JP2020514181A - 浮体式海洋プラットフォーム - Google Patents

浮体式海洋プラットフォーム Download PDF

Info

Publication number
JP2020514181A
JP2020514181A JP2019555729A JP2019555729A JP2020514181A JP 2020514181 A JP2020514181 A JP 2020514181A JP 2019555729 A JP2019555729 A JP 2019555729A JP 2019555729 A JP2019555729 A JP 2019555729A JP 2020514181 A JP2020514181 A JP 2020514181A
Authority
JP
Japan
Prior art keywords
platform
pontoon
strut
heave
heave plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019555729A
Other languages
English (en)
Other versions
JP7053663B2 (ja
Inventor
スソ ゴレン アグイレ
スソ ゴレン アグイレ
ホセアン ガルバンフェルナンデス
ホセアン ガルバンフェルナンデス
ヘルマン ペレツモラン
ヘルマン ペレツモラン
ララ ミレン ホスネ サンチェス
ララ ミレン ホスネ サンチェス
ホナサン フェルナンデスイバネス
ホナサン フェルナンデスイバネス
マエストレ ホルゲ アルツザラ
マエストレ ホルゲ アルツザラ
Original Assignee
ノーチラス フローティング ソリューションズ エスエル
ノーチラス フローティング ソリューションズ エスエル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ノーチラス フローティング ソリューションズ エスエル, ノーチラス フローティング ソリューションズ エスエル filed Critical ノーチラス フローティング ソリューションズ エスエル
Publication of JP2020514181A publication Critical patent/JP2020514181A/ja
Application granted granted Critical
Publication of JP7053663B2 publication Critical patent/JP7053663B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/02Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses
    • B63B39/03Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by displacement of masses by transferring liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B1/125Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising more than two hulls
    • B63B2001/126Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising more than two hulls comprising more than three hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B3/00Hulls characterised by their structure or component parts
    • B63B3/14Hull parts
    • B63B2003/145Frameworks, i.e. load bearing assemblies of trusses and girders interconnected at nodal points
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B77/00Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms
    • B63B77/10Transporting or installing offshore structures on site using buoyancy forces, e.g. using semi-submersible barges, ballasting the structure or transporting of oil-and-gas platforms specially adapted for electric power plants, e.g. wind turbines or tidal turbine generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Wind Motors (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

少なくとも1つの風力タービンを支持するための半潜水型浮体式プラットフォーム(1)であって、各々がリングポンツーン(2)に取り付けられた4つの浮力支柱(3)と、浮力支柱(3)上に配置された1つの風力タービンを支持するように構成されたトランジションピース(4)と、リングポンツーン(2)の内周に組み付けられたヒーブ板(5)とを備える、半潜水型浮体式プラットフォーム。リングポンツーン(2)は、四辺形リングポンツーン(2)を形成する4つのポンツーン部分を備え、各支柱(3)の第1の端部は、四辺形リングポンツーン(2)のそれぞれの角部に取り付けられる。ヒーブ板(5)は、リングポンツーン(2)の内周に配置され、両方とも中空を画定する。ポンツーン(2)は、コンクリートなどの固定バラストで充填することができる複数の区画又は構造体ブロックに分割されることが好ましい。トランジションピース(4)は、星形に配置され、風力タービンが配置される中心点から突出する4本のアームを有し、トランジションピース(4)と支柱(3)との間の接続は、海飛沫ゾーンの上方に位置するように設計される。各浮力支柱(3)は、海水を配分して、ドラフトを調整するよう、及びプラットフォーム(1)の傾斜を補償するように構成された少なくとも1つのバラストタンクを備え、各支柱(3)の中の前記少なくとも1つのバラストタンクは、別の支柱(3)の少なくとも1つのバラストタンクとは独立している。

Description

本発明は、浮体式海洋構造物に関する。より詳細には、本発明は、風力タービンを支持するための半潜水型浮体式海洋構造物に関する。
様々な海洋構造物が存在する。それらは、通常、その用途に応じて異なる設備を収容する上面構造物を有する。このような設備としては、配管設備、掘削装置、貯蔵装置及びエネルギ発生装置が挙げられる。構造物全体の設計は、通常、それが意図される用途によって調整される。
石油及びガス抽出のための半潜水型海洋プラットフォームの実施例が、特許文献1に開示されている。このタイプの海洋構造物の別の例は、特許文献2、特許文献3、特許文献4及び特許文献5に開示されている。例として、特許文献5は、海洋で石油及びガスを調査及び生産するための半潜水型浮体式プラットフォーム上の垂直運動を減少させるための方法及びシステムを開示する。開示されたプラットフォームは、海洋プラットフォームの設備、施設及び操作を支持するための中実の正方形デッキと、船体開口を形成するポンツーンに結合された4本の支柱によって形成された船体とを有する。1つ以上の延長プレートをポンツーンに連結することができる。
風力タービンを支持するように構成された半潜水型浮体式海洋構造物も存在する。石油及びガス分野用に設計された構造物は、設計上の考慮/制限が著しく異なるため、海洋の風力用に設計された構造物よりも大きく且つ重くなる。石油及びガスの構造物は、より大きく且つ重い設備を支持し、有人構造物であり、そしてそれらの用途の性質により、安全性レベルがより高くなり、石油漏出を回避することができる。従って、安定性基準は、設計安全係数、追加の補強要素、及び浮揚性を提供するためのより大きな要素によって保証され、プラットフォームの移動を最小限に抑えなければならない。設計は、安全性を考慮して決定される。例えば、通常、双胴船体が考慮され、デッキ空間は最大化される。
一方、海洋風力構造物は、漏出の危険性がなく、環境への影響を受けない無人のものである。設計は、コスト低減によって決定されるので、構造物は、サイズを小さくする必要があるが、適切な風力タービン動作の安定性を確保する必要がある。
加えて、石油及びガス構造物は、用途の性質から、海洋風力構造物の場合であるピッチ及びロールの自然周期に関して制限がない。
風力タービンを支持するように構成された半潜水型浮体式海洋構造物の例は、特許文献6に記載されており、これは、星形に配置されたポンツーン構造物を有するそのような構造物の1つを開示する。海洋構造物は、4本の垂直な支柱を有し、そのうちの3本がポンツーン構造物の各端部に配置され、第4の支柱はポンツーン構造物の中央に配置される。この中央の支柱は、風力タービンを支持する。この構成は、支柱間の距離がより大きい設計となるため、それらを接合するポンツーンが、より大きく、且つ、より高価になることを暗示するものである。同様の設計が特許文献7に開示されており、そこでは、3本の外側支柱と1本の内側支柱とを有する海洋浮体式構造物が示されている。デッキは、3本の外側支柱の上端部に配置される。デッキは、内部支柱の上端が接続される中心点から突出する星形の形状を有する。支柱の下方には、ヒーブ板が配置されている。しかしながら、ヒーブ板の寸法が大きいために、大量の水を移動させ、これにより、疲労問題を引き起こす支柱との接続部において非常に大きなモーメントが発生する。このため、トラス部材が配置され、モーメントを分配するように構成されている。しかしながら、トラス部材は推奨されない。何故なら、船舶と同様に厳しい環境におけるこれらの要素の溶接は、疲労問題のために回避されるべきであるからである。これらの問題は、より厚い構造物を使用することによって克服することができるが、これは、より重く、大量の鋼を使用することを意味する。
次に、特許文献8は、風力タービンを支持するための海洋構造物を開示している。それは、風力タービンを支持するように設計された4本の外側支柱と第5の内側支柱とを有する。この場合、構造物材料はコンクリートであり、よって、水変位が大きくなり、プラットフォーム重量が非常に大きくなる。5本の支柱構成は、安定性の点では利点をもたらすが、構造物の浮遊面積がより大きくなるため、電流に対してより敏感になり、係留システムの複雑度及びコストを増大させる。
風力タービンを支持するための別の海洋プラットフォームは、特許文献9に開示されている。このプラットフォームは、バラスト流体を収容するための内部容積を有する3本の安定化支柱を有する。バラスト制御システムによって、バラスト流体は支柱の内部容積の間を移動し、支柱の垂直方向の位置合わせを調節する。3本の支柱構成では、安定性を確保するために支柱間の距離がより大きくなる。一方の支柱の上に風力タービンを有するという事実は、非対称な構成となり、安定性をより複雑にする。支柱間のバラストの移動は、風力タービンの垂直性を維持するために必要であるため、システムがより複雑となり、故障又は緊急事態の場合に、その動作を保証するために冗長性が必要となる。
米国特許第8418640号明細書 米国特許出願公開第2007224000号明細書 米国特許第7963241号明細書 米国特許第8807874号明細書 米国特許出願公開第2014/305359号明細書 国際公開第2014/031009号明細書 中国特許第102758447号明細書 国際公開第2014013098号明細書 欧州特許第2271547号明細書
従って、コストを最小限に抑えながら上述した欠点を克服する新規な半潜水型浮体式海洋プラットフォームを開発する必要性がある。
本発明は、風力エネルギ設備を支持するための新たな浮体式海洋プラットフォームを用いて上述の欠点を解決しようとするものである。プラットフォームは、4本の支柱の底部に配置されたポンツーンと、支柱の頂部に配置されたデッキ又はトランジションピースとともに、プラットフォームの主要構造物を形成する4本の垂直浮揚性支柱を有する。浮体式プラットフォームは、係留システムを用いて海底に固定される。作動中、風力タービン及び風力エネルギを生成するために必要な任意の補助設備は、トランジションピースの頂部に配置される。プラットフォームは、高価な海洋の統合及び保守手順を制限しながら、大型風力タービン(例えば、5〜10MW)のエネルギ生成を最大にする最適化された技術的解決法を提供することによって、浮体式海洋風力設備を支持することを目的とする。
本発明の第1の態様では、少なくとも1つの風力タービンを支持するための半潜水型浮体式プラットフォームが提供される。プラットフォームは、各々が第1の端部でリングポンツーンに取り付けられた4本の浮力支柱と、少なくとも1つの風力タービンを支持するように構成され、前記第1の端部とは反対側の前記支柱の端部において前記浮力支柱上に配置されるトランジションピースを有するデッキと、リングポンツーンの内周部に配置されたヒーブ板を備える。リングポンツーンは、四辺形リングポンツーンを形成する4つのポンツーン部分を備え、各支柱の前記第1の端部は、前記四辺形リングポンツーンのそれぞれの角部に取り付けられる。前記ヒーブ板は、前記リングポンツーンの内周部に配置され、前記ポンツーン及びヒーブ板は、中空を画定する。トランジションピースは、星形に配置され、プラットフォームの使用中に風力タービンが位置する中心点から突出した4本のアームを有し、トランジションピースと4本の支柱の上端との間の接続は、海飛沫ゾーンの上方に位置するように設計されている。各浮力支柱は、プラットフォームの使用時に、海水を配分して、ドラフトを調整するよう、及びプラットフォームの傾斜を補償するように構成された少なくとも1つのバラストタンクを備え、各支柱の中の前記少なくとも1つのバラストタンクは、別の支柱の少なくとも1つのバラストタンクとは独立している。
当業者には理解できるであろうが、ポンツーンは、半潜水型プラットフォームなどのような支柱安定化ユニットの側方の支柱を接続し、バラストのために十分なスペースを提供するように設計された閉鎖構造物である。半潜水型プラットフォームでは、支柱は浮力構造物であり、従って、ポンツーンの変位寄与は、重心を下げる目的でバラストによって平衡を保たれ、これは、メタセンター高が増加すること、ひいては、ヒーリング角が減少することを意味する。
長方形断面を有する本発明のポンツーンの形状によって、ポンツーンの別の固有機能は、海水塊を垂直運動及び回転で移動させることであり、これは、これらの自由度で追加質量を増加させ、従って、ヒーブ/ピッチ/ロールの自然周期が増加することを意味する。
ポンツーンの長さは、ポンツーンの体積に影響し、これは変位に影響し、その結果、質量(また、追加された質量)がより増え、ひいてはヒーブの自然周期が長くなる。ポンツーンの長さが変化すると、レベルアームの変化に起因する水領域慣性が大きく変化し、これが静的なヒーリング角に大きく影響する。なお、静的なヒーリング角への影響は異なる符号を有する、つまり、ポンツーンの長さが増加すると、静的なヒーリング角度が減少することを意味する。ポンツーンの体積は、ポンツーンの幅の変化に影響され、水面積及び水面積慣性は同値に維持される。これはまた、追加された質量係数ならびに抗力係数に対して何らかの影響を有する。変位はポンツーンの幅と同じ速度で変化するが、半質量及びヒーブの自然周期は、速度の半分で変化する。静的なヒーリング角は、垂直重心のわずかな変化により少し変化する。ポンツーンの高さは、別のポンツーンの寸法よりも、ポンツーンの体積に影響され、及び垂直重心及び浮力に対して比較的効果が大きい。ポンツーンの高さの影響は、ポンツーンの幅の影響と同様である。
本発明の実施形態では、ポンツーンは、隔壁を使用して複数の区画に分割される。本発明の実施形態では、それは、等間隔に配置されたリング桁及び水平ストリンガを直交するように強化されている。
本発明の実施形態では、ポンツーンは、固定バラスト(除去可能でない)で完全に又は部分的に充填される。
プラットフォームのビーム/長さが支柱と支柱直径との間の距離として画定される場合、ポンツーンは、この寸法から突出しない(ポンツーンの外部垂直シェルは、支柱に接する)。
当業者に知られているように、ヒーブ板(減衰板とも呼ばれる、何故なら、その機能は、ヒーブ用に限定されるものではないからである)は、平板を包含し、浮体構造物ではないが、海面下で水平に配向されて、表面波の通過に呼応して動く構造物部材に取り付けられる。板は、移動に抵抗する傾向があり、構造物に質量を加え、粘性減衰を加える効果を有する。
本発明のヒーブ板は、三角形又は長方形であってよく、構造物のキールに配置され、ポンツーンの最下端に取り付けられている。
本発明の実施形態では、桁及びストリンガによって形成される垂直方向に延びる構造物が、ヒーブ板の表面に追加され、板によって移動せしめられる水の体積を増加させる。ヒーブ板の表面が大きいほど、添加される質量は大きくなる。さらに、垂直構造物は、さらなる粘性減衰を生じさせて、ヒーブ/ピッチ/ロールの自由度に取り込み(海洋の風では重要である)、水の閉じ込めを改善し、そしてヒーブ板の剛性及び構造物強度に寄与する。これらの補強材の数及び位置は、支柱及びポンツーンの一次構造物の構造物的連続性を有するように選択される。
本発明の実施形態では、ヒーブ板は、リングポンツーンの内周部に配置された4つの部分によって形成され、そのヒーブ板の前記4つの部分は、三角形の部分又は長方形の部分となるように形成される。
本発明の実施形態では、プラットフォームは、前記支柱の各バラストタンクへ海水をポンプイン/オフするように構成されたアクティブバラストシステムをさらに備え、海水のポンプ輸送は、海水の別のバラストタンクへの前記ポンプ輸送とは独立して各バラストタンクへと行われる。
本発明の実施形態では、各支柱は、桁及びストリンガと直交するように内部的に強化されている。
本発明の実施形態では、各支柱は、内部的に複数の部分に分割される。
本発明の実施形態では、4本の支柱は、同じ直径を有し、2本の隣接する支柱間の距離と前記支柱直径との間の比は、前記プラットフォームのヒーブの自然周期と、前記プラットフォームのピッチ/ロール(従って、メタセンター高)の自然周期が20秒以上に維持されるように選択され、前記比は、風力タービン力によって変化する。本発明の実施形態では、ポンツーン及びヒーブ板によって画定される中空の表面と、ポンツーンが占める表面及びヒーブ板が占める表面及びポンツーンとヒーブ板によって画定される中空の表面を加えた合計との比は、追加質量が、典型的な波周期(20秒を超える)のうちヒーブ/ロール/ピッチにおいてプラットフォームの自然周期を維持するのに十分となるように選択される。
本発明の実施形態では、ポンツーンは、固定バラスト(コンクリート又は水)で充填されるように構成された複数の区画に分割される。
本発明の実施形態では、ポンツーンは、桁及びストリンガを含む補強構造物を内部に備える。
本発明の実施形態では、ヒーブ板は、桁及びストリンガを含む補強構造物を内部に備える。
本発明の実施形態では、ヒーブ板は、支柱及びポンツーン補強材の構造物的連続性を保証する片持ち梁によって支持される。
本発明の実施形態では、プラットフォームは、トランジションピースの前記中心点上に配置された風力タービン発電機をさらに備える。
本発明の実施形態では、プラットフォームの使用中、トランジションピースは、ウェーブゾーンの上方に留まる。
本発明の実施形態では、プラットフォームは、プラットフォームを海底に固定するように構成された複数のカテナリ係留ラインを備えるカテナリ係留システムをさらに備える。
本発明の実施形態では、四辺形リングポンツーンは、正方形リングポンツーンである。
本発明のヒーブ板及びポンツーンでは、外縁だけでなく、ヒーブ板及びポンツーンの両方の縁を含め、補強材の全縁の周りに渦が生成される。これにより、従来の開示で達成されたものよりもはるかに高い減衰が生成される。そして、水は、シート及びヒーブ板の長手方向及び横方向の補強材並びにポンツーンによって形成されたセットによって形成された異なるキャビティ内に捕捉される。これにより、追加された質量を増加するため、「ヒーブ」及び「ピッチ/ロール」における自然周期を増加させる。
別の従来技術の構造物とは異なり、浮体式海洋プラットフォームは、疲労問題を回避するためのトラス部材を有していない。
本発明のさらなる利点及び特徴は、以下の詳細な説明から明らかになり、添付の特許請求の範囲において特に指摘されるであろう。
説明を完全にするため、及び本発明をより良く理解するために、一組の図面を提供する。前記図面は、説明の一部を形成し、本発明の一実施形態を示すものであり、本発明の範囲を限定するものとして解釈されるべきではなく、本発明をどのように実施することができるかを例示するものである。図面は、以下の図を含む。
本発明の実施形態による半潜水型浮体式海洋プラットフォーム1の側面図を示す図である。 本発明の実施形態による半潜水型浮体式海洋プラットフォーム1の側面図を示す図である。 各支柱の内部構造物の2つのスキームを示す図である。 各支柱の内部構造物の2つのスキームを示す図である。 デッキ又はトランジションピースをより詳細に見ることができる図1A及び図1Bのプラットフォームの上面図である。 ポンツーンを形成する2つの隣接する部分の内部構造物を詳細に示す図であり、ポンツーンの一部(構成ブロック)の断面を示す図である。 ポンツーンを形成する2つの隣接する部分の内部構造物を詳細に示す図であり、ポンツーンの内部構造物を詳細に示す図であり、4本の支柱のうちの1本の最下端への接続方法、及びヒーブ板の一部(図4Bの三角形部分及び図4Cの長方形部分)の内部構造物を示す。 ポンツーンを形成する2つの隣接する部分の内部構造物を詳細に示す図であり、ポンツーンの内部構造物を詳細に示す図であり、4本の支柱のうちの1本の最下端への接続方法、及びヒーブ板の一部(図4Bの三角形部分及び図4Cの長方形部分)の内部構造物を示す。 本発明の一実施形態によるプラットフォームのヒーブ板の可能な実装方法のうちの1つの内部構造物を示す異なる図である。 本発明の一実施形態によるプラットフォームのヒーブ板の可能な実装方法のうちの1つの内部構造物を示す異なる図である。 ポンツーン、ヒーブ板及び4本の支柱を含む本発明の一実施形態による半潜水型浮体式海洋プラットフォームの上面図である。トランジションピースは図示されていない。 本発明の代替的な実施形態による半潜水型浮体式海洋プラットフォームの上面図であり、ここで実装されるヒーブ板は、図6Aのものとは異なる。 2つの異なるタイプの風力タービンについて、ヒーブ板及びポンツーンによって画定されるポンツーン、ヒーブ板及び中空の表面の異なる比について、ヒーブ内の自然周期の異なる値を表すチャートである。 トランジションピース、ポンツーン、ヒーブ板及び4本の支柱を含む、本発明の実施形態による半潜水型浮体式海洋プラットフォームの上面図である。 本発明の一実施形態による半潜水型浮体式海洋プラットフォームの側面図である。 本発明の一実施形態による半潜水型浮体式海洋プラットフォームの等角図である。 本発明の実施形態によるプラットフォームの直立浮動位置及びヒーリング位置をそれぞれ示す図である。 本発明の実施形態によるプラットフォームの直立浮動位置及びヒーリング位置をそれぞれ示す図である。 支柱/支柱直径間の距離の比が異なる5MW風力タービンについての、ヒーブの自然周期と回転(ピッチ、ロール)の自然周期の値の変化を表すチャートである。 支柱/支柱直径間の距離の比が異なる10MW風力タービンについての、ヒーブの自然周期と回転(ピッチ、ロール)の自然周期の値を変化を表すチャートを示す。
本文書では、用語「備える」及びその派生(例えば、「備えている」等)は、排除する意味で理解されるべきではなく、すなわち、これらの用語は、記載及び定義されたものがさらなる要素、ステップなどを含む可能性を排除するものとして解釈されるべきではない。
本発明の文脈において、用語「およそ」及びその同族の用語(例えば、「近似」等)は、前述の用語に付随するものに非常に近い値を示すものとして理解されるべきである。すなわち、当業者は、測定不正確さ等のために、示された値から逸脱することは避けられないことを理解するであろうから、正確な値から妥当な範囲内の偏差は許容されるべきである。同じことは、用語「約」及び「前後」及び「略」についても同様である。
以下の説明は、限定的な意味で解釈されるべきではなく、本発明の広範な原理を説明する目的のためにのみ与えられる。以下、本発明の実施形態を、本発明による装置及び結果を示す上述の図面を参照して、実施例として説明する。
図1A及び図1Bは、本発明の実施形態による半潜水型浮体式海洋プラットフォーム1の側面図を示す図である。これは、海洋風力タービンを支持することを目的とした、支柱安定化された浮体式プラットフォームである。半潜水型浮体式海洋プラットフォーム1は、概ね、ポンツーン2と、4本の浮力支柱3と、トランジションピース4を含むデッキと、ヒーブ板5から構成される。デッキはX字形である。トランジションピースは、風力タービンが配置されているデッキ4の中央部分に埋め込まれている。トランジションピース4の頂部には、通常は海洋構造物上に設けられた標準的な上側設備が配置されている。この場合、風力タービンと、任意選択で風力タービン用の補助設備が、トランジションピース4上に設置される。本発明の文脈では、「風力タービン」という表現を使用することにより、風力タービン発電機、ブレード、タワー、ナセル等のような海洋風力エネルギを得るために必要な風力タービン及び任意の関連設備を表す。各浮力支柱3は、風力タービンのタワーによって画定される長手方向軸に略平行な垂直長手方向軸を有する。ポンツーン2はリングポンツーンである。本明細書において、「リング」という用語は、採用される形状とは無関係に、中空部分を画定する構造物を指す。これは、本発明によるリングポンツーンが、必ずしも円形の形状を有するわけではないことを意味する。実際、本発明のリングポンツーン2は、好ましくは、正方形リングポンツーンである。言い換えれば、ポンツーン2は、中心に置かれた空間又は中心に置かれたウェルを画定する。図1A及び1Bに示すように、リングポンツーン2の各角は、4本の支柱3のうちの1つの底部を受け入れる。言い換えれば、各支柱3の底部は、リングポンツーン2の4つの角部のうちの1つに接続されるか、又は一体化される。従って、支柱3はポンツーン2に堅固に取り付けられている。
ヒーブ板5は、ポンツーン2に組み付けられる、もしくは埋め込まれる。それは略平坦である。ヒーブ板5は、リングポンツーン2の内周に配置されている。図1A及び図1Bに示される実施形態では、ヒーブ板5は、略直角三角形の4つの部分から形成される。各部分について、直角を形成する2つの側部は、1つの角部にポンツーン2によって形成された中空空間を部分的に埋めるように配置されている。すなわち、図1A及び図1Bに示されるように、ポンツーン2の内部角当たり1つの部分(ヒーブ板4の部分)が存在する。言い換えれば、各三角形プレートは、浮体式支柱3のベースの前方に位置する。図6Aは、上述したもの(略直角三角形の4つの部分から作られたもの)のようなヒーブ板を有する浮体式プラットフォームの上面図を示す。図6Bは、本発明の別の実施形態による浮体式プラットフォームの上面図を示し、ここでは、ヒーブ板は、4つの略等しい部分から作られた正方形のリング状のヒーブ板である。各部分は、直角を画定する2枚の平らなシートから作られる。これら4つの部分は一緒になって、ポンツーン2によって画定される中央に配置された間隔の外側領域に配置された正方形形状のリングを形成する。両方の実施形態において、ヒーブ板5は、プラットフォームの中央孔を画定する。このように、このヒーブ板5は、詳細に後述するように、略正方形の中空部を画定する。ヒーブ板5の表面は、桁及び補強材を有することができ、剛性を提供しながら水を保持するように設計される。プラットフォーム1はまた、カテナリ係留システム6を有する。図からわかるように、プラットフォーム1は、それらの長さに沿って支柱3の対を接続する補強ブレース、クロスバー又はストリンガを有していない。支柱をポンツーンに連結するか、又はヒーブ板(又はヒーブ板を形成する部分)をポンツーン若しくは支柱に連結するブレースも存在しない。
支柱3は、断面が円形であることが好ましいが、断面の別の形状は、長方形断面等、代わりに使用されてもよい。ポンツーン2、ヒーブ板5及び支柱3の組合せが浮揚体を画定する。4本の支柱は、風力タービンを支持するための浮力と、安定性のための十分な水面慣性とを提供する。図2A及び図2Bは、円形断面を有する支柱が使用される本発明の実施形態による支柱3の内部構造物の2つのスキームを示す。言い換えれば、図示された実施形態では、支柱3は円筒形状を有している。支柱3は、少なくとも部分的に中空である。観察され得るように、各支柱は、支柱に剛性を提供する内部補強構造物31を有し得る。図2A及び図2Bに示すように、支柱のシェル32は、好ましくは、垂直桁34(例えば、T字形又はバルブプレート)と、リングフレーム33(例えば、平板等)とで補強され、十分な局所的及び全体的な歩留まり及び座屈強度を提供する。桁及びフレームは、好ましくは、規則的に間隔を置いて配置される。プラットフォームの使用中に各支柱が受ける圧力は、支柱の頂部から底部へと増加する。言い換えれば、各支柱の下部は、各支柱の上部よりも高い圧力を受ける。シェル32のより深い(より低い)部分は、プラットフォームの使用中に、より大きな圧力負荷を受けるため、各支柱は、好ましくは、水の最大ヘッドに応じてサイズ決めされた強化デッキ35によって分割された複数の部分又は構造物ブロックに水平に分割される。図2Aは、デッキの部分36も示している。これは、同じタイプの全ての部材が同じ寸法を有することを意味する。各支柱が作られるシェル32は、金属であることが好ましい。特定の実施形態では、それは鋼製である。金属シートの厚さは、これらのシートが配置される支柱の高さ(高さが低ければ低いほど、最も厚くなる)に依存して変形する。
4本の支柱3は、風力タービンを支持するための浮力を提供し、安定性のために十分な水面慣性を提供する。リングポンツーン2は、浮力及び安定性も提供する。このため、プラットフォーム1は、安定性を確保するための2種類のバラストを含む。即ち、固定バラスト、好ましくはコンクリートバラスト、すなわち受動バラストと、各支柱に対して取外し可能かつ独立した活性水バラストである。従って、この水バラストは可変であり、即ち、各支柱においてバラストとして作用する水の量は固定されておらず、概ね各支柱に対して異なっている。受動又は固定バラストに関して、リングポンツーン2は、固定コンクリートバラストで区画され、部分的に充填されてもよい。従って、この固定バラストは、プラットフォームの動作寿命の間、適所にある。活性水バラストに関する限り、バラストタンクは各支柱の底部に配置される。1支柱当たり1つのバラストタンクが存在することが好ましい。各支柱の1つのバラストタンクは、別の支柱のバラストタンクとは独立していることが好ましい。プラットフォームの使用中、アクティブバラストシステムは、海水を各バラストタンクにポンプで送り、ドラフトを調整し、タービン上の風力負荷によって生成される平均傾斜を補償する。各水バラストタンクは、別のバラストタンクとは独立しているので、支柱間の水バラストの移動はない。バラストタンクは区画され、各区画は、スロッシング効果を回避するために作動中に水で完全に充填される。特定の実施形態では、各タンクは、好ましくは2と8の間、より好ましくは2と5の間で変化する多数の区画に分割される。言い換えれば、各バラストタンクに充填される水は、1本の支柱から別の支柱へと移動することはない。実施例として、各支柱において、ポンツーン2の高さに略一致する第1の(最も低い)区画は、固定バラスト、好ましくはコンクリートバラストで充填され、第2の区画は海水(可変バラスト)で充填される。支柱の残りの部分は、好ましくは2〜6の間で変化する追加の区画に分割される。支柱は、好ましくは金属で作られ、より好ましくは鋼で作られる。
図3は、4本の支柱3の頂部に配置され、風力タービンを支持するように設計されたデッキ又はトランジションピース4を示す。特に、トランジションピース4の内部構造物を可視化する分解図が示されている。トランジションピース4は、略平坦なピースであることが好ましい。トランジションピース4は、4つの接続部、好ましくは長方形の接続部からなり、4本の支柱3の各々の上端を、タービンタワーの最下端を受けるように意図された部分4の中央領域と接続する。従って、4本の支柱3の上端は、トランジションピース4の各アームの遠位端に位置する。言い換えれば、トランジションピース4は、星形に配置され、中心点から突出する4本のアームを有する。4本のアームは、同じ(同じ長さ、幅及び厚さ)であることが好ましい。中心点は、タービンタワーの下端が接続される点である。好ましくは、トランジションピース4を形成する4本のアームの隣接するアームの各対は90°の角度で分離され、即ち、2つの隣接するアームは90°の角度を形成する。トランジションピース4と4本の支柱3の端部との間の接続は、飛沫ゾーンの上方に位置するように設計され、最大波山より上にクリアランスを有し、100年の戻り周期を有する(すなわち、1年に最大波山を受ける可能性がある確率は1%)。風力タービンは、支柱に対して中心に配置されるように設計されている。トランジションピース4は、好ましくは、金属製であり、より好ましくは、鋼製である。
図1A及び図1Bに戻って参照すると、プラットフォーム1はリング状のポンツーン2、すなわち、その内側部分に中空を画定するポンツーンを有し、それらの下端で支柱を相互連結する。1つ以上の風力タービンを支持するための海洋構造物としてプラットフォームを使用する際には、ポンツーン2は沈められる。ポンツーン2は、好ましくは、正方形のリング形状である。ポンツーン2の内部構造物を示す図4Aに示すように、ポンツーン2は、好ましくは、隔壁23によって、コンクリートなどの固定バラストで充填することができる複数の区画又は構造物ブロックに分割される。ポンツーン船体は、好ましくは、図4B及び図4Cに示すように、リングフレーム又はストリンガ22及び桁21(水平桁)で補強されている。フレーム22及び桁21は、好ましくは規則的に間隔を置いて配置される。ポンツーン2の外側構造物及びそのフレーム22及び桁21は、鋼等の金属製である。固定バラストは、ポンツーン2の内部容積を部分的に又は完全に充填することができる。ポンツーン2は、4つの略平坦な部分から構成されてもよい。部分の対は、2対2で整列され、隣接する部分は、互いに90°の角度をなし、それらのうちの4つが、内部中空を有する略平坦な部分を形成する。従って、各ポンツーン部分は、隣接する支柱の対のベースに取り付けられる。各ポンツーン部分は、隣接する支柱の対のベースの間に延びる。ポンツーン2の外側輪郭は、支柱3の輪郭を超えない。図4Bは、2つの隣接する部分の内部構造物の別の図を詳細に示し、それらは、プラットフォームの4本の支柱3のうちの1つの最下端にどのように接続するかを示している。ポンツーン2を形成する部分に沿った桁21と、桁21に対して横方向に配置されたストリンガ22も示されている。図示された支柱3の最下端は、ポンツーン2の補強強化材(桁及びストリンガ)に溶接されていてもよい。好ましくは、ポンツーンの補強強化材は、各支柱の補強強化材と整合させ、力の伝達をより良好とする。
図4Bはまた、この場合も三角形の部分を有するヒーブ板である、ヒーブ板5の一部の内部構造物を示している。図4Bは、三角形の部分を有するヒーブ板5を指すが、ヒーブ板の内部構造物は、(図4C及び図6Bに関連して説明したように)4つの長方形からなるヒーブ板にも同様に適用されることに留意されたい。ヒーブ板5(より正確には、ヒーブ板を形成する4つの部分の各々)は、桁51及びストリンガ52を桁51に対して横方向に配置することによって、長手方向に内部に剛性を持たせることができる。桁51及び/又はストリンガ52は、規則的に間隔を置いて配置されることが好ましい。好ましくは、ポンツーン(桁21及びストリンガ22)の補強強化材は、ヒーブ板(桁51及びストリンガ52)の各部分の補強強化材と整合させて、力の伝達をより良好とする。図4B及び図4Cに示す実施形態では、外側構造物の高さ及びストリンガ52の高さによって画定されるヒーブ板5の高さは、その外側構造物の高さ及びそのストリンガ22の高さによって画定されるポンツーン2の高さと略同じである。言い換えれば、台形を形成する。垂直平板を使用することは、水の捕獲に寄与し、そのエッジで発生する渦に起因する粘性減衰を生成する。図4B及び図4Cから分かるように、ヒーブ板5は、好ましくは単一部品であり、すなわち各部分(三角形又は長方形部分等)は隣接部分に接続され、それらの内部構造物も接続される。桁51及びストリンガ52を含むヒーブ板5は、好ましくは金属で形成され、より好ましくは鋼で形成される。図5A及び図5Bはまた、本発明の実施形態による、ヒーブ板5の内部構造と、ポンツーン2及びプラットフォームの支柱3に対するヒーブ板の位置を示している。この実施形態では、ヒーブ板5は4つの三角形で作られているが、代替的な実施形態では、それは長方形で作られてもよい。ヒーブ板すなわち、ヒーブ板5を形成する4つの部分は、構造物の底部に位置すると共に、ポンツーン2の内周に取り付けられた支柱3の間に位置する。ヒーブ板は、好ましくは、支柱及びポンツーン補強材の構造物的連続性を保証する片持ち梁によって支持される。片持ち梁の一端は構造物(ポンツーン)に固定され、他端は自由(中空)である。構造物的連続性は、要求の転送を保証する2つの構造物要素、この場合ストリンガ52を有するストリンガ22の間に結合が存在する場合に作用する。ブレース(トラス部材とも呼ばれる)は、ヒーブ板を形成する部分を支持するために使用されるものではない。ヒーブ板を形成する部分は、ポンツーンによって画定される外周の内部にある。図5A及び図5B並びに図6A及び図6Bから分かるように、各支柱(正確には各支柱のベース)は、ポンツーンの各角部の外径に対して閉じた状態で配置されている。ヒーブ板5は、ポンツーン2の内周からポンツーン2によって画定される中空の内側部分に向かって(言い換えれば、プラットフォームの内側部分に向かって)延びている。
図6A及び図6Bは、本発明の2つの可能な実施形態による浮揚体のそれぞれの上面図を示す。トランジションピースは図示されていない(動作中には沈められていない)。この図では、プラットフォームの3つの重要な設計領域又は表面が特定されており、すなわち、ポンツーン2が占める表面を表す第1の表面S1と、4本の支柱3と、ヒーブ板5が占有する表面を表す第2の表面S2と、構造物の中央に配置され、ヒーブ板とポンツーンとによって制限される開口面S3とで構成されている。本発明の好ましい実施形態では、開口面積S3と総面積(S1+S2+S3)との比は、次に説明するように、ヒーブにおけるプラットフォームの自然周期が20秒以上に維持されるように設計される。この比は、以下に説明するように、少なくとも風力タービン定格電力に依存して変化することができる。それはまた、展開現場の条件に依存して変化し得る。
プラットフォーム全体の固有周波数は、共振を避けるために、海域期間から外れていなければならない。これは、浮体式プラットフォーム、風力タービン及び係留システムによって構成されるセットの剛体固有周期が、(海周期に相当する)5sから19sの間で変化する範囲から外れていなければならないことを意味する。
半潜水型プラットフォームの場合、DNV−RP−C205(2014年4月)表7.1によれば、ヒーブの自由度(上下)の自然周期は20秒前後である。従って、ヒーブにおける励振力は、共振に入る危険性を意味するプラットフォームの典型的な自然周期に近い周期となる。この現象を回避するために、ヒーブ動作(垂直動作)に面する表面は、以下に説明されるようにキーパラメータである。
ヒーブにおける自然周期は、
Figure 2020514181
によって得られる。
但し、
M 全体構造物(鋼構造物、バラスト、風力タービン、係留システム等)の質量
33 追加質量。これは、垂直運動中のプラットフォームに加えられる慣性である。何故なら、ヒーブが加速又は減速するとき、プラットフォームは、周囲流体がそれを通って移動するときに、その周囲の流体の体積を移動(又は偏向)するからである。ヒーブにおけるこの付加された質量は、S1+S2に直接比例するか、又は、言い換えれば、表面S3に反比例する。
p 海水密度。
g 重力加速度
S 水平面面積。水ラインにおける4本の支柱に囲まれた領域である。
別の穴開口、ヒーブ板のタイプ、及び別の風力タービン力の特性を考慮して、現在のプラットフォーム設計に対して先の式を適用することにより、図7に示されるチャートが得られる。図7は、2つの異なる風力タービン、すなわち、5MW風力タービンと10MW風力タービンに対するS3/(S1+S2+S3)の異なる比について、ヒーブTにおける自然周期を示す。第2のものは大型で重量も大きく、その結果、浮体式プラットフォームは、より大きな負荷を支持しなければならない。5MW風力タービンでは、20sよりも高い(すなわち、典型的には5から19sの間で変化する海周期から)ヒーブに自然周期を有することを目的として、S3/(S1+S2+S3)の比は、多くとも12%でなければならない。パーセンテージが低ければ低いほど、コストは高い。何故なら、より多くの金属(すなわち、鋼)構造物が必要とされるからである。10MW風力タービンでは、20sよりも高い(すなわち、海周期から)ヒーブに自然周波数周期を有することを目的として、S3/(S1+S2+S3)の比は、多くとも45%でなければならない。パーセンテージが低ければ低いほどコストは高くなる。何故なら、より多くの鋼構造物が必要とされるからである。図7には示されていないが、5MWと10MWの間(例えば、6MW、7MW、8MW又は9MW)の風力タービンの電力が使用される場合、ヒーブT曲線における自然周期は、S3/(S1+S2+S3)の比が12%から45%の間でなければならないことを示すであろう。従って、プラットフォームは、好ましくは、ヒーブTにおけるプラットフォームの自然周期が、20秒以上に維持されるように設計される。ヒーブTにおけるプラットフォームの自然周期が20秒以上となるようにすることができる比S3/(S1+S2+S3)の特定値は、風力タービンの種類(特に、その大きさ及び重量に影響を及ぼす電力)に依存する。最も好ましい実施形態では、構造物最小コストに付随して、ヒーブTにおけるプラットフォームの自然周期は、典型的には5から19sの間で変化する海周期から外れるように、20秒を下回ることなく20秒にできるだけ近いように維持される。
本発明の特定の実施形態では、5MWから10MWの間で変化する風力タービンを考慮すると、開口面積S3と総面積(S1+S2+S3)との比は、12%から45%の間に維持される。
ここで、プラットフォームの支柱を参照すると、本発明のいくつかの実施形態では、比「支柱直径D/支柱中心Lの間の距離」が、
3<L/D<6.75
のように維持される。
これは、図8Bに示されており、支柱中心Lと支柱直径Dとの間の距離が示されている。図8Aには、支柱高さH、ドラフトT、及び平均海面レベルMSLも示されている。次に、この選択3<L/D<6.75の理由について説明する。
本発明の好ましい実施形態では、支柱中心Lと支柱直径Dとの間の距離の比は、次に説明するように、ヒーブにおけるプラットフォームの自然周期とピッチ/ロール(回転)におけるプラットフォームの自然周期とが20秒以上に保たれるように設計される。この比は、少なくとも風力タービン定格電力に依存して変化してもよい。
風力タービン負荷による転倒に対するヒーリング/トリミング角を減少させながら安定性を向上させる目的で、プラットフォームは、メタセンター高(GM)常に6mより大きくなるように設計されるのが好ましい。図9A及び図9Bは、本発明の実施形態によるプラットフォームの直立浮動位置及びヒーリング位置をそれぞれ示す図である。
メタセンター高(GM)は、次のように計算することができる。
GM=KB+BM−KG (式1)
但し、
KB 浮力の中心(キールより高く、キールは、プラットフォームの最も低い点であると考えられる)、ここでK及びBは図9A及び図9Bに示す。Bは、傾きによる可動点である。
GM 浮力の中心とメタ中心との間の距離は、小さなヒーリング/トリミング角に対して固定されているとみなすことができる。M及びGは、図9A及び図9Bにも示す。
GM=I/∇ (式2)
ここで、Iは水平面の領域の第2のモーメントであり、∇は変位された容積である。
現在のプラットフォームでは、安定性が主に支柱によって提供されると仮定すると、それは、以下のものと考えることができる。
Figure 2020514181
Figure 2020514181
但し、図8A及び図8Bによると、支柱直径である場合、Tは、ドラフトであり、Lは支柱中心間の距離である。
KG 図9A及び図9Bに示されるように、重心とキールとの間の距離である。
式3及び式4を式2に代入する。
Figure 2020514181
現在のプラットフォーム、KB≒KG,GM>6を考慮して式5を式1に代入すると、次のような式が得られる。
Figure 2020514181
式12で表される支柱中心、ドラフト及び直径の関係は、風力タービン負荷による転倒に対するヒーリング/トリミング角を低減するための確立された、GM>6の前提から差し引かれている。しかしながら、この値は、海の励振力と共振するのを避けるために、回転運動、ピッチ及びロールの自然周期によって決定される最大値を有する。
回転運動の自然周期(T)は式13によって定義され、海の励振力(5〜19s)から外れていなければならない。現在のプラットフォーム設計では、横方向及び縦方向の対称性のため、ピッチ及びロールの自然周期は等しいことに留意されたい。
Figure 2020514181
但し、
I ロール/ピッチ自由度における全体構造物(鋼、バラスト、風力タービン、係留システム等)の慣性。
ロール/ピッチ付加慣性。これは、回転運動中のプラットフォームに加えられる慣性である。何故なら、ロール/ピッチが加速又は減速するとき、プラットフォームは、周囲の流体がそれを通って移動するときに、その周囲の流体の体積を移動(又は偏向)するからである。
ρ 海水密度。
g 重力の加速。
S 水平面面積。水ラインにおける4本の支柱の囲まれた領域である。
∇ 変位容積。
GM メタセンター高。
式13から分かるように、GMの増加は、回転(ピッチ及びロール)期間を減少させ、その結果、海周期範囲内になる危険性が生じる。上述の式(式13)を現在のプラットフォーム設計に適用して回転(ピッチ/ロール)自然周期を計算することにより、ヒーブ内の共振を回避するために既に議論された表面S3/(S1+S2+S3)の比を考慮し、異なる風力タービン電力特性を分析し、図10及び図11を得る。
図10は、5MW風力タービンの場合、海周期(5〜19s)からのヒーブ(T3)及びピッチ/ロール(T4)の自然周波数を有することを目的として、支柱間の距離と支柱直径との比は3より大きく4.75より小さくなければならないが、図11では、10MWの風力タービンでは、海周期(5〜19s)からのヒーブ(T3)及びピッチ/ロール(T4)の自然周波数を有することを目的として、支柱間の距離と支柱直径との比は4.75より大きく、6.75より小さくなければならないことを示している。
従って、共振を回避するための特定の実施形態では、支柱間の距離と支柱直径との比は、3より大きく、6.75より小さい必要がある。この比は、好ましくは、特定の風力タービンごとに狭くする(調整する)。従って、5MW風力タービン3 < L/D < 4.75、及び10MW風力タービン4.75 < L/D < 6.75の場合、風力タービンの別の値(例えば、6MW、7MW、8MW…)の場合には、この比は異なっていてもよい。
要するに、現在の浮体式プラットフォームが設計される用途(海洋の風力エネルギ)の性質により、プラットフォームは、例えば石油及びガス構造物が有さない、ヒーブ、ピッチ及びロールの自然周期に関する制限を考慮して設計されなければならない。その結果、現在の浮体式プラットフォームに対して提案された特定の幾何学的関係は、石油とガスの用途に使用することができるものとは全く異なる。
図1A及び図1Bに戻ると、浮体式プラットフォーム1は、カテナリ係留システム6を有する。プラットフォーム1は、従来の係留ラインを使用して海底に固定され、埋め込まれたアンカを引く。係留ライン6は、フェアリードを使用して作動水ラインの下で支柱に取り付けられてもよい。好ましくは、係留ラインの数は、全ての支柱3に対して同じである。プラットフォーム(特に、トランジションピース上に配置された風力タービン及び補助設備)によって発生されたエネルギは、ウィンドファームの構成に依存して、一方の端では、浮体式プラットフォームを接続するダイナミックケーブルによって、別の端では、別の浮体式プラットフォーム又は別のケーブルによって、排除される。
次に、図1A〜図8を参照して説明したようなプラットフォームの製造及び設置手順を説明する。
まず、ブロック(支柱、ポンツーン及びトランジションピース)によって構造物を製造することができる。
ブロックは、次に組み立てられる。組立工程は、(i)船室、(ii)ドライドック、(iii)港ドック、又は(iv)半潜水型ポンツーン等の異なる場所で実施することができる。
その完了後、構造物(プラットフォーム)は水中に装填される。製造設備に依存して、ロードアウト動作は、(i)スリップウェイ、(ii)ドライドックフラッディング、(iii)クレーン、半潜水型ポンツーン、若しくはシンクロリフト、又は(iv)ポンツーンフラッディングを必要とすることがある。全ての場合において、負荷のための必要なドラフトは、6m前後である。
次いで、プラットフォームは、15m前後のドラフトを必要とする風力タービン組立体領域〜ポートドックに牽引される。
この段階では、受動コンクリートバラストはポンツーン内に注がれる。
受動コンクリートバラストが追加された後、風力タービンは陸上クレーンを使用して浮体式構造物の上に組み立てられる。
ドライドック(ii)における組立の場合、最後の2つの工程(受動コンクリートバラストをポンツーンに注ぎ、陸上クレーンを使用して浮体式構造物の上に風力タービンを組み立てる)をドライドック内で実施することができる。
全体構造物は深水(>50m)の展開現場まで牽引され、そこで係留ライン及びアンビリカルケーブルは予め設置される。
アクティブバラストシステムを使用して、海水をタンクに充填することによって、構造物の作動ドラフトに到達する。
構造物は係留装置に対してフックアップされ、アンビリカルケーブルは構造物に取り付けられる。
必要であれば、構造物全体を係留ライン及びアンビリカルケーブルから切り離して、主要な修理のためにポートに牽引することができる。
同じ手順は、廃棄措置:係留ライン及びアンビリカルケーブルの切断、及び風力タービンを含む浮体式構造物を解体領域に牽引することに適用可能である。
まとめると、風力エネルギ設備を支持するための新たな浮体式海洋プラットフォームを開示してきた。プラットフォームは、高価な海洋の統合及び保守手順を制限されつつ、大型風力タービン(例えば、5〜10MW)のエネルギ生成を最大にする最適化された技術的解決法を提供することによって、浮体式海洋風力設備を支持することを目的とする。プラットフォームの製造とその海での風力タービン、発電機、及び別の補助設備を伴う展開が非常に簡単だからである。
他方、本発明は、本明細書で説明する特定の実施形態に明らかに限定されるものではなく、特許請求の範囲で定義される本発明の一般的な範囲内で、当業者が考える任意の変形(例えば、材料、寸法、構成要素、構成等の選択に関して)を包含することができる。

Claims (15)

  1. 少なくとも1つの風力タービンを支持するための半潜水型浮体式プラットフォーム(1)であって、4本の浮力支柱(3)と、星形に配置され、前記プラットフォームの使用中に前記風力タービンが位置する中心点から突出した4本のアームを有し、第1の端部とは反対側の支柱(3)の端部において、前記浮力支柱(3)上に配置され、4本の支柱(3)の上端との間の接続は、海飛沫ゾーンの上方に配置されるように設計されたトランジションピース(4)を有するデッキと、ヒーブ板(5)と、を備え、
    半潜水型浮体式プラットフォーム(1)は、四辺形リングポンツーン(2)を形成する4つのポンツーン部分を有するリングポンツーン(2)をさらに備え、各支柱(3)の前記第1の端部は、前記四辺形リングポンツーン(2)の各角部に取り付けられており、前記ヒーブ板(5)は、前記リングポンツーン(2)、前記ポンツーン(2)及び中空を画定する前記ヒーブ板(5)の内周に組み付けられ、
    各浮力支柱(3)は、前記プラットフォーム(1)の使用時に、海水を配分して、ドラフトを調整するよう、及び前記プラットフォーム(1)の傾斜を補償するように構成された少なくとも1つのバラストタンクを備え、各支柱(3)の中の前記少なくとも1つのバラストタンクは、別の支柱(3)の前記少なくとも1つのバラストタンクとは独立しているプラットフォーム(1)。
  2. 前記ヒーブ板(5)は、前記リングポンツーン(2)の内周に配置された4つの部分によって形成され、前記ヒーブ板(5)が形成された前記4つの部分は、三角形の部分又は長方形の部分となるように形成される請求項1に記載のプラットフォーム(1)。
  3. 前記支柱(3)の各バラストタンクへ海水をポンプイン/オフするように構成されたアクティブバラストシステムをさらに備え、海水の前記ポンプ輸送は、海水の別のバラストタンクへのポンプ輸送とは独立して各バラストタンクへと行われる請求項1又は2に記載のプラットフォーム(1)。
  4. 各支柱(3)は、桁及びストリンガと直交するように内部に補強されている請求項1〜3のいずれか1項に記載のプラットフォーム(1)。
  5. 各支柱(3)が複数の部分に内部で分割されている請求項1〜4のいずれか1項に記載のプラットフォーム(1)。
  6. 前記4本の支柱(3)が同じ直径(D)を有し、2つの隣接する支柱間の距離(L)と前記支柱直径(D)との間の比は、ヒーブにおける前記プラットフォームの自然周期と、ピッチ/ロール、従って、メタセンター高におけるプラットフォームの自然周期が20秒以上に維持されるように選択され、前記比は、風力タービン電力によって変化する請求項1〜5のいずれか1項に記載のプラットフォーム(1)。
  7. 前記ポンツーン(2)とヒーブ板(5)によって画定された中空の表面(S3)と、
    前記ポンツーン(2)が占める表面(S1)及び前記ヒーブ板(5)が占める表面(S2)及び前記ポンツーン(2)とヒーブ板(5)によって画定された前記中空の表面(S3)の合計と、の間の比は、
    前記追加した質量が、前記典型的な波周期のうちのヒーブ/ロール/ピッチにおける前記プラットフォームの前記自然周期を維持するのに十分となるように選択する請求項1〜6のいずれか1項に記載のプラットフォーム(1)。
  8. 前記ポンツーン(2)は、固定バラストで充填されるように構成された複数の区画に分割されている請求項1〜7のいずれか1項に記載のプラットフォーム(1)。
  9. 前記ポンツーン(2)が、桁及びストリンガを含む補強構造物を内部に備える請求項1〜8のいずれか1項に記載のプラットフォーム(1)。
  10. 前記ヒーブ板(5)は、桁及びストリンガを含む補強構造物を内部に備える請求項1〜9のいずれか1項に記載のプラットフォーム(1)。
  11. 前記ヒーブ板(5)は、前記支柱及びポンツーン補強材の構造物的連続性を保証する片持ち梁によって支持されている請求項4、9又は10に記載のプラットフォーム(1)。
  12. 前記トランジションピース(4)の前記中心点上に配置された風力タービン発電機をさらに備える請求項1〜11のいずれか1項に記載のプラットフォーム(1)。
  13. 前記プラットフォームの使用中、前記トランジションピース(4)はウェーブゾーンの上方に留まる請求項1〜12のいずれか1項に記載のプラットフォーム(1)。
  14. 前記プラットフォームを海底に固定するように構成された複数のカテナリ係留ラインを備えるカテナリ係留システムをさらに備える請求項1〜13のいずれか1項に記載のプラットフォーム(1)。
  15. 前記四辺形リングポンツーン(2)が正方形リングポンツーン(2)である請求項1〜14のいずれか1項に記載のプラットフォーム(1)。
JP2019555729A 2016-12-27 2017-12-26 浮体式海洋プラットフォーム Active JP7053663B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16382658.9A EP3342699B1 (en) 2016-12-27 2016-12-27 Floating offshore platform
EP16382658.9 2016-12-27
PCT/EP2017/084584 WO2018122220A1 (en) 2016-12-27 2017-12-26 Floating offshore platform

Publications (2)

Publication Number Publication Date
JP2020514181A true JP2020514181A (ja) 2020-05-21
JP7053663B2 JP7053663B2 (ja) 2022-04-12

Family

ID=57777484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019555729A Active JP7053663B2 (ja) 2016-12-27 2017-12-26 浮体式海洋プラットフォーム

Country Status (10)

Country Link
US (1) US11052971B2 (ja)
EP (1) EP3342699B1 (ja)
JP (1) JP7053663B2 (ja)
KR (1) KR102440200B1 (ja)
CN (1) CN110461702B (ja)
DK (1) DK3342699T3 (ja)
ES (1) ES2797104T3 (ja)
PT (1) PT3342699T (ja)
TW (1) TWI737878B (ja)
WO (1) WO2018122220A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100215A (ja) * 2020-12-23 2022-07-05 合同会社アパラティス サポート装置

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2797104T3 (es) * 2016-12-27 2020-12-01 Nautilus Floating Solutions Sl Plataforma marítima flotante
CN108980532B (zh) * 2018-08-01 2024-05-10 中广核研究院有限公司 反应堆支承基础装置
PL3904674T3 (pl) 2018-12-28 2024-06-03 Dragados, S.A. Pływająca platforma dla turbin wiatrowych o dużej mocy
KR102630560B1 (ko) * 2019-02-12 2024-01-30 에이커 솔루션즈 에이에스 풍력 에너지 발전소 및 구성 방법
US11939032B2 (en) 2019-02-21 2024-03-26 Vl Offshore, Llc Floating-type foundation for supporting a wind power generation system and including a stabilized power cable, system of floating-type foundations, and a method of stabilizing the power cable
NL2022729B1 (en) * 2019-03-12 2020-09-18 Itrec Bv Offshore system, vessel and method for performing subsea wellbore related activities
CN110374820B (zh) * 2019-06-28 2023-12-19 天津大学 一种组合式环筒浮箱基础结构及其施工方法
KR102107994B1 (ko) * 2019-08-14 2020-05-07 주식회사 에이스이앤티 해상 풍력발전 부유체
EP3782899A1 (en) * 2019-08-20 2021-02-24 Siemens Gamesa Renewable Energy A/S Control system for stabilizing a floating wind turbine
CN111021393A (zh) * 2019-11-14 2020-04-17 中国能源建设集团广东省电力设计研究院有限公司 漂浮式风机基础、风机及其施工方法
ES2868361A1 (es) * 2020-04-20 2021-10-21 Bluenewables S L Dispositivo de cimentacion para torre eolica y metodo de montaje
JP2022029139A (ja) * 2020-08-04 2022-02-17 ヴィーエル オフショア、エルエルシー 風力発電システムを支持するための動揺減衰付き半潜水浮体式基礎
US20220126957A1 (en) * 2020-10-23 2022-04-28 Entrion Wind, Inc. Minimizing movements of offshore wind turbines
FR3117553B1 (fr) 2020-12-10 2022-11-04 Bourbon Offshore Gaia Procédé d’assemblage d’un parc éolien offshore flottant
CN112628087A (zh) * 2020-12-30 2021-04-09 华能国际电力股份有限公司江苏清洁能源分公司 一种半潜式海上风机机组、基础以及垂荡板
CN113200129B (zh) * 2021-06-11 2022-06-28 中国船舶重工集团海装风电股份有限公司 一种新型漂浮式风机平台
CN113386918B (zh) * 2021-07-19 2023-04-28 中国海洋石油集团有限公司 一种深水半潜式生产平台下浮体及其与组块的合龙方法
CN113942615A (zh) * 2021-08-05 2022-01-18 大连理工大学 一种适用于中等水域的漂浮式风机平台
CN113898521B (zh) * 2021-09-22 2024-03-08 鲁东大学 一种海上浮式平台立柱减振垂荡板及波浪能收集装置
CN113753187B (zh) * 2021-09-26 2022-08-19 中国华能集团清洁能源技术研究院有限公司 漂浮式风电机组
CN113619746B (zh) * 2021-10-13 2021-12-24 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 四立柱半潜式海上浮动平台
CN113879474A (zh) * 2021-10-29 2022-01-04 上海惠生海洋工程有限公司 半潜式海上风力发电平台及其主动浮态调节方法
CN114033620B (zh) * 2021-10-31 2023-05-02 福建纳川管业科技有限责任公司 一种带塑料浮体的浮式风电装置
CN113879472B (zh) * 2021-11-03 2024-01-30 江苏科技大学 一种具有位姿补偿能力的半潜式钻井平台系统及控制方法
CN113942618B (zh) * 2021-11-29 2023-09-22 上海船舶研究设计院(中国船舶工业集团公司第六0四研究院) 三立柱半潜式海上浮动平台
KR102554204B1 (ko) * 2021-12-02 2023-07-12 한국해양과학기술원 부유식 해상풍력 구조물
AU2022438346A1 (en) * 2022-01-28 2024-06-27 Acciona Construccion, S.A. Semi-submersible platform
KR102567609B1 (ko) * 2022-02-07 2023-08-17 한국해양과학기술원 구조강도 향상 및 중량절감형 부유식 해상풍력 구조물
WO2023154536A1 (en) * 2022-02-12 2023-08-17 Vl Offshore, Llc Floating offshore foundation including modular components, method for modular assembly of the floating offshore foundation, and a reconfigurable system for the floating offshore foundation
US12037092B2 (en) 2022-02-12 2024-07-16 Vl Offshore, Llc Floating offshore foundation including modular components, method for modular assembly of the floating offshore foundation, and a reconfigurable system for the floating offshore foundation
CN114987708A (zh) * 2022-06-22 2022-09-02 山东理工大学 一种具有偏心浮筒的半潜漂浮式风力机平台
WO2024023371A1 (es) * 2022-07-28 2024-02-01 Dragados, S.A. Plataforma semi-sumergible para soporte de aerogeneradores
DK181557B1 (en) * 2022-10-18 2024-05-14 Stiesdal Offshore As Method of launching, recovering, inspecting, maintaining, repairing or decommissioning a floating offshore wind turbine construction
US11981402B1 (en) * 2022-11-01 2024-05-14 Nicholas John Vincent Elisha Floating system for an offshore wind turbine
CN116001997B (zh) * 2022-11-25 2023-08-08 中交第四航务工程勘察设计院有限公司 钢浮筒-钢筋混凝土箱体组合浮式风电系统及其安装方法
CN116001999B (zh) * 2022-12-12 2024-03-01 上海勘测设计研究院有限公司 一种海上浮式平台装置以及施工方法和工作方法
CN116002002A (zh) * 2023-02-02 2023-04-25 大连理工大学 一种装配减载增稳装置的张力腿式风-波能互补浮式平台
CN116788455B (zh) * 2023-07-07 2024-02-02 华中科技大学 一种漂浮式风电平台主被动减摇装置

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083523A (en) * 1987-10-08 1992-01-28 Osborne Moss David M External pressure vessel framing
JP2004291702A (ja) * 2003-03-26 2004-10-21 Hitachi Zosen Corp 浮体構造物の姿勢制御装置
JP2010280301A (ja) * 2009-06-04 2010-12-16 Shimizu Corp 洋上施設用浮体構造物および洋上施設の施工方法
WO2012060112A1 (ja) * 2010-11-05 2012-05-10 三菱重工業株式会社 洋上風車設置用船舶およびこれを用いた洋上風車設置方法
WO2012069498A1 (fr) * 2010-11-22 2012-05-31 Nass&Wind Industrie Dispositif d'eolienne offshore avec flotteur semi- submersible particulier
CN102758447A (zh) * 2012-07-30 2012-10-31 北京金风科创风电设备有限公司 半潜式海上浮动风机基础
CN102758446A (zh) * 2012-07-30 2012-10-31 江苏金风风电设备制造有限公司 半潜式海上浮动风机基础
CN102765466A (zh) * 2012-07-27 2012-11-07 北京金风科创风电设备有限公司 半潜式海上浮动风机基础
KR20140025696A (ko) * 2012-08-22 2014-03-05 대우조선해양 주식회사 반잠수식 해양구조물
WO2014163032A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 浮体構造物
US20140305359A1 (en) * 2013-04-10 2014-10-16 Technip France Floating offshore platform with pontoon-coupled extension plates for reduced heave motion
KR101601025B1 (ko) * 2014-12-01 2016-03-21 한국해양과학기술원 운동 감쇠 기능을 갖는 해양 구조물용 플랫폼 및 이를 갖는 반잠수식 해양 구조물
WO2016138088A1 (en) * 2015-02-24 2016-09-01 University Of Maine System Board Of Trustees Method of construction, assembly, and launch of a floating wind turbine platform
JP2016538477A (ja) * 2013-10-30 2016-12-08 ギーコン ウィンドパワー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツングGICON windpower IP GmbH 外洋において浮かんでいて控え手段を介してアンカに結合された、風力タービン、サービスステーション又はコンバータステーション用の支持機構

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7044072B2 (en) * 2004-09-29 2006-05-16 Spartec, Inc. Cylindrical hull structure
US20070224000A1 (en) 2006-03-21 2007-09-27 Mills Trevor R Deep draft semi-submersible offshore floating structure
US7963241B2 (en) 2008-02-19 2011-06-21 Nagan Srinivasan Dry tree semi-submersible platform for harsh environment and ultra deepwater applications
KR101713618B1 (ko) 2008-04-23 2017-03-08 프린시플 파워, 인코포레이티드 해안 풍력 터빈의 지지를 위한 워터-엔트랩먼트 플레이트 및 비대칭 무링 시스템을 가진 칼럼-안정화된 해안 플랫폼
US8418640B2 (en) 2008-07-30 2013-04-16 Seahorse Equipment Corp Semisubmersible offshore platform with drag-inducing stabilizer plates
DE102009019709A1 (de) * 2009-05-05 2010-11-11 Wobben, Aloys Verfahren zum Errichten eines Turmes und Turm
MY187310A (en) 2010-04-26 2021-09-21 Aker Solutions Inc Dry-tree semi-submersible production and drilling unit
ES2559958T3 (es) * 2011-10-24 2016-02-16 Areva Wind Gmbh Plataforma de trabajo para una planta de energía eólica en alta mar y método para fabricar la misma
ES2387232B2 (es) 2012-07-18 2014-02-10 Universidad De Cantabria Plataforma semisumergible para aplicaciones en mar abierto
NO334535B1 (no) 2012-08-23 2014-03-31 Olav Olsen As Dr Techn Flytende, halvt nedsenkbart skrog for opplagring av fortrinnsvis én eller flere vindturbiner
DE102013216343A1 (de) * 2013-08-19 2015-02-19 Wobben Properties Gmbh Windenergieanlagen-Fundament und Windenergieanlage
TWI506465B (zh) * 2013-11-25 2015-11-01 Ship And Ocean Ind R&D Ct Design Method of Semi - submersible Type Floating Platform for Offshore Wind Power
DE102013226536A1 (de) * 2013-12-18 2015-06-18 Wobben Properties Gmbh Anordnung mit einem Betonfundament und einem Turm und Verfahren zum Errichten eines Turms
ES2797104T3 (es) * 2016-12-27 2020-12-01 Nautilus Floating Solutions Sl Plataforma marítima flotante

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083523A (en) * 1987-10-08 1992-01-28 Osborne Moss David M External pressure vessel framing
JP2004291702A (ja) * 2003-03-26 2004-10-21 Hitachi Zosen Corp 浮体構造物の姿勢制御装置
JP2010280301A (ja) * 2009-06-04 2010-12-16 Shimizu Corp 洋上施設用浮体構造物および洋上施設の施工方法
WO2012060112A1 (ja) * 2010-11-05 2012-05-10 三菱重工業株式会社 洋上風車設置用船舶およびこれを用いた洋上風車設置方法
WO2012069498A1 (fr) * 2010-11-22 2012-05-31 Nass&Wind Industrie Dispositif d'eolienne offshore avec flotteur semi- submersible particulier
CN102765466A (zh) * 2012-07-27 2012-11-07 北京金风科创风电设备有限公司 半潜式海上浮动风机基础
CN102758446A (zh) * 2012-07-30 2012-10-31 江苏金风风电设备制造有限公司 半潜式海上浮动风机基础
CN102758447A (zh) * 2012-07-30 2012-10-31 北京金风科创风电设备有限公司 半潜式海上浮动风机基础
KR20140025696A (ko) * 2012-08-22 2014-03-05 대우조선해양 주식회사 반잠수식 해양구조물
WO2014163032A1 (ja) * 2013-04-01 2014-10-09 新日鐵住金株式会社 浮体構造物
US20140305359A1 (en) * 2013-04-10 2014-10-16 Technip France Floating offshore platform with pontoon-coupled extension plates for reduced heave motion
JP2016538477A (ja) * 2013-10-30 2016-12-08 ギーコン ウィンドパワー アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツングGICON windpower IP GmbH 外洋において浮かんでいて控え手段を介してアンカに結合された、風力タービン、サービスステーション又はコンバータステーション用の支持機構
KR101601025B1 (ko) * 2014-12-01 2016-03-21 한국해양과학기술원 운동 감쇠 기능을 갖는 해양 구조물용 플랫폼 및 이를 갖는 반잠수식 해양 구조물
WO2016138088A1 (en) * 2015-02-24 2016-09-01 University Of Maine System Board Of Trustees Method of construction, assembly, and launch of a floating wind turbine platform

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022100215A (ja) * 2020-12-23 2022-07-05 合同会社アパラティス サポート装置
JP7364632B2 (ja) 2020-12-23 2023-10-18 合同会社アパラティス サポート装置

Also Published As

Publication number Publication date
CN110461702B (zh) 2022-02-08
EP3342699B1 (en) 2020-03-11
DK3342699T3 (da) 2020-06-15
TWI737878B (zh) 2021-09-01
ES2797104T3 (es) 2020-12-01
TW201835444A (zh) 2018-10-01
US20200307745A1 (en) 2020-10-01
KR102440200B1 (ko) 2022-09-02
PT3342699T (pt) 2020-06-17
EP3342699A1 (en) 2018-07-04
CN110461702A (zh) 2019-11-15
KR20190119034A (ko) 2019-10-21
US11052971B2 (en) 2021-07-06
JP7053663B2 (ja) 2022-04-12
WO2018122220A1 (en) 2018-07-05

Similar Documents

Publication Publication Date Title
JP7053663B2 (ja) 浮体式海洋プラットフォーム
US10174744B2 (en) Semi-submersible floating wind turbine platform structure with water entrapment plates
JP6835594B2 (ja) 浮体式構造物及び浮体式構造物の設置方法
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
CN102015435B (zh) 用于支撑近海风力涡轮机的不对称系泊系统和带有水收集板的支柱稳定式近海平台
CN110382781B (zh) 用于在海洋环境中利用重力铺设建筑物、设备和风力涡轮机的基础的海事结构
WO2013084632A1 (ja) 浮体式風力発電装置および該浮体式風力発電装置の浮設方法
CN113339200B (zh) 基于调谐质量阻尼器的超大型半潜漂浮式风力机基础
TW202214485A (zh) 用於支撐風力渦輪機的離岸半潛式平台及離岸發電設施
JP2023529023A (ja) 洋上風力分野の産業に適用可能な鉄筋コンクリート製の浮体式プラットフォーム
CN116001999B (zh) 一种海上浮式平台装置以及施工方法和工作方法
KR20240088835A (ko) 해양 풍력 터빈용 반잠수형 부유식 플랫폼
TW202244388A (zh) 用於接收離岸部署中之風力機塔之浮力結構

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220331

R150 Certificate of patent or registration of utility model

Ref document number: 7053663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150