊髄クモ膜下腔に沿って及び基底槽の中に迅速に分布した(図18)。PCRによるベクターゲノムの分布(図19)及びGFP発現(図20)の解析は脳及び脊髄の全体にわたる形質導入を実証した。形質導入された細胞の数または分布に対する注入後位置決めの明らかな効果はなかった。以前報告されたように、髄内のAAV投与の後、末梢及び肝形質導入へのベクター逃避があった[Hinderer,et al,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1;Haurigot,et al,Journal of Clinical Investigation.Aug,2013;123(8):3254−3271]。肝臓形質導入の程度はAAV9に対する既存の中和抗体(NAb)の存在に依存する。6匹の動物のうち4匹は検出できるベースラインのAAV9のNAb(<1.5の力価)を有さず、2匹の動物(4051及び07−11)は1:40の力価でAAV9に対する検出できる既存の抗体を有した。以前の結果に一致して、既存の抗体は肝臓形質導入を阻止し、脾臓へのベクターの分布の増加を生じた[Wang,et al,Human gene therapy.Nov,2011;22(11):1389−1401,but had no impact on CNS transduction;Haurigot,et al,Journal of Clinical Investigation.Aug,2013;123(8):3254−3271]。
C.考察
後頭下穿刺法は臨床現場では一般的な手順ではないので、我々は、側脳室及び腰椎槽を含むCSFアクセスのさらに日常的な部位を評価した。ここで、我々は、高い密度のベクター溶液と注入後のトレンデレンブルグ体位とを採用して腰椎領域から頭蓋へのベクターの分布を改善する方法を評価した。
イヌの研究では、IC及びICVのベクター注入は双方とも似たように有効なベクターの分布を生じたが、ICV群でのみ脳炎が発生した。GFP導入遺伝子に対するT細胞応答はICVで処理したイヌでのみ検出できたということは、これらの動物で見られたリンパ球性脳炎は導入遺伝子に特異的な免疫応答のせいだったことを示唆している。新しい抗原に対するT細胞応答の誘導は、2つの要素―ナイーブT細胞によるタンパク質に由来するエピトープの認識と、T細胞の活性化を促進する炎症性の「危険シグナル」とを必要とする。AAVは自然免疫系を活性化せず、それによって炎症性シグナルを回避し、ナイーブリンパ球が新しく発現された抗原に遭遇する際に免疫ではなく寛容を促進するので、AAVは導入遺伝子産物に対する免疫を引き出すことなく外来性導入遺伝子を発現することができると考えられている。脳実質に浸透し、外来性導入遺伝子産物が発現される同じ位置で発生する外傷によって引き起こされる局所の炎症は、導入遺伝子産物に対する免疫応答を誘導するのに必要とされる危険シグナルを提供してもよい。このことは、IC注入ではなく、脳への直接注入によって送達されるAAVベクターから発現される酵素に対する細胞介在性免疫応答を発生するMPS Iイヌにおける以前の研究によって支持されている[Ciron,et al,Annals of Neurology.Aug,2006;60(2):204−213;Hinderer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Aug,2015;23(8):1298−1307]。そのような免疫応答についての潜在力は、導入遺伝子産物が異物として認識されるかどうかに左右され―内在性にも産生されるタンパク質を発現するベクターの送達については、注入によって引き起こされる炎症反応でさえも自己タンパク質に対する寛容を壊さないかもしれない。同じことは、導入遺伝子産物に類似するタンパク質の産生を可能にするミスセンス変異を運ぶ劣性疾患の患者について真実であってもよい。従って、免疫のリスクは、患者集団及び導入遺伝子産物に応じて変化し、場合によっては導入遺伝子に対する破壊的なT細胞応答を防ぐのに免疫抑制が必要であってもよい。本知見は、有害な免疫応答のリスクは投与のICV経路ではなくIC経路を用いて軽減されそうであり得ることを示唆している。
NHPにおける腰椎穿刺を介したAAV9投与の研究は、我々が投与のこの経路で以前観察したものより大きなCNS全体にわたる形質導入を示した。この差異は、ベクターを過剰容量の造影剤に希釈するために必要だった、本研究における大きな注入容量のせいであると思われる。以前の研究は、そのような大きな注入容量(CSF容量のおよそ40%)が注入された物質をサルの基底槽及びさらに脳室CSFの中に直接入れることができることを示している[Reiselbach,上記で引用]。このアプローチを再現することは、患者に日常的には投与されない極端に大きな注入容量(>60mL)を必要とすることを考えると、このアプローチをヒトに転換する可能性は不明である。さらに、この高容量のアプローチによったとしても、腰椎穿刺を介した注入はIC送達による以前の成績よりも効率が低かった。この以前の研究では、動物は体重によって投与されたので、1匹の動物だけがここで使用されたものと同等のICベクター投与を受けた[Hinderer,et al,Molecular Therapy−Methods & Clinical Development.12/10/online,2014;1]。その動物が脳及び脊髄にて平均で3倍多いベクターの分布を有していたということは、腰椎槽への非常に大きな容量のベクター送達でさえIC送達よりも効率が低いことを示している。文献での報告とは対照的に、我々は腰椎へのベクター注入後に動物をトレンデレンブルグ体位に置くことに対する追加の利益を見いださなかった[Meyer,et al,Molecular therapy:the journal of the American Society of Gene Therapy.Oct,31,2014]。
まとめて、これらの知見は、このアプローチが腰椎穿刺を介した投与よりも効率的なベクターの分布を達成しているので大槽のレベルでのベクターの投与を支持し、ICV投与よりも導入遺伝子産物に対する免疫のリスクが少ないと思われる。大槽へのベクターの送達は、前臨床試験で使用された後頭下穿刺のアプローチを用いて臨床的に実施され得る。さらに、側面アプローチ(C1−2穿刺)を用いた第1頸椎と第2頸椎の間のクモ膜下腔への注入は、大槽への注入部位の近傍を考えると類似のベクター分布を生じる可能性がある。C1−2のアプローチは、後頭下穿刺法とは異なってそれはCSFのアクセスに、特に造影剤の髄内投与に臨床的に広く使用されるという追加の利点を有する。
本出願は、2018年1月11日に出願された米国特許出願番号62/616,106、2017年7月10日に出願された米国特許出願番号62/530,614、2017年7月6日に出願された米国特許出願番号62/529,385のように参照によって本明細書に組み入れられる配列表を含有する。本明細書で引用されている出版物、特許及び特許出願はすべて、それぞれの出版物、特許及び特許出願が具体的に且つ個々に参照によって組み入れられるように指示されたかのようにその全体が参照によって本明細書に組み入れられる。前述の本発明は理解の明瞭さの目的で説明及び例示のために少し詳しく記載されているが、添付のクレームの精神または範囲から逸脱することなく特定の変更及び改変をそれらに対して行うことができることは、本発明の教示の観点から当業者には容易に明らかであろう。

(配列表フリーテキスト)
以下の情報は数的識別子<223>のもとで配列を含有するフリーテキストのために提供される。

Claims (38)

  1. ヒト患者におけるα−L−イズロニダーゼ欠損症の治療に有用な治療レジメンであって、前記レジメンは:
    (a)AAV9カプシド、及び患者においてその発現を指令する調節性配列の制御下にあるヒトα−L−イズロニダーゼ(hIDUA)をコードする配列を含む核酸であって、ヒトhIDUAコード配列が、機能的hIDUAをコードする配列番号1のヌクレオチド配列または配列番号1と少なくとも約80%同一である配列を有する、核酸を有する組換えAAV(rAAV);
    (b)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤;並びに
    (c)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤を患者に投与することを含み、
    少なくとも1の免疫抑制剤の投与は、AAVベクターの送達の前または同日に開始し;
    少なくとも1の前記免疫抑制剤の投与は、ベクター投与後少なくとも8週間継続する、レジメン。
  2. 前記患者は最初に静脈内ステロイド、続いて経口ステロイドが投与される、請求項1に記載のレジメン。
  3. 免疫抑制剤は、1つ以上のコルチコステロイド、及び任意に、ミコフェノール酸モフェチル(MMF)、及び/または1つ以上のマクロライドである、請求項1または請求項2に記載のレジメン。
  4. 前記1つ以上のマクロライドは、テムシロリムスまたはシロリムスを含む、請求項1〜3のいずれか1項に記載のレジメン。
  5. ステロイドの前記患者への投与が、ベクター投与の12週間後に中止される、請求項2〜4のいずれか1項に記載のレジメン。
  6. ミコフェノール酸モフェチル(MMF)及びタクロリムスが、ベクター投与前に0〜15日間送達される、請求項1〜5のいずれか1項に記載のレジメン。
  7. 前記免疫抑制剤がミコフェノール酸モフェチル(MMF)及びシロリムスである、請求項1〜5のいずれか1項に記載のレジメン。
  8. 前記免疫抑制剤がタクロリムス及びシロリムスの両方を含む場合、各々の低用量を使用して、約4ng/mL〜約8ng/mL、または合計約8ng/mL〜約16ng/mLの血液トラフレベルを維持する、請求項1〜6のいずれか1項に記載のレジメン。
  9. 前記免疫抑制剤がタクロリムスまたはシロリムスの一方のみを含む場合、総用量が約16ng/mL〜約24ng/mLの範囲である、請求項1〜7のいずれか1項に記載のレジメン。
  10. タクロリムスまたはシロリムスの一方のみが使用され、初期負荷用量が約3mg/m2である、請求項1〜9のいずれか1項に記載のレジメン。
  11. 免疫抑制療法が、ベクター投与前の約−14日目〜−1日目に開始される、請求項1〜10のいずれか1項に記載のレジメン。
  12. 前記コードされたhIDUAが、
    (a)配列番号2(Genbank NP_000193)のアミノ酸約1〜約653;及び
    (b)配列番号2の約アミノ酸27〜約653に融合した異種リーダー配列を含む合成ヒト酵素
    から選択される配列を有する、請求項1〜11のいずれか1項に記載のレジメン。
  13. 前記核酸配列が、5’逆方向末端反復(ITR)配列、ニワトリβアクチンイントロン、CB7プロモータ、ポリAシグナル、及び/または3’ITR配列をさらに含む、請求項1〜12のいずれか1項に記載のレジメン。
  14. 前記rAAVが6〜9のpHを有する懸濁液中にある、請求項1〜13のいずれか1項に記載のレジメン。
  15. 前記rAAVが髄内注入を介して送達される、請求項14に記載のレジメン。
  16. hIDUA遺伝子を含むrAAVを静脈内に共投与することをさらに含む、請求項15に記載のレジメン。
  17. 治療の有効性が、任意に聴覚脳幹試験によって、聴覚能力変化を測定することによって評価される、請求項1〜16のいずれか1項に記載のレジメン。
  18. rAAVが、ヒト対象への髄内注入のために製剤化されて;
    (i)≧4ヶ月齢〜<9ヶ月齢のヒト対象に対する約1.2×1012〜約6.0×1012GCもしくは約6.0×1012〜約3.0×1013GC;
    (ii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に対する約2×1012〜約6.0×1013もしくは約1.0×1013〜約5.0×1013GC;または
    (iii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に対する約2.2×1012〜約1.1×1013GCもしくは約1.1×1013〜約5.5×1013GC;
    の総平坦用量を投与する、請求項1〜17のいずれか1項に記載のレジメン。
  19. ヒトα−L−イズロニダーゼ(hIDUA)をコードする異種核酸を含む組換えAAVベクターを含む組成物であって、ヒトhIDUAコード配列が、機能的hIDUAをコードする配列番号1または配列番号1と少なくとも約80%同一である配列を有し、AAVベクターが、それを必要とするヒト対象への髄内注入のために製剤化されて:
    (a)≧4ヶ月齢〜<9ヶ月齢のヒト対象に対する約1.2×1012〜約6.0×1012GCもしくは約6.0×1012〜約3.0×1013GC;
    (b)≧9ヶ月齢〜<18ヶ月齢のヒト対象に対する約2×1012〜約6.0×1013もしくは約1.0×1013〜約5.0×1013GC;または
    (c)≧9ヶ月齢〜<18ヶ月齢のヒト対象に対する約2.2×1012〜約1.1×1013GCもしくは約1.1×1013〜約5.5×1013GC;
    の総平坦用量を投与する、組成物。
  20. (i)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤:及び
    (ii)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤、
    との共療法における使用であって、
    免疫抑制剤の投与は、AAVベクターの送達の前または同日に開始し;
    免疫抑制剤の少なくとも一方の投与は、ベクター投与後少なくとも8週間継続する、
    使用のための、請求項19に記載の組成物。
  21. ヒトα−L−イズロニダーゼ(hIDUA)をコードする異種核酸を含む組換えAAVベクターとの併用療法における使用のための免疫抑制剤であって、前記ヒトhIDUAコード配列が、機能的hIDUAをコードする配列番号1または配列番号1と少なくとも約80%同一である配列を有し、
    前記免疫抑制剤が;(a)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第1の免疫抑制剤;及び(b)グルココルチコイド、ステロイド、代謝拮抗剤、T細胞阻害剤、マクロライド、または細胞増殖抑制剤のうちの少なくとも1つから選択される少なくとも第2の免疫抑制剤を含み、
    前記免疫抑制剤の投与は、AAVベクターの送達の前または同日に開始し;前記免疫抑制剤の少なくとも一方の投与は、ベクター投与後少なくとも8週間継続する、免疫抑制剤。
  22. 前記AAVベクターが、それを必要とするヒト対象への髄内注入のために製剤化されて:
    (i)≧4ヶ月齢〜<9ヶ月齢のヒト対象に対する約1.2×1012〜約6.0×1012GCもしくは約6.0×1012〜約3.0×1013GC;
    (ii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に対する約2×1012〜約6.0×1013GCもしくは約1.0×1013〜約5.0×1013GC;または
    (iii)≧9ヶ月齢〜<18ヶ月齢のヒト対象に対する約2.2×1012〜約1.1×1013GCもしくは約1.1×1013〜約5.5×1013GC、
    の総平坦用量を投与する、請求項21に記載の免疫抑制剤。
  23. 前記免疫抑制剤が、ベクター送達前に患者に投与可能な静脈内ステロイドと、ベクター送達後に患者に投与可能な経口ステロイドとを含む、請求項19もしくは20に記載の組成物、または請求項21もしくは22に記載の免疫抑制剤。
  24. 免疫抑制剤が、1つ以上のコルチコステロイド、及び任意に、ミコフェノール酸モフェチル(MMF)及び/または1つ以上のマクロライドである、請求項20に記載の組成物、または請求項21もしくは22に記載の免疫抑制剤。
  25. 前記1つ以上のマクロライドがテムシロリムスまたはシロリムスを含む、請求項24に記載の組成物または請求項24に記載の免疫抑制剤。
  26. 前記患者へのステロイドの投与が、ベクター投与の12週間後に中止される、請求項23〜25のいずれか1項に記載の組成物または免疫抑制剤。
  27. ミコフェノール酸モフェチル(MMF)及びタクロリムスが、ベクター投与前0〜15日間送達される、請求項23〜26のいずれか1項に記載の組成物または免疫抑制剤。
  28. 前記免疫抑制剤がミコフェノール酸モフェチル(MMF)及びシロリムスである、請求項23〜26のいずれか1項に記載の組成物または免疫抑制剤。
  29. 前記免疫抑制剤がタクロリムス及びシロリムスの両方を含む場合、各々の低用量を使用して、約4ng/mL〜約8ng/mL、または合計約8ng/mL〜約16ng/mLの血液トラフレベルを維持する、請求項23〜26のいずれか一項に記載の組成物または免疫抑制剤。
  30. 前記免疫抑制剤がタクロリムスまたはシロリムスの一方のみを含み、総用量が約16ng/mL〜約24ng/mLの範囲である、請求項20〜28のいずれか1項に記載の組成物または免疫抑制剤。
  31. タクロリムスまたはシロリムスの一方のみが使用され、初期負荷用量が約3mg/m2である、請求項30に記載の組成物または免疫抑制剤。
  32. 前記免疫抑制療法が、ベクター投与前の約−14日目〜−1日目に開始される、請求項20〜30のいずれか一項に記載の組成物または免疫抑制剤。
  33. 前記コードされたhIDUAが:
    (a)配列番号2(Genbank NP_000193)のアミノ酸約1〜約653;及び
    (b)配列番号2の約アミノ酸27〜約653に融合した異種リーダー配列を含む合成ヒト酵素
    から選択される配列を有する、請求項19、20または23〜31のいずれか1項に記載の組成物または請求項20〜31のいずれか1項に記載の免疫抑制剤。
  34. 前記核酸配列が、5’逆方向末端反復(ITR)配列、ニワトリβアクチンイントロン、CB7プロモータ、ポリAシグナル、及び/または3’ITR配列をさらに含む、請求項19、20または23〜31のいずれか1項に記載の組成物または請求項21〜32のいずれか1項に記載の免疫抑制剤。
  35. 前記rAAVが6〜9のpHを有する懸濁液中にある、請求項19、20または23〜31のいずれか1項に記載の組成物または請求項21〜32のいずれか1項に記載の免疫抑制剤。
  36. 前記rAAVが髄内注入を介して送達される、請求項35に記載の組成物または請求項35に記載の免疫抑制剤。
  37. 前記hIDUA遺伝子を含むrAAVを静脈内に共投与することをさらに含む、請求項19、20もしくは23〜36のいずれか1項に記載の組成物または請求項21〜36のいずれか1項に記載の免疫抑制剤。
  38. 治療の有効性が、任意に聴覚脳幹試験によって、聴覚能力変化を測定することによって評価される、請求項19、20もしくは23〜36のいずれか1項に記載の組成物または請求項21〜36のいずれか1項に記載の免疫抑制剤。
JP2020500131A 2017-07-06 2018-07-05 ムコ多糖症i型を治療するための遺伝子治療 Pending JP2020526514A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023108011A JP2023123760A (ja) 2017-07-06 2023-06-30 ムコ多糖症i型を治療するための遺伝子治療

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762529385P 2017-07-06 2017-07-06
US62/529,385 2017-07-06
US201762530614P 2017-07-10 2017-07-10
US62/530,614 2017-07-10
US201862616106P 2018-01-11 2018-01-11
US62/616,106 2018-01-11
PCT/US2018/040957 WO2019010335A1 (en) 2017-07-06 2018-07-05 AAV9 MEDIATED GENE THERAPY FOR TREATING MUCOPOLYSACCHARIDOSIS TYPE I

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023108011A Division JP2023123760A (ja) 2017-07-06 2023-06-30 ムコ多糖症i型を治療するための遺伝子治療

Publications (2)

Publication Number Publication Date
JP2020526514A true JP2020526514A (ja) 2020-08-31
JP2020526514A5 JP2020526514A5 (ja) 2021-08-12

Family

ID=63036365

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020500131A Pending JP2020526514A (ja) 2017-07-06 2018-07-05 ムコ多糖症i型を治療するための遺伝子治療
JP2023108011A Pending JP2023123760A (ja) 2017-07-06 2023-06-30 ムコ多糖症i型を治療するための遺伝子治療

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023108011A Pending JP2023123760A (ja) 2017-07-06 2023-06-30 ムコ多糖症i型を治療するための遺伝子治療

Country Status (11)

Country Link
US (1) US11890329B2 (ja)
EP (1) EP3676385A1 (ja)
JP (2) JP2020526514A (ja)
KR (1) KR20200053468A (ja)
AU (1) AU2018298133A1 (ja)
BR (1) BR112020000063A2 (ja)
CA (1) CA3068328A1 (ja)
IL (1) IL271780A (ja)
MA (1) MA50016A (ja)
SG (1) SG11201912631PA (ja)
WO (1) WO2019010335A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11201507507PA (en) 2013-03-15 2015-10-29 Univ Pennsylvania Compositions and methods for treating mpsi
WO2017136500A1 (en) 2016-02-03 2017-08-10 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type i
CA3068328A1 (en) * 2017-07-06 2019-01-10 The Trustees Of The University Of Pennsylvania Aav9-mediated gene therapy for treating mucopolysaccharidosis type i
CA3076036A1 (en) 2017-09-22 2019-03-28 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type ii
JP2022553406A (ja) * 2019-10-23 2022-12-22 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア 導入遺伝子発現のdrg特異的低減のための組成物
AU2021211416A1 (en) * 2020-01-22 2022-08-11 Regenxbio Inc. Treatment of mucopolysaccharidosis I with fully-human glycosylated human alpha-L-iduronidase (IDUA)
CA3190864A1 (en) * 2020-08-10 2022-02-17 Prevail Therapeutics, Inc. Gene therapies for neurodegenerative disorders
WO2022035903A2 (en) * 2020-08-10 2022-02-17 Prevail Therapeutics, Inc. Gene therapies for lysosomal disorders
EP4284335A1 (en) 2021-02-01 2023-12-06 RegenxBio Inc. Gene therapy for neuronal ceroid lipofuscinoses
EP4288556A1 (en) * 2021-02-05 2023-12-13 Regents of the University of Minnesota Methods for preventing cardiac or skeletal defects in diseases including mucopolysaccharidoses
WO2022178419A1 (en) * 2021-02-22 2022-08-25 Decibel Therapeutics, Inc. Methods and compositions for reducing nucleic acid vector-induced toxicity in the inner ear

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164723A1 (en) * 2014-04-25 2015-10-29 The Trustees Of The University Of Pennsylvania Methods and compositions for treating metastatic breast cancer and other cancers in the brain
WO2016187017A1 (en) * 2015-05-15 2016-11-24 Mcivor R Scott Adeno-associated for therapeutic delivery to central nervous system
WO2017024198A1 (en) * 2015-08-06 2017-02-09 The Trustees Of The University Of Pennsylvania Glp-1 and use thereof in compositions for treating metabolic diseases
WO2017040524A1 (en) * 2015-08-31 2017-03-09 The Trustees Of The University Of Pennsylvania Aav-epo for treating companion animals

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993010244A1 (en) 1991-11-14 1993-05-27 Women's And Children's Hospital Synthetic alpha-l-iduronidase and genetic sequences encoding same
US6149909A (en) 1995-06-23 2000-11-21 Women's And Children's Hospital Synthetic α-L-iduronidase and genetic sequences encoding same
US5478745A (en) 1992-12-04 1995-12-26 University Of Pittsburgh Recombinant viral vector system
CA2264482A1 (en) 1996-09-06 1998-03-12 The Trustees Of The University Of Pennsylvania An inducible method for production of recombinant adeno-associated viruses utilizing t7 polymerase
WO1999058691A2 (en) 1998-05-13 1999-11-18 Harbor-Ucla Recombinant (alpha)-l-iduronidase, methods for producing and purifying the same and methods for treating diseases caused by deficiencies thereof
PT1204739E (pt) 1999-08-09 2008-11-17 Targeted Genetics Corp Aumento da expressão de uma sequência nucleotídica heteróloga de cadeia simples a partir de vectores virais recombinantes por concepção da sequência de maneira que esta forme pares de bases intracadeia
US6426208B1 (en) 1999-11-12 2002-07-30 Harbor-Ucla Research And Education Institute Recombinant α-L-iduronidase, methods for producing and purifying the same and methods for treating diseases caused by deficiencies thereof
RU2196988C2 (ru) 2000-04-19 2003-01-20 Государственный новосибирский областной клинический диагностический центр Способ диагностики мукополисахаридозов
WO2002002597A2 (en) 2000-06-30 2002-01-10 Maxygen Aps Peptide extended glycosylated polypeptides
CA2864537C (en) 2001-11-13 2016-11-29 The Trustees Of The University Of Pennsylvania A method of detecting and/or identifying adeno-associated virus (aav) sequences and isolating novel sequences identified thereby
DK1453547T3 (en) 2001-12-17 2016-12-05 Univ Pennsylvania ADENOASSOCATED VIRUS (AAV) SEROTYPE 8 SEQUENCES, VECTORS CONTAINING THESE AND APPLICATIONS THEREOF
AU2003302724A1 (en) 2002-08-13 2004-07-09 Mcivor, Scott, R. Methods of using vectors to treat metabolic disorders
US7155804B2 (en) 2003-09-17 2007-01-02 Moog Inc. Method of forming an electric motor
HUE033158T2 (en) 2003-09-30 2017-11-28 Univ Pennsylvania Adeno-associated virus (AAV) clusters, sequences, vectors containing them, and their use
EP3603676A1 (en) 2005-04-07 2020-02-05 The Trustees of the University of Pennsylvania Method of increasing the function of an aav vector
WO2006132118A1 (ja) 2005-06-09 2006-12-14 Matsushita Electric Industrial Co., Ltd. 振幅誤差補償装置及び直交度誤差補償装置
US7588772B2 (en) 2006-03-30 2009-09-15 Board Of Trustees Of The Leland Stamford Junior University AAV capsid library and AAV capsid proteins
US20090062144A1 (en) 2007-04-03 2009-03-05 Nancy Lan Guo Gene signature for prognosis and diagnosis of lung cancer
US9415121B2 (en) 2008-12-19 2016-08-16 Nationwide Children's Hospital Delivery of MECP2 polynucleotide using recombinant AAV9
MX2012005340A (es) 2009-11-05 2012-12-05 Proyecto Biomedicina Cima Sl Sistemas de expresion regulada.
JP5922095B2 (ja) 2010-03-29 2016-05-24 ザ・トラステイーズ・オブ・ザ・ユニバーシテイ・オブ・ペンシルベニア 薬理学的に誘導される導入遺伝子アブレーション系
DK2561073T3 (en) 2010-04-23 2016-12-12 Univ Massachusetts Aav vectors targeted to central nervous system and methods of use thereof
US8927514B2 (en) 2010-04-30 2015-01-06 City Of Hope Recombinant adeno-associated vectors for targeted treatment
EP2394667A1 (en) 2010-06-10 2011-12-14 Laboratorios Del Dr. Esteve, S.A. Vectors and sequences for the treatment of diseases
SG10201601110VA (en) 2011-02-17 2016-03-30 Univ Pennsylvania Compositions and methods for altering tissue specificity and improving aav9-mediated gene transfer
SG10202110919YA (en) 2011-04-22 2021-11-29 Univ California Adeno-associated virus virions with variant capsid and methods of use thereof
DK2872625T3 (en) 2012-07-11 2017-02-06 Sangamo Biosciences Inc METHODS AND COMPOSITIONS FOR TREATING LYSOSOMAL STORAGE DISEASES
WO2014125647A1 (ja) 2013-02-18 2014-08-21 富士通オプティカルコンポーネンツ株式会社 光受信装置
SG11201507507PA (en) 2013-03-15 2015-10-29 Univ Pennsylvania Compositions and methods for treating mpsi
CA2912678C (en) 2013-05-15 2023-10-10 Regents Of The University Of Minnesota Adeno-associated virus mediated gene transfer to the central nervous system
EP3007729B1 (en) 2013-06-11 2019-07-24 Portage Pharmaceuticals Ltd. Structure, manufacturing and uses of human-derived cell-permeable peptides conjugated with specific biologically active cargo peptides
ES2739288T3 (es) 2013-09-13 2020-01-30 California Inst Of Techn Recuperación selectiva
CN113667696A (zh) 2014-09-24 2021-11-19 希望之城 用于高效基因组编辑的腺相关病毒载体变异体和其方法
AU2015330092A1 (en) * 2014-10-06 2017-04-13 Arthrogen B.V. AAV-based gene therapy
WO2017024204A1 (en) 2015-08-06 2017-02-09 Academia Sinica Engineered enzyme for enzyme replacement therapy
SG11201803218PA (en) * 2015-10-23 2018-05-30 Univ Iowa Res Found Methods for treating neurodegenerative diseases using gene therapy to delay disease onset and progression while providing cognitive protection
ES2918998T3 (es) 2015-12-11 2022-07-21 Univ Pennsylvania Método de purificación escalable para AAVrh10
WO2017160360A2 (en) 2015-12-11 2017-09-21 The Trustees Of The University Of Pennsylvania Scalable purification method for aav9
US11015174B2 (en) 2015-12-11 2021-05-25 The Trustees Of The University Of Pennsylvania Scalable purification method for AAV8
WO2017100674A1 (en) 2015-12-11 2017-06-15 The Trustees Of The University Of Pennsylvania Scalable purification method for aav1
US20170202931A1 (en) * 2016-01-15 2017-07-20 Sangamo Therapeutics, Inc. Methods and compositions for the treatment of neurologic disease
WO2017136500A1 (en) 2016-02-03 2017-08-10 The Trustees Of The University Of Pennsylvania Gene therapy for treating mucopolysaccharidosis type i
WO2018093925A1 (en) 2016-11-15 2018-05-24 Laoharawee Kanut Method for improving neurological function in mpsi and mpsii and other neurological disorders
KR20190109506A (ko) 2017-01-31 2019-09-25 리젠엑스바이오 인크. 완전히-인간 글리코실화된 인간 알파-l-이두로니다아제(idua)를 이용한 뮤코다당증 1형의 치료
CA3068328A1 (en) 2017-07-06 2019-01-10 The Trustees Of The University Of Pennsylvania Aav9-mediated gene therapy for treating mucopolysaccharidosis type i
CA3106651A1 (en) 2018-07-18 2020-01-23 Stephen YOO Treatment of mucopolysaccharidosis i with fully-human glycosylated human alpha-l-iduronidase (idus)
AU2021211416A1 (en) 2020-01-22 2022-08-11 Regenxbio Inc. Treatment of mucopolysaccharidosis I with fully-human glycosylated human alpha-L-iduronidase (IDUA)
EP4288556A1 (en) 2021-02-05 2023-12-13 Regents of the University of Minnesota Methods for preventing cardiac or skeletal defects in diseases including mucopolysaccharidoses

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164723A1 (en) * 2014-04-25 2015-10-29 The Trustees Of The University Of Pennsylvania Methods and compositions for treating metastatic breast cancer and other cancers in the brain
WO2016187017A1 (en) * 2015-05-15 2016-11-24 Mcivor R Scott Adeno-associated for therapeutic delivery to central nervous system
WO2017024198A1 (en) * 2015-08-06 2017-02-09 The Trustees Of The University Of Pennsylvania Glp-1 and use thereof in compositions for treating metabolic diseases
WO2017040524A1 (en) * 2015-08-31 2017-03-09 The Trustees Of The University Of Pennsylvania Aav-epo for treating companion animals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NEUROBIOL DIS., vol. 43, no. 1, JPN6023008095, 2011, pages 123 - 133, ISSN: 0005002634 *

Also Published As

Publication number Publication date
CA3068328A1 (en) 2019-01-10
IL271780A (en) 2020-02-27
AU2018298133A1 (en) 2020-01-23
EP3676385A1 (en) 2020-07-08
BR112020000063A2 (pt) 2020-07-14
WO2019010335A1 (en) 2019-01-10
MA50016A (fr) 2020-07-08
SG11201912631PA (en) 2020-01-30
JP2023123760A (ja) 2023-09-05
US11890329B2 (en) 2024-02-06
KR20200053468A (ko) 2020-05-18
US20200147185A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
US20240024510A1 (en) Gene therapy for treating mucopolysaccharidosis type i
US11890329B2 (en) AAV9-mediated gene therapy for treating mucopolysaccharidosis type I
US20220125949A1 (en) Gene therapy for treating mucopolysaccharidosis type ii
US20240016903A1 (en) Gene therapy for treating mucopolysaccharidosis type ii
TWI835747B (zh) 用於治療黏多醣病 ii 型之基因治療

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210629

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221226

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230301