JP2020515872A - 高水素取込速度下での発熱反応の誘発 - Google Patents

高水素取込速度下での発熱反応の誘発 Download PDF

Info

Publication number
JP2020515872A
JP2020515872A JP2020502513A JP2020502513A JP2020515872A JP 2020515872 A JP2020515872 A JP 2020515872A JP 2020502513 A JP2020502513 A JP 2020502513A JP 2020502513 A JP2020502513 A JP 2020502513A JP 2020515872 A JP2020515872 A JP 2020515872A
Authority
JP
Japan
Prior art keywords
hydrogen
condition
uptake
storage material
uptake ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020502513A
Other languages
English (en)
Inventor
エー. モリス,ジュリー
エー. モリス,ジュリー
Original Assignee
アイエイチ アイピー ホールディングス リミテッド
アイエイチ アイピー ホールディングス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイエイチ アイピー ホールディングス リミテッド, アイエイチ アイピー ホールディングス リミテッド filed Critical アイエイチ アイピー ホールディングス リミテッド
Publication of JP2020515872A publication Critical patent/JP2020515872A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/002Fusion by absorption in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

高い水素取込速度下で発熱反応を誘発するための方法および装置を開示する。一般に、高い水素取込比率が重要な要因であることが理解されている。本願は高い水素取込速度、すなわち短時間で高い水素取込比率を達成することが、過剰な熱が発熱反応において観察され得るかどうかを決定する別の重要な要因であることを教示する。本願は、発熱反応を誘発すべく高い水素取込速度を達成するための方法および装置を開示する。

Description

発明の詳細な説明
[関連出願の参照]
本願は2017年3月29日に出願された米国仮特許出願第62/478,080号の優先権を主張し、その全内容は、参照により本明細書に組み込まれる。
[技術分野]
本発明は一般に、発熱反応における熱発生に関連し、より具体的には、発熱反応を誘発するために水素または重水素の取込(loading) 速度を制御することに関連する。
[背景技術]
金属格子中に取り込まれた水素原子または重水素原子を伴う発熱反応における熱発生は、世界中の独立したチームによって観察および確認されている。金属格子の例としては、パラジウム、ニッケル、合金などが挙げられる。しかしながら、それらの発熱反応を一貫した方法で再現する試みには失敗している。
発熱反応において過剰な電力が観察されるかどうかを判断する際には、多くの要因が重要であると考えられる。例えば、水素ガスまたは重水素ガスを金属格子に取り込む場合、0.8よりも高い取込比率が必要であると考えられるが、当該条件は、発熱反応の誘発には不十分である。粗い表面を有する金属格子の水素取込比率が滑らかな表面よりも高くなることから、金属格子上の「粗い」表面も重要であると考えられる。
本願は、発熱反応を一貫して誘発するための新規で有利な方法および装置を開示する。
[発明の概要]
本開示は、発熱反応の誘発条件に関する。本開示における「水素」という用語は、純粋な重水素、トリチウム、または3つの同位体の任意の組み合わせを含む水素ガスを意味する。
いくつかの実施形態では、発熱反応のホストとして構成された装置が水素吸蔵材料(hydrogen absorbing material) と、1つ以上の供給ポートとを備える。上記1つ以上の供給ポートは、ガス吸入口および1つ以上の制御装置を受けるように構成される。上記1つ以上の制御装置は、発熱反応を開始させる高い水素取込速度を達成するための条件を適用するように構成される。
いくつかの実施形態では、反応チャンバ内において発熱反応を誘発するための方法が以下のステップを含む。まず、反応チャンバ内に水素ガスを導入する。反応チャンバは、水素吸蔵材料を収容する。水素ガスが水素吸蔵材料に取り込まれる間、発熱反応を開始させる高い水素取込速度を達成するための条件が適用される。
いくつかの実施形態では、反応チャンバ内において発熱反応を誘発する方法を開示する。第1の条件が適用される前に、まず、水素ガスを金属容器に導入する。第1の条件下で、水素ガスが水素吸蔵材料に取り込まれ、第1期間内に第1水素取込比率が達成される。その後、第2の条件が適用される。第2の条件下では、水素ガスが水素吸蔵材料に取り込まれ、第2期間内に第2水素取込比率が達成される。第2の取込比率は第1の取込比率よりも高く、第2期間は第1期間よりも短い。発熱反応は、第2の条件で開始させてもよい。いくつかの実施形態では、第1の条件を適用することは任意である。
いくつかの実施形態では、発熱反応を引き起こし、持続させるように構成された装置を開示する。この装置は、容器、1つ以上の電極、および1つ以上の供給ポートを備える。一実施形態では、装置は、水素が取り込まれた遷移金属を伴う一種の発熱反応のホストとして構成される。一実施形態では、金属容器が水素吸蔵材料でめっきされ、金属容器の端部のポートを通して1つ以上の電極を受ける。1つ以上の供給ポートは、1つ以上の制御装置を受けるように構成される。1つ以上の制御装置は、水素ガスを水素吸蔵材料に取り込むことができる異なる条件を適用するように構成される。第1の条件では、第1期間内に第1水素取込比率で水素ガスが水素吸蔵材料に取り込まれる。第2の条件では、第2期間内に第2水素取込比率で水素ガスが水素吸蔵材料に取り込まれる。第2水素取込比率は、第1水素取込比率よりも高い。発熱反応は、第2の条件で誘発される。
さらに別の実施形態では、発熱反応のために構成された装置が電解槽を含む。当該装置は、電解質で満たされた容器を含む。この装置は、カソードおよびアノードを受けるための1つ以上の供給ポートをさらに備える。カソードは、水素吸蔵材料でめっきされ、水素ガスを吸収または吸着することができる。水素ガスが、閾値を超える高い水素取込速度で水素吸蔵材料に取り込まれると、発熱反応が誘発され得る。
[図面の簡単な説明]
図1は、熱発生のために構成された例示的な反応器を示す。
図2は、金属格子における水素取込プロセスを示す例示的な曲線を示す。
図3は、金属格子における別の水素取込プロセスを示す例示的な曲線を示す。
図4は、高い水素取込速度下において発熱反応を誘発する方法の例を示すフローチャートである。
[詳細な説明]
図1は、発熱反応のために構成された例示的な反応器100を示す。反応器100は、容器102と、1つ以上の電極104と、蓋106とを備える。図1において、蓋106は、反応器100の一端に配置され、1つ以上の電極104、供給・排出ポート114、および取り外し可能な電気通路(electrical pass-through) 116を収容するために使用される。1つ以上の電極104は、タングステン、モリブデン、コバルト、若しくはニッケル、または高電圧および高温環境に耐えることができる他の丈夫な金属からなり得る。いくつかの実施形態では、正極がパラジウムからなるか、あるいはパラジウムでめっきされている。いくつかの実施形態では、負極は白金である。供給・排出ポート114の1つを使用して、反応ガスを反応器100に導入するか、あるいは反応器100から得られたガスを抽出することができる。供給・排出ポート114はまた、圧力制御装置を収容するために使用されてもよく、当該圧力制御装置は、真空を適用する、ガスを抽出する、またはガスを供給するために使用され得る。
一種の発熱反応では、2つの重水素原子またはイオンが融合してヘリウムを形成し、プロセス中にエネルギーを放出する。図1に示す反応器100は、次のように構成することができる。1つの例示的な反応器100では、容器102は金属製である。容器102の内壁は最初に金108または別の材料(例えば、銀)でめっきされる。金または銀のめっきは、チャンバ内の反応ガスが反応チャンバ100の壁を通って漏れ出るのを防止するためのシール材として機能する。金108の上には、水素吸蔵材料の層がめっきされている。反応器100の外側には、任意に、磁石を配置してもよい。
いくつかの実施形態では、例示的な反応器100が電解槽として構成される。容器102は、電解質で満たされてもよい。容器102はさらに、2つの電極、すなわちカソードおよびアノードを備え、これらは供給・排出ポート114を介して収容される。電気通路116を介して電力線を設けてもよい。
特定の種類の発熱反応では、発熱反応が起こるように反応器100を事前調整する必要がある。必要条件の1つは、水素吸蔵材料110に水素/重水素を取り込むことである。いくつかの実施形態において、発熱反応は、水素取込比率が閾値を超える場合に誘発され得る。水素取込比率は、水素または重水素が水素吸蔵材料、例えばパラジウムにどれだけ吸収または吸着されたかを表す。例えば、反応チャンバ100が電解槽である1つの例示的な実施形態では、電解槽のカソードがパラジウムでめっきされる。水素/重水素ガスがパラジウム中に取り込まれると、取込比率が特定の閾値を超えたときに発熱反応が誘発され得る。
一般に、水素の取込比率は、発熱反応を誘発するのに重要であることが理解されている。高い水素取込比率と過剰な熱発生との間の一般的な相関関係が観察されている一方、発熱反応を一貫して開始させるために使用することができる誘発メカニズムは特定されていない。1つの仮定は、発熱反応を誘発するためには高い水素取込比率が必要であるが、当該条件は、発熱反応の誘発には不十分であるということである。他方、高い取込速度は、過剰な熱発生のための一貫した誘発メカニズムを提供し得る。いくつかの実施形態では、速い水素取込速度下で発熱反応が誘発されてもよい。水素取込速度は、水素が水素吸蔵材料中にどのくらい速く吸収または吸着されているかを表す。
いくつかの実施形態では、高い水素/重水素取込速度が発熱反応を誘発する。例えば、反応チャンバ100内に水素ガスを加圧する場合、反応チャンバ100内に短時間で大量の水素/重水素ガスが導入される。水素/重水素イオン/原子が格子に迅速に取り込まれる場合、発熱反応を誘発することができる。発熱反応は、発熱反応において触媒的役割を果たす金属格子中に「詰まった」水素/重水素原子/イオン間であり得る。
いくつかの実施形態では、磁場を印加するか、あるいは電圧を印加することによって高い水素/重水素取込速度を達成することができる。水素イオンは、強い磁場や高電圧(電場)の影響を受けて高速へと加速される。高速水素/重水素イオンが金属格子に入ると、金属格子に取り込まれた水素/重水素イオンの高い運動エネルギーに起因して、発熱反応が誘発され得る。
いくつかの実施形態では、水素/重水素ガスが金属格子、例えばパラジウムに迅速に取り込まれる場合、金属格子内部の水素原子/イオンの分布は不均一であり得る。特定の領域内では、水素/重水素取込比率は、平均取込比率より高くてもよい。特定のポケット内では、水素/重水素取込比率が、発熱反応を誘発するために必要とされる閾値を上回ってもよい。
図2は、パラジウムなどの水素吸蔵材料における例示的な水素吸蔵プロセス200を示す。図2において、x軸は経過時間を示し、y軸は金属格子に取り込まれた水素原子/イオンと水素吸蔵材料のパラジウム原子との比率として測定された水素取込比率を示す。最初に、水素吸蔵材料が水素/重水素ガス中に置かれると、水素または重水素ガスは迅速に吸着され、吸収される。時間tの経過後、水素吸蔵材料が水素/重水素で「飽和」するまで、水素取込プロセスは減速する。水素取込比率は、t’の後も実質的に安定したままである。
図3は、例示的な水素取込プロセス300を示す。水素取込プロセス300の第1段階の間、つまりtとtとの間に、任意の第1の取込条件を反応チャンバ100に適用する。第1の取込条件は、圧力Pおよび温度Tを含み得る。さらに、第1の取込条件は、電圧V、磁場Bなどを含んでもよい。水素が水素吸蔵材料、例えばパラジウム格子に取り込まれるとき、水素取込比率は、tとtとの間の期間中、rからrに着実に増加する。この期間中の取込速度は、以下の通りである:
Figure 2020515872
からtまでの期間中に、第2の条件が反応チャンバ100の内部に適用される。第2の条件は、圧力P、温度T、電圧V、磁場Bなどのうちの1つ以上を含み得る。第2の条件では、第1の条件よりも速く水素が水素吸蔵材料に取り込まれている。取込比率は、tとtとの間の第2期間中にrからrに増加する。第2期間中の第2の条件下での取込速度は以下の通りである:
Figure 2020515872
第2の条件下では、水素の急速な取り込みのために、発熱反応が誘発される。一実施形態では、装置100がパラジウムまたはニッケルでめっきされた金属容器102を備える。モリブデンなどの金属からなる電極104は、容器の中央に配置されている。水素または重水素は常圧条件(例えば、<2PSI)で密閉容器内に存在する。水素吸蔵格子には負の電圧が印加されるか、あるいはアースが適用され、一方、正の電圧が電極104に印加される。一実施形態では、電圧は約5000Vである。別の実施形態では、電圧は3000V〜6000Vの範囲である。この電圧変化によって、パラジウム/ニッケルの壁に水素または重水素を「たたきつける」強い電場が発生し、取込速度が通常よりも高くなる。この速い取込速度下では、取り込まれた水素原子/イオンが金属格子中に不均一に分布し、高い水素取込比率を有する小さな領域が形成され得る。
別の実施形態では、反応チャンバ100における金属容器102がパラジウムまたはニッケルナノ粒子を保持する。容器102は、真空、例えば、10−7トル以上に初期設定されている。重水素または水素を容器に迅速に導入し、圧力を真空から少なくとも100PSIまで短時間で上昇させる。一実施形態では、圧力が高真空から100PSIに15秒で増加する。この圧力の急激な上昇によって、高濃度の水素/重水素の領域が生じる。これらの領域内では、水素/重水素取込比率が高く、異常な熱発生事象を誘発して過剰な熱発生を促進し得る。
図4は、高い水素取込速度下において発熱反応を誘発する例示的なプロセス400を示す。プロセス400では、まず、水素ガスが金属容器に導入される(ステップ402)。第1期間中、第1の条件が適用される。第1の条件では、水素ガスが水素吸蔵材料に取り込まれて第1期間内に第1水素取込比率に達する(ステップ404)。第2期間中は、第2の条件が適用される。第2の条件では、水素ガスが水素吸蔵材料に取り込まれ、第2水素取込比率が達成される(ステップ406)。第2水素取込比率は、第1水素取込比率よりも高い。第2の条件では、反応チャンバ100内において発熱反応が誘発される(ステップ408)。
本発明は、本発明の範囲および本質的な特徴から逸脱することなく、本明細書に記載されたもの以外の他の特定の方法で実施することができる。したがって、本実施形態はすべての点で例示であって限定ではないと見なされるべきであり、添付の特許請求の範囲の意味および同等の範囲内におけるすべての変更は、本願に包含されるものとする。
熱発生のために構成された例示的な反応器を示す。 金属格子における水素取込プロセスを示す例示的な曲線を示す。 金属格子における別の水素取込プロセスを示す例示的な曲線を示す。 高い水素取込速度下において発熱反応を誘発する方法の例を示すフローチャートである。

Claims (17)

  1. 反応チャンバ内において発熱反応を誘発する方法であって、上記反応チャンバは水素吸蔵材料を備え、上記方法は、
    水素ガスを上記チャンバに導入する工程と、
    第1の条件を適用する工程であって、この条件下で、第1期間中に第1水素取込速度で上記水素ガスが上記水素吸蔵材料に取り込まれる、工程と、
    第2の条件を適用する工程であって、この条件下で、第2期間中に第2水素取込速度で上記水素ガスが上記水素吸蔵材料に取り込まれる、工程と、
    上記第2の条件下で上記反応チャンバ内において上記発熱反応を開始する工程と、を含み、
    上記第2水素取込速度は、上記第1水素取込速度よりも速い、方法。
  2. 上記第1の条件を適用する工程は、温度T1および圧力P1を適用することを含む、請求項1に記載の方法。
  3. 上記反応チャンバはさらに電極を含み、上記電極は上記水素吸蔵材料でめっきされており、上記第2の条件を適用する工程は、上記反応チャンバと上記電極との間に高電圧差を印加することを含む、請求項1に記載の方法。
  4. 上記高電圧差が3000V〜6000Vの範囲である、請求項3に記載の方法。
  5. 上記第2の条件を適用する工程は、上記反応チャンバ内の上記圧力P1を真空から100PSIに増加させることを含む、請求項2に記載の方法。
  6. 上記第1の条件を適用する工程は任意である、請求項1に記載の方法。
  7. 上記第1の取込比率または上記第2の取込比率は、局所的取込比率である、請求項1に記載の方法。
  8. 上記第1の取込比率または上記第2の取込比率は、平均取込比率である、請求項1に記載の方法。
  9. 発熱反応を誘発し、持続させるように構成された装置であって、上記装置は、
    反応チャンバと、
    水素吸蔵材料と、
    ガス吸入口および1つ以上の制御装置を受ける1つ以上の供給ポートと、を備え、
    水素ガスが上記ガス吸入口を介して上記装置に導入され、
    上記1つ以上の制御装置は、第1期間内に第1水素取込比率で上記水素ガスが上記水素吸蔵材料に取り込まれる第1の条件を適用するように、また、第2期間内に第2水素取込比率で上記水素ガスが上記水素吸蔵材料に取り込まれる第2の条件を適用するように構成され、上記第2水素取込比率は、上記第1水素取込比率よりも高く、
    上記発熱反応は、上記第2の条件下で開始される、装置。
  10. 上記第1の条件は、温度T1および圧力P1を含む、請求項9に記載の装置。
  11. 上記装置は、電極をさらに備え、上記電極は水素吸蔵材料でめっきされており、上記第2の条件は、上記装置と上記電極との間の高電圧差を含む、請求項9に記載の装置。
  12. 上記高電圧差が3000V〜6000Vの範囲である、請求項11に記載の装置。
  13. 上記第2の条件は、上記反応チャンバ内の上記圧力P1を真空から100PSIに増加させることを含む、請求項9に記載の装置。
  14. 上記第1の条件を適用する工程は任意である、請求項9に記載の装置。
  15. 上記第1の取込比率または上記第2の取込比率は、局所的取込比率である、請求項9に記載の装置。
  16. 上記第1の取込比率または上記第2の取込比率は、平均取込比率である、請求項9に記載の装置。
  17. 反応チャンバ内において発熱反応を誘発する方法であって、上記反応チャンバは水素吸蔵材料を備え、上記方法は、
    水素ガスを上記反応チャンバに導入する工程と、
    条件を適用する工程であって、この条件下で、上記水素ガスを上記水素吸蔵材料に取り込んで高水素取込速度を達成する、工程と、
    上記反応チャンバ内において上記発熱反応を開始する工程と、を含む、方法。

JP2020502513A 2017-03-29 2018-03-28 高水素取込速度下での発熱反応の誘発 Pending JP2020515872A (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762478080P 2017-03-29 2017-03-29
US62/478,080 2017-03-29
PCT/US2018/024790 WO2018183460A1 (en) 2017-03-29 2018-03-28 Triggering exothermic reactions under high hydrogen loading rates

Publications (1)

Publication Number Publication Date
JP2020515872A true JP2020515872A (ja) 2020-05-28

Family

ID=63678321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020502513A Pending JP2020515872A (ja) 2017-03-29 2018-03-28 高水素取込速度下での発熱反応の誘発

Country Status (8)

Country Link
US (2) US20210280326A1 (ja)
EP (1) EP3601156A4 (ja)
JP (1) JP2020515872A (ja)
CN (1) CN110831895A (ja)
AU (1) AU2018246253A1 (ja)
CA (1) CA3058446A1 (ja)
RU (1) RU2019130440A (ja)
WO (1) WO2018183460A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040755A1 (en) * 2019-08-29 2021-03-04 Ih Ip Holdings Limited Systems and methods for generating heat from reactions between hydrogen isotopes and metal catalysts
CN113409961A (zh) * 2021-06-03 2021-09-17 长春理工大学 电磁触发气体与金属产生过热的低能核反应装置及其产热方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9007597A (pt) * 1989-08-15 1992-06-30 Univ Utah Metodo de preparacao de eletrodos para uso em aparelho gerador de calor
CA2069687A1 (en) * 1991-06-28 1992-12-29 Chandra Kumar Banerjee Tobacco smoking article with electrochemical heat source
WO1993001601A1 (en) * 1991-07-11 1993-01-21 University Of Utah Research Foundation Method for consistent reproduction of high deuterium loading and tritium gereration in palladium electrodes
IT1314062B1 (it) * 1999-10-21 2002-12-03 St Microelectronics Srl Metodo e relativa apparecchiatura per generare energia termica
JP2003270372A (ja) * 2002-03-12 2003-09-25 Hidetsugu Ikegami 無反跳非熱核融合反応生成方法及び無反跳非熱核融合エネルギー発生装置
US7781109B2 (en) * 2004-09-03 2010-08-24 Gross Karl J Hydrogen storage and integrated fuel cell assembly
EP1908143B1 (en) * 2005-07-25 2013-07-17 Bloom Energy Corporation Fuel cell system with partial recycling of anode exhaust
JP2014037996A (ja) * 2012-08-13 2014-02-27 Tadahiko Mizuno 核融合反応方法
US20140332087A1 (en) * 2013-02-26 2014-11-13 Brillouin Energy Corp. Control of Low Energy Nuclear Reaction Hydrides, and Autonomously Controlled Heat
AU2014291181B2 (en) * 2013-07-18 2018-04-19 Clean Planet Inc. Reactant, heating device, and heating method

Also Published As

Publication number Publication date
EP3601156A4 (en) 2020-12-09
RU2019130440A (ru) 2021-04-29
CN110831895A (zh) 2020-02-21
US20230290526A1 (en) 2023-09-14
AU2018246253A1 (en) 2019-10-17
WO2018183460A1 (en) 2018-10-04
CA3058446A1 (en) 2018-10-04
EP3601156A1 (en) 2020-02-05
US20210280326A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
Son et al. Impact of hollow-atom formation on coherent x-ray scattering at high intensity
US20230290526A1 (en) Triggering exothermic reactions under high hydrogen loading rates
Baldwin et al. Deuterium retention in liquid lithium
JP4346838B2 (ja) 核種変換装置
CN205793592U (zh) 用于中子管制造的自成靶
KR20160041937A (ko) 반응체, 발열 장치 및 발열 방법
EP2816566B1 (en) Nuclide conversion method and nuclide conversion device
Manhard et al. Deuterium retention in solid and liquid tin after low-temperature plasma exposure
Yuan et al. Surface treatment of rare earth-magnesium–nickel based hydrogen storage alloy with lithium hydroxide aqueous solution
WO2021034865A1 (en) Gaseous-phase ionizing radiation generator
JP5870325B2 (ja) 水素貯蔵金属又は合金の初期活性化方法及び水素化方法
JP6486600B2 (ja) 核種変換システム及び核種変換方法
Noborio et al. Neutron production rate of inertial electrostatic confinement fusion device with fusion reaction on surface of electrodes
CN110998745A (zh) 由凝聚的氢团簇产生能量的方法
Agarkov et al. PIG with metal-hydride cathode under ion-stimulated desorbtion of hydrogen
JP4347262B2 (ja) 核種変換装置及び核種変換方法
JPH05501305A (ja) 熱発生装置で使用するための電極の準備方法
Chen et al. Hydrogen adsorption on hydrogen storage alloy surface and electrochemical performances of the MlNi4. 0Co0. 6Al0. 4 alloy electrodes before and after surface treatment
WO1995021447A1 (en) Method and apparatus for long-term, continuous energy production
JP2005292154A (ja) 核種変換装置及び核種変換方法
JP2005062025A (ja) 核種変換装置からの核種変換量を増大させる方法及び核種変換装置
US20090096380A1 (en) System and method for producing energetic particles by gas discharge in deuterium containing gas
WO1995006317A1 (en) Method and apparatus for long-term, continuous energy production
JP2021056111A (ja) 重水素透過量の制御方法および重水素透過装置、並びに核種変換方法
JP2018036275A (ja) 核融合反応方法及び核融合反応装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127