JP2020521262A - 画像中のノイズの低減 - Google Patents

画像中のノイズの低減 Download PDF

Info

Publication number
JP2020521262A
JP2020521262A JP2020514334A JP2020514334A JP2020521262A JP 2020521262 A JP2020521262 A JP 2020521262A JP 2020514334 A JP2020514334 A JP 2020514334A JP 2020514334 A JP2020514334 A JP 2020514334A JP 2020521262 A JP2020521262 A JP 2020521262A
Authority
JP
Japan
Prior art keywords
image
training
images
input
subset
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020514334A
Other languages
English (en)
Other versions
JP7189940B2 (ja
Inventor
ルイズ,カルロス チラー
ルイズ,カルロス チラー
ザネット,サンドロ デ
ザネット,サンドロ デ
アポストロポウロス,ステファノス
Original Assignee
レチンエイアイ メディカル アーゲー
レチンエイアイ メディカル アーゲー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by レチンエイアイ メディカル アーゲー, レチンエイアイ メディカル アーゲー filed Critical レチンエイアイ メディカル アーゲー
Publication of JP2020521262A publication Critical patent/JP2020521262A/ja
Application granted granted Critical
Publication of JP7189940B2 publication Critical patent/JP7189940B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • G06T5/70
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image
    • G06T3/60Rotation of a whole image or part thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/50Image enhancement or restoration by the use of more than one image, e.g. averaging, subtraction
    • G06T5/60
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10101Optical tomography; Optical coherence tomography [OCT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20212Image combination
    • G06T2207/20216Image averaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Abstract

画像中のノイズを低減するためにニューラルネットワークをトレーニングする方法が、複数の入力画像を撮像装置から取得するステップを含む。この方法は、複数のターゲット画像を生成するステップを含み、このステップは、入力画像の、各々が同一の対象物を表すサブセットを、ターゲット画像のノイズを低減するように組み合わせることにより行われる。前記方法は、複数のトレーニングペアを生成するステップを含み、1つのトレーニングペアが、ターゲット画像のうちの1つと、トレーニング画像と、を含み、当該トレーニング画像は、ターゲット画像のうちの1つに対応する入力画像のサブセットの入力画像の全てにではないが少なくとも1つに基づいている。前記方法は、ニューラルネットワークを、複数のトレーニングペアを用いてトレーニングするステップを含む。

Description

本発明は、画像中のノイズ、特にスペックルノイズを低減するための方法及び装置に関する。より詳細には、本発明は、OCT画像中のスペックルノイズを低減することに関する。
撮像装置(イメージングデバイス)は、通常、1以上のセンサから受信した信号に基づいてデジタル画像を生成できる。生成された画像はノイズを含む。生成された画像中のノイズを低減するために多くの研究が過去に行われてきた。
光干渉断層撮影(OCT)は、マイクロメートルの解像度、生体組織及び他のサンプルの多次元画像を提供する非侵襲性の撮像モダリティである。OCT画像は、最も一般的な構成において、2つの広帯域レーザビームの干渉により形成される。これらのうちの一方は、静的ミラーからの反射(「参照ビーム」)(“reference beam”)であり、もう一方は、検査中のサンプルによる反射(「サンプルビーム」)(“sample beam”)である。OCTの用語において、「Aスキャン」が、静的なサンプルビームにより取得された単一の列を意味する。「Bスキャン」が、サンプルに対する所定のラインに沿って移動しているサンプルビームにより取得された2次元断面画像を意味する。「Cスキャン」が、サンプルに対してアプリケーション固有のラスタパターンで移動しているサンプルビームにより取得された3次元体積画像を意味する。
技術は著しく進歩しているが、OCT画像は、いまだにスペックルノイズを含んでいる。スペックルノイズは、熱、電気、多重散乱効果の複雑な組合せ、及び、デジタル処理アルゴリズムにより生じ得る。実際、多くのアプリケーションにおいて、再構成されたOCT信号のスペクトルエネルギーの75%がノイズである。
従って、スペックルの低減又はノイズ除去技術が、重要な研究課題である。最も簡単な第1の方法は、同一サンプル位置から取得した複数のBスキャンの平均化を含む。スペックルノイズはランダムプロセスの結果であり、従って無相関であるため、Bスキャンのn回の平均化により、信号対ノイズ比(SNR)が√n倍改善される。平均化は、通常、干渉信号においてではなく、最終的な再構成画像において実行される。
デジタルノイズ除去アルゴリズムは、取得した画像を、その画像に含まれる構造情報を損なわずにスペックルノイズ量を低減するように後処理することを意図している。このような方法の例には、中央値フィルタリングと、その他の等方性及び異方性平滑化技術が含まれる。
人工ニューラルネットワークアルゴリズムを用いたスペックルノイズ低減方法が、非特許文献1に開示されている。ANNをトレーニングするために、既知のシグマ値を有するノイジー(ノイズが多い)画像が必要である。既知のシグマ値を有するノイジー画像を生成するために、レイリーノイズジェネレーターが使用される。
M.R.N.アヴァナキ(Avanaki)らによる「人工ニューラルネットワークアルゴリズムを使用したスペックル低減」("Speckle reduction using an artificial neural network algorithm")(アプライド・オプティクス、2013年第21号52巻)
測定技術を用いて得られた画像のノイズを低減するための改善された方法を提供することが有利であろう。
この課題に対処するために、本発明の一態様は、画像中のノイズを低減するためのニューラルネットワークをトレーニングする方法を提供する。この方法は、
複数の入力画像を撮像装置から取得するステップと、
前記入力画像のサブセットを識別するステップと、を含み、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表す。前記方法は、さらに、
複数のターゲット画像を生成するステップを含み、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成される。前記方法は、さらに、
複数のトレーニングペアを生成するステップを含み、1つのトレーニングペアが、
前記ターゲット画像のうちの1つと、
トレーニング画像と、を含み、当該トレーニング画像は、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいている。前記方法は、さらに、
前記複数のトレーニングペアを用いてニューラルネットワークをトレーニングするステップを含む。
このようにしてトレーニングされた前記ニューラルネットワークは、ノイズが多い画像(ノイジー画像)を、対応する、ノイズが低減された画像(ノイズ低減画像)にマッピングできるため、ノイズを低減できる。前記ニューラルネットワークは、トレーニング画像(撮像装置により実際に作成された画像と、それらのノイズ低減バージョンであるターゲット画像と、に基づいている)を使用してトレーニングされるため、前記ニューラルネットワークは、撮像装置の特性と、撮像装置が発生するノイズを学習でき、それに応じて、検出されたノイズを除去できる。本明細書に開示する技術を使用する場合、発生するノイズの詳細(例えば、標準偏差など)を事前に確立しておく必要はない。なぜなら、トレーニング画像自体が、関連するノイズを表すからである。
前記トレーニング画像が1つ以上の入力画像に基づくのであれば、入力画像の前記サブセットの前記入力画像の全てではないが前記1つ以上を組み合わせることにより前記トレーニング画像のノイズを低減するように前記トレーニング画像は生成され得る。これは、前記ネットワークが、部分的に低減されたノイズを含むトレーニング画像を有するペアから学習することを可能にする。この方法により、ニューラルネットワークトレーニングの結果が著しく改善される。
前記複数のトレーニング画像を生成する前記ステップは、様々な番号の入力画像に基づいてトレーニング画像を生成するステップを含み得る。これは、様々な番号の入力画像を組み合わせて前記トレーニング画像を得ることにより行われる。
前記複数のトレーニングペアは、入力画像の第1の番号Kに基づいた第1のトレーニング画像を含む第1のトレーニングペアと、入力画像の第2の番号Kに基づいた第2のトレーニング画像を含む第2のトレーニングペアとを含み、前記第1の番号Kは前記第2の番号Kとは異なる。これらの異なる番号の画像を組み合わせることで、前記トレーニング画像のノイズが可変レベルになる。前記第1のトレーニング画像は、前記第2のトレーニング画像とは異なる平滑化レベルを有するであろう。これにより、ニューラルネットワークのトレーニング結果が改善される。
前記複数のトレーニングペアは、異なるトレーニング画像は異なる番号の入力画像に基づいているがターゲット画像は同一であるトレーニングペアを含み得る。こうして、異なるレベルのノイズをトレーニングするために、複数のトレーニングペアにおいて同一のターゲット画像が現れ得る。これにより、トレーニング結果が改善される。
N個の入力画像の各ターゲット画像、及び、当該ターゲット画像の対応するサブセットに対して、トレーニング画像が、N個の入力画像の前記サブセットのKに基づいて生成される。Kは、Nよりも小さい全ての正の整数値である。本発明者は、これがニューラルネットワークのトレーニング結果を改善し得ることを確認した。
任意の値Kに対して、N個の入力画像の前記サブセットからのK個の入力画像の1つ以上の可能な選択が存在するならば、トレーニング画像が、N個の入力画像の前記サブセットからの前記K個の入力画像の1つ以上の選択のために生成され得る。本発明者は、これがニューラルネットワークのトレーニング結果を改善し得ることを確認した。
前記入力画像を組み合わせる前記ステップは、組み合わされた前記入力画像の対応する値を平均化するステップを含み得る。これは、前記ターゲット画像及び前記トレーニング画像中のノイズを低減するための有効な方法である。
前記方法は、さらに、サブセットの前記入力画像を、前記ターゲット画像及びトレーニング画像を生成する前に空間的に位置合わせするステップを含み得る。これが、前記画像を組み合わせた結果を改善し得る。
前記方法は、前記ニューラルネットワークをトレーニングする前に、ノイズを追加するか、又は、前記トレーニング画像の向きを変更することにより前記トレーニング画像を増強するステップを含み得る。これが、前記ネットワークトレーニングの結果を改善し得る。
前記入力画像は、光コンピュータ断層撮影、OCTにより取得され得る。本開示にて説明するこの方法は、OCT撮像におけるノイズ低減に特に適している。
例えば、入力画像の特定のサブセットの前記入力画像は、単一のCスキャン画像から抽出された複数のBスキャン画像である。これらのCスキャンのBスキャン画像は、スキャン同士間の時間を最小限にして画像を取得するという利点を有する。従って、動き歪みの発生がより少なくなり得、これが、ノイズを低減するように画像を組み合わせることを容易にする。さらに、Bスキャンの取得に加えて、又は、Bスキャンの代わりに、Mスキャンを取得することも可能である。本明細書において、MスキャンはBスキャンと同一スポットで経時的に繰り返される。Mスキャンを組み合わせることにより、画像中のノイズを低減し得る。
例えば、前記入力画像は、網膜の少なくとも一部を表し得る。本開示に記載するこの方法は、網膜撮像、詳細にはOCT網膜撮像におけるノイズ低減に特に適している。
異なるサブセットの前記入力画像は、異なる被検体における同一タイプの組織又は同一タイプの器官の画像を含み得る。これが、ニューラルネットワークを特定の種類の組織又は器官の画像に特化することを可能にする。こうして、ノイズを対象物自体の実際の特徴と区別することが、より容易になる。同様に、異なるサブセットの前記入力画像が、同一タイプの異なる対象物の画像を含み得る。
前記複数の入力画像を取得するステップは、複数の異なる撮像装置から入力画像を取得するステップを含み得る。これらの画像を用いることで、様々な撮像装置からの画像によるトレーニングペアを作成可能である。こうして、前記ニューラルネットワークにより装置が汎用化され得る。複数の装置からの画像を用いたトレーニングペアでのトレーニングが、基盤である画像構造に追加の情報を見出すことを補助し得る。これは、前記様々な撮像装置が異なる性能を有する場合にも当てはまる。例えば、組織透過性がより優れた装置からのサンプルを追加することで、前記ニューラルネットワークが、組織透過性が劣る装置の深部組織特性を改善することを可能にする。
前記方法は、前記トレーニング後に、撮像装置から、前記ニューラルネットワークへの入力画像としての新しい画像を受信して供給し、前記ニューラルネットワークからの出力画像を得るステップを含み得る。これは、前記トレーニングされたニューラルネットワークが任意の画像中のノイズを低減するために適用され得るステップである。
本発明の別の態様によれば、撮像装置のノイズ低減装置が提供される。この装置は、
撮像装置から画像を受信するための入力ユニットと、
前記画像を、トレーニングされたニューラルネットワークに従って処理して出力画像を生成するための制御ユニットと、を備え、
前記ニューラルネットワークは、複数の入力画像を撮像装置から取得するステップと当該入力画像のサブセットを識別するステップとにより作成され、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表す。前記ニューラルネットワークは、さらに、複数のターゲット画像を生成するステップにより作成され、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成される。前記ニューラルネットワークは、さらに、複数のトレーニングペアを生成するステップにより作成され、1つのトレーニングペアが、前記ターゲット画像のうちの1つと、トレーニング画像と、を含み、当該トレーニング画像は、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいている。前記ニューラルネットワークは、さらに、前記複数のトレーニングペアを用いて前記ニューラルネットワークをトレーニングするステップにより作成される。
本発明の別の態様によれば、画像中のノイズを低減するためのニューラルネットワークをトレーニングするシステムが提供される。このシステムは、
複数の入力画像を撮像装置から取得するための入力ユニットと、
制御ユニットと、を備え、当該制御ユニットは、以下のように構成されている。すなわち、
前記入力画像のサブセットを識別する。入力画像のサブセットの各入力画像は、当該サブセットのその他の入力画像と同一の対象物を表している。
複数のターゲット画像を生成する。1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成される。
複数のトレーニングペアを生成する。1つのトレーニングペアが、
前記ターゲット画像のうちの1つと、
トレーニング画像と、を含む。当該トレーニング画像は、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいている。前記制御ユニットは、さらに、
前記複数のトレーニングペアを用いてニューラルネットワークをトレーニングするように構成されている。
当業者は、上記の特徴を、有用であると考えられる任意の方法で組み合わせ得ることを理解するであろう。さらに、方法に関して記載した改変及び変更を、装置及び/又はコンピュータプログラム製品を実現するために適用することが可能であり、また、装置に関して記載した改変及び変更も同様に、方法及びコンピュータプログラム製品に適用可能である。
以下に、本発明の態様を、図面を参照しつつ、例を用いて説明する。図面は概略的であり、縮尺通りに描かれていない場合がある。図面全体を通じて、類似のアイテムは同一の参照番号で示され得る。
トレーニングデータセットを準備し、ニューラルネットワークをトレーニングしてニューラルネットワークを適用する方法のフローチャートである。 ニューラルネットワークをトレーニングする方法のフローチャートである。 幾つかのノイズ除去方法の比較を示している。 ノイズ低減装置のブロック図である。 様々なOCTスキャン及びそのタイリングの例を示している。 U字型構造のネットワーク(Uネット)の図である。 図6Aに示した入力ブロック、出力ブロック、ブロックD及びブロックuの内容を示す図である。
添付図面を参照して、幾つかの例示的な実施形態を、より詳細に説明する。
詳細な構造及び要素などの説明において開示する事項は、例示的な実施形態の包括的な理解を補助するために提供される。従って、これらの具体的に定義された事項が存在せずとも例示的な実施形態を実行できることは明らかである。また、公知のオペレーション又は構造も、それらの不要な詳細により説明が曖昧になる場合があるため、詳細には説明しない。
本開示の一態様によれば、画質を、OCTスキャンで符号化された構造情報を損なわずにスペックルノイズを除去することにより向上させ得る。本開示によれば、ニューラルネットワークが、各タイプの組織に対応する特定のスペックルパターンをバックグラウンドノイズから区別するように「学習」(“learn”)し、組織に関する情報を維持したままノイズを除去できる。また、本明細書に開示する解決方法は、取得した画像のノイズを低減するためにほぼリアルタイムで実行されてもよく、臨床設定に関連付けられる。
本開示の一態様によれば、ノイズ低減の課題は、教師付き機械学習タスクとして扱われ、非線形変換関数f(I)→Iを学習しようとするものである。この変換関数は、ノイジーな/破損した画像Iを、ノイズ除去された/クリーン画像Iにマッピングする。
本開示の一態様によれば、データセットが、教師付きトレーニングのための必要な情報を捕捉するために、例えばOCT画像に基づいて慎重に準備される。このデータセットは、特定のプロトコルを使用して取得されて特定の方法で後処理されるため、それぞれ、ノイジー画像とクリーン画像とのペア{I,I}を含む。
一般的に発生する画像変化に対する不変性を得るために、各{I,I}ペアを、幅広い数学的変換のセットを使用して増強することが可能である。
本開示の態様によれば、高次の非線形変換関数fが、畳み込みニューラルネットワークを{I,I}ペアで、収束するまでトレーニングすることにより決定される。
図1は、画像中のノイズを低減するためにニューラルネットワークをトレーニングする方法のフロー図を示す。トレーニングデータセットは、ニューラルネットワークのトレーニングを成功させるための重要な要素である。ステップ101〜106は、トレーニングデータセットの準備に関するものであり、ステップ107は、準備されたトレーニングデータセットを使用したニューラルネットワークの実際のトレーニングに関する。
この方法は、ステップ101にて、複数の入力画像を取得することにより開始する。このステップは、センサを用いて画像データを測定するために画像検出デバイスを動作させることを含み得る。また、ステップ101は、画像再構成技術、例えば、コンピュータ断層撮影又は関連技術を実行して入力画像を取得することを含み得る。類似のタイプの対象物の様々な例の画像を取得し得る。例えば、異なる被検体の網膜が、類似のタイプの対象物と見なされ得る。同一の被写体の異なる網膜も、類似のタイプの対象物と見なされ得る。さらに、これらの異なる部分が類似の画像特性を有する場合、同一の対象物の異なる部分の画像が取得され得る。幾つかのアプリケーションにおいて、各対象物に対して同一の相対位置にある全ての画像を取得する必要がある。他のアプリケーションにおいては、対象物のどの部分を画像化するかは、それほど重要でない。これは、試行錯誤により判断され得る。
画像は、光干渉断層撮影(OCT)画像であり得る。これらのOCT画像は、その空間領域における対象物を表すために再構築されている場合がある。対象物のタイプは、網膜、例えば、ヒトの網膜であり得る。複数の異なる被検体(例えば、人々)の網膜を撮像して、異なる被験者の画像を取得できる。
また、例えば疾患の進行を検出するために、測定同士の間をかなり遅らせて同一被検体を複数回撮像してもよい。このような場合、これらの取得画像は、異なる対象物の画像であると見なされ得る(取得の間に対象物が変化した可能性があるため)。
また、ステップ101aにおいて、画像はサブセットにグループ化され得る。これは、上記で定義したような同一の対象物の画像が共に同一のサブセットにグループ化されるように行われる。これが、次の処理ステップの実行を容易にする。
その他の実施形態は、OCT画像の代わりに、例えば超音波画像又はCT画像を含み得る。
ステップ102において、同一の対象物に対応する画像のサブセットの画像を互いに位置合わせし得る。このステップは、動き補償ステップであり得る。同一の対象物の連続画像が、わずかに異なる位置から取得される場合があり、或いは、対象物が、連続画像の間に移動した場合もある。位置合わせステップは、このような動きのいずれをも補償するために画像を互いにマッチングさせる。このステップは任意選択的である。なぜなら、幾つかの実施形態においては動きの量を無視できるからである。ステップ102の出力は画像のセットであり、同一の対象物の異なる画像が、互いに対して動き補償される。すなわち、各サブセット内の画像は、そのサブセット内のその他の画像に対して動き補償される。
ステップ103において、外れ値を拒否するための任意選択的なステップが実行され得る。例えば、動き補償が失敗した場合、又は、動き補償後にサブセット内の画像が大きく異なり過ぎている場合、画像は破棄される。或いは、画像自体が異常特性を有する場合(暗すぎる、非現実的なスパイクなど)、そのような画像は破棄され得る。ステップ103の出力は、動き補償と、外れ値の破棄によるクリーニングとの両方が行われたデータセットである。ステップ101とステップ102との間に、代替的な又は追加の外れ値拒否ステップを実行してもよいことに留意されたい。
ステップ104において、画質が改善された画像が、既存の画像から生成される。例えば、同一の対象物を表す画像の各サブセットの画像を平均化するか、或いはそれ以外の方法で組み合わせることにより、画質が改善された画像を取得できる。各サブセットにおける画像が動き補償されているため、画像の平均化によりノイズを低減でき、尚且つ、実際の組織情報が向上する。これらの改善された画質の画像を、本文以下「ターゲット画像」(“target images”)と称する。
ステップ105において、ノイズのレベルが異なる様々な画像が生成される。これは、画像の各サブセットからの様々な個数の画像を平均化するか、或いはそれ以外の方法で組み合わせることにより実行される。すなわち、画像のサブセットがN個の画像を有する場合、N平均化画像(サブセット内の全ての画像の平均)がターゲット画像となる。しかし、トレーニング画像を構成するのは、N個未満の画像の平均画像である。任意の個数の画像Kを平均化でき、K=1からK=N−1である。また、Kの各値に対して、N個の画像のサブセットからの、K個の画像の複数の可能な選択がある。これら全ての選択により、異なるトレーニング画像が作成される。従って、これらの全ての選択を用いて、多くのトレーニング画像を生成できる。幾つかの実施形態において、Kの全ての値(1〜N−1)が使用され、可能な限り多くのトレーニング画像を生成するために、K画像の全ての可能な選択が使用される。或いは、どの可能性が実際に使用されるべきかに関して、幾つかの選択が行われる。例えば、Kの任意の値に対する選択の個数が、ランダムな選択の所定の個数に限定されてよい。或いは、Kの全ての値を使用せずに、Kの特定の値のみを使用してもよい。例えば、奇数値K(K=1,3,5,…、K<N)、又はKの3番目ごとの値(K=1,4,7,…、K<N)を使用してもよい。組み合わされる画像の選択に関する他の選択は、当業者には明らかであろう。本発明の例を、画像の平均化に関して詳述したが、その他の種類の組合せ(中央値など)も、ステップ104及びステップ105の両方で可能であることに留意されたい。
ステップ105の簡略版において、各トレーニング画像は、画像のサブセットの入力画像の全てにではなく、少なくとも1つに基づく。例えば、各ターゲット画像に対して作成され得るトレーニング画像は1つのみである。すなわち、単一の入力画像(K=1)のみをトレーニング画像として使用し得る。従って、Kの様々な値を省き得る。
ステップ106において、ノイジー画像とノイズ除去画像とのペアが生成される。各ペアは、トレーニング画像とターゲット画像とを含む。1つのペアのトレーニング画像とターゲット画像とは、対象物を表す画像の同一のサブセットに基づいている。ステップ105において、各サブセットに対して複数のターゲットオブジェクトが作成されたため、同一のターゲット画像が複数の異なるペアに含まれることになる。本文以下、これらのペアを「トレーニングペア」(“training pair”)と称する。
ステップ107において、ニューラルネットワークが、トレーニングペアを使用してトレーニングされる。このために、適切なニューラルネットワークトポロジ及びトレーニングプロセスが使用され得る。ニューラルネットワークへの入力はトレーニング画像であり、ターゲット出力は、トレーニング画像に対応するターゲット画像である。ステップ107の実行例が図2に示されている。
トレーニングプロセスが完了したならば、画像中のノイズを低減するためにニューラルネットワークを適用してもよい。このために、ステップ108に示されているように、新しい画像が取得されたときに画像をニューラルネットワークに入力できる。ニューラルネットワークの出力が、ノイズ低減画像として使用され得る。
図2は、本開示で説明したように準備されたトレーニングデータセットを使用してニューラルネットワークをトレーニングする方法を示している。この図が例示的な例として提供されているに過ぎないことを理解されたい。ニューラルネットワークをトレーニングするためのその他のスキームが当業者に公知であり、それらを用いることも可能である。
ステップ201において、n個のトレーニングペアが、利用可能なトレーニングペアからランダムに選択される。各トレーニングペアは、ノイジー画像Snoisy(トレーニング画像とも称する)と、ノイズ除去画像Sdenoised(ターゲット画像とも称する)とから構成される。適切な個数n(nは、利用可能なトレーニングペアの個数よりも小さい)が試行錯誤により決定され得る。
ステップ202において、ランダムに選択されたトレーニングペアのトレーニング画像がニューラルネットワークに入力される。これは、
[式1]

で表されることができ、FCNNはニューラルネットワークを示す。ニューラルネットワークFCNNは、畳み込みニューラルネットワーク、又は、別のタイプの教師付き学習ニューラルネットワークであり得る。
ステップ203において、誤差関数が決定される。誤差を決定するために、ニューラルネットワークの各出力

が、対応するターゲット画像Sdenoisedと比較される。誤差値は、例えば、二乗差の合計として決定され得る。例えば、画像の各ピクセル又はボクセル対して二乗差が決定され得る。これらの二乗差が加算され得る。このプロセスは、ランダムに選択されたn個の画像の全てに対して繰り返され得る。n個の画像に対して補正をするためには、全ての二乗差の合計を計算してnで割ればよい。これにより、以下の例示的な
[式2]

が得られ、式中、Eは、決定された誤差値である。
ステップ204において、ニューラルネットワークのパラメータは、誤差値Eが低減されるように適合され得る。このステップは、逆伝搬プロセスにより実行され得る。このプロセス自体は当技術分野で公知である。
ステップ205において、プロセスが収束したかどうかがテストされる。これは、誤差値Eを所定の閾値と比較することにより実行され得る。或いは、誤差値Eが減少する速度を追跡し、減少速度が遅くなっているならばプロセスが収束したと判断し得る。或いは、所定の繰り返し回数後にプロセスが収束したと判断され得る。プロセスが収束していない場合、プロセスはステップ201から繰り返される。プロセスが収束したならば、プロセスはステップ206で終了し、結果として得られるニューラルネットワークが、将来使用するために記憶され得る。
本明細書で開示する技術は、高レベルで、変換関数fの有効な表現を学習するためにOCT画像のまばら性(スパーシティ)(すなわち、特定のサンプルの生じ得るOCTフットプリントの総数が、生じ得る画像の総数よりもはるかに少ないという事実)を利用することを可能にする。例えば、人間の網膜のOCTスキャンは、非常に特異的な層状構造を、病理学的に高度な眼の場合(すなわち、硝子体液が網膜の上にあり、脈絡膜がその下にある)でも明確にする。十分な個数の代表的な網膜スキャンでCNNをトレーニングすることにより、ノイジーIスキャンから、スペックルノイズを有さない、又はスペックルノイズが低減された、下層構造の下層のクリーン画像Iへの変換関数を学習できる。生じ得る有効なI画像の個数は、生じ得るノイジーIスキャンの個数よりも少ないため、この変換関数を、代替的に、圧縮係数をCNNの構造及び重みにエンコードした圧縮ストラテジとみなし得る。
教師付き学習により、特定のサンプルのOCT構造に関する事前情報を抜き出してCNNに与え得る。{I,I}トレーニングデータセットは、CNNがノイジーサンプルのみ又はクリーンサンプルのみであれば可能ではないであろう変換関数f(I)→Iを発見することを可能にする。データセットの増強により、CNNは、{I,I}の個数又は必要な入力画像の個数を扱いやすいように保ったままで、変換関数に関する不変式を学習できる。最後に、CNNの使用により、(a)確率的勾配降下法を用いて、fの有効な高パラメータ近似値を見つけ、(b)トレーニングデータセットを、様々な装置から取得した様々な被検体の類似画像に一般的に使用し、(c)最新のGPUアクセラレーションを使用して、ほぼリアルタイムのパフォーマンスを達成する。
本明細書に開示する技術は多くの利点を有する。以下の段落において、幾つかの特性及び考えられる利点について、より詳細に説明する。
取得時間。網膜OCTの場合、この技術は、20回〜50回(サンプル及び撮像装置に依る)の平均化に相当するSNRを達成する。これにより、本質的に、同一の画質に対して取得時間を20倍〜50倍短縮でき、又は、同一の取得時間においては画質を向上させ得る。
サンプルの一般化。本発明者には、トレーニングデータ(特定のサンプル位置の2次元Bスキャンを含む)でのトレーニングが、類似のサンプルの完全な3次元Cスキャンのノイズ除去も可能にすることが分かった。例えば、網膜のBスキャンでのトレーニングが、その他のいずれの網膜のCスキャンのノイズ除去も可能にする。
装置の汎用化。本発明者らは、特定の装置のサンプルでのトレーニングにより、類似の特性(ボクセルのサイズや解像度など)を有するその他の装置により作成されたサンプルの画像のノイズ除去ができることを発見した。複数の装置の組み合わされたサンプルでのトレーニングが、基盤であるOCT構造に追加情報を見出すことを補助する(例えば、より良好な組織透過性を有する装置によるサンプルを追加すると、組織透過性がより低い装置の深部組織特性が向上し得る)。
パフォーマンス。従来の反復アプローチとは異なり、本明細書で開示するニューラルネットワークのアプローチは、CNNを通過する単一の「前方」(“forward”)パスを使用して画像をノイズ除去できる。広範なGPUアクセラレーションと組み合わせることで、ほぼリアルタイムのパフォーマンスを現在のシステムにて達成できる。
融通性。この方法は、適切なデータセットがあれば、あらゆる種類の生物学的組織(例えば、網膜、角膜、皮膚、脳組織、歯、動脈/血管若しくは結腸)又は非生物学的サンプル(例えば、塗料、金属構造物、半導体)をノイズ除去するために使用され得る。実際、この技術は、OCTにだけでなく、スペックルノイズを被るあらゆる撮像モダリティ(例えば、X線、コンピュータ断層撮影(CT)、磁気共鳴画像(MRI)、超音波、若しくは、蛍光/自家蛍光画像)に適用され得る。
コスト節減。本明細書で開示する技術は、高性能の医療機器を凌ぐ性能を発揮できるOCT装置の構築を、わずかな費用で可能にし得る。
データ圧縮。スペックルノイズを除去することにより、取得した1つのBスキャンあたりの記憶容量の実質的な低減を、可逆圧縮を使用した場合でも達成できる。例えば、本発明者は、ロスレスPNG圧縮を使用した場合、3倍の圧縮率を達成できた。
以下に、トレーニングプロセスの例を詳細に開示する。しかし、本明細書で開示する詳細は、本発明の理解の補助のためものに過ぎない。これらの詳細は、本開示の範囲を限定することを意図されていない。また、以下に説明される技術は、OCT撮像の特定のアプリケーションに関するものである。しかし、OCTに関して、この技術の代替として別の種類のイメージング技術を用いてもよい。OCT用語において、「Aスキャン」(“A-scan”)とは、レーザビームの直線に沿った特徴を表す1次元画像を意味する。「Bスキャン」(“B-scan”)とは、特定のパス(直線であり得る)に沿ってレーザビームをスキャンすることにより得られる平面又は表面の特徴を表す2次元画像を意味する。「Cスキャン」(“C-scan”)とは、レーザビームを2次元パターンで走査することにより得られる3次元画像を意味する。図5(a)はBスキャンを示しており、Y軸が、光ビームに沿った方向を示し、X方向が、走査面に沿った走査方向を示している。図5(b)は、Y方向にて取得された複数のタイルを構成して単一のBスキャンを形成する方法を示している。図5(b)に示されているように、タイリングは幾つかの異なる方法で実行され得る。例えば、図5(b)の右側1’)に示されているように、タイルはX方向においては一部のみしかカバーできないが、Y方向においては元の画像の全体をカバーできる。図5(b)の左側に示されているように、例えばY方向に沿った4つのタイル1),2),3),4)を取得するために、タイリングをX方向及びY方向の両方に沿って実行してもよい。例えば、この方法で正方形のタイルを作成できる。図5(c)はCスキャンを示しており、検出器はZ方向もスキャンする。本開示の全体を通じて、入力画像、トレーニング画像、及びターゲット画像に関して説明するが、これらの画像が、より大きい画像のタイルであってもよい。
ニューラルネットワークのトレーニングは、同一サンプル内のノイジー画像Iとクリーン画像Iとから成るペア{I,I}を含むデータセットの生成を含む。OCTの場合、これらの画像は、例えばBスキャン画像であり得る。概念的クリーンIBスキャンが、同一サンプル位置のノイジーIBスキャンのセットのほぼ平均であるとみなされる。
高品質の平均化されたBスキャンを得るために平均化され得るノイジー画像の適切なセットを取得するために、幾つかの様々な技術を使用できる。標準的な市販のOCT装置では、I(平均化されていない単一のBスキャン)又はI(装置に固有の独自のアルゴリズムを使用して後処理された単一のn平均化Bスキャン)のいずれか一方しか提供できず、同時に両方では提供できない。そのため、本発明では、{I,I}ペアを生成するために必要なデータを取得するための2つの代替的な方法を開示する。
第1の選択肢として、n平均化IBスキャン及び個々のIBスキャンの両方を同時に提供できるカスタムOCT装置を使用することが可能である。例えば、同一サンプル位置の10のBスキャンを高速度の繰り返しで取得することにより10個のIBスキャンが得られ、これらを平均化することで、対応する高品質のIBスキャンが得られる。
或いは、平均化されていない高密度のCスキャンを取得することも可能である。この場合、Cスキャンの個々のBスキャンがノイジーI画像を形成し、Cスキャンのn平均化BスキャンのブロックがクリーンI画像を形成する。この場合、nは、異なるサンプル位置のBスキャンの平均化による動きぼやけ(モーションブラー)を回避するために十分に低値であることが好ましい(例えばn=3〜5)。
さらには、高度に平均化されたBスキャンをクリーンI画像として取得し、ノイジーI画像を、加法性又は乗法性ノイズを使用して合成することもできる。これは、基本的なスペックル除去を可能にするが、この方法では画質が低下する可能性もある。
ネットワークを、ノイズを低減させるようにトレーニングするために、以下のステップを実行できる。
1.Bスキャンを位置合わせする。Bスキャンを位置合わせする例示的な方法が、アポストロポロス(Apostolopoulos)らの特許出願に開示されている(すなわち、網膜の曲率及び全てのBスキャンを、強度ベースのレジストレーション(位置合わせ)を使用して平坦化する)。
2.位置合わせ後、n画像のセットを平均化して、クリーンIサンプルを構成する。
a.有用な例として、10回のBスキャンが同一の場所を示すデータセットが利用可能な場合、n=10が適切である。
b.BスキャンがCスキャンから抽出される場合、有用な例として、n=5が、平均画質と動きぼやけとの妥協点として良好である(個々のBスキャンが、より大きいCスキャンの異なる部分を表すため)。幾つかのアプリケーションにおいて、Cスキャンのデータセットの密度が非常に高いため、y軸上でのn=5が0.0586μmに等しくなり、これにより、動きぼやけ及びアーチファクトがかなり排除される。
3.n平均化された各グラウンドトゥルースに対し、その完全な集合である、m=1…n平均化ノイジーIサンプルを生成する。例えば、n=3であるクリーンIサンプルのために、ノイジーIサンプルの完全な集合は以下を含む。すなわち、
a.m=1のサンプルが3個
b.m=2のサンプルが3個
c.m=3のサンプル(「グラウンドトゥルース」画像)が1個
d.{I,I}ペアは合計で6個。
4.データセットを増強する。以下の増強機能の各々は例であり、全ての実施例に必要なものではないことに留意されたい。また、以下に列挙するものに加えて、その他の増強を使用してもよい。
a.ランダムな水平反転(トレーニング画像及びターゲット画像の両方に適用される)。
b.ランダムなガウスノイズ(トレーニング画像に適用され、ターゲット画像には適用されない)。
c.ランダムなレイリーノイズ(トレーニング画像に適用され、ターゲット画像には適用されない)。
d.x軸及びz軸におけるランダムなガウスぼかし(トレーニング画像に適用され、ターゲット画像には適用されない)。
e.ランダムなシフト及びせん断(トレーニング画像及びターゲット画像の両方に適用される)を、ロバスト性を向上させるために適用できる。
5.図5(b)に示されているように、画像を、任意選択的にタイルに分割し得る。x軸に沿ったタイリングにより、より良好なトレーニング結果が得られ、また、z軸に沿ったタイリングよりも、アーチファクトがより少なくなる(なぜなら、zタイルは、アーチファクトを生じさせる純粋なノイズを含む場合があるからである)。幾つかの実施形態において、タイリングは、画像が正方形であるように、すなわち、タイルの各方向のピクセルの数が等しいか又はほぼ同一であるように行われる。
ニューラルネットワークとして、畳み込みニューラルネットワークを使用してもよい。例えば、U字状ネットワーク(「Uネット」)である。生物医学的画像のセグメンテーションのためのU字状のディープ畳み込みニューラルネットワークが、例えば、レンネバーガー・オー(Ronneberger, O)らによる「Uネット:生物医学的画像のセグメンテーションのための畳み込みネットワーク」(国際会議MICCAI(Medical Image Computing and Computer Assisted Intervention)(2015年、Springer、LNCS、Vol.9351:234〜241))から公知である。この種のネットワークを、ノイズ低減ニューラルネットワークを作成するために、本明細書に開示したデータセットを用いて適応及びトレーニングさせ得る。ネットワークアーキテクチャの好適な例の図が図6Aに示されている。このアーキテクチャは、畳み込み、線形ユニット、プーリング層及びアップサンプリング層を含む。図6Bは、図6aの図で使用されているブロックD、ブロックU、入力ブロック、及び出力ブロックの内容の例を示している。その他の実施形態において、これらの代わりに、その他のタイプ及びアーキテクチャのニューラルネットワークを使用してもよい。
例えば、画像がN×Mピクセルを有し、各ピクセルに1つの強度値が関連付けられている場合、ニューラルネットワークは、N×M入力ユニット及びN×M出力ユニットを有し得、1つの入力ユニットが(トレーニング画像の)各ピクセル値に対応し、1つの出力ユニットが(ターゲット画像の)各ピクセル値に対応している。より多数のピクセル値を各ピクセルが利用可能な場合(例えば、異なるカラーチャネル)、ニューラルネットワークに、より多数の入力ユニット及び出力ユニットを設けることができ、従って、ニューラルネットワークの画像の各ピクセル値に1つの入力ユニットを設け、出力画像の各ピクセルに1つの出力ユニットを設けることが可能になる。異なる解像度の画像をサポートするためには、ニューラルネットワークを適用する前又は後にリサンプリングステップを実行して、画像の望ましい解像度を、利用可能な入力/出力ユニットの数に適合させる。
本明細書に開示する技術により、ニューラルネットワークは、手元の対象物の種類、例えば異なる層の網膜の構造を学習し、OCTスペックルパターンから最も可能性の高い構造を推測することで欠落情報を再構築できる。その結果、画質が劇的に向上し、スペックルノイズがほぼ完全に除去される。その結果、実際、モーションアーチファクト及び動きぼやけが全く無くなるため、同等のN平均化スキャンよりも優れている場合がある。
単一のBスキャン位置でのトレーニングは、病変部が含まれている場合でも、完全なCスキャンをノイズ除去するのに十分な情報を提供すると思われる。しかし、トレーニングセットに、病変部に関するグラウンドトゥルースを追加すると、結果の質の向上が期待できる。
トレーニング画像をランダムな量のガウスノイズ及びレイリーノイズにより破損すると、トレーニングプロセス及び得られる質の大幅な向上を補助するように見える(すなわち、ノイズが少ない、より滑らかな外観になる)。
トレーニングサンプルをガウスブラーにより破損すると、より良好に画成された形状が得られるかも知れない。これにより、画像全体がわずかにぼやける場合もある。
多くの異なる値m(m<n)に対してm平均化スキャンを使用すると、画質が大幅に向上し得る。
解像度又はヒストグラムに関する撮像特性が大きく異なる装置にニューラルネットワークを適応させるためには、再トレーニングが有用であろう。
ニューラルネットワークは、メモリ及び計算量の両方が多い。上記の構成を使用することで、トレーニングをミニバッチサイズ(例えば、4)で行うことができ、また、2〜4Bスキャン/秒の推論速度を、Nvidia GeForce(エヌビディア・ジーフォース)GTX1080(アメリカ合衆国、カリフォルニア州、サンタクララのエヌビディア(Nvidia)社製)を用いて達成できる。
より少ないレベル又はより少ないパラメータのネットワーク構成は、ミニバッチ(例えば、8又は10のBスキャン)で一度にトレーニングされることができ、対応する推論比は、約8Bスキャン/秒〜16Bスキャン/秒である。
タイルベースの方法で達成される画質は、画像全体の処理により得られる質よりも低いようである。その理由は、より大きいコンテキストの欠如であろう。画像全体を使用する場合、画像中に見える構造は、ニューラルネットワークにより互いに関連付けられ得る。例えば、脈絡膜構造は常に網膜の下に現れる。タイルベースの適切な妥協案は、スキャンのz軸全体をカバーする薄い鉛直タイルを含むことであろう。これは特に、OCT及び網膜撮像に当てはまるが、その他の幾つかのタイプの材料及び組織におけるその他のOCT結果にも当てはまる。
再構成の画質を向上させるために、3Dベースの方法を使用してもよい。これは、3D畳み込み又はマルチチャネル2D畳み込みを含み得、複数の隣接する入力Bスキャンを組み合わせて単一の出力にする。実際、複数のチャネルを使用すると、少ないメモリコストで画質が向上する。このアーキテクチャの例は、上述の例で示した構造物と類似のベースライン構造で構成されるが、隣接するBスキャンを含む3次元への畳み込み(conv)を増大させる。
インビボ撮像の場合、単純な平均化を行うと、モーションアーチファクトにより画像がぼやける場合がある。より良好な結果を得るためには、最初にn個のBスキャンの各々を、それら同士で(例えば、相互相関又はテンプレートマッチングを介して)、又は共通の参照画像にアライメント又は位置合わせする。共通の参照画像による位置合わせは、眼底をアイトラッカー(例えば走査型レーザー検眼鏡(SLO)又は通常の赤外線カメラ)を使用して撮像し、検出された目の動きを用いて各Bスキャンの位置を修正することにより実現できる。
図3は、幾つかのノイズ除去方法の比較を示している。図3aは、ノイズ除去が行われていない元の画像を示している。図3bは、ウェーブレットを使用したノイズ低減後の画像を示している。図3cは、ブロックマッチング及び3Dフィルタリング(BM3D)法を使用したノイズ低減後の画像を示している。図3dは、20回の平均化によるノイズ低減後の画像を示している。図3eは、本開示による方法を使用したノイズ除去後の画像を示している。
図4は、ニューラルネットワークを使用してノイズを低減できる撮像装置のブロック図である。この装置はメモリ400を備えている。メモリ400は、揮発性若しくは不揮発性メモリ、又は異なるタイプのメモリの組合せを含む、あらゆる種類のメモリデバイス又は記憶媒体を備え得る。メモリ400は、ネットワークの構造及びネットワークのパラメータを含む人工ニューラルネットワークの定義を含み得る。ニューラルネットワークのパラメータは、本開示のその他の場所でより詳細に説明したトレーニング手順により既に計算されている場合もある。トレーニング手順は、撮像装置から複数の入力画像を取得して入力画像のサブセットを識別するステップを含み得、入力画像のサブセットの各入力画像は、そのサブセットのその他の入力画像と同一の対象物を表す。前記トレーニング手順は、さらに、複数のターゲット画像を生成するステップを含み得、1つのターゲット画像が、前記サブセットうちの1つのサブセットの入力画像を、ノイズを低減するために組み合わせることにより生成される。前記トレーニング手順は、さらに、複数のトレーニングペアを生成するステップを含み得、1つのトレーニングペアが、前記ターゲット画像の1つと、トレーニング画像とを含む。このトレーニング画像は、前記ターゲット画像の前記1つに対応するサブセットの前記入力画像の全てにではないが少なくとも1つに基づいている。前記トレーニング手順は、さらに、ニューラルネットワークを、複数のトレーニングペアを使用してトレーニングするステップを含み得る。
メモリ400は、さらに、画像データ402を記憶するために使用され得る。これらの画像データは入力ユニット411を介して受信され得、制御ユニット410の制御下でメモリ400に記憶され得る。また、ニューラルネットワーク401の出力、例えば、ノイズ低減された画像データも、メモリ400に記憶され得る。
メモリ400は、さらに、プログラムコード403を記憶している。プログラムコード403は、制御ユニット410が幾つかのタスク(例えば、入力ユニット411を介して受信した入力画像の処理)を制御し、ニューラルネットワーク401に画像データを処理させ、ニューラルネットワークにより出力された画像を出力及び記憶するように構成されている。
前記撮像装置は、さらに、撮像装置413から画像データを、外部データ記憶システム414を介して受信するための入力ユニット411を備え得る。入力ユニット411は、例えば、有線通信用の通信ポート又は無線通信用のトランシーバを含み得る。
前記撮像装置は、さらに、画像を例えばディスプレイ415又は外部記憶システム414に出力する出力ユニット412を備え得る。入力ユニットと同様に、出力ユニットは、通信ポート及び/又は無線通信デバイスを備え得る。1つのハードウェアに入力ユニット及び出力ユニットの両方が実装され得る。
外部記憶システム414は、例えば患者ファイルに編成されたデータの記憶及び検索のために構成されたコンピュータサーバを含み得る。
ディスプレイ415は、任意のディスプレイ装置、例えばコンピュータモニタを含み得、或いは、コンピュータ及びモニタを含むワークステーションを備え得る。
撮像装置413は、特定の測定を実行するように構成されたセンサを含む。適切な撮像装置の例は、光干渉断層撮影(OCT)スキャナ、コンピュータ断層撮影スキャナ、又は磁気共鳴撮像スキャナである。撮像装置413は、画像データを空間ドメイン又は時空間ドメインに再構成するための再構成ユニットを備え得る。撮像装置は、再構成された画像データを外部記憶システム414に出力するか、又は入力ユニット411に直接出力するように構成され得る。
制御ユニット410は、システムのコンポーネントを制御し、メモリ400に記憶されているコンピュータコード403を実行して、本明細書で開示される機能を実施できる任意のプログラマブルプロセッサ又はコントローラであり得る。制御ユニット410は、ニューラルネットワーク401のトレーニングを行うように、又は、トレーニング後に、トレーニングされたニューラルネットワーク401を適用することにより新しい画像データを処理するように、プログラムコード403によりプログラムされ得る。
その他の実施形態、例えばクラウドベースの実装なども可能である。
本発明の幾つか又は全ての態様は、ソフトウェア、特にコンピュータプログラム製品の形態で実装されるのに適している。例えば、トレーニングデータセットを生成するために画像のサブセットを処理する手順に含まれるステップは、コンピュータプログラムで実装されるのに適している。また、ニューラルネットワークのトレーニングプロセスも、コンピュータプログラムで実行され得る。同様に、ニューラルネットワークの、新しい画像への適用も、コンピュータプログラムにより実行され得る。コンピュータプログラム製品は、非一時的なコンピュータ可読媒体に記憶されたコンピュータプログラムを含み得る。また、コンピュータプログラムは、光ファイバケーブル又は空気などの伝送媒体により運ばれる光信号又は電磁信号などの信号により表現され得る。コンピュータプログラムは、コンピュータシステムにより実行されるのに適したソースコード、オブジェクトコード、又は擬似コードの形態を部分的に又は完全に有し得る。例えば、コードは、1以上のプロセッサ又はコントローラを備え得る制御ユニットにより実行可能であり得る。
本明細書に記載した例及び実施形態は、本発明を例示するのに役立つのであり、本発明を限定するものではない。当業者は、代替実施形態を、添付の特許請求の範囲及びそれらの均等物により定義されているような本開示の精神及び範囲から逸脱せずに設計できよう。特許請求の範囲において括弧内に記載された参照符号は、特許請求の範囲を限定するものと解釈されるべきでない。特許請求の範囲又は詳細な説明において別個の存在として記載した要素は、記載されている要素の特徴を組み合わせる単一のハードウェア又はソフトウェアの要素として実現され得る。
以下の節において実施例を開示する。
1. 画像中のノイズを低減するためのニューラルネットワークをトレーニングする方法であって、
複数の入力画像を撮像装置から取得するステップ(101)と、
前記入力画像のサブセットを識別するステップ(101a)と、を含み、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表し、前記方法が、さらに、
複数のターゲット画像を生成するステップ(104)を含み、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成され、前記方法が、さらに、
複数のトレーニングペアを生成するステップ(105)を含み、1つのトレーニングペアが、
前記ターゲット画像のうちの1つと、
トレーニング画像と、を含み、当該トレーニング画像が、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいており、前記方法が、さらに、
前記複数のトレーニングペアを用いてニューラルネットワークをトレーニングするステップ(107)を含む、前記方法。
2.前記トレーニング画像が1つ以上の入力画像に基づくのであれば、入力画像の前記サブセットの前記入力画像の全てではないが前記1つ以上を組み合わせることにより前記トレーニング画像のノイズを低減するように前記トレーニング画像を生成するステップをさらに含む、条項1に記載の方法。
3. 前記複数のトレーニングペアが、入力画像の第1の番号Kに基づいた第1のトレーニング画像を含む第1のトレーニングペアと、入力画像の第2の番号Kに基づいた第2のトレーニング画像を含む第2のトレーニングペアとを含み、前記第1の番号Kが前記第2の番号Kとは異なる、条項2に記載の方法。
4. 前記複数のトレーニングペアが、異なるトレーニング画像は異なる番号の入力画像に基づいているがターゲット画像は同一であるトレーニングペアを含む、条項3に記載の方法。
5. N個の入力画像の各ターゲット画像、及び、当該ターゲット画像の対応するサブセットに対して、トレーニング画像が、N個の入力画像の前記サブセットの、Nよりも小さい全ての正の整数値であるKに基づいて生成される、条項1〜4のいずれかに記載の方法。
6.任意の値Kに対して、N個の入力画像の前記サブセットからのK個の入力画像の1つ以上の可能な選択が存在するならば、トレーニング画像が、N個の入力画像の前記サブセットからの前記K個の入力画像の1つ以上の選択のために生成される、条項1〜5のいずれかに記載の方法。
7.前記入力画像を組み合わせる前記ステップが、
組み合わせた前記入力画像の対応する値を平均化するステップを含み、或いは、
さらに、サブセットの前記入力画像を、前記ターゲット画像及びトレーニング画像を生成する前に空間的に位置合わせするステップ、或いは
さらに、前記ニューラルネットワークをトレーニングする前に、ノイズを追加するか、又は、前記トレーニング画像の向きを変更することにより前記トレーニング画像を増強するステップを含む、条項1〜6のいずれかに記載の方法。
8.前記入力画像が、光コンピュータ断層撮影、OCTにより取得される、条項1〜7のいずれかに記載の方法。
9.入力画像の特定のサブセットの前記入力画像が、単一のCスキャン画像から抽出された複数のBスキャン画像を含む、条項8に記載の方法。
10.前記入力画像が網膜の少なくとも一部を示す、条項1〜9のいずれかに記載の方法。
11.異なるサブセットの前記入力画像が、異なる被検体における同一タイプの組織又は同一タイプの器官の画像を含み、或いは、異なるサブセットの前記入力画像が、同一タイプの異なる対象物の画像を含む、条項1〜10のいずれかに記載の方法。
12.前記複数の入力画像を取得するステップが、複数の異なる撮像装置から入力画像を取得するステップを含む、条項1〜11のいずれかに記載の方法。
13.さらに、トレーニング後に、撮像装置から、前記ニューラルネットワークへの入力画像としての新しい画像を受信して供給し(108)、前記ニューラルネットワークからの出力画像を得るステップを含む、条項1〜12のいずれかに記載の方法。
14.撮像装置のノイズ低減装置であって、
撮像装置から画像を受信するための入力ユニット(411)と、
前記画像を、トレーニングされたニューラルネットワーク(401)に従って処理して出力画像を生成するための制御ユニット(410)と、を備え、
前記ニューラルネットワーク(401)が、複数の入力画像を撮像装置から取得するステップと当該入力画像のサブセットを識別するステップとにより作成され、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表し、前記ニューラルネットワーク(401)が、さらに、複数のターゲット画像を生成するステップにより作成され、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成され、前記ニューラルネットワーク(401)が、さらに、複数のトレーニングペアを生成するステップにより作成され、1つのトレーニングペアが、前記ターゲット画像のうちの1つと、トレーニング画像と、を含み、当該トレーニング画像が、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいており、前記ニューラルネットワーク(401)が、さらに、前記複数のトレーニングペアを用いて前記ニューラルネットワークをトレーニングするステップにより作成される、ノイズ低減装置。
15.画像中のノイズを低減するためのニューラルネットワークをトレーニングするシステムであって、
複数の入力画像を撮像装置から取得するための入力ユニット(411)と、
制御ユニット(410)と、を備え、当該制御ユニット(410)が、
前記入力画像のサブセットを識別する(101a)ように構成されており、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表しており、前記制御ユニット(410)が、さらに、
複数のターゲット画像を生成する(104)ように構成されており、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成され、前記制御ユニット(410)が、さらに、
複数のトレーニングペアを生成する(105)ように構成されており、1つのトレーニングペアが、
前記ターゲット画像のうちの1つと、
トレーニング画像と、を含み、当該トレーニング画像が、前記ターゲット画像の前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいており、前記制御ユニット(410)が、さらに、
前記複数のトレーニングペアを用いてニューラルネットワーク(401)をトレーニングする(107)ように構成されている、システム。

Claims (14)

  1. 画像中のノイズを低減するためのニューラルネットワークをトレーニングする方法であって、
    複数の入力画像を撮像装置から取得するステップ(101)と、
    前記入力画像のサブセットを識別するステップ(101a)と、を含み、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表し、前記方法が、さらに、
    複数のターゲット画像を生成するステップ(104)を含み、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成され、前記方法が、さらに、
    複数のトレーニングペアを生成するステップ(105)を含み、1つのトレーニングペアが、
    前記ターゲット画像のうちの1つと、
    トレーニング画像と、を含み、当該トレーニング画像が、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいており、前記トレーニング画像が1つ以上の入力画像に基づくのであれば、入力画像の前記サブセットの前記入力画像の全てではないが前記1つ以上を組み合わせることにより前記トレーニング画像のノイズを低減するように前記トレーニング画像を生成し、前記方法が、さらに、
    前記複数のトレーニングペアを用いてニューラルネットワークをトレーニングするステップ(107)を含む、方法。
  2. 前記複数のトレーニングペアが、入力画像の第1の番号Kに基づいた第1のトレーニング画像を含む第1のトレーニングペアと、入力画像の第2の番号Kに基づいた第2のトレーニング画像を含む第2のトレーニングペアとを含み、前記第1の番号Kが前記第2の番号Kとは異なる、請求項1に記載の方法。
  3. 前記複数のトレーニングペアが、異なるトレーニング画像は異なる番号の入力画像に基づいているがターゲット画像は同一であるトレーニングペアを含む、請求項2に記載の方法。
  4. N個の入力画像の各ターゲット画像、及び、当該ターゲット画像の対応するサブセットに対して、トレーニング画像が、N個の入力画像の前記サブセットの、Nよりも小さい全ての正の整数値であるKに基づいて生成される、請求項1〜3のいずれかに記載の方法。
  5. 任意の値Kに対して、N個の入力画像の前記サブセットからのK個の入力画像の1つ以上の可能な選択が存在するならば、トレーニング画像が、N個の入力画像の前記サブセットからの前記K個の入力画像の1つ以上の選択のために生成される、請求項1〜4のいずれかに記載の方法。
  6. 前記入力画像を組み合わせる前記ステップが、
    組み合わせた前記入力画像の対応する値を平均化するステップを含み、或いは、
    さらに、サブセットの前記入力画像を、前記ターゲット画像及びトレーニング画像を生成する前に空間的に位置合わせするステップ、或いは
    さらに、前記ニューラルネットワークをトレーニングする前に、ノイズを追加するか、又は、前記トレーニング画像の向きを変更することにより前記トレーニング画像を増強するステップを含む、請求項1〜5のいずれかに記載の方法。
  7. 前記入力画像が、光コンピュータ断層撮影、OCTにより取得される、請求項1〜6のいずれかに記載の方法。
  8. 入力画像の特定のサブセットの前記入力画像が、単一のCスキャン画像から抽出された複数のBスキャン画像を含む、請求項7に記載の方法。
  9. 前記入力画像が網膜の少なくとも一部を示す、請求項1〜8のいずれかに記載の方法。
  10. 異なるサブセットの前記入力画像が、異なる被検体における同一タイプの組織又は同一タイプの器官の画像を含み、或いは、異なるサブセットの前記入力画像が、同一タイプの異なる対象物の画像を含む、請求項1〜9のいずれかに記載の方法。
  11. 前記複数の入力画像を取得するステップが、複数の異なる撮像装置から入力画像を取得するステップを含む、請求項1〜10のいずれかに記載の方法。
  12. さらに、トレーニング後に、撮像装置から、前記ニューラルネットワークへの入力画像としての新しい画像を受信して供給し(108)、前記ニューラルネットワークからの出力画像を得るステップを含む、請求項1〜11のいずれかに記載の方法。
  13. 撮像装置のノイズ低減装置であって、
    撮像装置から画像を受信するための入力ユニット(411)と、
    前記画像を、トレーニングされたニューラルネットワーク(401)に従って処理して出力画像を生成するための制御ユニット(410)と、を備え、
    前記ニューラルネットワーク(401)が、複数の入力画像を撮像装置から取得するステップと当該入力画像のサブセットを識別するステップとにより作成され、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表し、前記ニューラルネットワーク(401)が、さらに、複数のターゲット画像を生成するステップにより作成され、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成され、前記ニューラルネットワーク(401)が、さらに、複数のトレーニングペアを生成するステップにより作成され、1つのトレーニングペアが、前記ターゲット画像のうちの1つと、トレーニング画像と、を含み、当該トレーニング画像が、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいており、前記トレーニング画像が1つ以上の入力画像に基づくのであれば、入力画像の前記サブセットの前記入力画像の全てではないが前記1つ以上を組み合わせることにより、前記トレーニング画像のノイズを低減するように前記トレーニング画像を生成し、前記ニューラルネットワーク(401)が、さらに、前記複数のトレーニングペアを用いて前記ニューラルネットワークをトレーニングするステップにより作成される、ノイズ低減装置。
  14. 画像中のノイズを低減するためのニューラルネットワークをトレーニングするシステムであって、
    複数の入力画像を撮像装置から取得するための入力ユニット(411)と、
    制御ユニット(410)と、を備え、当該制御ユニット(410)が、
    前記入力画像のサブセットを識別する(101a)ように構成されており、入力画像のサブセットの各入力画像が、当該サブセットのその他の入力画像と同一の対象物を表しており、前記制御ユニット(410)が、さらに、
    複数のターゲット画像を生成する(104)ように構成されており、1つのターゲット画像が、前記サブセットのうちの1つのサブセットの前記入力画像を、ノイズを低減するように組み合わせることにより生成され、前記制御ユニット(410)が、さらに、
    複数のトレーニングペアを生成する(105)ように構成されており、1つのトレーニングペアが、
    前記ターゲット画像のうちの1つと、
    トレーニング画像と、を含み、当該トレーニング画像が、前記ターゲット画像のうちの前記1つに対応する前記サブセットの前記入力画像の全てにではないが少なくとも1つに基づいており、前記制御ユニット(410)が、さらに、
    前記複数のトレーニングペアを用いてニューラルネットワーク(401)をトレーニングする(107)ように構成されている、システム。
JP2020514334A 2017-05-19 2018-05-16 画像中のノイズの低減 Active JP7189940B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP17172039.4A EP3404611A1 (en) 2017-05-19 2017-05-19 Reducing noise in an image
EP17172039.4 2017-05-19
PCT/EP2018/062824 WO2018210978A1 (en) 2017-05-19 2018-05-16 Reducing noise in an image

Publications (2)

Publication Number Publication Date
JP2020521262A true JP2020521262A (ja) 2020-07-16
JP7189940B2 JP7189940B2 (ja) 2022-12-14

Family

ID=58994831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020514334A Active JP7189940B2 (ja) 2017-05-19 2018-05-16 画像中のノイズの低減

Country Status (7)

Country Link
US (1) US11170258B2 (ja)
EP (2) EP3404611A1 (ja)
JP (1) JP7189940B2 (ja)
CN (1) CN111095349B (ja)
ES (1) ES2958934T3 (ja)
PL (1) PL3625759T3 (ja)
WO (1) WO2018210978A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469858B2 (ja) 2019-08-06 2024-04-17 キヤノンメディカルシステムズ株式会社 医用画像処理装置、医用画像処理方法、および画像処理装置

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3048197A1 (en) 2016-12-21 2018-06-28 Acucela Inc. Miniaturized mobile, low cost optical coherence tomography system for home based ophthalmic applications
JP7402866B2 (ja) 2018-06-20 2023-12-21 アキュセラ インコーポレイテッド 家庭用眼科用途のための小型化モバイル低コスト光干渉断層撮影システム
JP6703319B1 (ja) * 2018-06-29 2020-06-03 株式会社ニデック 眼科画像処理装置、およびoct装置
CN109685743B (zh) * 2018-12-30 2023-01-17 陕西师范大学 基于噪声学习神经网络模型的图像混合噪声消除方法
EP3924931A1 (en) * 2019-02-14 2021-12-22 Carl Zeiss Meditec, Inc. System for oct image translation, ophthalmic image denoising, and neural network therefor
JP7260884B2 (ja) * 2019-02-21 2023-04-19 ケース ウエスタン リザーブ ユニバーシティ 三次元(3d)超音波画像の処理
US11257190B2 (en) * 2019-03-01 2022-02-22 Topcon Corporation Image quality improvement methods for optical coherence tomography
JP7258604B2 (ja) * 2019-03-05 2023-04-17 キヤノン株式会社 画像処理方法、画像処理装置、プログラム、および学習済みモデルの製造方法
US11315221B2 (en) 2019-04-01 2022-04-26 Canon Medical Systems Corporation Apparatus and method for image reconstruction using feature-aware deep learning
US11954578B2 (en) * 2019-04-24 2024-04-09 University Of Virginia Patent Foundation Denoising magnetic resonance images using unsupervised deep convolutional neural networks
DE102019205962A1 (de) * 2019-04-25 2020-10-29 Robert Bosch Gmbh Verfahren zur Generierung von digitalen Bildpaaren als Trainingsdaten für Neuronale Netze
KR102366557B1 (ko) * 2019-05-03 2022-02-23 한국광기술원 컨볼루션 네트워크를 이용한 광단층 이미지 스페클 제어 장치 및 그 방법
US11100612B2 (en) * 2019-05-07 2021-08-24 Fei Company Acquisition strategy for neural network based image restoration
CN112102423A (zh) * 2019-06-17 2020-12-18 通用电气精准医疗有限责任公司 医学成像方法及系统
GB2585232B (en) * 2019-07-04 2021-12-08 Apical Ltd Image data pre-processing for neural networks
JPWO2021045019A1 (ja) * 2019-09-04 2021-03-11
US11798159B2 (en) * 2019-09-20 2023-10-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for radiology image classification from noisy images
JP2021060847A (ja) * 2019-10-08 2021-04-15 株式会社ザクティ ノイズ除去システム
KR20210073135A (ko) * 2019-12-10 2021-06-18 삼성전자주식회사 눈 복원 기반의 눈 추적 방법 및 장치
US11790492B1 (en) * 2019-12-18 2023-10-17 Thales Sa Method of and system for customized image denoising with model interpretations
WO2021134087A1 (en) 2019-12-26 2021-07-01 Acucela Inc. Optical coherence tomography patient alignment system for home based ophthalmic applications
CN111105417B (zh) * 2020-03-17 2023-07-07 珠海欧比特宇航科技股份有限公司 影像噪声定位方法及系统
US20210290191A1 (en) * 2020-03-18 2021-09-23 The Regents Of The University Of California Method and system for denoising ct images using a neural network
US11222406B2 (en) * 2020-06-05 2022-01-11 Canon Medical Systems Corporation Method and system for training a machine learning-based image denoising system
US11468551B1 (en) * 2020-07-24 2022-10-11 Norfolk Southern Corporation Machine-learning framework for detecting defects or conditions of railcar systems
US10959613B1 (en) 2020-08-04 2021-03-30 Acucela Inc. Scan pattern and signal processing for optical coherence tomography
US11393094B2 (en) * 2020-09-11 2022-07-19 Acucela Inc. Artificial intelligence for evaluation of optical coherence tomography images
CA3192083A1 (en) 2020-09-30 2022-04-07 Acucela Inc. Myopia prediction, diagnosis, planning, and monitoring device
US20220107378A1 (en) * 2020-10-07 2022-04-07 Hyperfine, Inc. Deep learning methods for noise suppression in medical imaging
US20220138911A1 (en) * 2020-11-05 2022-05-05 Massachusetts Institute Of Technology Neural network systems and methods for removing noise from signals
CN112487880B (zh) * 2020-11-13 2021-09-24 河北省科学院应用数学研究所 基于最大误差准则的中值滤波器、设备和系统
US11461881B2 (en) * 2020-11-25 2022-10-04 United States Of America As Represented By The Secretary Of The Navy Method for restoring images and video using self-supervised learning
US11497396B2 (en) 2021-03-24 2022-11-15 Acucela Inc. Axial length measurement monitor
CN113239980B (zh) * 2021-04-23 2022-07-05 华中科技大学 基于小样本机器学习与超参数优化的水下目标检测方法
WO2022265321A1 (en) * 2021-06-15 2022-12-22 Samsung Electronics Co., Ltd. Methods and systems for low light media enhancement
CN113361455B (zh) * 2021-06-28 2022-09-02 北京百度网讯科技有限公司 人脸鉴伪模型的训练方法、相关装置及计算机程序产品
US20230153957A1 (en) * 2021-11-15 2023-05-18 Samsung Electronics Co., Ltd. System and method for training of noise model using noisy signal pairs
CN114596896A (zh) * 2022-03-15 2022-06-07 雷麟半导体科技(苏州)有限公司 一种基于忆阻器的图像降噪实现方法
CN114529484B (zh) * 2022-04-25 2022-07-12 征图新视(江苏)科技股份有限公司 针对成像中直流分量变化的深度学习样本增强方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196296A (ja) * 1997-12-26 1999-07-21 Canon Inc 画像処理装置および方法、非線形フィルタ、記録媒体
JP2002373339A (ja) * 2001-06-15 2002-12-26 Sony Corp 画像処理装置および方法、記録媒体、並びにプログラム
US20130051516A1 (en) * 2011-08-31 2013-02-28 Carestream Health, Inc. Noise suppression for low x-ray dose cone-beam image reconstruction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971612B2 (en) * 2011-12-15 2015-03-03 Microsoft Corporation Learning image processing tasks from scene reconstructions
CN103971342B (zh) * 2014-05-21 2017-11-03 厦门美图之家科技有限公司 一种基于卷积神经网络的图像噪点检测方法
US9922272B2 (en) * 2014-09-25 2018-03-20 Siemens Healthcare Gmbh Deep similarity learning for multimodal medical images
US20160321523A1 (en) * 2015-04-30 2016-11-03 The Regents Of The University Of California Using machine learning to filter monte carlo noise from images
US10169864B1 (en) * 2015-08-27 2019-01-01 Carl Zeiss Meditec, Inc. Methods and systems to detect and classify retinal structures in interferometric imaging data

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11196296A (ja) * 1997-12-26 1999-07-21 Canon Inc 画像処理装置および方法、非線形フィルタ、記録媒体
JP2002373339A (ja) * 2001-06-15 2002-12-26 Sony Corp 画像処理装置および方法、記録媒体、並びにプログラム
US20130051516A1 (en) * 2011-08-31 2013-02-28 Carestream Health, Inc. Noise suppression for low x-ray dose cone-beam image reconstruction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469858B2 (ja) 2019-08-06 2024-04-17 キヤノンメディカルシステムズ株式会社 医用画像処理装置、医用画像処理方法、および画像処理装置

Also Published As

Publication number Publication date
JP7189940B2 (ja) 2022-12-14
EP3625759A1 (en) 2020-03-25
EP3404611A1 (en) 2018-11-21
PL3625759T3 (pl) 2024-01-29
EP3625759B1 (en) 2023-07-05
ES2958934T3 (es) 2024-02-16
WO2018210978A1 (en) 2018-11-22
CN111095349A (zh) 2020-05-01
US20200234080A1 (en) 2020-07-23
US11170258B2 (en) 2021-11-09
CN111095349B (zh) 2023-05-12
EP3625759C0 (en) 2023-07-05

Similar Documents

Publication Publication Date Title
JP7189940B2 (ja) 画像中のノイズの低減
Chen et al. DN-GAN: Denoising generative adversarial networks for speckle noise reduction in optical coherence tomography images
JP2022520415A (ja) Oct画像変換、眼科画像のノイズ除去のためのシステム、およびそのためのニューラルネットワーク
JP6731919B2 (ja) 光コヒーレンス断層撮影像におけるスペックル低減
JP6679505B2 (ja) 光干渉断層撮影画像内のスペックルノイズの低減
JP7010983B2 (ja) 低コヒーレンス干渉法のための画質改善方法及びシステム
WO2020183791A1 (ja) 画像処理装置および画像処理方法
CN107862724A (zh) 一种改进的微血管血流成像方法
Liu et al. Speckle noise reduction for medical ultrasound images based on cycle-consistent generative adversarial network
CN109389567B (zh) 一种快速光学成像数据的稀疏滤波方法
JP2020163100A (ja) 画像処理装置および画像処理方法
Nienhaus et al. Live 4D-OCT denoising with self-supervised deep learning
Weisenseel et al. Multisensor data inversion and fusion based on shared image structure
Stankiewicz et al. Matching 3d oct retina images into super-resolution dataset
Lee et al. Lateral image reconstruction of optical coherence tomography using one‐dimensional deep deconvolution network
Zhang et al. Development of a multi-scene universal multiple wavelet-FFT algorithm (MW-FFTA) for denoising motion artifacts in OCT-angiography in vivo imaging
Zafar et al. Importance of Signal and Image Processing in Photoacoustic Imaging
CN113643396B (zh) 扫频oct图像处理方法及装置
US11972544B2 (en) Method and apparatus for optical coherence tomography angiography
CN111951315B (zh) 皮肤光学相干层析图像配准的方法
EP3910586A1 (en) Method and apparatus for optical coherence tomography angiography
Adiga Retinal Image Quality Improvement via Learning
CN114387174A (zh) 一种octa图像降噪方法、电子设备及存储介质
Li Speckle Reduction and Lesion Segmentation for Optical Coherence Tomography Images of Teeth
CN117315068A (zh) 基于三维卷积神经网络的无散斑光学相干层析成像方法

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A529

Effective date: 20200110

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221202

R150 Certificate of patent or registration of utility model

Ref document number: 7189940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150