CN110831895A - 在高氢加载速率条件下触发放热反应 - Google Patents

在高氢加载速率条件下触发放热反应 Download PDF

Info

Publication number
CN110831895A
CN110831895A CN201880026972.4A CN201880026972A CN110831895A CN 110831895 A CN110831895 A CN 110831895A CN 201880026972 A CN201880026972 A CN 201880026972A CN 110831895 A CN110831895 A CN 110831895A
Authority
CN
China
Prior art keywords
hydrogen
loading ratio
absorbing material
reaction chamber
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880026972.4A
Other languages
English (en)
Inventor
J·A·莫里斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IH IP Holdings Ltd
Ai Ai Intellectual Property Holdings Ltd
Original Assignee
Ai Ai Intellectual Property Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ai Ai Intellectual Property Holdings Ltd filed Critical Ai Ai Intellectual Property Holdings Ltd
Publication of CN110831895A publication Critical patent/CN110831895A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0026Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof of one single metal or a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B4/00Hydrogen isotopes; Inorganic compounds thereof prepared by isotope exchange, e.g. NH3 + D2 → NH2D + HD
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B3/00Low temperature nuclear fusion reactors, e.g. alleged cold fusion reactors
    • G21B3/002Fusion by absorption in a matrix
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/0204Apparatus characterised by their chemically-resistant properties comprising coatings on the surfaces in direct contact with the reactive components
    • B01J2219/0236Metal based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Combustion & Propulsion (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

本申请公开了用于在高氢加载速率条件下触发放热反应的方法和设备。通常应理解,高氢加载比率为一重要因素。本申请教导了,高氢加载速率,即在短时间段内实现高氢加载比率,对于确定在放热反应中是否可观察到过量热量是另一重要因素。本申请公开了用于实现高氢加载速率以触发放热反应的方法和设备。

Description

在高氢加载速率条件下触发放热反应
相关申请的交叉引用
本申请要求于2017年3月29日提交的美国临时专利申请No.62/478,080的优先权,其全部内容通过引用的方式并入本文。
技术领域
本发明大体涉及在放热反应中的热生成,更具体地,涉及控制氢或氘加载速率以触发放热反应。
背景技术
世界各地的独立团队已观察到并且确认了涉及加载于金属晶格中的氢或氘原子的放热反应中的热生成。金属晶格的实例包括钯、镍、合金等。但是,以一致的方式重现这些放热反应的努力已经失败。
许多因素对于确定在放热反应中是否将观察到过量能量被视为是重要的。例如,当氢或氘气体加载至金属晶格中时,认为对于触发放热反应,高于0.8的加载比率是必要但不充分条件。金属晶格上的“粗糙”表面也认为是重要的,因为具有粗糙表面的金属晶格相比于平滑表面可实现更高的氢加载比率。
本申请公开了用于一致地触发放热反应的新颖和有利的方法和设备。
发明内容
本公开涉及放热反应的触发条件。在本公开中,术语“氢”用于指代氢气体,该氢气体包括纯氘气、氚气,或这三种同位素的任何组合。
在一些实施例中,配置用于托管(host)放热反应的装置包括氢吸收材料和一个或多个输入端口。一个或多个输入端口配置用于接纳气体入口和一个或多个控制装置。一个或多个控制装置配置成施加条件以实现高氢加载速率,放热反应在该条件下引发。
在一些实施例中,用于触发反应腔室中的放热反应的方法包括下述步骤。首先,将氢气体引入反应腔室中。反应腔室包括氢吸收材料。当氢气体加载至氢吸收材料中时,施加条件以实现高氢加载速率,放热反应在该条件下引发。
在一些实施例中,公开了触发反应腔室中的放热反应的方法。在施加第一条件之前,首先将氢气体引入金属容器中。在第一条件下,氢气体在第一时间段内加载至氢吸收材料中以实现第一氢加载比率。此后,施加第二条件。在第二条件下,氢气体在第二时间段内加载至氢吸收材料中以实现第二氢加载比率。第二加载比率高于第一加载比率,并且第二时间段短于第一时间段。放热反应可在第二条件下引发。在一些实施例中,施加第一条件为任选的。
在一些实施例中,公开了配置用于触发并维持放热反应的装置。该装置包括容器、一个或多个电极,和一个或多个输入端口。在一个实施例中,装置配置成托管某一类型的放热反应,该放热反应涉及加载有氢的过渡金属。在一个实施例中,金属容器电镀有氢吸收材料,并且通过金属容器的端部处的端口接纳一个或多个电极。一个或多个输入端口配置成接纳一个或多个控制装置。一个或多个控制装置配置成施加不同条件,氢气体在这些不同条件下可加载至氢吸收材料中。在第一条件下,氢气体在第一时间段内以第一氢加载比率加载至氢吸收材料中。在第二条件下,氢气体在第二时间段内以第二氢加载比率加载至氢吸收材料中。第二氢加载比率高于第一氢加载比率。放热反应可在第二条件下触发。
在又一个实施例中,配置用于放热反应的装置包括电解池。装置包括填充有电解质的容器。装置还包括一个或多个输入端口以用于接纳阴极和阳极。阴极电镀有氢吸收材料并且可吸收或吸附氢气体。当氢气体以超出阈值的高氢加载速率加载至氢吸收材料中时,可触发放热反应。
附图说明
图1示出了配置用于热生成的示例性反应器;
图2示出了显示金属晶格中的氢加载过程的示例性曲线;
图3示出了显示金属晶格中的另一氢加载过程的示例性曲线;
图4为示出在高氢加载速率条件下的放热反应的示例性触发方法的流程图。
具体实施方式
图1示出了配置用于放热反应的示例性反应器100。反应器100包括容器102、一个或多个电极104和封盖106。在图1中,封盖106放置于反应器100的一个端部处,并且用于容纳一个或多个电极104、输入/输出端口114,和可移除的电气通路116。一个或多个电极104可由钨、钼、钴或镍,或其它坚固金属制成,这些坚固金属可耐受高电压和高温环境。在一些实施例中,正电极由钯制成或电镀有钯。在一些实施例中,负电极为铂。输入/输出端口114的一者可用于将反应气体引入反应器100中或从反应器100提取所得气体。输入/输出端口114还可用于容纳压力控制装置,这些压力控制装置可用于施加真空,提取气体或输入气体。
在一种类型的放热反应中,两个氘原子或离子融合以形成氦并且在该过程中释放能量。图1所示的反应器100可配置如下。在一个示例性反应器100中,容器102由金属制成。容器102的内壁首先电镀有金108或另一种材料(例如,银)。所电镀的金或银用作密封件以防止腔室中的反应气体逸出通过反应腔室100的壁。在金108的顶部上,电镀有氢吸收材料层。在反应器100外部,可任选地放置磁体。
在一些实施例中,示例性反应器100配置为电解池。容器102可填充有电解质。容器102还包括两个电极(阴极和阳极),这两个电极通过输入/输出端口114来容纳。功率线可通过电气通路116来容纳。
在某些类型的放热反应中,反应器100需对于待发生的放热反应进行预调节。前提条件之一为,氢吸收材料110加载有氢/氘。在一些实施例中,当氢加载比率超出阈值时,放热反应可触发。氢加载比率描述了已吸收或吸附至氢吸收材料(例如,钯)中的氢或氘的量。例如,在其中反应腔室100为电解池的一个示例性实施例中,电解池的阴极电镀有钯。随着氢/氘气体加载至钯中,当加载比率超出某一阈值时,放热反应可触发。
通常应理解,氢的加载比率对于触发放热反应是重要的。虽然已观察到高氢加载比率和过量热生成之间的一般关联性,但是可用于一致地引发放热反应的触发机制尚未识别。一种假设为,对于触发放热反应,高氢加载比率为必要但不充分条件。在另一方面,高加载速率可提供过量热生成的一致触发机制。在一些实施例中,放热反应可在快速氢加载速率条件下触发。氢加载速率描述了氢如何快速地吸收或吸附至氢吸收材料中。
在一些实施例中,高氢/氘加载比率触发了放热反应。例如,当将氢气体加压至反应腔室100中时,大流量的氢/氘气体在短时间段内引入至反应腔室100中。当氢/氘离子/原子迅速地加载至晶格中时,可诱导放热反应。放热反应可在“挤满”于金属晶格中的氢/氘原子/离子之间,该金属晶格在放热反应中起到催化作用。
在一些实施例中,高氢/氘加载速率可通过施加磁场或强加电压来实现。当在强磁场或高电压(电场)的影响条件下时,氢离子加速至高速。当高速氢/氘离子进入金属晶格时,由于加载至金属晶格中的氢/氘离子的高动力能量,可诱导放热反应
在一些实施例中,当氢/氘气体迅速地加载至金属晶格(例如,钯)中时,氢原子/离子在金属晶格内部的分布可为不均匀的。在某些区域内,氢/氘加载比率可高于平均加载比率。在某些凹陷(pocket)内,氢/氘加载比率可超出用于触发放热反应所需的阈值。
图2示出了氢吸收材料(诸如钯)中的示例性氢吸收过程200。在图2中,x轴线示出了实耗时间,并且y轴线示出了氢加载比率,该氢加载比率测量为加载至金属晶格中的氢原子/离子和氢吸收材料的钯原子之间的比率。初始地,当氢吸收材料置于氢/氘气体中时,氢或氘气体被迅速地吸附和吸收。在时间段t之后,氢加载过程减慢,直至氢吸收材料“充满”了氢/氘。氢加载比率在t'之后保持大体稳定。
图3示出了示例性氢加载过程300。在氢加载过程300的第一阶段(t0和t1之间)期间,在反应腔室100中施加任选的第一加载条件。第一加载条件可包括压力P1和温度T1。此外,第一加载条件可包括电压V1、磁场B1等。随着氢加载至氢吸收材料(例如,钯晶格)中,氢加载比率在t0和t1之间的时间段期间从r0稳固地增加至r1。在该时间段期间的加载速率为:
Figure BDA0002244808920000041
在t1和t2之间的时间段期间,在反应腔室100内部施加第二条件。第二条件可包括以下项中的一者或多者:压力P2、温度T2、电压V2、磁场B2等。相比于在第一条件下,氢在第二条件下更快速地加载至氢吸收材料中。加载比率在t1和t2之间的第二时间段期间从r1增加至r2。第二条件下的加载比率在第二时间段期间为:
Figure BDA0002244808920000042
当在第二条件下时,由于氢的快速加载,触发了放热反应。在一个实施例中,装置100包括金属容器102,金属容器102电镀有钯或镍。由金属(诸如钼)制成的电极104存在于容器的中部。氢或氘在正常压力条件下(例如,<2PSI)存在于闭合容器中。负电压或接地电压施加至氢吸收晶格,而正电压施加至电极104。在一个实施例中,电压为约5000V。在另一个实施例中,电压在3000V至6000V之间的范围内。该电压变化形成了引起氢或氘“撞击”钯/镍壁的强电场,从而产生高于正常值的加载速率。在该快速加载速率条件下,所加载氢原子/离子不均匀地分布于金属晶格中,并且可形成具有高氢加载比率的小区域。
在另一个实施例中,反应腔室100中的金属容器102保持钯或镍纳米粒子。容器102初始地设定为真空,例如,10^7托尔或更高。氘或氢迅速地引入至容器中,从而引起压力在短时间段内从真空增加至至少100PSI。在一个实施例中,压力在15秒内从高真空增加至100PSI。压力的这种突然增加形成了高浓度氢/氘的区域。在这些区域内,氢/氘加载比率是高的,并且可触发异常热生成事件以促进过量热生成。
图4示出了在高氢加载速率条件下的放热反应的示例性触发过程400。在过程400中,氢气体首先引入至金属容器中(步骤402)。在第一时间段期间,施加第一条件。在第一条件下,氢气体在第一时间段内加载至氢吸收材料中以达到第一氢加载比率(步骤404)。在第二时间段期间,施加第二条件。在第二条件下,氢气体加载至氢吸收材料中以实现第二氢加载比率(步骤406)。第二氢加载比率高于第一氢加载比率。在第二条件下,触发反应腔室100中的放热反应(步骤408)。
在不脱离本发明的范围和本质特征的情况下,本发明可以以不同于本文所阐述那些的其它特定方式来执行。因此,本发明实施例在所有方面应视为例示性的而非限制性的,并且落入附属权利要求书的意义和等同范围内的所有变化旨在涵盖于其中。

Claims (17)

1.一种触发反应腔室中的放热反应的方法,该反应腔室包括氢吸收材料,所述方法包括:
将氢气体引入腔室中;
施加第一条件,所述氢气体在第一条件下在第一时间段期间以第一氢加载速率加载至所述氢吸收材料中;
施加第二条件,所述氢气体在第二条件下在第二时间段期间以第二氢加载速率加载至所述氢吸收材料中;
在所述第二条件下引发反应腔室中的放热反应;
其中所述第二氢加载速率高于所述第一氢加载速率。
2.根据权利要求1所述的方法,其中施加所述第一条件包括施加温度T1和压力P1。
3.根据权利要求1所述的方法,其中所述反应腔室还包括电极并且所述电极电镀有氢吸收材料,并且其中施加所述第二条件包括施加反应腔室和电极之间的高电压差分。
4.根据权利要求3所述的方法,其中所述高电压差分在3000V至6000V的范围内。
5.根据权利要求2所述的方法,其中施加所述第二条件包括将反应腔室内的压力P1从真空增加至100PSI。
6.根据权利要求1所述的方法,其中施加所述第一条件的步骤是可选的。
7.根据权利要求1所述的方法,其中第一加载比率或第二加载比率为局部加载比率。
8.根据权利要求1所述的方法,其中第一加载比率或第二加载比率为平均加载比率。
9.一种配置用于触发并维持放热反应的装置,所述装置包括:
反应腔室;
氢吸收材料;和
用于接纳气体入口和一个或多个控制装置的一个或多个输入端口,
其中氢气体经由气体入口引入到装置中,且
其中所述一个或多个控制装置配置成施加第一条件,所述氢气体在第一条件下在第一时间段内以第一氢加载比率加载至所述氢吸收材料中,和配置成施加第二条件,所述氢气体在第二条件下在第二时间段内以第二氢加载比率加载至所述氢吸收材料中,所述第二氢加载比率高于所述第一氢加载比率;
其中放热反应在所述第二条件下引发。
10.根据权利要求9所述的装置,其中所述第一条件包括温度T1和压力P1。
11.根据权利要求9所述的装置,其中所述装置还包括电极并且所述电极电镀有氢吸收材料,其中所述第二条件包括在所述装置和电极之间的高电压差分。
12.根据权利要求11所述的装置,其中所述高电压差分在3000V至6000V的范围内。
13.根据权利要求9所述的装置,其中所述第二条件包括将反应腔室内的压力P1从真空增加至100PSI。
14.根据权利要求9所述的装置,其中施加所述第一条件的步骤是可选的。
15.根据权利要求9所述的装置,其中所述第一加载比率或第二加载比率为局部加载比率。
16.根据权利要求9所述的装置,其中所述第一加载比率或第二加载比率为平均加载比率。
17.一种触发反应腔室中的放热反应的方法,该反应腔室包括氢吸收材料,所述方法包括:
将氢气体引入反应腔室中;
施加条件,所述氢气体在该条件下加载至氢吸收材料中以实现高氢吸收速率;和
引发所述反应腔室中的放热反应。
CN201880026972.4A 2017-03-29 2018-03-28 在高氢加载速率条件下触发放热反应 Pending CN110831895A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762478080P 2017-03-29 2017-03-29
US62/478,080 2017-03-29
PCT/US2018/024790 WO2018183460A1 (en) 2017-03-29 2018-03-28 Triggering exothermic reactions under high hydrogen loading rates

Publications (1)

Publication Number Publication Date
CN110831895A true CN110831895A (zh) 2020-02-21

Family

ID=63678321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880026972.4A Pending CN110831895A (zh) 2017-03-29 2018-03-28 在高氢加载速率条件下触发放热反应

Country Status (8)

Country Link
US (2) US20210280326A1 (zh)
EP (1) EP3601156A4 (zh)
JP (1) JP2020515872A (zh)
CN (1) CN110831895A (zh)
AU (1) AU2018246253A1 (zh)
CA (1) CA3058446A1 (zh)
RU (1) RU2019130440A (zh)
WO (1) WO2018183460A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409961A (zh) * 2021-06-03 2021-09-17 长春理工大学 电磁触发气体与金属产生过热的低能核反应装置及其产热方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021040755A1 (en) * 2019-08-29 2021-03-04 Ih Ip Holdings Limited Systems and methods for generating heat from reactions between hydrogen isotopes and metal catalysts

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003055A2 (en) * 1989-08-15 1991-03-07 University Of Utah Method of preparing electrodes for use in heat-generating apparatus
WO1993001601A1 (en) * 1991-07-11 1993-01-21 University Of Utah Research Foundation Method for consistent reproduction of high deuterium loading and tritium gereration in palladium electrodes
WO2001029844A1 (en) * 1999-10-21 2001-04-26 Stmicroelectronics S.R.L. A method and apparatus for generating thermal energy
US20030174800A1 (en) * 2002-03-12 2003-09-18 Hidetsugu Ikegami And Sayaka Ikegami Method of and apparatus for generating recoilless nonthermal nuclear fusion
JP2014037996A (ja) * 2012-08-13 2014-02-27 Tadahiko Mizuno 核融合反応方法
US20160155518A1 (en) * 2013-07-18 2016-06-02 Hydrogen Engineering Application & Development Company Reactant, heating device, and heating method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2069687A1 (en) * 1991-06-28 1992-12-29 Chandra Kumar Banerjee Tobacco smoking article with electrochemical heat source
US7781109B2 (en) * 2004-09-03 2010-08-24 Gross Karl J Hydrogen storage and integrated fuel cell assembly
EP1908143B1 (en) * 2005-07-25 2013-07-17 Bloom Energy Corporation Fuel cell system with partial recycling of anode exhaust
US20140332087A1 (en) * 2013-02-26 2014-11-13 Brillouin Energy Corp. Control of Low Energy Nuclear Reaction Hydrides, and Autonomously Controlled Heat

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991003055A2 (en) * 1989-08-15 1991-03-07 University Of Utah Method of preparing electrodes for use in heat-generating apparatus
WO1993001601A1 (en) * 1991-07-11 1993-01-21 University Of Utah Research Foundation Method for consistent reproduction of high deuterium loading and tritium gereration in palladium electrodes
WO2001029844A1 (en) * 1999-10-21 2001-04-26 Stmicroelectronics S.R.L. A method and apparatus for generating thermal energy
US20030174800A1 (en) * 2002-03-12 2003-09-18 Hidetsugu Ikegami And Sayaka Ikegami Method of and apparatus for generating recoilless nonthermal nuclear fusion
JP2014037996A (ja) * 2012-08-13 2014-02-27 Tadahiko Mizuno 核融合反応方法
US20160155518A1 (en) * 2013-07-18 2016-06-02 Hydrogen Engineering Application & Development Company Reactant, heating device, and heating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113409961A (zh) * 2021-06-03 2021-09-17 长春理工大学 电磁触发气体与金属产生过热的低能核反应装置及其产热方法

Also Published As

Publication number Publication date
EP3601156A4 (en) 2020-12-09
AU2018246253A1 (en) 2019-10-17
RU2019130440A (ru) 2021-04-29
US20210280326A1 (en) 2021-09-09
JP2020515872A (ja) 2020-05-28
CA3058446A1 (en) 2018-10-04
EP3601156A1 (en) 2020-02-05
US20230290526A1 (en) 2023-09-14
WO2018183460A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US20230290526A1 (en) Triggering exothermic reactions under high hydrogen loading rates
EP1202290B1 (en) Nuclide transmutation device and nuclide transmutation method
Luo et al. Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10–100 eV plasmas
CN110317974A (zh) 一种钇-镍稀土系储氢合金
CN104152749A (zh) 添加锆、钛元素的a5b19型稀土-钇-镍系储氢合金
CN104513916B (zh) 添加锆、钛元素的a2b7型稀土‑钇‑镍系储氢合金
JP2014037996A (ja) 核融合反応方法
EP2816566B1 (en) Nuclide conversion method and nuclide conversion device
Storms An explanation of low-energy nuclear reactions (cold fusion)
Liang et al. Dual-ion substitution-induced unique electronic modulation to stabilize an orthorhombic lattice towards reversible hydrogen isotope storage
Etiemble et al. Influence of Pd addition on the electrochemical performance of Mg–Ni–Ti–Al-based metal hydride for Ni–MH batteries
Liao et al. A facile surface alloy-engineering route to enable robust lithium metal anodes
Gabis et al. Modeling of metal hydride battery anodes at high discharge current densities and constant discharge currents
Comisso et al. Electrolytic hydriding of Pd79. 5Rh20. 5 alloy
López-Suárez Effect of absorption and desorption of hydrogen in Ti and Ti alloys
Zhang et al. Effects of molybdenum content on the discharging performances of the La1. 7Mg1. 3 (Ni1-xMox) 7.75 MnCo0. 2Al0. 05 alloys
CN110998745A (zh) 由凝聚的氢团簇产生能量的方法
Kanashenko et al. Influence of radiation damage in graphite and beryllium materials on hydrogen retention
Zhang et al. Investigations on rate constants of the charging/discharging processes for metal hydride electrodes
Paschoalino et al. The Borohydride Oxidation Reaction on La–Ni‐Based Hydrogen‐Storage Alloys
Chen et al. Hydrogen adsorption on hydrogen storage alloy surface and electrochemical performances of the MlNi4. 0Co0. 6Al0. 4 alloy electrodes before and after surface treatment
Mun et al. Binder‐and Carbon‐free Porous Thick Tin Foil Electrode via a Spontaneous Electrochemical and Chemical Process
Yanghuan et al. Investigation on gaseous and electrochemical hydrogen storage kinetics of as-quenched nanocrystalline Mg2Ni-type alloys
SHCHERBAKOVA APPLICATION OF THE ELECTROCHEMICAL EXTRACTION METHOD TO THE STUDY OF A METAL HYDRIDE ELECTRODE-HYDROGEN SYSTEM
Pike Chemical Aspects of LENR

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200221