JP2020522728A - Flexible component with a layered structure having a metal layer - Google Patents

Flexible component with a layered structure having a metal layer Download PDF

Info

Publication number
JP2020522728A
JP2020522728A JP2019561901A JP2019561901A JP2020522728A JP 2020522728 A JP2020522728 A JP 2020522728A JP 2019561901 A JP2019561901 A JP 2019561901A JP 2019561901 A JP2019561901 A JP 2019561901A JP 2020522728 A JP2020522728 A JP 2020522728A
Authority
JP
Japan
Prior art keywords
layer
flexible
coated substrate
layers
mox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019561901A
Other languages
Japanese (ja)
Other versions
JP7282688B2 (en
JP2020522728A5 (en
JPWO2018204944A5 (en
Inventor
ケステンバウアー,ハラルト
ウィンクラー,イェルク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of JP2020522728A publication Critical patent/JP2020522728A/en
Publication of JP2020522728A5 publication Critical patent/JP2020522728A5/ja
Publication of JPWO2018204944A5 publication Critical patent/JPWO2018204944A5/ja
Application granted granted Critical
Publication of JP7282688B2 publication Critical patent/JP7282688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/20Metallic material, boron or silicon on organic substrates
    • C23C14/205Metallic material, boron or silicon on organic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1345Conductors connecting electrodes to cell terminals
    • G02F1/13452Conductors connecting driver circuitry and terminals of panels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • H01L27/1244Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits for preventing breakage, peeling or short circuiting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • H01L29/458Ohmic electrodes on silicon for thin film silicon, e.g. source or drain electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

1回又は繰り返しの曲げ応力、引張応力、及び/又はねじり応力を受けるフレキシブル基板上に直接又は1つ以上の中間層を介して塗布されたMo系層の層平面内での電気伝導率維持のためのCu、Ag、Au又はそれらの混合物である添加物の使用、及びフレキシブル部品とXが、Cu、Ag、Auの群から選択される1つ以上の元素であるMoXを含有する金属層を有する層構造を備えるフレキシブル被覆部品、並びにそのようなフレキシブル被覆部品の製造方法。Maintaining electrical conductivity in the plane of a Mo-based layer applied directly or through one or more intermediate layers on a flexible substrate subjected to one or repeated bending stress, tensile stress, and/or torsional stress. Use of an additive which is Cu, Ag, Au or a mixture thereof, and a flexible component and a metal layer containing MoX in which X is one or more elements selected from the group of Cu, Ag and Au. A flexible coated component having the layered structure and a method for producing such a flexible coated component.

Description

本発明は、請求項1の前提部の特徴を有するMo系層の層平面内での電気伝導率維持のための添加物の使用、請求項2の前提部の特徴を有するフレキシブル被覆部品、及び請求項20の前提部の特徴を有するフレキシブル被覆部品の製造方法に関する。 The invention relates to the use of an additive for maintaining the electrical conductivity in the plane of a Mo-based layer having the features of the preamble of claim 1, a flexible coated component having the features of the preamble of claim 2, and A method of manufacturing a flexible coated component having the features of the premise of claim 20.

フレキシブル部品の分野における技術的進歩は、薄膜材料分野での進歩と密接に関連している。特に、この進歩は、電子工学、特に、電子(ディスプレイ画面)、例えば、液晶表示装置(液晶ディスプレイ画面:TFT−LCD)、AM−OLED(アクティブマトリックス有機発光ダイオード)又はマイクロLED(発光ダイオード)ディスプレイ画面のアクティブ制御のための構造の一部(アクティブマトリックス)としての、例えば、薄膜トランジスタ(TFT)等の薄膜部品の分野でのさらなる発展を可能にする。アクティブマトリックス構造は、別の用途、例えば、X線放射のためのセンサアレイにおいても使用することができる。これらの用途においては、導電体経路は、行(「ゲートライン」、「ロウ」)及び列(「信号ライン」、「行ライン」、「データライン」)としてマトリックス状に配置されている。導電体路は、電気信号、電流又は電圧をある地点から別の地点へと伝達するための導電経路を提供する。 Technological advances in the field of flexible components are closely linked to advances in the field of thin film materials. In particular, this progress has been made in electronics, especially in electronics (display screens), such as liquid crystal displays (liquid crystal display screens: TFT-LCDs), AM-OLEDs (active matrix organic light emitting diodes) or micro LED (light emitting diode) displays. It enables further development in the field of thin-film components, such as thin-film transistors (TFTs), as part of the structure for active control of the screen (active matrix). The active matrix structure can also be used in other applications, for example in sensor arrays for X-ray radiation. In these applications, the conductor paths are arranged in rows (“gate lines”, “rows”) and columns (“signal lines”, “row lines”, “data lines”) in a matrix. Conductor tracks provide a conductive path for transmitting electrical signals, currents or voltages from one point to another.

各アクティブマトリックスの行又は列は、長く細い導体路(例えば、数センチメートル〜2メートル弱までの長さ、数マイクロメートル〜数十マイクロメートルまでの幅、及び数十ナノメートル〜数百ナノメートルまでの全層厚さを有する)からなり、この導体路は、薄膜トランジスタ領域にTFTのゲート電極(「制御電極」)又はソース/ドレイン電極(「流入電極」及び「流出電極」)を形成するそれぞれ1つ以上の拡張部を有する。それらの導体路は、TFTのゲート電極又はソース/ドレイン電極と、外部接触のための接触領域(「導体パッド」)又はディスプレイ画面制御のためのゲートドライバ構造及びデータドライバ構造(行ドライバ及び列ドライバ)が配置されている基板の周辺領域に接続する。 The rows or columns of each active matrix are long and narrow conductor tracks (eg, lengths of a few centimeters to less than 2 meters, widths of a few micrometers to tens of micrometers, and tens of nanometers to hundreds of nanometers). Up to a total thickness of up to) and this conductor path forms the gate electrode (“control electrode”) or source/drain electrode (“inflow electrode” and “outflow electrode”) of the TFT in the thin film transistor area, respectively. It has one or more extensions. The conductor paths are gate electrodes or source/drain electrodes of the TFT, contact areas for external contact (“conductor pads”) or gate driver structures and data driver structures (row driver and column driver) for display screen control. ) Is connected to the peripheral area of the substrate where

アクティブマトリックス制御によって、それぞれの個々の画素(ピクセル)の輝度は、1つのTFT(例えば、TFT−LCD)又は複数のTFT(例えば、AM−OLEDディスプレイ画面)を全体にわたって個別に調節できる。この場合に、長いゲート導体路及び信号導体路に沿った電圧降下はできるだけ低いことが重要である。なぜなら、長さに依存する不要な輝度差が画素に生ずることとなるからである(人間の目は輝度差に対して非常に敏感に反応する)。 With active matrix control, the brightness of each individual pixel can be individually adjusted over a TFT (eg, TFT-LCD) or multiple TFTs (eg, AM-OLED display screen). In this case, it is important that the voltage drop along the long gate and signal conductor paths is as low as possible. This is because an unnecessary luminance difference depending on the length occurs in the pixel (the human eye reacts very sensitively to the luminance difference).

屈曲性、フレキシブル、又は回動可能な基板上に配置されているアクティブマトリックス構造の場合に、特に、長い行導体路及び列導体路は、高い変形応力及び/又は曲げ応力及び/又はねじり応力を受けている。この応力は、TFT構造内のゲート電極及びソース/ドレイン電極で空間的広がり(一般的に、数マイクロメートル〜数十マイクロメートルまでの辺長を有する矩形面)がはるかに小さいためずっと小さい。この応力により、特に、導体路材料が脆性の場合には、すぐに何桁も電気抵抗が増加する。そのため、導体路に沿って配置されたTFTは、もはや規定の電圧を均一に供給せず、ディスプレイ画面用途の場合に長さに依存する輝度差が生じることがある。極端な場合には、導体路はその電気伝導性を完全に失い、画素の全面消灯(Totalausfall)が生ずる。 Particularly in the case of active matrix structures arranged on flexible, flexible or rotatable substrates, long row and column conductor tracks exhibit high deformation and/or bending and/or torsion stresses. is recieving. This stress is much smaller because the spatial extent (generally a rectangular surface with side lengths of a few micrometers to tens of micrometers) is much smaller at the gate and source/drain electrodes in the TFT structure. This stress quickly increases the electrical resistance by many orders of magnitude, especially if the conductor track material is brittle. As a result, the TFTs arranged along the conductor tracks no longer supply a defined voltage evenly, which may lead to a length-dependent brightness difference for display screen applications. In the extreme case, the conductor track completely loses its electrical conductivity, causing a total extinction of the pixel.

特に、モバイル用途、例えば、携帯電話、タブレットPC、PDA(携帯情報端末)のためのディスプレイ画面の場合に、ディスプレイ画面基板上には、画像コンテンツの表示のための実際のユニットの他にさらに周辺電気回路が実装されている。それは、例えばゲート電極の制御用回路(ゲートドライバ)、ソース/ドレイン電極の制御回路(データドライバ)、DC−DC変換器、デジタル−アナログ変換器、タイミングコントローラ、又はバッファ回路及びインターフェイス回路である。そのようなディスプレイ画面とその制御ユニットとの組み合わせは、システムオンパネル(SOP)(ディスプレイ画面パネルに搭載されたシステム)又は基板がガラスから成る場合にはシステムオンガラス(SOG)(ガラスに搭載されたシステム)と呼ばれる。別個の筐体を含む外部集積回路(IC)として実装する代わりに、ディスプレイ画面制御のための周辺電気回路を基板上に直接配置することは有利である。基本的な利点は、低い製造コスト、低い電流消費、狭い所要スペース、及び高い信頼性である。システムオンパネルディスプレイ画面は、しばしば低温ポリシリコン(low temperature poly-Silicon)(LTPS)技術によって実現されるが、アモルファスシリコン又は金属酸化物等の別の半導体によっても可能である。基板上に配置された周辺回路の一部は、電気導体路、ゲートライン及び信号ラインを介して個々の画素のTFTと接続され、その長さは、ディスプレイ画面の大きさに応じて数mmから200cmまでである。変形、曲げ又はねじり応力を受けて導体路の抵抗変化は、ディスプレイ画面の個々の画素又は行全体若しくは列全体の消灯を防ぐために、或いはディスプレイ画面の輝度又は色の不要な差(「ムラ」)を防ぐために、できる限り小さくすべきである。 Especially in the case of display screens for mobile applications, such as mobile phones, tablet PCs, PDAs (Personal Digital Assistants), on the display screen substrate, in addition to the actual unit for displaying the image content, further surroundings An electric circuit is mounted. It is, for example, a gate electrode control circuit (gate driver), a source/drain electrode control circuit (data driver), a DC-DC converter, a digital-analog converter, a timing controller, or a buffer circuit and an interface circuit. The combination of such a display screen and its control unit is a system-on-panel (SOP) (system mounted on a display screen panel) or a system-on-glass (SOG) (mounted on glass) if the substrate consists of glass. System). Instead of being implemented as an external integrated circuit (IC) that includes a separate housing, it is advantageous to place the peripheral electrical circuits for display screen control directly on the substrate. The basic advantages are low manufacturing costs, low current consumption, small space requirements and high reliability. System-on-panel display screens are often implemented with low temperature poly-Silicon (LTPS) technology, but are also possible with amorphous silicon or another semiconductor such as a metal oxide. A part of the peripheral circuit arranged on the substrate is connected to the TFT of each pixel through the electric conductor path, the gate line and the signal line, and its length is from several mm depending on the size of the display screen. Up to 200 cm. The resistance change of the conductor path under deformation, bending or torsional stress is caused by preventing the individual pixels of the display screen or the entire row or column from being extinguished, or unwanted differences in brightness or color of the display screen (“mura”). Should be as small as possible to prevent

フレキシブル接触センサ(例えば、抵抗性センサ又は容量性センサ)もマトリックス状に配置されたx電極及びy電極を使用するが、一般的に、アクティブTFT構造を有していない。数cm〜数mまでのより大きなセンサの場合には、非常に長く細い、例えば、10cm〜100cmの長さ及び5μm〜50μmの幅を有する導体路構造が使用される。この用途の場合にも、変形、曲げ又はねじり応力受けた導体路の抵抗変化(増加)はできるだけ小さくすべきである。さもないとセンサの故障(例えば、信号対雑音比の低下による)が起こる可能性があるからである。 Flexible contact sensors (eg, resistive or capacitive sensors) also use matrix-arranged x and y electrodes, but generally do not have an active TFT structure. For larger sensors up to a few cm up to a few m, conductor track structures are used which are very long and thin, for example with a length between 10 cm and 100 cm and a width between 5 μm and 50 μm. Also in this application, the resistance change (increase) of the conductor path subjected to deformation, bending or torsional stress should be as small as possible. Otherwise, sensor failure (eg, due to reduced signal-to-noise ratio) may occur.

特許文献1(図7)において、曲げ応力を受けている導体路中の機械的応力を減らすために、非直線的、例えば、正弦曲線形、波形、矩形波形、蛇行形又はのこぎり波形の導体路構造が提案されている。亀裂伝播を防ぐために、分岐して再結合した導体路構造(上記文献中の図8c)が提案されている。しかしながら、これらの全ての構造は単純な直線導体路よりも多くのスペースを必要とし、電流は2つの地点の間で全体的により長い経路を伝わらなければならないので、さらなる電圧降下又は信号対雑音比が低下する可能性がある。 Patent Document 1 (FIG. 7), in order to reduce the mechanical stress in a conductor path under bending stress, it is non-linear, for example sinusoidal, corrugated, rectangular corrugated, meandering or sawtooth corrugated conductor. A structure is proposed. In order to prevent crack propagation, a branched and recombined conductor track structure (FIG. 8c in the above document) has been proposed. However, all of these structures require more space than simple straight conductor paths, and the current has to travel an overall longer path between the two points, thus adding additional voltage drop or signal to noise ratio. May decrease.

さらに、新たな集積化技術の開発の進歩により、電子装置とフレキシブル基板との組み合わせ、及びその結果として、よりフレキシブルの高い電子部品の製造も可能となる。問題のこの種の従来技術は、特許文献2により形成される。従来技術に関するさらなる情報については、この文献を参照されたい。 Furthermore, advances in the development of new integration technologies allow the combination of electronic devices and flexible substrates, and consequently the production of more flexible electronic components. This type of prior art in question is formed by US Pat. See this document for more information on the prior art.

国際公開第2016/032175号International Publication No. 2016/032175 オーストリア実用新案第15048号Austrian Utility Model No. 15048

本発明の目的は、1回又は繰り返しの曲げ応力、引張応力、及び/又はねじり応力を受けるフレキシブル基板上に塗布された金属層の電気伝導率維持することである。特に、本発明の目的は、フレキシブル基板上の電気導体路(金属層)である。電気導体路に沿った、すなわち層平面内での導体路の電気抵抗は、変形応力、曲げ応力又はねじり応力を受けた場合に、ほんの少し、特に、10%以下しか変化しない。 It is an object of the present invention to maintain the electrical conductivity of a metal layer applied on a flexible substrate that is subjected to single or repeated bending, tensile and/or torsional stress. In particular, the object of the invention is an electrical conductor track (metal layer) on a flexible substrate. The electrical resistance of the conductor track along the electric conductor track, that is to say in the layer plane, changes only slightly, in particular less than 10%, when subjected to deformation, bending or torsional stresses.

上記目的は、請求項1に記載の添加物の使用、請求項2に記載のフレキシブル被覆部品、及び請求項20の特徴を有するフレキシブル被覆部品の製造方法によって解決される。本発明の好適な実施形態は、従属請求項に規定されている。 The object is solved by the use of the additive according to claim 1, the flexible coated component according to claim 2 and the method for producing a flexible coated component having the features of claim 20. Preferred embodiments of the invention are defined in the dependent claims.

本発明によって、フレキシブル部品の1回又は繰り返しの曲げ応力及び/又は引張応力及び/又はねじり応力を受けた場合に、Mo系(モリブデン系の)層又は層平面内での金属層の電気伝導率維持を保証する。これは、フレキシブル部品の延性向上によって実現される。 According to the present invention, the electrical conductivity of a Mo-based (molybdenum-based) layer or a metal layer in a layer plane when subjected to one-time or repeated bending stress and/or tensile stress and/or torsion stress of a flexible component. Guarantee maintenance. This is achieved by improving the ductility of the flexible part.

請求項2に規定されたように、複数の金属層をフレキシブル基板上に設けることができる。その際、各金属層には、半導体層又は電気絶縁性層が両側に直接隣接しており、かつ金属層自体が請求項2により単層構造、2層構造又は3層構造として形成されるという制限が加えられる。 A plurality of metal layers can be provided on the flexible substrate as defined in claim 2. In that case, each metal layer is directly adjacent to the semiconductor layer or the electrically insulating layer on both sides, and the metal layer itself is formed as a single-layer structure, a two-layer structure or a three-layer structure according to claim 2. There are restrictions.

Mo系層又はMoX層は、少なくとも50重量%のMo、特に、少なくとも60重量%のMoを含有する。 The Mo-based layer or MoX layer contains at least 50% by weight Mo, in particular at least 60% by weight Mo.

MoX層は、別のXを含有するMoX部分層を有する複数のMoX部分層から構成できる。 The MoX layer may be composed of a plurality of MoX partial layers having another MoX partial layer containing X.

電気伝導率維持以外に、延性向上により機械的損傷許容性が増加する。例えば、多層複合材料の層間剥離の危険性を低下させる。 In addition to maintaining electrical conductivity, improving ductility increases tolerance for mechanical damage. For example, it reduces the risk of delamination of multilayer composites.

当然ながら、Mo系層(MoX層)は、添加物Xを除き純粋なMoである必要はないが、むしろ不純物、特に、PVD(物理的気相成長)法、中でも、スパッタリング法(陰極スパッタリング)のプロセス雰囲気に由来する不純物(例えば、Ar、O、N、C)が存在する場合がある。しかしながら、金属不純物は0.5原子%以下でなければならない。 Of course, the Mo-based layer (MoX layer) does not need to be pure Mo except for the additive X, but rather impurities, especially PVD (physical vapor deposition) method, especially sputtering method (cathode sputtering). There may be impurities (for example, Ar, O, N, C) derived from the process atmosphere. However, the metal impurities should be 0.5 atomic% or less.

上記の元素Cu、Ag、Auのうちでも、Cuが特に好ましい。本明細書では、所望の効果を達成するためには、より低い原子%で十分である。さらに、CuはAg及びAuよりもより費用対効果が良い。 Among the above elements Cu, Ag, and Au, Cu is particularly preferable. Lower atomic percentages are sufficient herein to achieve the desired effect. Moreover, Cu is more cost effective than Ag and Au.

本発明によれば、層状構造は、一方の側に直接隣接している半導体層又は電気絶縁性層を有する金属層と、他方の側に金属層に直接隣接している半導体層又は電気絶縁性層とを有する。これらの特性は、少なくともフレキシブル被覆部品のある領域において満たされている(しかしながら、フレキシブル部品、特に、フレキシブル電子部品の全ての領域で必ずしも満たされる必要はない)。さらに、可能な隣接層を以下に詳細に説明する。この場合に、「電気絶縁性」とは、電気抵抗が1メガオームより大きいことを意味すると理解すべきである。 According to the invention, the layered structure comprises a metal layer having a semiconductor layer or an electrically insulating layer directly adjacent to one side and a semiconductor layer or an electrically insulating layer directly adjacent to the metal layer on the other side. And layers. These properties are fulfilled at least in certain areas of the flexible coated component (however, not necessarily in all areas of the flexible component, in particular of the flexible electronic component). In addition, possible adjacent layers are described in detail below. In this case, "electrically insulating" should be understood to mean an electrical resistance of greater than 1 megohm.

本明細書では、フレキシビリティ及び「フレキシブル」とは、部品の使用に関連する特性に悪影響を与えることなく曲げ応力を吸収する、及び/又はそのような応力に耐える特性と理解すべきである。すなわち、十分にフレキシブルな部品は、大幅に向上した延性も有する。 As used herein, flexibility and "flexible" should be understood as the property of absorbing bending stress and/or withstanding such stress without adversely affecting the properties associated with the use of the component. That is, a sufficiently flexible component also has significantly improved ductility.

大幅に向上した延性とは、本発明の意味において、部品及び/又は当然ながら含まれる1つ又は複数の層も、亀裂発生及び亀裂成長に対して高い抵抗性を有し、亀裂がある伸びまで形成されず、又はより大きな伸びで初めて形成されるか、又は亀裂進行の変化を意味すると理解すべきである。 Significantly improved ductility means, in the sense of the present invention, that the component and/or of course also the one or more layers included are highly resistant to crack initiation and crack growth, up to the cracked elongation. It should be understood to mean either not formed, or only formed with greater elongation, or a change in crack progression.

延性及びその結果としてのフレキシビリティを説明するために、本発明の範囲においては臨界伸びを使用する。フレキシブル基板上の1つ又は複数の層の電気抵抗Rが初期状態(R/R=1.1)に対して10%だけ高くなった伸びεが、臨界伸びとして定義される。十分に高いフレキシブルな部品においては、臨界伸びεは大幅に増大しており、1つ又は複数の層の伝導性は、大幅に長く維持される。 To account for ductility and the resulting flexibility, critical elongation is used within the scope of the present invention. The elongation ε k at which the electrical resistance R of one or more layers on the flexible substrate is 10% higher than in the initial state (R/R 0 =1.1) is defined as the critical elongation. In a sufficiently high flexible part, the critical elongation ε k is greatly increased and the conductivity of one or more layers is maintained significantly longer.

フレキシブル基板とは、本発明の範囲においては、曲げ応力を加えたときに、基板上に堆積された1又は複数の層(被覆)に伸びεが生ずる基板と理解すべきである。1つ又は複数の層が基板よりもずっと薄い場合に、伸びは、近似的にε=ds/2Rによって記述される(dsは基板の厚さ、Rは曲げ半径である)。1つ又は複数の層が基板と比べて非常に薄い場合には、1つ又は複数の層における伸びは、引張応力又は圧縮応力のみにほぼ等しく設定できる。例えば、フレキシブル基板は、1つ以上のポリマー素材、例えば、ポリイミド、ポリカーボネート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテルスルホン、ポリアリレート又は多環式オレフィン系で構成できる。1つ以上のポリマー材料をベースとする大部分のフレキシブル基板は、8GPa以下の弾性率を有する。薄板ガラス(1mm以下の厚さを有するガラス)、1mm以下の厚さを有する金属板、例えば、鋼板、1mm以下の厚さを有するアルミニウム箔、銅板若しくはチタン箔、又は例えば、雲母等の鉱物材料も、本発明によるフレキシブル部品に適したフレキシブル基板である。 A flexible substrate is to be understood within the scope of the invention as a substrate which, when subjected to bending stresses, causes the elongation ε in one or more layers (coatings) deposited on the substrate. The elongation is approximately described by ε=ds/2R where one or more layers are much thinner than the substrate, where ds is the thickness of the substrate and R is the bend radius. If the layer or layers are very thin compared to the substrate, the elongation in the layer or layers can be set approximately equal to the tensile or compressive stress only. For example, the flexible substrate can be composed of one or more polymeric materials such as polyimide, polycarbonate, polyethylene terephthalate, polyethylene naphthalate, polyether sulfone, polyarylate or polycyclic olefins. Most flexible substrates based on one or more polymeric materials have a modulus of 8 GPa or less. Thin glass (glass having a thickness of 1 mm or less), a metal plate having a thickness of 1 mm or less, for example, a steel plate, an aluminum foil having a thickness of 1 mm or less, a copper plate or a titanium foil, or a mineral material such as mica. Is also a flexible substrate suitable for the flexible component according to the present invention.

本発明に適したフレキシブル基板は、同様に、1つ又は複数の層及び/又は1つ又は複数の材料から構成できる。そのような基板は、他の材料から成る1つ以上の層で既に予め完全に又は部分的にのみ被覆できる。 Flexible substrates suitable for the present invention can likewise consist of one or more layers and/or one or more materials. Such substrates can already be pre-completely or only partially coated with one or more layers of other materials.

この部品は、フレキシブル被覆部品であるのが好ましい。例えば、金属防湿層又は光学層を有する包装薄膜等のフレキシブル被覆部品と比較して、フレキシブル被覆電子部品は、少なくとも1つの電流を伝導する層を有する。これには、例えば、フレキシブル回路、フレキシブルディスプレイ画面、フレキシブルセンサ素子、フレキシブル薄膜コンデンサ、フレキシブル薄膜電池又は単純な導電性薄膜、例えば、フレキシブルプリント回路基板が該当する。本発明により構成できる上記のフレキシブル電子部品の例は、本明細書の最初に説明した。 The component is preferably a flexible coated component. For example, a flexible coated electronic component has at least one current conducting layer as compared to a flexible coated component such as a packaging film having a metal vapor barrier layer or an optical layer. This may be, for example, a flexible circuit, a flexible display screen, a flexible sensor element, a flexible thin film capacitor, a flexible thin film battery or a simple conductive thin film, for example a flexible printed circuit board. Examples of the above flexible electronic components that can be constructed in accordance with the present invention were described at the beginning of this specification.

本発明によるフレキシブル被覆部品の金属層は、1μm以下の厚さを有するのが好ましい。金属層は、好ましくは5nmの最小厚さを有し、さらに好ましくは少なくとも10nmの厚さを有する。また、5nm〜300nmの厚さ、5nm〜100nmの厚さはなおさらに好ましい。上記の層厚さは、金属層が接着構造層又は拡散障壁層として使用される場合に特に有利である。或いは150nm〜400nmの厚さ範囲が有利である。150nm〜400nmの層厚さは、本発明による被覆されたフレキシブル部品をディスプレイ画面において、例えば、ゲート電極層として使用するために特に良く適している。 The metal layer of the flexible coated component according to the present invention preferably has a thickness of 1 μm or less. The metal layer preferably has a minimum thickness of 5 nm, more preferably at least 10 nm. Moreover, a thickness of 5 nm to 300 nm and a thickness of 5 nm to 100 nm are even more preferable. The above layer thicknesses are particularly advantageous when the metal layer is used as an adhesive structure layer or a diffusion barrier layer. Alternatively, a thickness range of 150 nm to 400 nm is advantageous. A layer thickness of 150 nm to 400 nm is particularly well suited for using the coated flexible component according to the invention in a display screen, for example as a gate electrode layer.

請求項2又はその従属請求項の1つに規定された1つ又は複数の金属層は、薄膜トランジスタ(TFT)の一部になることができる。 One or more metal layers as defined in claim 2 or one of its dependent claims can be part of a thin film transistor (TFT).

本発明による部品の例示的実施形態では、少なくとも1つのMoX層において、Xが元素Cuであり、このMoCu層が0.5原子%以下〜50原子%以下のCuを含有し、好ましくは1原子%以上〜20原子%以下のCuを含有することができる。この場合に、金属層のMoX層全体をMoCuから構成するのが特に好ましい。 In an exemplary embodiment of the component according to the invention, in at least one MoX layer, X is elemental Cu, the MoCu layer containing 0.5 atom% or less to 50 atom% or less Cu, preferably 1 atom. % To 20 atomic% Cu can be contained. In this case, it is particularly preferable that the entire MoX layer of the metal layer is composed of MoCu.

本発明による部品の例示的実施形態では、少なくとも1つのMoX層において、Xが元素Agであり、このMoAg層が10原子%以上〜50原子%以下のAgを含有し、好ましくは20原子%以上〜50原子%以下のAgを含有することができる。この場合に、金属層のMoX層全体がMoAgから構成するのが特に好ましい。 In an exemplary embodiment of the component according to the invention, in at least one MoX layer, X is the elemental Ag, the MoAg layer containing 10 atomic% or more and 50 atomic% or less Ag, preferably 20 atomic% or more. It can contain up to 50 atom% of Ag. In this case, it is particularly preferable that the entire MoX layer of the metal layer is composed of MoAg.

本発明による部品の例示的実施形態では、少なくとも1つのMoX層において、Xが元素Auであり、このMoAu金属層が5原子%以上〜20原子%以下のAuを含有することができる。この場合に、金属層のMoX層全体がMoAuから構成するのが特に好ましい。 In an exemplary embodiment of the component according to the invention, in at least one MoX layer, X is the elemental Au and the MoAu metal layer may contain not less than 5 atom% and not more than 20 atom% Au. In this case, it is particularly preferable that the entire MoX layer of the metal layer is composed of MoAu.

本発明による構成部品の例示的実施形態では、各々のMoX層が、200マイクロオームcm以下、好ましくは100マイクロオームcm以下、特に好ましくは50マイクロオームcm以下の層抵抗ρを有することができる。 In an exemplary embodiment of the component according to the invention, each MoX layer can have a layer resistance p of 200 micro-ohm cm or less, preferably 100 micro-ohm cm or less, particularly preferably 50 micro-ohm cm or less.

本発明による部品の例示的実施形態では、金属層に直接隣接している半導体層又は電気絶縁性層の少なくも一方を複数の層として形成することができる。また、直接隣接している層又は電気絶縁層の両方を複数の層として形成することができる。 In an exemplary embodiment of the component according to the invention, at least one of the semiconducting or electrically insulating layers directly adjacent to the metal layer can be formed as a plurality of layers. Also, both the immediately adjacent layers or the electrically insulating layer can be formed as a plurality of layers.

本発明による構成部品の例示的実施形態では、金属層は全体で50マイクロオームcm以下、好ましくは10マイクロオームcm以下、特に好ましくは3.5マイクロオームcm以下の層抵抗ρを有することができる。 In an exemplary embodiment of the component according to the invention, the metal layer may have a layer resistance p of a total of 50 micro-ohm cm or less, preferably 10 micro-ohm cm or less, particularly preferably 3.5 micro-ohm cm or less. ..

本発明による方法では、0.5原子%以上〜50原子%以下のXを含有し、XがCu、Ag、Auの群から選択される1つの元素である少なくとも1つのMoX層が堆積される。この場合に、MoX層は、請求項2に規定されているように金属層を形成できるか又はその一部になることができる。 In the method according to the invention, at least one MoX layer is deposited containing from 0.5 atomic% to 50 atomic% of X, where X is one element selected from the group Cu, Ag, Au. .. In this case, the MoX layer can form or become part of the metal layer as defined in claim 2.

少なくとも1つのMoX層及び/又は金属層の堆積は、各種種類の蒸着法によって行うことができる。例えば、上記の堆積は、物理蒸着又は化学蒸着によって行うことができる。 The deposition of the at least one MoX layer and/or the metal layer can be performed by various types of vapor deposition methods. For example, the deposition can be done by physical vapor deposition or chemical vapor deposition.

しかしながら、少なくとも1つのMoX層及び/又は金属層の堆積が、PVD法、特に、スパッタリング法によって行うことが有利である。PVD法(物理的気相成長)は、薄膜被覆技術として知られている。この技術は、被覆材料の粒子を気相に変換してから、基板上に堆積させる。PVD法による堆積によって、特に、均一に堆積できる。その特性は、被覆された面全体にわたり等しく等方的である被覆を堆積できる。この方法のさらなる利点は、結果として実現できる低い基板温度である。従って、例えば、ポリマーの被覆が可能となる。さらに、PVD層は基板への非常に良好な接着の点で優れている。 However, it is advantageous for the deposition of the at least one MoX layer and/or the metal layer to be carried out by PVD methods, in particular sputtering methods. The PVD method (physical vapor deposition) is known as a thin film coating technique. This technique converts particles of the coating material into the gas phase before depositing it on the substrate. By the PVD method, particularly uniform deposition can be achieved. The property is to deposit a coating that is equally isotropic over the coated surface. A further advantage of this method is the resulting low substrate temperature. Thus, for example, polymer coating is possible. Furthermore, the PVD layer excels in very good adhesion to the substrate.

MoX層又は金属層がスパッタリング法(陰極スパッタリング法とも言う)によって堆積される場合に特に好ましい。スパッタリング法は、大きな面積の均一な被覆に比較的容易に使用できるため、大量生産に費用対効果が良い。 It is particularly preferred when the MoX layer or the metal layer is deposited by sputtering (also called cathodic sputtering). The sputtering method is relatively cost-effective for mass production because it can be used relatively easily for large area uniform coatings.

本発明による方法が、0.5原子%〜50原子%以下の間のXを含有するMo系のターゲットを設ける工程をさらに含むことが非常に好ましい。 It is highly preferred that the method according to the invention further comprises the step of providing a Mo-based target containing between 0.5 and 50 atomic% of X.

0.5原子%〜50原子%以下の間のXを含有するMo系のターゲットは、少なくとも1つのMoX層及び/又は少なくとも1つの金属層の堆積前に設けられる。従って、MoX層及び/又は金属層は、設けられたターゲットから堆積される。 The Mo-based target containing between 0.5 and 50 atomic% of X is provided prior to the deposition of the at least one MoX layer and/or the at least one metal layer. Therefore, the MoX layer and/or the metal layer are deposited from the provided target.

この場合に、ターゲットとは、被覆装置の被覆供給源と理解すべきである。1つの好適な方法においては、使用されるターゲットは、スパッタリング法のためのスパッタリングターゲットである。 In this case, the target is to be understood as the coating source of the coating device. In one preferred method, the target used is a sputtering target for a sputtering method.

被覆物の化学組成は、使用されるターゲットの化学組成によって決定される。しかしながら、ターゲット組成からの被覆組成物の偏りは、ターゲットに中に含まれる元素の僅かに異なるスパッタリング挙動(スパッタリング収率)によって起こることがある。 The chemical composition of the coating is determined by the chemical composition of the target used. However, the deviation of the coating composition from the target composition can be caused by the slightly different sputtering behavior (sputtering yield) of the elements contained in the target.

例えば、MoCuターゲットからのCuの好適なスパッタリングによって、堆積された被覆中のCu含有量が僅かに増加することがある。例えば、10原子%以上のCuを含有する被覆を形成するために、対応するターゲットも10原子%以下のCuを含有すべきある。 For example, suitable sputtering of Cu from a MoCu target may slightly increase the Cu content in the deposited coating. For example, to form a coating containing 10 atomic% or more Cu, the corresponding target should also contain 10 atomic% or less Cu.

その代わりに、たった1つのターゲットを使用するために、個々のターゲットからの同時堆積、好ましくは同時スパッタリングによっても金属層を堆積できる。この場合に、被覆物の化学組成は、異なるターゲットの選択によってさらに制御することができる。 Alternatively, the metal layer can also be deposited by co-deposition from individual targets, preferably co-sputtering, to use only one target. In this case, the chemical composition of the coating can be further controlled by the choice of different targets.

金属層の堆積にさらに適したスパッタリングターゲットの製造は、例えば、粉末冶金によって行うことができる。 The production of sputtering targets more suitable for the deposition of metal layers can be carried out, for example, by powder metallurgy.

スパッタリングターゲットの製造のための可能な粉末冶金的方法は、ホットプレス(HP)又は放電プラズマ焼結(SPS)等のホットプレス方法に基づいている。両方の場合において、粉末混合物をプレス金型内に流し込み、その金型内で加熱し、高い圧縮圧力及び高い温度で焼結/ぎっしり詰めて高密度部品にする。この場合に、優先配向(肌理)を有しない均一な粒子を有する均質な微細構造が生じる。 Possible powder metallurgical methods for the production of sputtering targets are based on hot pressing methods such as hot pressing (HP) or spark plasma sintering (SPS). In both cases, the powder mixture is cast into a press mold, heated in the mold and sintered/packed at high compression pressure and temperature to a high density part. In this case, a homogeneous microstructure with uniform particles without preferential orientation (texture) results.

スパッタリングターゲット製造のための類似の粉末冶金的方法は、熱間等方圧加圧法(HIP)である。この場合に、ぎっしり詰められる材料は、変形可能な高密度容器(通常、金属缶)中に流し込まれる。この場合に、この材料は、粉末、粉末混合物又は圧粉体(圧縮粉末の形で)にすることができる。この容器中に存在する材料は、保護ガス(例えば、アルゴン)下で圧力が加えた槽内容器中において高温で焼結/ぎっしり詰められる。ガス圧があらゆる方向から作用するため、この方法は等方圧加圧法と呼ばれる。代表的なプロセスパラメーターは、例えば、1100℃及び100MPaで3時間の保持時間である。この場合に、優先配向(肌理)を有しない均一な粒子を有する均質な微細構造が生じる。 A similar powder metallurgical method for producing sputtering targets is hot isostatic pressing (HIP). In this case, the compacted material is poured into a deformable high density container (typically a metal can). In this case, the material can be a powder, a powder mixture or a green compact (in the form of a compressed powder). The material present in this vessel is sintered/compacted at high temperature in a pressurized in-vessel vessel under a protective gas (eg argon). This method is called isotropic pressurization because the gas pressure acts from all directions. Typical process parameters are, for example, a holding time of 3 hours at 1100° C. and 100 MPa. In this case, a homogeneous microstructure with uniform particles without preferential orientation (texture) results.

粉末冶金的方法によるスパッタリングターゲット製造のさらなる選択肢は、焼結とその後の成形である。この場合に、粉末成形体は水素雰囲気下又は真空下で焼結される。焼結後に、例えば、圧延又は鍛造等の成形工程を行うことで、99%超の高い相対密度が得られる。この場合に、優先配向(肌理)を有する細長い粒子を有する微細構造が生じる。任意の後続の低張力焼きなまし又は再結晶化焼きなましの場合に、均一な粒子を生ずるが、その粒子がなお優先配向(肌理)を有する均質な微細構造が生じる。 A further option for producing sputtering targets by powder metallurgical methods is sintering and subsequent shaping. In this case, the powder compact is sintered under hydrogen atmosphere or under vacuum. After sintering, a high relative density of more than 99% can be obtained by performing a forming process such as rolling or forging. In this case, a microstructure with elongated particles having a preferred orientation (texture) is produced. On any subsequent low-strength anneal or recrystallization anneal, uniform grains are produced, but the grains still have a homogeneous microstructure with a preferred orientation (texture).

粉末冶金的方法によるスパッタリングターゲット製造のさらなる選択肢は、対応する支持構造物、例えば、金属又は管上に粉末又は粉末混合物を溶射法、例えば、低温ガス溶射又は真空プラズマ溶射(VPS)によって塗布することである。 A further option for the production of sputtering targets by powder metallurgical methods is to apply the powder or powder mixture onto the corresponding support structure, eg metal or tube, by means of the thermal spraying method, eg cold gas spraying or vacuum plasma spraying (VPS). Is.

以下で、本発明を例示的実施形態及び図面に基づきより詳細に説明する。 In the following, the invention will be explained in more detail on the basis of exemplary embodiments and the drawings.

臨界破断伸びε測定に使用される電気抵抗測定を行う一軸引張試験の概略的構成を示す。1 shows a schematic configuration of a uniaxial tensile test for measuring electric resistance used for critical breaking elongation ε k measurement. 層中のCu含量の関数としてMo及びMoCu合金のR/R曲線を示す。3 shows the R/R 0 curves for Mo and MoCu alloys as a function of Cu content in the layer. 15%の最大伸び後のMo層及び各種MoCu層の亀裂パターンの電子顕微鏡写真を示す。The electron microscope photograph of the crack pattern of the Mo layer and the various MoCu layers after the maximum elongation of 15% is shown. 層中のAg含量の関数としてMo及びMoAg合金のR/R曲線を示す。3 shows the R/R 0 curves for Mo and MoAg alloys as a function of Ag content in the layer. 15%の最大伸び後のMo層及び各種MoAg層の亀裂パターンの電子顕微鏡写真を示す。The electron microscope photograph of the crack pattern of the Mo layer and the various MoAg layers after the maximum elongation of 15% is shown. ボトムゲート型薄膜トランジスタの層状構造の断面を示す。1 shows a cross section of a layered structure of a bottom gate type thin film transistor. システムオンパネルディスプレイ画面の概略的ブロック図(上から)を示す。Figure 3 shows a schematic block diagram (from above) of a system on panel display screen. ドライバ回路とTFTディスプレイ画面領域の間の導体路構造を上から見たシステムオンパネルディスプレイ画面の細部を示す。3 shows a detail of the system-on-panel display screen as seen from above the conductor path structure between the driver circuit and the TFT display screen area. TFTのゲート電極及びソース/ドレイン電極とゲートライン及びデータラインとがどのように接続されているかを示すTFTディスプレイ画面構造(上から、平面図)の細部を示す。3 shows details of a TFT display screen structure (from above, top view) showing how the gate and source/drain electrodes of the TFT are connected to the gate and data lines. トップゲート型LTPS−TFTの層状構造の断面を示す。The cross section of the layered structure of a top gate type LTPS-TFT is shown. シリコンウェハ上のスパッタリングされた500nm厚さのMoCu薄膜のX線回折図を示す。Figure 4 shows an X-ray diffractogram of a 500 nm thick MoCu thin film sputtered on a silicon wafer. シリコンウェハ上のスパッタリングされた500nm厚さのMoAg薄膜のX線回折図を示す。Figure 3 shows an X-ray diffractogram of a 500 nm thick MoAg thin film sputtered on a silicon wafer.

実施例1
一連の複数の実験の範囲内で、Mo系の各種金属層をポリイミド基板上に堆積させた。この場合に、各種化学組成を有する層を形成した。
Example 1
Various Mo-based metal layers were deposited on a polyimide substrate within a series of multiple experiments. In this case, layers having various chemical compositions were formed.

Mo系の金属層の組成を表1に要約した。 The composition of the Mo-based metal layer is summarized in Table 1.

[表1]スパッタリングされたMoCu層の化学組成
[Table 1] Chemical composition of sputtered MoCu layer

モリブデン系合金のための参照材料として、純粋なMoを50nmの厚さを有するモリブデン層の形で使用した。 Pure Mo was used as a reference material for the molybdenum-based alloy in the form of a molybdenum layer having a thickness of 50 nm.

全ての層を、ポリイミドから成る50μm厚さの薄膜(PI、例えば、Kapton(登録商標))上に室温で堆積した。この場合に、プロセスパラメーターは、結果に対する異なるプロセス条件の影響を可能な限り排除するために一定に保った。層厚さは、結果に対する形状効果の影響を避けるために50nmで一定に保った。 All layers were deposited at room temperature on a 50 μm thick thin film of polyimide (PI, eg Kapton®). In this case, the process parameters were kept constant in order to eliminate the influence of different process conditions on the results as much as possible. The layer thickness was kept constant at 50 nm to avoid the influence of shape effects on the results.

基板表面は完全に被覆されており、例えば、エッチング法によってどのような構造も製造しなかった。 The substrate surface was completely covered and no structures were produced, for example by etching.

ポリイミド基板上の層試料に対して、MTS Tyron 250(登録商標)汎用試験機を用いて一軸引張試験を実施した。試験構成を図1に概略的に示す。この場合に、基板を15%の最大伸びεまで弾性変形させた。引張試験の間に、四点法を使用して層の電気抵抗Rを連続的に記録した。測定開始時の電気抵抗をRと呼ぶ。この場合に、初期状態における試料長さ(クランプ間の自由長さ)は20mmであり、幅は5mmであった。 A uniaxial tensile test was performed on the layer sample on the polyimide substrate using an MTS Tyron 250 (registered trademark) general purpose tester. The test setup is shown schematically in FIG. In this case, the substrate was elastically deformed to a maximum elongation ε of 15%. During the tensile test, the electrical resistance R of the layer was continuously recorded using the four-point method. The electrical resistance at the start of measurement is called R 0 . In this case, the sample length (free length between the clamps) in the initial state was 20 mm, and the width was 5 mm.

測定構成を図1に概略的に示す。この場合に、Lconstは、伸びが生じていない固定クランプ長を示す。ここで、臨界伸びを臨界伸びεとして定義した。フレキシブル基板上の層の電気抵抗Rは、初期状態、つまりR/R=1.1に対して10%だけ増加した。 The measurement setup is shown schematically in FIG. In this case, Lconst indicates a fixed clamp length with no elongation. Here, the critical elongation is defined as the critical elongation ε k . The electrical resistance R of the layer on the flexible substrate increased by 10% with respect to the initial state, R/R 0 =1.1.

この引張試験によって求められた臨界伸びεを表2に示す。 Table 2 shows the critical elongation ε k obtained by this tensile test.

[表2]調べたMo層及びMoCu層の臨界伸びε並びに純粋なMoから成る参照試料との差。さらに、非伝導性ホウケイ酸塩ガラス(Corning Eagle XG(登録商標))上の500nm厚さの層の層抵抗を示す。
[Table 2] The critical elongation ε k of the Mo and MoCu layers investigated and the difference from the reference sample consisting of pure Mo. Furthermore, it shows the layer resistance of a 500 nm thick layer on a non-conducting borosilicate glass (Corning Eagle XG®).

図2は、伸びεに対する、電気抵抗対初期抵抗(R/R)の増加を示す。曲線「理論値」は、試料の形状変化によってのみ生ずる電気抵抗の増加を示す。参照材料に基づき測定された曲線において明らかなように、電気抵抗は、伸びの増大に伴って非常に急激に増加する。 FIG. 2 shows the increase in electrical resistance versus initial resistance (R/R 0 ) with elongation ε. The curve "theoretical" shows the increase in electrical resistance caused only by the change in shape of the sample. As is evident in the curves measured on the basis of the reference material, the electrical resistance increases very rapidly with increasing elongation.

上記の引張試験後に、試験された層を、光学顕微鏡及び走査型電子顕微鏡で調べた。この場合に、亀裂の形状、及び層中に生じた亀裂間の平均距離を求めた。 After the tensile test described above, the layers tested were examined with a light microscope and a scanning electron microscope. In this case, the crack shape and the average distance between the cracks formed in the layer were determined.

例えば、純粋なMo等の脆性の材料をベースとする層において、引張応力下での試料の損傷時に、通常は、脆性材料の挙動に特有の亀裂パターンが生ずる。これは、応力方向にほぼ直角に形成される直線状の平行に走る亀裂から成る網状構造によって特徴付けられる。そのような亀裂パターンは、例えば、図3(Mo、左)に見られる。これらの直線状の亀裂は、大部分が試料の一方の側から他方の側まで全幅にわたって走っているだけでなく、その層の全厚さを貫通して走っている。そのような亀裂は、貫通亀裂(TTC)とも呼ばれる。TTCは層の電気伝導率を大幅に低下させる。なぜなら、最悪の場合には、連続的な導電接続は、もはや層中には存在しないからである。 For example, in a layer based on a brittle material such as pure Mo, when the sample is damaged under tensile stress, a cracking pattern characteristic of the behavior of the brittle material usually occurs. It is characterized by a network of linear, parallel-run cracks that form approximately perpendicular to the stress direction. Such a crack pattern can be seen, for example, in FIG. 3 (Mo, left). These linear cracks not only mostly run the entire width from one side of the sample to the other, but also run through the full thickness of the layer. Such a crack is also called a through crack (TTC). TTC significantly reduces the electrical conductivity of the layer. This is because, in the worst case, a continuous conductive connection no longer exists in the layer.

表2から推測される故障判定基準R/R=1.1の臨界伸びは、層中のCu含量の増加に伴って層の延性が増加することが分かる。この延性の増加は、材料内での容易な変位移動によって引き起こされたと推測される。これにより、臨界伸びの増大とTTCの発生が減少する。 It can be seen from Table 2 that the critical elongation of failure criterion R/R 0 =1.1 increases the ductility of the layer as the Cu content in the layer increases. It is speculated that this increase in ductility was caused by easy displacement movement within the material. This reduces the increase in critical elongation and the occurrence of TTC.

一例として、図2は、試料MoCu7原子%の抵抗曲線R/Rを示す。亀裂の出現パターンはなおTTCに対応するが、臨界伸びεは既に大幅に増加している。 As an example, FIG. 2 shows the resistance curve R/R 0 for the sample MoCu 7 atom %. The appearance pattern of cracks still corresponds to TTC, but the critical elongation ε k has already increased significantly.

臨界伸びεの増大に加えて観察できるさらなる効果は、亀裂の出現パターンが、脆性材料の挙動から延性材料の挙動にまで変化することである。延性材料の挙動に特有の亀裂は、その亀裂がもはや直線的ではなく、むしろジグザグである。亀裂先端での亀裂の曲がりは、そのような亀裂挙動について考えられる説明である。 A further effect that can be observed in addition to the increase in the critical elongation ε k is that the appearance pattern of cracks changes from the behavior of brittle materials to that of ductile materials. The cracks characteristic of the behavior of ductile materials are zigzag rather than straight cracks. Crack bending at the crack tip is a possible explanation for such crack behavior.

図3(中央図、MoCu18原子%)において、MoCu18原子%の場合に亀裂は確かにほぼ平行に走っているが、もはや直線状に走っていないことが分かる。図3(右図、MoCu52原子%)においては、既に延性の亀裂パターンが生じている。延性を有する亀裂は、大部分が全層厚さを貫通して走っているが、必ずしも試料幅全体にわたって走っていないので、それによってまだ導電接続は材料内に存在したままである。この場合に、図2から分かるように、R/R曲線の勾配は小さい(曲線は、急激に上昇しない)。 In FIG. 3 (center view, MoCu 18 atomic %), it can be seen that in the case of MoCu 18 atomic %, the cracks certainly run in parallel, but no longer linearly. In FIG. 3 (right diagram, MoCu 52 atom %), a ductile crack pattern has already occurred. Ductile cracks run largely through the full layer thickness, but not necessarily over the entire sample width, so that the conductive connection still remains in the material. In this case, as can be seen from FIG. 2, the slope of the R/R 0 curve is small (the curve does not rise sharply).

従って、臨界伸びεは大幅に増大し、亀裂の発生はMo系層中の小さなCu含量から減少する。Cu含量がさらに増加すると、亀裂挙動は、脆性から延性方向へと変化する。従って、Moへの添加物としてのCuは、特に、添加が少なくてもMo系層の延性を大幅に増加させる点と、Cuが材料として比較的費用対効果が良いという点で優れている。 Therefore, the critical elongation ε k is significantly increased and crack initiation is reduced from the small Cu content in the Mo-based layer. As the Cu content increases further, the cracking behavior changes from brittle to ductile. Therefore, Cu as an additive to Mo is particularly advantageous in that the ductility of the Mo-based layer is significantly increased even if the addition is small, and Cu is relatively cost effective as a material.

図11は、それぞれ18原子%及び34原子%のCu含量を有する2つのMoCu層のX線回折図を示す。それぞれ純粋なMo層又はCu層の回折図も参照材料として含まれている。全ての層を、DCスパッタリングによって、基板をシリコンウェハ上に室温(基板を加熱せずに)で堆積し、その厚さは500nmである。結晶構造を、Cu−KαのX線源を備えるBruker−AXS D8回折計を用いて斜入射モードにおいて2゜の入射角で記録した。参照材料として、それぞれ体心立方型(cl)モリブデンのX線反射の位置を垂直の点線として、及び面心立方型(cF)銅の反射位置を垂直の破線として示す。データは、ICDD(国際回折データセンター)のデータベースから取得した。図11から分かるように、高い銅含有量を有するMoCu18原子%及びMoCu34原子%の2つの系は、回折図中に対応する反射が存在しないため、別のCu相を有しない。従って、Cuは、混晶の形でモリブデン中に強制溶解、すなわち銅原子がモリブデン空間格子を占有すると推定できる。銅原子は、このようにしてMo格子の歪みを生じさせる。Cu原子(原子半径128pm)は、Mo原子(140pm)よりも小さいので、歪んでいない参照材料と比べて、より大きな屈折角(2θ)へと偏移している2つのMo(110)反射及びMo(200)反射も歪んだMo格子を示す。 FIG. 11 shows the X-ray diffractograms of two MoCu layers with a Cu content of 18 atom% and 34 atom %, respectively. A diffractogram of the pure Mo layer or Cu layer, respectively, is also included as reference material. All layers are deposited by DC sputtering on silicon wafers at room temperature (without heating the substrate) and have a thickness of 500 nm. The crystal structure was recorded with a Bruker-AXS D8 diffractometer equipped with a Cu-Kα X-ray source in the grazing incidence mode at an incident angle of 2°. As reference materials, the position of X-ray reflection of body-centered cubic (cl) molybdenum is shown as a vertical dotted line, and the reflection position of face-centered cubic (cF) copper is shown as a vertical broken line. The data was obtained from the ICDD (International Diffraction Data Center) database. As can be seen from FIG. 11, the two systems of MoCu 18 atom% and MoCu 34 atom% with a high copper content do not have another Cu phase because there is no corresponding reflection in the diffractogram. Therefore, it can be estimated that Cu is forcedly dissolved in molybdenum in the form of a mixed crystal, that is, copper atoms occupy the molybdenum space lattice. Copper atoms thus cause the strain of the Mo lattice. Since the Cu atom (atomic radius 128 pm) is smaller than the Mo atom (140 pm), there are two Mo(110) reflections deviating to a larger refraction angle (2θ) and a larger refraction angle (2θ) than the undistorted reference material. The Mo(200) reflection also shows a distorted Mo lattice.

さらに、表2の最後の列に、各種Mo薄膜又はMoCu薄膜の層抵抗ρ(マイクロオームcm)を示す(絶縁性ガラス基板上の500nmの層厚さ)。測定のために、表面固有抵抗率R(オーム/シート)を四点法によって測定し、それに層厚さを掛けた。MoCu層の層抵抗は、34原子%のCu含量まで増加した後に、Cu含量の増加に伴って再び減少する。全てのMoCu層は、150マイクロオームcm以下の層抵抗を有する。 Furthermore, in the last column of Table 2, the layer resistance ρ (micro ohm cm) of various Mo thin films or MoCu thin films is shown (layer thickness of 500 nm on the insulating glass substrate). For the measurement, the surface specific resistance R s (ohm/sheet) was measured by the four-point method and multiplied by the layer thickness. The layer resistance of the MoCu layer increases to a Cu content of 34 atomic% and then decreases again with increasing Cu content. All MoCu layers have a layer resistance of 150 micro ohm cm or less.

MoCu/Cu又はMoCu/Alから成る多層の場合に、長い導体路に沿った層抵抗は、とりわけ良好な導電性を有する材料Cu又はAlによってそれぞれ決定される。50nmのMoCu34原子%及びその上に形成(非伝導性ガラス基板上に堆積された)300nmのCuから成る2層は、2.0マイクロオームcmの層抵抗を有する。50nmのMoCu34原子%及びその上の300nmのAlから成る2層の層は、3.1マイクロオームcmの層抵抗を有する。 In the case of multilayers consisting of MoCu/Cu or MoCu/Al, the layer resistance along the long conductor tracks is determined by the material Cu or Al, which has a particularly good conductivity. A bilayer of 50 nm MoCu 34 atomic% and 300 nm Cu formed thereon (deposited on a non-conducting glass substrate) has a layer resistance of 2.0 micro ohm cm. A bilayer of 50 nm MoCu 34 atomic% and 300 nm Al above it has a layer resistance of 3.1 micro-ohm cm.

調べた層の機械的特性はなおさらに最適化できる推測される。従って、対象とした熱処理によって、堆積されたMo系層の微細構造及び内部応力状態をさらに最適化できるかもしれない。また、堆積条件を対象とした設定によっても、層の成長に故意に影響を及ぼし、延性をさらに増加させることができる可能性が非常に高い。 It is speculated that the mechanical properties of the investigated layers can be further optimized. Therefore, the targeted heat treatment may further optimize the microstructure and internal stress state of the deposited Mo-based layer. It is also very likely that the setting for deposition conditions will also deliberately influence layer growth and further increase ductility.

実施例2
一連の複数の実験の範囲内で、Mo系の各種金属層をポリイミド基板上に堆積した。この場合に、各種化学組成を有する層を形成した。
Example 2
Within a series of multiple experiments, various Mo-based metal layers were deposited on polyimide substrates. In this case, layers having various chemical compositions were formed.

Mo系金属層の組成を表3に要約した。 The composition of the Mo-based metal layer is summarized in Table 3.

[表3]スパッタリングされたMoAg層の化学組成
Table 3 Chemical composition of sputtered MoAg layers

モリブデン系合金の参照材料として、50nmの厚さを有する純粋なMoをモリブデン層の形で使用した。 Pure Mo having a thickness of 50 nm was used in the form of a molybdenum layer as a reference material for the molybdenum based alloy.

全ての層を、ポリイミドから成る50μm厚さの薄膜(PI、例えば、Kapton(登録商標))上に室温で堆積した。この場合に、プロセスパラメーターは、結果に対する異なるプロセス条件の影響を可能な限り排除するために一定に保った。層厚さは、結果に対する幾何学影響を避けるために50nmで一定に保った。 All layers were deposited at room temperature on a 50 μm thick thin film of polyimide (PI, eg Kapton®). In this case, the process parameters were kept constant in order to eliminate the influence of different process conditions on the results as much as possible. The layer thickness was kept constant at 50 nm to avoid geometrical effects on the results.

基板表面は完全に被覆されており、例えば、エッチング法によってどのような小さな構造も製造しなかった。 The substrate surface was completely covered and, for example, the etching method did not produce any small structures.

実施例1に記載したような引張試験によって求めた臨界伸びεを表4に示す。 Table 4 shows the critical elongation ε k obtained by the tensile test as described in Example 1.

[表4]調べたMo層及びMoAg層の臨界伸びε並びに純粋なMoから成る参照試料との差。さらに、非伝導性ホウケイ酸塩ガラス(Corning Eagle XG)上の500nm厚さの層の層抵抗を示す。
[Table 4] The critical elongation ε k of the Mo and MoAg layers investigated and the difference from the reference sample consisting of pure Mo. Furthermore, it shows the layer resistance of a 500 nm thick layer on a non-conducting borosilicate glass (Corning Eagle XG).

上記の引張試験後に、試験された層を、光学顕微鏡及び走査型電子顕微鏡で調べた。この場合に、亀裂の形状及び層中に生じた亀裂間の平均距離を求めた。 After the tensile test described above, the layers tested were examined with a light microscope and a scanning electron microscope. In this case, the shape of the cracks and the average distance between the cracks formed in the layer were determined.

例えば、純粋なMo等の脆性材料をベースとする層において、引張応力下での試料の損傷時に、通常は、脆性材料の挙動に特有の亀裂パターンが生ずる。これは、応力方向にほぼ直角に形成される平行に走る直線状の亀裂から成る網状構造によって特徴付けられる。上記の亀裂パターンは、例えば、図5(Mo、左)に見られる。これらの直線状の亀裂は、大部分が試料の一方の側から他方の側までの全幅にわたって走っているだけでなく、その層の全厚さを貫通して走っている。そのような亀裂は、貫通亀裂(TTC)とも呼ばれる。最悪の場合には、連続的な導電接続は、もはや層中には存在しないため、TTCは、層の電気伝導率を大幅に低下させる。参照材料に基づき測定された曲線において明らかなように、電気抵抗は、伸びの増大に伴って非常に急激に増加する。 For example, in layers based on brittle materials such as pure Mo, when the sample is damaged under tensile stress, a crack pattern that is characteristic of the behavior of the brittle material is usually produced. It is characterized by a network of parallel, linear cracks that form approximately perpendicular to the stress direction. The crack pattern described above can be seen, for example, in FIG. 5 (Mo, left). Most of these linear cracks run not only across the entire width of one side of the sample to the other, but also through the full thickness of the layer. Such a crack is also called a through crack (TTC). In the worst case, the continuous conductive connection no longer exists in the layer, so that the TTC significantly reduces the electrical conductivity of the layer. As is evident in the curves measured on the basis of the reference material, the electrical resistance increases very rapidly with increasing elongation.

それは、伸びεに対する、電気抵抗対初期抵抗(R/R)の増加を示す図4から推測できる。 It can be deduced from FIG. 4 which shows the increase in electrical resistance versus initial resistance (R/R 0 ) with respect to the elongation ε.

表4から推測できる故障判定基準R/R=1.1の臨界伸びは、18原子%より大きい層中の臨界Ag含量から、図4及び表4から明らかなように、層の延性が大幅に増大することを示している。この延性の増加は、材料内での容易な変位移動によって引き起こされると推測される。その結果として、臨界伸びが増大し、TTCの発生が減少することになる。従って、Moへの添加物としてのAgは、特に、添加がより多いとMo系層の延性が非常に大きく増加するという点で優れている。 The critical elongation of failure criterion R/R 0 =1.1 which can be inferred from Table 4 shows that the ductility of the layer is significantly large, as is clear from FIG. 4 and Table 4, from the critical Ag content in the layer larger than 18 atomic %. It has been shown to increase. It is speculated that this increase in ductility is caused by easy displacement movement within the material. As a result, the critical elongation is increased and the TTC generation is reduced. Therefore, Ag as an additive to Mo is particularly excellent in that the ductility of the Mo-based layer increases significantly when the amount of addition is large.

一例として、図4は、各種MoAg試料の抵抗曲線R/Rを示す。図5(右上)から明らかなように、亀裂の出現パターンは、なおTTCに対応するが、臨界伸びεは既に大幅に増大している。 As an example, FIG. 4 shows the resistance curves R/R 0 of various MoAg samples. As is clear from FIG. 5 (upper right), the appearance pattern of cracks still corresponds to TTC, but the critical elongation ε k has already increased significantly.

臨界伸びεの増大に加えて観察できるさらなる効果は、亀裂の発生が、脆性材料の挙動から延性材の挙動にまで変化できることである。延性材料の挙動に特徴的な亀裂は、その亀裂がもはや直線的ではなく、むしろジグザグであることを認めることができる。亀裂先端での亀裂の曲がりは、上記の亀裂挙動について考えられる説明である。 A further effect that can be observed in addition to the increase in the critical elongation ε k is that the crack initiation can change from the behavior of brittle materials to that of ductile materials. It can be seen that the cracks characteristic of the behavior of ductile materials are no longer straight, but rather zigzag. Bending of the crack at the crack tip is a possible explanation for the above crack behavior.

図5(MoAg44原子%の図)において、MoAg44原子%の場合に亀裂は確かにほぼ平行に走っているが、もはや直線状に走っていないことが分かる。図5(MoAg52原子%)に、既に多くの延性亀裂パターンが明らかに示されている。多くの延性特性を有する亀裂は、全層厚さを貫通して走っているが、必ずしも試料幅全体にわたって走っていないので、それによってまだ導電接続は材料内に存在したままである。この場合に、図4から分かるように、R/R曲線の勾配は小さい(曲線は、急激に上昇しない)。 In FIG. 5 (MoAg 44 atomic %), it can be seen that in the case of MoAg 44 atomic %, the cracks certainly run in parallel but no longer linearly. FIG. 5 (MoAg 52 atomic %) already clearly shows many ductile crack patterns. Cracks with many ductile properties run through the entire layer thickness, but not necessarily over the entire sample width, so that the conductive connection still remains in the material. In this case, as can be seen from FIG. 4, the slope of the R/R 0 curve is small (the curve does not rise sharply).

18原子%のMo系層中の臨界Ag含量から、臨界伸びεは大幅に増大し、亀裂の発生は減少する。Ag含量がさらに増加すると、亀裂挙動は、延性方向から脆性へと変化する。 From the critical Ag content in the Mo-based layer of 18 atomic %, the critical elongation ε k increases significantly and the crack initiation decreases. As the Ag content increases further, the cracking behavior changes from ductile direction to brittle.

図12は、堆積されたMoAg層のX線回折図を示す。結晶構造の層堆積及び分析は、MoCu系と同様に行った(図11)。参照材料として、純粋なMo層又はAg層の回折図も含まれている。図12において、参照材料として、体心立方型(cl)モリブデンのX線反射の位置を垂直の点線として、面心立方型(cF)銀の反射位置を垂直の破線として示す。データは、ICDD(国際回折データセンター)のデータベースから取得した。図12に示すように、MoAg系は、回折図中に対応する反射光が存在しないため、44原子%の銀含量まで別のAg相を有しない。従って、Agは、混晶の形でモリブデン中に強制溶解、すなわち銀原子がモリブデン空間格子を占有すると推定すべきである。銀原子は、このようにしてMo格子の歪みが生じる。歪んでいない参照材料と比べてより低い屈折角(2θ)へと偏移している2つのMo(110)及びMo(200)反射光も、歪んだMo格子を示す。なぜなら、Ag原子(原子半径165pm)は、Mo原子(140pm)よりも大きいので、塩化モリブデンマトリックス中の別の銀相の初期析出を示すMo(220)Ag52原子%の層で示されるように、銀反射のみが認められる。 FIG. 12 shows the X-ray diffractogram of the deposited MoAg layer. The layer deposition and analysis of the crystal structure was performed as in the MoCu system (FIG. 11). As a reference material, the diffractogram of the pure Mo or Ag layer is also included. In FIG. 12, the X-ray reflection position of body-centered cubic (cl) molybdenum is shown as a vertical dotted line and the reflection position of face-centered cubic (cF) silver is shown as a vertical broken line as reference materials. The data was obtained from the ICDD (International Diffraction Data Center) database. As shown in FIG. 12, the MoAg system does not have another Ag phase up to a silver content of 44 atomic% because there is no corresponding reflected light in the diffractogram. Therefore, it should be assumed that Ag is forced to dissolve in molybdenum in the form of mixed crystals, ie silver atoms occupy the molybdenum spatial lattice. In the silver atom, the distortion of the Mo lattice occurs in this way. Two Mo(110) and Mo(200) reflected lights that are shifted to a lower refraction angle (2θ) compared to the undistorted reference material also show a distorted Mo lattice. Because the Ag atoms (atomic radius 165 pm) are larger than the Mo atoms (140 pm), as shown by the layer of Mo(220)Ag 52 at% indicating the initial precipitation of another silver phase in the molybdenum chloride matrix, Only silver reflection is observed.

従って、MoCu薄膜又はMoAg薄膜において、銅又は銀(元素X)は、酸化モリブデン格子中に強制溶解される。純粋な金(Au)の結晶構造は、Cu及びAg(Fm−3m空間群)の結晶構造と同じである。3つの元素は全て、化学元素の周期系の同じ亜族(11)に属し、多くの局面で類似の化学的及び物理的挙動を示す。従って、40原子%以下のAu含量を有するスパッタリングされたMoAu薄膜も、金原子が酸化モリブデンマトリックス中に強制溶解された混晶の形で存在すると推定すべきである。 Therefore, in the MoCu thin film or the MoAg thin film, copper or silver (element X) is forcibly dissolved in the molybdenum oxide lattice. The crystal structure of pure gold (Au) is the same as that of Cu and Ag (Fm-3m space group). All three elements belong to the same subgroup (11) of the periodic system of chemical elements and exhibit similar chemical and physical behavior in many respects. Therefore, it should be assumed that even sputtered MoAu thin films with an Au content of 40 atomic% or less are present in the form of mixed crystals with gold atoms forcedly dissolved in the molybdenum oxide matrix.

さらに、表4の最後の列に、各種Mo薄膜又はMoAg薄膜の層抵抗ρ(マイクロオームcm)が示す(絶縁性ガラス基板上の500nmの層厚さ)。測定のために、表面抵抗率R(オーム/シート)を四点法によって測定し、それに層厚さを掛けた。MoAg層の層抵抗は、31原子%のAg含量まで増加した後に、Ag含量の増加に伴って再び減少する。全てのMoAg層は、150マイクロオームcm以下の層抵抗を有する。 Furthermore, in the last column of Table 4, the layer resistance ρ (micro ohm cm) of various Mo thin films or MoAg thin films is shown (layer thickness of 500 nm on the insulating glass substrate). For the measurement, the surface resistivity R s (ohm/sheet) was measured by the four-point method and multiplied by the layer thickness. The layer resistance of the MoAg layer increases up to 31 atomic% Ag content and then decreases again with increasing Ag content. All MoAg layers have a layer resistance of 150 micro ohm cm or less.

MoAg/Cu又はMoAg/Alから成る多層の場合に、長い導体路に沿った層抵抗は、とりわけそれぞれ良好な導電材料Cu又はAlによって決定される。50nmのMoAg31原子%及びその上に形成された300nmのCu(非伝導性ガラス基板上に堆積された)から成る2層は、2.0マイクロオームcmの層抵抗を有する。50nmのMoAg31原子%及びその上に形成された300nmのAlから成る2層の層は、3.1マイクロオームcmの層抵抗を有する。 In the case of multilayers consisting of MoAg/Cu or MoAg/Al, the layer resistance along the long conductor tracks is determined by the good conductive material Cu or Al, respectively. A bilayer of 50 nm MoAg 31 at% and 300 nm Cu (deposited on a non-conducting glass substrate) formed thereon has a layer resistance of 2.0 micro ohm cm. A bilayer of 50 nm MoAg 31 at% and 300 nm Al formed thereon has a layer resistance of 3.1 micro-ohm cm.

請求項2及びその従属請求項の1つに規定された1つ以上の金属層は、薄膜トランジスタ(TFT)の一部になることができる。上記の絶縁薄膜部品の層状構造を図6に断面で示す。TFTは、半導体層150と、ゲート電極120と、ソース電極170aと、ドレイン電極170bとからなり、これらの3つの金属導電電極層の少なくとも1つは、本発明による金属層から成る。ゲート電極120と半導体層150は、電気絶縁層(ゲート絶縁体、ゲート誘電体)140によって分離されている。ソース電極170aとドレイン電極170bは、電気絶縁保護層180によって分離されている。さらに、この保護層180は、ソース/ドレイン電極170a/170bをピクセル電極層190から分離する(以下に記載のコンタクトホールを除く)。 One or more metal layers as defined in claim 2 and one of its dependent claims can be part of a thin film transistor (TFT). The layered structure of the above insulating thin film component is shown in cross section in FIG. The TFT includes a semiconductor layer 150, a gate electrode 120, a source electrode 170a, and a drain electrode 170b, and at least one of these three metal conductive electrode layers is a metal layer according to the present invention. The gate electrode 120 and the semiconductor layer 150 are separated by an electrically insulating layer (gate insulator, gate dielectric) 140. The source electrode 170a and the drain electrode 170b are separated by the electrically insulating protective layer 180. Further, the protective layer 180 separates the source/drain electrodes 170a/170b from the pixel electrode layer 190 (excluding the contact holes described below).

以下で、図6の一実施形態に示されているような、ボトムゲート型TFTの一般的な層状構造を説明する。TFT層状構造は、フレキシブル基板100上に配置されている。最初に、フレキシブル基板100の上部の不規則性を補償するか、又は半導体層150中への、例えば、拡散若しくは浸透による不要な不純物の侵入を防ぐことができる。基板100全体を覆う緩衝層110をフレキシブル基板100上に配置できる。緩衝層は、例えば、酸化ケイ素又は窒化ケイ素を含む1層又は複数の層から構成できる。ゲート電極120は、緩衝層110上に配置されている。電圧を印加することによって、半導体層150中の電界効果により、ソース電極170aをドレイン電極170bに導電接続する導電性チャネルを形成できる。ゲート電極120は、本発明による金属層か、又は従来技術に対応する少なくともアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、モリブデン(Mo)、タングステン(W)、チタン(Ti)、クロム(Cr)、ニオブ(Nb)、タンタル(Ta)を含む1層又は複数の層から成るメタライゼーションから構成できる。 Hereinafter, a general layered structure of the bottom gate type TFT as shown in one embodiment of FIG. 6 will be described. The TFT layered structure is disposed on the flexible substrate 100. First, irregularities in the upper part of the flexible substrate 100 can be compensated or unwanted impurities can be prevented from entering the semiconductor layer 150, for example by diffusion or penetration. A buffer layer 110 that covers the entire substrate 100 may be disposed on the flexible substrate 100. The buffer layer can be composed of one or a plurality of layers containing, for example, silicon oxide or silicon nitride. The gate electrode 120 is arranged on the buffer layer 110. By applying a voltage, a conductive channel that conductively connects the source electrode 170a to the drain electrode 170b can be formed by a field effect in the semiconductor layer 150. The gate electrode 120 may be a metal layer according to the present invention, or at least aluminum (Al), copper (Cu), silver (Ag), gold (Au), platinum (Pt), molybdenum (Mo), tungsten corresponding to the conventional technology. The metallization may be composed of one or more layers containing (W), titanium (Ti), chromium (Cr), niobium (Nb) and tantalum (Ta).

電気絶縁性層(ゲート誘電体)140がゲート電極120上に配置されている。この電気絶縁性層140は、例えば、酸化ケイ素、窒化ケイ素、酸化アルミニウム、又は例えば、ベンゾシクロブテン(BCB)若しくはアクリル含有素材等の有機絶縁材料から成る層を含むことができる。 An electrically insulating layer (gate dielectric) 140 is disposed on the gate electrode 120. The electrically insulating layer 140 can include, for example, a layer of silicon oxide, silicon nitride, aluminum oxide, or an organic insulating material such as benzocyclobutene (BCB) or an acrylic-containing material.

半導体層150は、電気絶縁性層(ゲート誘電体)140と隣接し、例えば、アモルファスシリコン(a−Si)、ポリシリコン、酸化インジウムガリウム亜鉛(IGZO)等の金属酸化物半導体、又は有機半導体を含むことができる。a−Siを含む半導体層150aの場合に、この層上に、例えば、燐ドープされたa−Siが含むn+ドープされた半導体層150bを配置できる。IGZO等の金属酸化物半導体を含む半導体層150aの場合に、一般的に、ドープされた半導体層150bは省かれる。 The semiconductor layer 150 is adjacent to the electrically insulating layer (gate dielectric) 140, and is made of, for example, a metal oxide semiconductor such as amorphous silicon (a-Si), polysilicon, or indium gallium zinc oxide (IGZO), or an organic semiconductor. Can be included. In the case of a semiconductor layer 150a containing a-Si, for example, an n+ doped semiconductor layer 150b containing phosphorus-doped a-Si can be arranged on this layer. In the case of the semiconductor layer 150a containing a metal oxide semiconductor such as IGZO, the doped semiconductor layer 150b is generally omitted.

半導体層150上に、ソース電極層及びドレイン電極層170a及び170bが配置されている。これらの層は、本発明による金属層か、又は従来技術に対応する少なくともアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、モリブデン(Mo)、タングステン(W)、チタン(Ti)、クロム(Cr)、ニオブ(Nb)、タンタル(Ta)を含む1層又は複数の層から成るメタライゼーションから構成できる。 The source and drain electrode layers 170a and 170b are provided over the semiconductor layer 150. These layers are the metal layers according to the invention or at least aluminum (Al), copper (Cu), silver (Ag), gold (Au), platinum (Pt), molybdenum (Mo), tungsten corresponding to the prior art. The metallization may be composed of one or more layers containing (W), titanium (Ti), chromium (Cr), niobium (Nb) and tantalum (Ta).

半導体層150及びソース/ドレイン電極層170a/170b上に、保護層180が配置されている。この電気絶保護層180は、例えば、酸化ケイ素、窒化ケイ素、酸化アルミニウム、又は例えば、ベンゾシクロブテン(BCB)若しくはアクリル含有材料等の有機絶縁材料から成る層を含むことができる。 The protective layer 180 is disposed on the semiconductor layer 150 and the source/drain electrode layers 170a/170b. The electrical insulation protection layer 180 can include, for example, a layer of silicon oxide, silicon nitride, aluminum oxide, or an organic insulating material such as benzocyclobutene (BCB) or an acrylic containing material.

保護層180は、隣接するピクセル電極層190とドレイン電極170bとを電気接続するコンタクトホールによって分離されている。ピクセル電極層190は導電性であり、光透過性層又は光反射層として形成でき、かつ1層又は複数の層で構成できる。ピクセル電極層190が光透過性層として形成されている場合に、その層は、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)又は酸化アルミニウム亜鉛(AZO)を含むことができる。ピクセル電極層190が光反射層として形成されている場合に、その層は、Al、Ag、Mg、Pt、Pd、Au、Nd、Ni、Irから成る光反射層だけでなく、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)又は酸化アルミニウム亜鉛(AZO)から成る層を含むことができる。 The protective layer 180 is separated by a contact hole that electrically connects the pixel electrode layer 190 and the drain electrode 170b adjacent to each other. The pixel electrode layer 190 is electrically conductive, can be formed as a light transmissive layer or a light reflective layer, and can be composed of one or more layers. When the pixel electrode layer 190 is formed as a light transmissive layer, the layer may be made of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), or aluminum zinc oxide (AZO). Can be included. When the pixel electrode layer 190 is formed as a light reflecting layer, the layer is not only a light reflecting layer made of Al, Ag, Mg, Pt, Pd, Au, Nd, Ni, Ir, but also indium tin oxide ( A layer of ITO), indium zinc oxide (IZO), zinc oxide (ZnO) or aluminum zinc oxide (AZO) can be included.

本明細書に記載したTFTは、フレキシブルTFT液晶ディスプレイ画面又は有機ELディスプレイ画面の一部になることができる。 The TFTs described herein can be part of a flexible TFT liquid crystal display screen or organic EL display screen.

請求項2及びその従属請求項の1つに規定された1つ又は複数の金属層は、TFTアクティブマトリックスディスプレイが基板上に周辺電子制御ユニットと一緒に配置されたシステムオンパネル(SOP)システムの一部になることができる。SOPは、図7に示されている。表示ユニット1は、例えば、液晶表示装置(LCD)、有機発光ダイオード(OLED)、無機発光ダイオード(LED)、又は電気泳動ディスプレイ画面(「E−Ink(登録商標)」、「電子ペーパー」)から成ることができる。表示ユニット1は、画像コンテンツが表示されるディスプレイ画面の実際の可視部を示す。幾つかのドライバ回路及び制御回路がこの領域の周囲に配置されているが、それらは一般的に筐体の光を通さない部分の後ろに隠れており、ユーザーには見えない。原則的に、以下に説明する1つ又は複数の電子回路はSOP上に配置できる。ここでの説明は網羅的なものではなく、使用する表示装置に応じて制御のためになおさらなる回路が必要である。 One or more metal layers as defined in claim 2 and one of its dependent claims provide a system on panel (SOP) system in which a TFT active matrix display is arranged on a substrate together with a peripheral electronic control unit. Can be part. The SOP is shown in FIG. The display unit 1 includes, for example, a liquid crystal display (LCD), an organic light emitting diode (OLED), an inorganic light emitting diode (LED), or an electrophoretic display screen (“E-Ink (registered trademark)”, “electronic paper”). Can consist of The display unit 1 shows the actual visible part of the display screen on which the image content is displayed. Although some driver and control circuitry is located around this area, they are typically hidden behind the light-tight portion of the housing and are not visible to the user. In principle, one or more of the electronic circuits described below can be located on the SOP. The description here is not exhaustive and still requires additional circuits for control depending on the display device used.

表示ユニット1を制御するために、水平方向のデータドライバ回路(列ドライバ)2a/bを基板上に配置でき、その回路は、データライン(図示せず)を介してTFTのソース/ドレイン電極170a/b(図示せず)と接続されている。ゲート電極120の制御のために、ゲートライン(図示せず)を介してTFTのゲート電極120(図示せず)と接続されているゲートドライバ構造(行ドライバ)3を基板上に配置できる。 In order to control the display unit 1, a horizontal data driver circuit (column driver) 2a/b can be arranged on the substrate, and the circuit includes a source/drain electrode 170a of the TFT via a data line (not shown). /B (not shown). For controlling the gate electrode 120, a gate driver structure (row driver) 3 connected to the gate electrode 120 (not shown) of the TFT via a gate line (not shown) can be arranged on the substrate.

さらに、周辺領域には、低い入力電圧を高い出力電圧へ変換するDC−DC変換器4が配置でき、TFT−LCDディスプレイ画面の制御のためには、例えば、+3.3V〜+5.0Vの電圧を入力に印加することが可能であり、その電圧は、液晶表示装置の制御のために必要とされる−40V〜+40Vの範囲の高い出力電圧へ変換される(「チャージポンプ」)。 Furthermore, a DC-DC converter 4 for converting a low input voltage to a high output voltage can be arranged in the peripheral region, and for controlling the TFT-LCD display screen, for example, a voltage of +3.3V to +5.0V is used. Can be applied to the input and its voltage is converted to a high output voltage in the range of −40V to +40V required for controlling the liquid crystal display (“charge pump”).

さらに、表示ユニット1のための参照電圧(Vcom、例えば、LCDディスプレイ画面用の+5V)を供給する電気回路5をSOP上に配置できる。 Furthermore, an electric circuit 5 for supplying a reference voltage (Vcom, for example +5V for the LCD display screen) for the display unit 1 can be arranged on the SOP.

さらに、タイミング制御回路(TCon)6と、デジタル−アナログ変換回路7と、放電部8と、Vcomバッファ回路9とを基板上に配置できる。 Further, the timing control circuit (TCon) 6, the digital-analog conversion circuit 7, the discharging unit 8, and the Vcom buffer circuit 9 can be arranged on the substrate.

SOPは、接触領域10を介してディスプレイ画面制御電子回路又はグラフィックカードの残りの部品に接続されている。周辺回路2〜9は、本発明による金属層(図示せず)を用いて表示ユニット1及び接触領域(「導体パッド」)10と互いに接続されている。 The SOP is connected to the rest of the display screen control electronics or graphics card via the contact area 10. The peripheral circuits 2-9 are interconnected with the display unit 1 and the contact areas (“conductor pads”) 10 by means of a metal layer (not shown) according to the invention.

一例として、表示ユニット1の接触を図8に示す。行ドライバ3は、電気導体路20を介して表示ユニット1に接続され、列ドライバ2bは、電気導体路21を介して表示ユニット1に接続されている。一方又は両方の導体路20又は21は、請求項2及びその従属請求項の1つに規定された本発明による金属層から構成できる。 As an example, the contact of the display unit 1 is shown in FIG. The row driver 3 is connected to the display unit 1 via an electrical conductor path 20, and the column driver 2b is connected to the display unit 1 via an electrical conductor path 21. One or both of the conductor tracks 20 or 21 can consist of a metal layer according to the invention as defined in claim 2 and one of its dependent claims.

図9は、薄膜トランジスタ(TFT)とゲートライン及びデータラインとの接触を示す。ゲート導体路20は、TFT領域において、TFTのゲート電極120を形成する拡張部を有する。データ導体路21は、TFTの領域において、TFTのソース電極170aを形成する拡張部と、TFTのドレイン電極170bを形成し、かつピクセル電極190と接続されている上記ソース電極によって分断された領域とを有する。一方若しくは両方の導体路20若しくは21及び/又はTFT電極120、170a/bは、請求項2及びその従属請求項の1つに規定された本発明による金属層から構成できる。 FIG. 9 shows a contact between a thin film transistor (TFT) and a gate line and a data line. The gate conductor track 20 has an extension in the TFT region which forms the gate electrode 120 of the TFT. In the area of the TFT, the data conductor path 21 includes an extension portion that forms the source electrode 170a of the TFT, and an area that forms the drain electrode 170b of the TFT and is divided by the source electrode connected to the pixel electrode 190. Have. One or both of the conductor tracks 20 or 21 and/or the TFT electrodes 120, 170a/b can consist of a metal layer according to the invention as defined in claim 2 and one of its dependent claims.

さらに、請求項2及びその従属請求項の1つに規定された1つ以上の金属層は、その層状構造が、一例として、図10に示す低温ポリシリコン(LTPS)薄膜トランジスタ(TFT)の一部になることができる。図6のTFT構造と比較して、この場合に、トップゲート型TFT、すなわちゲート電極240は、半導体層220の下ではなく上に配置されている。LTPS−TFTは、トップゲート型TFTとして好適に構成される。LTPS半導体は、アモルファスシリコン(0.5cm/Vs〜1.5cm/Vs)と比較して、大幅に高い電荷キャリア移動度を有する(50cm/Vs〜200cm/Vs)。そのため、上記のTFTは、例えば、OLED又はマイクロLED等の電流駆動型の表示装置の制御に使用できる。 Furthermore, the layered structure of one or more metal layers defined in claim 2 and one of its dependent claims is, for example, part of a low temperature polysilicon (LTPS) thin film transistor (TFT) shown in FIG. Can become Compared to the TFT structure of FIG. 6, in this case the top gate type TFT, ie the gate electrode 240, is arranged above, not below, the semiconductor layer 220. The LTPS-TFT is preferably configured as a top gate type TFT. LTPS semiconductor, as compared to amorphous silicon (0.5cm 2 /Vs~1.5cm 2 / Vs) , has a significantly higher charge carrier mobility (50cm 2 / Vs~200cm 2 / Vs ). Therefore, the above-mentioned TFT can be used for controlling a current drive type display device such as an OLED or a micro LED.

以下で、一例として、トップゲート型LTPS TFTの層状構造を説明する。LTPS−TFTは、フレキシブル基板200上に配置されている。最初に、フレキシブル基板200の上の不規則性を補償するか、又は半導体層220中への、若しくはドープされた半導体領域221(ソース電極)及び222(ドレイン電極)中への、例えば、拡散若しくは浸透による不要な不純物の侵入を防ぐために、基板200全体を覆う緩衝層210をフレキシブル基板200上に配置できる。緩衝層210は、例えば、酸化ケイ素、窒化ケイ素又は酸窒化ケイ素を含む1層又は複数の層から構成できる。基板の組成に応じて、緩衝層を省くこともできる。 The layered structure of the top gate type LTPS TFT will be described below as an example. The LTPS-TFT is arranged on the flexible substrate 200. First, the irregularities on the flexible substrate 200 are compensated, or into the semiconductor layer 220 or into the doped semiconductor regions 221 (source electrode) and 222 (drain electrode), for example by diffusion or A buffer layer 210 that covers the entire substrate 200 may be disposed on the flexible substrate 200 to prevent unnecessary impurities from entering due to permeation. The buffer layer 210 can be composed of one or a plurality of layers containing, for example, silicon oxide, silicon nitride, or silicon oxynitride. The buffer layer may be omitted depending on the composition of the substrate.

ドープされていない多結晶シリコンから構成できる半導体層220は、緩衝層210上に配置されている。この層220(「チャネル領域」とも呼ばれる)に隣接して、一方の側にソース電極221が存在し、他方の側にドレイン電極222が存在する。これらの電極はそれぞれドープされたポリシリコンから構成できる。ドーピングは、例えば、イオン注入によって行うことができ、例えば、ホウ素(B)又はBを使用することによって、p−ドーピングを行うことができる。TFTの実施形態に応じて、ドーピングの種類(p又はn)及び/又はドーパントの種類はもちろん変わり得る。 A semiconductor layer 220, which can be composed of undoped polycrystalline silicon, is arranged on the buffer layer 210. Adjacent to this layer 220 (also called the "channel region") is a source electrode 221 on one side and a drain electrode 222 on the other side. Each of these electrodes can be composed of doped polysilicon. Doping can be performed, for example, by ion implantation, and p-doping can be performed, for example, by using boron (B) or B 2 H 6 . Depending on the TFT embodiment, the type of doping (p or n) and/or the type of dopant can of course vary.

ゲート絶縁体層230は、半導体層220、221及び222上に配置されている。このゲート絶縁体層230は、例えば、窒化ケイ素又は酸化ケイ素から構成できる。ゲート電極240は、そのゲート電極が少なくともチャネル領域(半導体層220)であるオーバーラップ領域(垂直方向に)を有するようにゲート絶縁体層230上に配置されている。ゲート電極240は、本発明による金属層か、又は従来技術に対応する少なくともアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、モリブデン(Mo)、タングステン(W)、チタン(Ti)、クロム(Cr)、ニオブ(Nb)、タンタル(Ta)を含む1層又は複数の層から成るメタライゼーションから構成できる。ゲート電極240は、ゲートライン(図示せず)を介して制御電子装置(図示せず)、とりわけ行ドライバと接続されている。 The gate insulator layer 230 is disposed on the semiconductor layers 220, 221 and 222. The gate insulator layer 230 can be composed of, for example, silicon nitride or silicon oxide. The gate electrode 240 is arranged on the gate insulator layer 230 so that the gate electrode has at least an overlap region (in the vertical direction) which is a channel region (semiconductor layer 220). The gate electrode 240 may be a metal layer according to the present invention, or at least aluminum (Al), copper (Cu), silver (Ag), gold (Au), platinum (Pt), molybdenum (Mo), tungsten corresponding to the conventional technology. The metallization may be composed of one or more layers containing (W), titanium (Ti), chromium (Cr), niobium (Nb) and tantalum (Ta). The gate electrode 240 is connected via a gate line (not shown) to control electronics (not shown), in particular a row driver.

ゲート電極240又はゲート絶縁体層230上に、ゲート絶縁体層230と同じ材料、例えば、窒化ケイ素又は酸化ケイ素から構成できる絶縁層250が塗布されている。絶縁層250及びゲート絶縁体層230には、ソース電極及びドレイン電極221/222を半導体層に(電気的に)アクセス可能にする貫通孔(「スルーホール」)が設けられている。 On the gate electrode 240 or the gate insulator layer 230, an insulating layer 250, which can be composed of the same material as the gate insulator layer 230, for example, silicon nitride or silicon oxide, is applied. The insulating layer 250 and the gate insulator layer 230 are provided with through holes (“through holes”) that allow the source and drain electrodes 221/222 to (electrically) access the semiconductor layers.

制御及び/又はソース接触電極層260及び/又は制御及び/又は接触ドレイン電極層270は、絶縁層250上に配置されており、上記の貫通孔を通じて半導体のソース電極/ドレイン電極221/222と接続されている。制御及び/又はソース/ドレイン電極層260/270は、本発明による金属層、又は従来技術に対応する少なくともアルミニウム(Al)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)、モリブデン(Mo)、タングステン(W)、チタン(Ti)、クロム(Cr)、ニオブ(Nb)、タンタル(Ta)を含む1層又は複数の層から成る金属堆積層から構成できる。制御及び/又は接触ソース電極層260は、データライン(信号ライン;図示せず)を介して制御電子装置、とりわけ列ドライバ(図示せず)と接続されている。 The control and/or source contact electrode layer 260 and/or the control and/or contact drain electrode layer 270 are disposed on the insulating layer 250 and connected to the semiconductor source electrode/drain electrodes 221/222 through the through holes. Has been done. The control and/or source/drain electrode layer 260/270 may be a metal layer according to the present invention, or at least aluminum (Al), copper (Cu), silver (Ag), gold (Au), platinum (Pt) corresponding to the prior art. ), molybdenum (Mo), tungsten (W), titanium (Ti), chromium (Cr), niobium (Nb), and tantalum (Ta). The control and/or contact source electrode layer 260 is connected via data lines (signal lines; not shown) to control electronics, in particular column drivers (not shown).

薄膜トランジスタは、半導体層220、ゲート電極240、制御及び/又は接触ソース/ドレイン電極層260/270から形成される。しかしながら、TFT構成は、上記の例示的実施形態に限定されず、むしろ当業者によって容易に実装可能な数多くの別の構成を有することもでき。 The thin film transistor is formed of the semiconductor layer 220, the gate electrode 240, and the control and/or contact source/drain electrode layer 260/270. However, the TFT configuration is not limited to the exemplary embodiments described above, but rather may have numerous alternative configurations that can be easily implemented by one of ordinary skill in the art.

特に、TFT上になおさらなる発光層、例えば、OLED層(図示せず)が配置された場合に、TFT構造上にさらに平坦化層280も配置できる。平坦化層280は、例えば、ポリアクリレート樹脂、エポキシ樹脂、フェノール樹脂、ポリアミド樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、又はベンゾシクロブテン(BCB)を含むことができる。平坦化層280には、制御及び/又は接触ドレイン電極層270領域へのアクセスを可能にする貫通孔が設けられている。 A planarization layer 280 may also be disposed on the TFT structure, especially if a further light emitting layer, such as an OLED layer (not shown), is disposed on the TFT. The planarization layer 280 can include, for example, polyacrylate resin, epoxy resin, phenol resin, polyamide resin, polyimide resin, unsaturated polyester resin, polyphenylene ether resin, polyphenylene sulfide resin, or benzocyclobutene (BCB). The planarization layer 280 is provided with through holes that allow access to the control and/or contact drain electrode layer 270 regions.

図10には、一例として、ピクセル電極層290も示されており、そのピクセル電極層290は、平坦化層280上に形成され、かつ貫通孔を通じて制御及び/又は接触ドレイン電極層270と導電接続されている。LTPS−OLEDディスプレイ画面の場合には、ピクセル電極層290は、発光構造の第1の電極(一般的に上方へと放射する構造ではアノード)を形成する。ピクセル電極層290が光透過性層として形成されている場合に、その層は、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)又は酸化アルミニウム亜鉛(AZO)を含むことができる。 In FIG. 10, a pixel electrode layer 290 is also shown as an example, and the pixel electrode layer 290 is formed on the planarization layer 280 and is conductively connected to the control and/or contact drain electrode layer 270 through the through hole. Has been done. In the case of an LTPS-OLED display screen, the pixel electrode layer 290 forms the first electrode of the light emitting structure (typically the anode in the upward emitting structure). When the pixel electrode layer 290 is formed as a light transmissive layer, the layer may be made of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO) or aluminum zinc oxide (AZO). Can be included.

ピクセル電極層290が光透過性層として形成されている場合に、その層は、Al、Ag、Mg、Pt、Pd、Au、Nd、Ni、Irから成る反射層だけでなく、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、酸化亜鉛(ZnO)又は酸化アルミニウム亜鉛(AZO)を含む層も含むことができる。 When the pixel electrode layer 290 is formed as a light transmissive layer, the layer is not only a reflective layer made of Al, Ag, Mg, Pt, Pd, Au, Nd, Ni, Ir, but also indium tin oxide ( A layer containing ITO), indium zinc oxide (IZO), zinc oxide (ZnO) or zinc aluminum oxide (AZO) can also be included.

調べた層の機械的特性はなおさらに最適化できると推測される。このように、対象とした熱処理によって、堆積されたモリブデンベース層の微細構造及び内部応力状態をさらに最適化することができるだろう。また堆積条件の対象とした設定によっても、層の成長に故意に影響を及ぼし、延性のさらに増大することができる可能性が非常に高い。 It is speculated that the mechanical properties of the investigated layers can be even further optimized. Thus, the targeted heat treatment could further optimize the microstructure and internal stress states of the deposited molybdenum-based layer. It is also very possible that the setting of the deposition conditions can also have a deliberate effect on the growth of the layer and further increase the ductility.

R 層の電気抵抗
測定開始時の電気抵抗
表面固有抵抗
ε 最大伸び
ε 臨界伸び
const 伸びが生じていない固定クランプ長さ
ρ 層抵抗
1 表示装置
2a/b データドライバ回路(列ドライバ)
3 ゲートドライバ構造(行ドライバ)
4 DC−DC変換回路
5 電気回路
6 タイミング制御回路(TCon)
7 デジタル−アナログ変換回路
8 放電部
9 バッファ回路
10 接触領域(「導体パッド」)
20 電気導体路
21 電気導体路
100 フレキシブル基板
110 緩衝層
120 ゲート電極
140 絶縁層(ゲート絶縁体、ゲート誘電体)
150 半導体層
170a ソース電極
170b ドレイン電極
180 絶縁性保護層
190 ピクセル電極層
200 フレキシブル基板
210 緩衝層
220 半導体層
221 ドープした半導体領域(ソース電極)
222 ドープした半導体領域(ドレイン電極)
230 ゲート絶縁体層
240 ゲート電極
250 絶縁層
260 制御及び/又は接触ソース電極層
270 制御及び/又は接触ドレイン電極層
280 平坦化層
290 ピクセル電極層
Electric resistance of R layer R 0 Electric resistance at the start of measurement R 0 Surface specific resistance ε Maximum elongation ε k Critical elongation L const Fixed clamp length without elongation ρ Layer resistance 1 Display device 2a/b Data driver circuit (row) driver)
3 Gate driver structure (row driver)
4 DC-DC conversion circuit 5 Electric circuit 6 Timing control circuit (TCon)
7 Digital-Analog Converter Circuit 8 Discharge Section 9 Buffer Circuit 10 Contact Area ("Conductor Pad")
20 electrical conductor path 21 electrical conductor path 100 flexible substrate 110 buffer layer 120 gate electrode 140 insulating layer (gate insulator, gate dielectric)
150 semiconductor layer 170a source electrode 170b drain electrode 180 insulating protective layer 190 pixel electrode layer 200 flexible substrate 210 buffer layer 220 semiconductor layer 221 doped semiconductor region (source electrode)
222 Doped semiconductor region (drain electrode)
230 gate insulator layer 240 gate electrode 250 insulating layer 260 control and/or contact source electrode layer 270 control and/or contact drain electrode layer 280 planarization layer 290 pixel electrode layer

Claims (21)

1回又は繰り返しの曲げ応力、引張応力、及び/又はねじり応力を受けるフレキシブル基板(100、200)上に直接又は1つ以上の中間層を介して塗布された層平面内のMo系層の電気伝導率維持のための添加物の使用であって、前記添加物は、Cu、Ag、Au、又はそれらの混合物であることを特徴とする、添加物の使用。 Electricity of Mo-based layers in a layer plane applied directly or via one or more intermediate layers on a flexible substrate (100, 200) subjected to one or repeated bending, tensile and/or torsional stresses Use of an additive for maintaining conductivity, said additive being Cu, Ag, Au, or a mixture thereof, use. フレキシブル基板(100、200)と、
前記フレキシブル基板(100、200)上に直接又は1つ以上の中間層を介して配置され、直接隣接している半導体層又は電気絶縁性層を一方の側に有し、かつ直接隣接している半導体層又は電気絶縁性層を他方の側に有する金属層を有する少なくとも1つの層状構造と、を備えるフレキシブル被覆基板であって、
前記金属層は、
MoXから成る単層構造、
MoXとCu系層との組み合わせ又はMoXとAl系層との組み合わせから成る2層構造、又は、
2つのMoX層とその間に介在したCu系層又は2つのMoX層とその間に介在したAl系層から成る3層構造、から形成され、
ここで、Xは、Cu、Ag、Auの群から選択される1つ以上の元素であることを特徴とする、フレキシブル被覆基板。
Flexible substrate (100, 200),
Directly or via one or more intermediate layers disposed on the flexible substrate (100, 200), having directly adjacent semiconductor layers or electrically insulating layers on one side, and directly adjacent to each other. A flexible coated substrate comprising: a semiconductor layer or at least one layered structure having a metal layer having an electrically insulating layer on the other side,
The metal layer is
Single layer structure composed of MoX,
A two-layer structure composed of a combination of MoX and a Cu-based layer or a combination of MoX and an Al-based layer, or
A three-layer structure composed of two MoX layers and a Cu-based layer interposed therebetween or two MoX layers and an Al-based layer interposed therebetween,
Here, X is one or more elements selected from the group of Cu, Ag, and Au, wherein the flexible coated substrate is characterized.
少なくとも1つのMoX層において、Xは元素Cuであり、このMoCu層は、0.5原子%以上〜50原子%以下のCuを含有する、請求項2に記載のフレキシブル被覆基板。 The flexible coated substrate according to claim 2, wherein in at least one MoX layer, X is elemental Cu, and the MoCu layer contains 0.5 atomic% or more and 50 atomic% or less Cu. 少なくとも1つのMoX層において、Xは元素Agであり、このMoAg層は、10原子%以上〜50原子%以下のAgを含有する、請求項2又は3に記載のフレキシブル被覆基板。 The flexible coated substrate according to claim 2 or 3, wherein in at least one MoX layer, X is an elemental Ag, and the MoAg layer contains Ag of 10 atomic% or more and 50 atomic% or less. 少なくとも1つのMoX層において、Xは元素Auであり、このMoAu金属層は、5原子%以上〜20原子%以下のAuを含有する、請求項2〜4のいずれか1項に記載のフレキシブル被覆基板。 The flexible coating according to any one of claims 2 to 4, wherein in at least one MoX layer, X is an elemental Au and the MoAu metal layer contains 5 atomic% or more and 20 atomic% or less Au. substrate. Mo層中のXは、混晶の形で溶解して形成されている、請求項2〜5のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to any one of claims 2 to 5, wherein X in the Mo layer is formed by dissolving in a mixed crystal form. 前記各々のMoX層は、200マイクロオームcm以下の層抵抗ρを有する、請求項2〜6のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to any one of claims 2 to 6, wherein each of the MoX layers has a layer resistance ρ of 200 micro ohm cm or less. 前記フレキシブル基板(100、200)は、前記電気絶縁性層とは別に形成されている、請求項2〜7のいずれか1項に記載の構成部品。 The component according to any one of claims 2 to 7, wherein the flexible substrate (100, 200) is formed separately from the electrically insulating layer. 前記フレキシブル基板(100、200)は、前記金属層に直接隣接している半導体層又は電気絶縁性層の1つによって形成される、請求項1〜7のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to any one of claims 1 to 7, wherein the flexible substrate (100, 200) is formed by one of a semiconductor layer or an electrically insulating layer that is directly adjacent to the metal layer. .. 前記金属層に直接隣接している半導体層又は電気絶縁性層の少なくとも1つは、複数層(140、150、220、250)として形成されている、請求項2〜9のいずれか1項に記載のフレキシブル被覆基板。 At least one of a semiconductor layer or an electrically insulating layer directly adjacent to the metal layer is formed as a plurality of layers (140, 150, 220, 250). The flexible coated substrate described. 前記金属層の厚さは、1μm以下、好ましくは500nm以下、好ましくは5nm〜100nmである、請求項2〜10のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to claim 2, wherein the metal layer has a thickness of 1 μm or less, preferably 500 nm or less, preferably 5 nm to 100 nm. 前記フレキシブル基板(100、200)は、透明である、請求項2〜11のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to any one of claims 2 to 11, wherein the flexible substrate (100, 200) is transparent. 前記金属層全体は、50マイクロオームcm以下の層抵抗ρを有する、請求項2〜12のいずれか1項に記載のフレキシブル被覆基板。 13. The flexible coated substrate according to claim 2, wherein the entire metal layer has a layer resistance ρ of 50 micro ohm cm or less. 前記フレキシブル基板(100、200)は、
ポリマーと、
薄板ガラスと、
金属箔と、
鉱物材料と、
から成る群から選択される少なくとも1つの材料を含む、請求項2〜13のいずれか1項に記載のフレキシブル被覆基板。
The flexible substrate (100, 200) is
Polymer,
Thin glass,
Metal foil,
Mineral materials,
The flexible coated substrate according to any one of claims 2 to 13, comprising at least one material selected from the group consisting of:
前記金属層は、測定開始時の電気抵抗(R)に対する電気抵抗(R)が、2%の弾性伸び(ε)で1.2以下の比率(R/R)を有する、請求項2〜14のいずれか1項に記載のフレキシブル被覆基板。 The metal layer has a ratio (R/R 0 ) of an electric resistance (R) to an electric resistance (R 0 ) at the start of measurement of 1.2% or less at an elastic elongation (ε) of 2%. 15. The flexible coated substrate according to any one of 1 to 14. 前記フレキシブル被覆基板(100、200)は、少なくとも1つの導体路構造を有し、かつ前記金属層が前記少なくとも1つの導体路構造の一部となるように好適に形成されている、請求項2〜15のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate (100, 200) has at least one conductor track structure, and is preferably formed such that the metal layer is part of the at least one conductor track structure. 16. The flexible coated substrate according to any one of items 1 to 15. 前記金属層は、TFT構造の一部である、請求項2〜16のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to claim 2, wherein the metal layer is a part of a TFT structure. 前記金属層は、アクティブマトリックス構造の一部である、請求項2〜17のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate according to claim 2, wherein the metal layer is part of an active matrix structure. 前記フレキシブル被覆基板は、フレキシブル液晶ディスプレイ画面、フレキシブル有機ELディスプレイ画面、フレキシブル電気泳動ディスプレイ画面(電子ペーパー、E−Ink(登録商標))、フレキシブル太陽電池、エレクトロクロミックフレキシブル膜、フレキシブル薄膜電池の群から選択される部品である、請求項2〜18のいずれか1項に記載のフレキシブル被覆基板。 The flexible coated substrate is a group of flexible liquid crystal display screen, flexible organic EL display screen, flexible electrophoretic display screen (electronic paper, E-Ink (registered trademark)), flexible solar cell, electrochromic flexible film, flexible thin film battery. The flexible coated substrate according to any one of claims 2 to 18, which is a component to be selected. フレキシブル基板(100、200)を準備する工程と、
直接又は1つ以上の中間層を介して前記フレキシブル基板(100、200)を少なくとも1つのMoX層の堆積により被覆する工程と、の少なくとも1つを含み、
特に、請求項2〜19のいずれか1項に記載のフレキシブル被覆基板、特に、請求項1に記載の添加物の使用で用いるフレキシブル被覆基板の製造方法であって、
前記MoX層は、0.5原子%以上のXを含有し、
ここで、Xは、Cu、Ag、Au成る群から選択される1つ以上の元素であることを特徴とする、フレキシブル被覆基板の製造方法。
A step of preparing a flexible substrate (100, 200),
Coating the flexible substrate (100, 200) by deposition of at least one MoX layer, either directly or via one or more intermediate layers, and
In particular, a method for producing a flexible coated substrate according to any one of claims 2 to 19, particularly a flexible coated substrate used by using the additive according to claim 1.
The MoX layer contains 0.5 atomic% or more of X,
Here, X is one or more elements selected from the group consisting of Cu, Ag, and Au.
前記少なくとも1つの金属層は、PVD法によって堆積される、請求項20に記載のフレキシブル被覆基板の製造方法。 The method for manufacturing a flexible coated substrate according to claim 20, wherein the at least one metal layer is deposited by a PVD method.
JP2019561901A 2017-05-11 2018-04-19 Flexible part with layered structure with metal layers Active JP7282688B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATGM104/2017U AT15574U3 (en) 2017-05-11 2017-05-11 Flexible component with layer structure with metallic layer
ATGM104/2017 2017-05-11
PCT/AT2018/000026 WO2018204944A1 (en) 2017-05-11 2018-04-19 Flexible component having a layered structure with a metallic ply

Publications (4)

Publication Number Publication Date
JP2020522728A true JP2020522728A (en) 2020-07-30
JP2020522728A5 JP2020522728A5 (en) 2021-04-01
JPWO2018204944A5 JPWO2018204944A5 (en) 2023-02-09
JP7282688B2 JP7282688B2 (en) 2023-05-29

Family

ID=61597295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019561901A Active JP7282688B2 (en) 2017-05-11 2018-04-19 Flexible part with layered structure with metal layers

Country Status (6)

Country Link
JP (1) JP7282688B2 (en)
KR (1) KR102557501B1 (en)
CN (1) CN110651373B (en)
AT (1) AT15574U3 (en)
TW (1) TWI793121B (en)
WO (1) WO2018204944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008475A1 (en) * 2021-07-30 2023-02-02 株式会社ニコン Method for manufacturing metal wiring, method for manufacturing transistor, and metal wiring

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018123944A1 (en) * 2018-09-27 2020-04-02 Liebherr-Hausgeräte Ochsenhausen GmbH Vacuum insulation body for refrigerators and / or freezers
CN112582479A (en) * 2020-12-30 2021-03-30 福建华佳彩有限公司 Thin film transistor with top gate structure and manufacturing method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324874A (en) * 2001-04-25 2002-11-08 Kyocera Corp Wiring board
WO2004038049A1 (en) * 2002-10-28 2004-05-06 A.L.M.T.Corp. Composite material, method for producing same and member using same
JP2006221162A (en) * 2005-02-07 2006-08-24 Samsung Electronics Co Ltd Wiring for display device, thin film transistor display panel and its manufacturing method
JP2014199920A (en) * 2013-03-12 2014-10-23 日立金属株式会社 METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
JP2014529006A (en) * 2012-01-12 2014-10-30 宝鶏市科廸普有色金属加工有限公司 Processing method of molybdenum / niobium alloy plate target material
WO2015029286A1 (en) * 2013-08-27 2015-03-05 パナソニック株式会社 Thin film transistor substrate manufacturing method and thin film transistor substrate
JP2015119175A (en) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
JP2016504495A (en) * 2012-11-29 2016-02-12 エーリコン・サーフェス・ソリューションズ・アーゲー・トリューバッハ Layer surface structuring method and apparatus therefor
US20160365368A1 (en) * 2015-06-11 2016-12-15 Samsung Display Co., Ltd. Thin film transistor array panel
JP2016224429A (en) * 2015-05-29 2016-12-28 株式会社半導体エネルギー研究所 Semiconductor device and display device having the semiconductor device
JP2017503336A (en) * 2013-11-15 2017-01-26 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Low contact resistance thin film transistor
JP2017028279A (en) * 2015-07-17 2017-02-02 株式会社半導体エネルギー研究所 Semiconductor device, illumination device, and vehicle

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002232142A (en) * 2001-01-30 2002-08-16 Kyocera Corp Multilayer wiring board and its producing method
JP4530579B2 (en) 2001-05-22 2010-08-25 京セラ株式会社 Package for storing semiconductor elements
JP4496518B2 (en) * 2002-08-19 2010-07-07 日立金属株式会社 Thin film wiring
JP2007069561A (en) * 2005-09-09 2007-03-22 Sumitomo Metal Mining Co Ltd Two-layered flexible substrate and manufacturing method therefor
EP3333280A1 (en) * 2007-09-12 2018-06-13 Flisom AG Method for manufacturing a compound film with compositional grading
KR101542840B1 (en) * 2008-09-09 2015-08-07 삼성디스플레이 주식회사 Thin film transistor substrate and method of fabricating thereof
JP5874308B2 (en) * 2011-10-21 2016-03-02 三菱瓦斯化学株式会社 Etching solution for multilayer film containing copper and molybdenum
KR102194818B1 (en) * 2013-08-06 2020-12-24 삼성디스플레이 주식회사 Flexible touch display panel
CN103606389B (en) * 2013-10-28 2016-11-16 中国科学院长春光学精密机械与物理研究所 High conductivity is inorganic, the preparation method of metal-doped multi-layer-structure transparent conductive film
US9544994B2 (en) * 2014-08-30 2017-01-10 Lg Display Co., Ltd. Flexible display device with side crack protection structure and manufacturing method for the same
JP6706418B2 (en) * 2015-03-20 2020-06-10 日立金属株式会社 Sputtering target material for forming laminated wiring film and coating layer for electronic parts
AT15048U1 (en) * 2015-11-27 2016-11-15 Plansee Se Coated flexible component

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324874A (en) * 2001-04-25 2002-11-08 Kyocera Corp Wiring board
WO2004038049A1 (en) * 2002-10-28 2004-05-06 A.L.M.T.Corp. Composite material, method for producing same and member using same
JP2006221162A (en) * 2005-02-07 2006-08-24 Samsung Electronics Co Ltd Wiring for display device, thin film transistor display panel and its manufacturing method
JP2014529006A (en) * 2012-01-12 2014-10-30 宝鶏市科廸普有色金属加工有限公司 Processing method of molybdenum / niobium alloy plate target material
JP2016504495A (en) * 2012-11-29 2016-02-12 エーリコン・サーフェス・ソリューションズ・アーゲー・トリューバッハ Layer surface structuring method and apparatus therefor
JP2014199920A (en) * 2013-03-12 2014-10-23 日立金属株式会社 METAL THIN FILM FOR ELECTRONIC COMPONENT AND Mo ALLOY SPUTTERING TARGET MATERIAL FOR FORMING METAL THIN FILM
WO2015029286A1 (en) * 2013-08-27 2015-03-05 パナソニック株式会社 Thin film transistor substrate manufacturing method and thin film transistor substrate
JP2015119175A (en) * 2013-11-15 2015-06-25 株式会社半導体エネルギー研究所 Semiconductor device and display device
JP2017503336A (en) * 2013-11-15 2017-01-26 エボニック デグサ ゲーエムベーハーEvonik Degussa GmbH Low contact resistance thin film transistor
JP2016224429A (en) * 2015-05-29 2016-12-28 株式会社半導体エネルギー研究所 Semiconductor device and display device having the semiconductor device
US20160365368A1 (en) * 2015-06-11 2016-12-15 Samsung Display Co., Ltd. Thin film transistor array panel
JP2017028279A (en) * 2015-07-17 2017-02-02 株式会社半導体エネルギー研究所 Semiconductor device, illumination device, and vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023008475A1 (en) * 2021-07-30 2023-02-02 株式会社ニコン Method for manufacturing metal wiring, method for manufacturing transistor, and metal wiring

Also Published As

Publication number Publication date
TWI793121B (en) 2023-02-21
AT15574U2 (en) 2018-03-15
AT15574U3 (en) 2018-05-15
KR102557501B1 (en) 2023-07-20
WO2018204944A1 (en) 2018-11-15
CN110651373B (en) 2023-08-15
KR20200008575A (en) 2020-01-28
CN110651373A (en) 2020-01-03
JP7282688B2 (en) 2023-05-29
TW201903177A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP7282688B2 (en) Flexible part with layered structure with metal layers
US20070040173A1 (en) Source/drain electrodes, transistor substrates and manufacture methods, thereof, and display devices
KR20100118998A (en) Display device, process for producing the display device, and sputtering target
US7825515B2 (en) Semiconductor device, display device, and method of manufacturing semiconductor device
TW201322833A (en) Electronic apparatus and display apparatus
KR20110082561A (en) Reflective anode and wiring film for organic el display device
JP7077294B2 (en) Composite oxide semiconductors, semiconductor devices and display devices
GB2531392A (en) Organic light emitting diode display panel and method of fabricating the same
KR20080100358A (en) Electronic device, method of manufacture of same and sputtering target
CN101320737A (en) Thin-film transistor structure and preparation method thereof
US11087646B2 (en) Electrode or wiring comprising amorphous metal layer, flexible display device comprising the same and manufacturing method thereof
US10268090B2 (en) Display substrate having more uniform cell gap and method of fabricating the same
KR102578294B1 (en) Coated soft parts
KR20160064235A (en) Wiring structure for display device
US20210057532A1 (en) Thin film transistor substrate
JPWO2018204944A5 (en)
EP3465792B1 (en) Display panel, display apparatus having the same, and fabricating method thereof
JP2014120487A (en) Electrode for use in display device or input device, and sputtering target for electrode formation
US20130249571A1 (en) Touch panel sensor
CN109390414A (en) A kind of thin film transistor (TFT), array substrate and display panel
Lin et al. Effects of Mg content and thermal treatments on optoelectronic and bending properties of transparent conductive indium tin oxide/AgMg bi-layer film
KR20170025248A (en) Thin Film Transistor comprising double layer gate insulator and fabricating method thereof
CN115714128A (en) Array substrate, preparation method thereof, display panel and display device
KR20210128341A (en) Al ALLOY DEPOSITION FILM, WIRING FILM FOR DISPLAY, DISPLAY DEVICE, AND SPUTTERING TARGET
CN102486696B (en) Touch pad sensor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230201

A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A524

Effective date: 20230201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230517

R150 Certificate of patent or registration of utility model

Ref document number: 7282688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150