JP2020196032A - Laser processing device and laser processing method - Google Patents

Laser processing device and laser processing method Download PDF

Info

Publication number
JP2020196032A
JP2020196032A JP2019104137A JP2019104137A JP2020196032A JP 2020196032 A JP2020196032 A JP 2020196032A JP 2019104137 A JP2019104137 A JP 2019104137A JP 2019104137 A JP2019104137 A JP 2019104137A JP 2020196032 A JP2020196032 A JP 2020196032A
Authority
JP
Japan
Prior art keywords
laser
unit
optical axis
laser processing
axis direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019104137A
Other languages
Japanese (ja)
Other versions
JP7283982B2 (en
Inventor
勇輝 佐伯
Isateru Saeki
勇輝 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Mechanics Ltd filed Critical Via Mechanics Ltd
Priority to JP2019104137A priority Critical patent/JP7283982B2/en
Publication of JP2020196032A publication Critical patent/JP2020196032A/en
Application granted granted Critical
Publication of JP7283982B2 publication Critical patent/JP7283982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To make it possible to improve processing quality in laser processing for a substrate with non-uniform thickness.SOLUTION: In a laser processing method which performs relative movement of a laser irradiation part, which irradiates a work-piece with laser via a condenser lens and can move in an optical axis direction of the condenser lens, and a table on which the work-piece is loaded, thereby performing processing at different positions on a surface of the work-piece, a height in the optical axis direction at at least one position in a section of the surface of the work-piece, which is logically divided into plural sections, is detected before processing the work-piece, and movement of the laser irradiation part in the optical axis direction is performed in a period of performing the relative movement to the section to be the new processing position on the basis of the detection result.SELECTED DRAWING: Figure 1

Description

本発明は、プリント基板にレーザを使用して穴あけ加工等を行うレーザ加工装置及びレーザ加工方法に関する。 The present invention relates to a laser processing apparatus and a laser processing method for drilling or the like using a laser on a printed circuit board.

プリント基板にレーザを使用して穴あけ加工等を行うレーザ加工装置においては、
レーザ発振器から出射されたレーザパルスをガルバノスキャナにより2次元方向へ偏向し、集光レンズ(Fθレンズ)を介してテーブルに載置されたプリント基板に照射するようになっている。
従来のレーザ加工装置においては、例えば、特許文献1に示すように、プリント基板1の厚みを一様と見做し、プリント基板の表面が測定したテーブルの高さに基づいて計算した位置にあるとし、その高さを基準にしてレーザ照射部のプリント基板の厚み方向、すなわち集光レンズの光軸方向の位置を調整するようにしている。
しかしながら、このプリント基板の厚みは詳細に見れば一様ではない。従って、表面の高さが基準と異なる加工位置においては、レーザ照射部との間隔が集光レンズの焦点距離との関係で適正なものでなくなり、穴形状が悪い等、加工品質を落とす問題がある。
In a laser processing device that uses a laser to perform drilling on a printed circuit board, etc.
The laser pulse emitted from the laser oscillator is deflected in a two-dimensional direction by a galvano scanner and irradiated to a printed circuit board placed on a table via a condenser lens (Fθ lens).
In the conventional laser processing apparatus, for example, as shown in Patent Document 1, the thickness of the printed circuit board 1 is regarded as uniform, and the surface of the printed circuit board is at a position calculated based on the measured height of the table. The position of the printed circuit board of the laser irradiation unit in the thickness direction, that is, the position in the optical axis direction of the condenser lens is adjusted based on the height.
However, the thickness of this printed circuit board is not uniform when viewed in detail. Therefore, at the processing position where the surface height is different from the standard, the distance from the laser irradiation part is not appropriate in relation to the focal length of the condenser lens, and there is a problem that the processing quality is deteriorated such as a bad hole shape. is there.

特許第4272667号公報Japanese Patent No. 4272667

そこで本発明は、厚みが一様でない基板のレーザ加工において、加工品質を向上させることを目的とするものである。 Therefore, an object of the present invention is to improve the processing quality in laser processing of a substrate having a non-uniform thickness.

本願において開示される発明のうち、代表的なレーザ加工装置は、被加工物を載置するテーブルと、集光レンズを介し前記被加工物にレーザを照射するレーザ照射部と、当該レーザ照射部を前記集光レンズの光軸方向での移動を行うための第1の駆動部と、当該第1の駆動部による移動動作を制御する移動制御部と、前記テーブルと前記レーザ照射部との相対移動を行う第2の駆動部とを有するレーザ加工装置において、複数の区画に論理的に分割された前記被加工物の表面の前記区画内の各々における少なくとも一つの位置の前記光軸方向での高さを検出するセンサを設け、前記移動制御部は、前記第2の駆動部による相対移動を伴って前記区画の各々での加工を順次行う場合、新たな加工位置となる区画への前記相対移動を行う期間において前記センサによる検出結果に基づいて前記第1の駆動部を動作させることを特徴とする。 Among the inventions disclosed in the present application, typical laser processing devices include a table on which a work piece is placed, a laser irradiation unit that irradiates the work piece with a laser via a condenser lens, and the laser irradiation unit. The first drive unit for moving the condenser lens in the optical axis direction, the movement control unit for controlling the movement operation by the first drive unit, and the relative of the table and the laser irradiation unit. In a laser processing apparatus having a second driving unit for moving, at least one position in each of the compartments on the surface of the workpiece logically divided into a plurality of compartments in the optical axis direction. When a sensor for detecting the height is provided and the movement control unit sequentially performs machining in each of the compartments with relative movement by the second drive unit, the movement control unit is relative to the compartment to be a new machining position. It is characterized in that the first driving unit is operated based on the detection result by the sensor during the period of movement.

また、本願において開示される発明のうち、代表的なレーザ加工方法は、集光レンズを介して被加工物にレーザを照射するレーザ照射部であって前記集光レンズの光軸方向への移動ができるものと、被加工物を載置するテーブルとの相対移動を行うことにより、前記被加工物の表面における異なる位置での加工を行うようにしたレーザ加工方法において、前記被加工物を加工する前に複数の区画に論理的に分割された前記被加工物の表面の前記区画内の各々における少なくとも一つの位置の前記光軸方向での高さを検出し、当該検出結果に基づいて新たな加工位置となる区画への前記相対移動を行う期間において前記レーザ照射部の前記光軸方向への移動を行うことを特徴とする。 Further, among the inventions disclosed in the present application, a typical laser processing method is a laser irradiation unit that irradiates a work piece with a laser via a condenser lens, and moves the condenser lens in the optical axis direction. The work piece is processed in a laser processing method in which processing is performed at different positions on the surface of the work piece by performing relative movement between the work piece and the table on which the work piece is placed. The height of at least one position in each of the compartments on the surface of the workpiece logically divided into a plurality of compartments is detected in the optical axis direction, and a new height is detected based on the detection result. It is characterized in that the laser irradiation unit is moved in the optical axis direction during the period during which the relative movement is performed to the section to be the processing position.

なお、本願において開示される発明の代表的な特徴は以上の通りであるが、ここで説明していない特徴については、後述する発明を実施するための形態において説明しており、また特許請求の範囲にも示した通りである。 The typical features of the invention disclosed in the present application are as described above, but the features not described here are described in the form for carrying out the invention described later, and claims for patent. As shown in the range.

本発明によれば、厚みが一様でない基板のレーザ加工において、加工品質を向上させることができる。 According to the present invention, it is possible to improve the processing quality in laser processing of a substrate having a non-uniform thickness.

本発明の一実施例となるレーザ加工装置のブロック図である。It is a block diagram of the laser processing apparatus which becomes one Example of this invention. レーザ加工のワークとなるプリント基板の断面図である。It is sectional drawing of the printed circuit board which becomes the work of laser processing. レーザ加工のワークとなるプリント基板の平面図である。It is a top view of the printed circuit board which becomes the work of laser processing. 図3における区画の中を説明するための図である。It is a figure for demonstrating the inside of the section in FIG. 穴あけ加工に先立って行う動作のフローチャートである。It is a flowchart of the operation performed prior to the drilling process. 図1におけるZ軸位置記憶部の内容を示す図である。It is a figure which shows the content of the Z-axis position storage part in FIG. 複数の区画の加工過程を説明するための図である。It is a figure for demonstrating the processing process of a plurality of sections.

以下、本発明の実施の形態を図を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

以下、本発明の一実施例を図を用いて説明する。
図1は、本発明の一実施例となるレーザ加工装置のブロック図である。各構成要素や接続線は、主に実施例を説明するために必要と考えられるものを示してあり、レーザ加工装置として必要な全てを示している訳ではない。
このレーザ加工装置では、プリント基板1を載置する加工テーブル11はテーブル駆動部12と結合され、加工テーブル11を駆動することによってプリント基板1とレーザ照射ユニット13とのX、Y方向の相対移動を行えるようになっている。これにより、プリント基板1の所定の位置にレーザ照射ユニット13からレーザパルスを照射させ、穴あけ加工を行うようになっている。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a laser processing apparatus according to an embodiment of the present invention. Each component and connecting line mainly shows what is considered necessary for explaining the embodiment, and does not show all necessary for a laser processing apparatus.
In this laser processing apparatus, the processing table 11 on which the printed circuit board 1 is placed is coupled to the table driving unit 12, and by driving the processing table 11, the printed circuit board 1 and the laser irradiation unit 13 move relative to each other in the X and Y directions. Can be done. As a result, a laser pulse is irradiated from the laser irradiation unit 13 to a predetermined position on the printed circuit board 1 to perform drilling.

レーザ照射ユニット13の内部には、集光レンズ14と、レーザ発振器15から出射されたレーザパルスを2次元方向に走査し集光レンズ14を介してプリント基板1に照射するガルバノスキャナ16と、変位センサ17が搭載されている。
レーザ照射ユニット13は照射ユニット駆動部18と結合され、Z軸方向(集光レンズ14の光軸方向)、すなわちプリント基板1の厚み方向に移動することができるようになっている。
図2はレーザ加工のワークとなるプリント基板1の断面図である。変位センサ17は、プリント基板1のZ軸方向から見て任意位置の表面の高さを測定するものであり、H0を基準とし、表面位置Aでは変位量は−Ah、表面位置Bでは変位量は+Bhと検出する。
一つの区画内においては変位量の差は小さいものとし、逆に区画内の差が小さくなるように一つの区画の大きさが設定されている。
Inside the laser irradiation unit 13, a condenser lens 14, a galvano scanner 16 that scans a laser pulse emitted from a laser oscillator 15 in a two-dimensional direction and irradiates the printed substrate 1 through the condenser lens 14, and displacement. The sensor 17 is mounted.
The laser irradiation unit 13 is coupled to the irradiation unit driving unit 18 so that it can move in the Z-axis direction (the optical axis direction of the condenser lens 14, that is, the thickness direction of the printed circuit board 1.
FIG. 2 is a cross-sectional view of a printed circuit board 1 that serves as a work for laser machining. The displacement sensor 17 measures the height of the surface of the printed circuit board 1 at an arbitrary position when viewed from the Z-axis direction. With reference to H0, the displacement amount is −Ah at the surface position A and the displacement amount at the surface position B. Is detected as + Bh.
The difference in displacement within one compartment is assumed to be small, and conversely, the size of one compartment is set so that the difference within the compartment is small.

19は装置全体の動作を制御する全体制御部で、例えばプログラム制御の処理装置によって実現され、その中の各構成要素や接続線は、論理的なものも含むものとする。また各構成要素の一部は全体制御部19と別個に設けられていてもよい。また、各構成要素や各構成要素間を接続する線は、主に本実施例を説明するために必要と考えられるものを示してあり、ここで説明するもの以外の構成要素や制御機能を有しているものする。 Reference numeral 19 denotes an overall control unit that controls the operation of the entire apparatus, which is realized by, for example, a program-controlled processing apparatus, and each component and connection line in the overall control unit includes logical ones. Further, a part of each component may be provided separately from the overall control unit 19. In addition, the components and the lines connecting the components are mainly those considered to be necessary for explaining the present embodiment, and have components and control functions other than those described here. What you are doing.

全体制御部19には、テーブル駆動部12の位置決め動作を制御するテーブル駆動制御部20、与えられた穴あけ位置情報に従ってガルバノスキャナ16の位置決め動作を制御するガルバノスキャナ制御部21、与えられるZ軸位置情報に従って照射ユニット駆動部17のZ軸方向の位置決め動作を制御する照射ユニット駆動制御部22、加工プログラムを格納するためのプログラム記憶部23、区画S1、S2、S3・・・の各々毎に頂点P1〜4の座標を記憶しておくための頂点記憶部24、Z軸補正記憶部25がそれぞれ設けられている。 The overall control unit 19 includes a table drive control unit 20 that controls the positioning operation of the table drive unit 12, a galvano scanner control unit 21 that controls the positioning operation of the galvano scanner 16 according to given drilling position information, and a given Z-axis position. The apex of each of the irradiation unit drive control unit 22 that controls the positioning operation of the irradiation unit drive unit 17 in the Z-axis direction according to the information, the program storage unit 23 for storing the machining program, the compartments S1, S2, S3 ... A vertex storage unit 24 and a Z-axis correction storage unit 25 for storing the coordinates of P1 to P4 are provided, respectively.

図3はプリント基板1の平面図である。プリント基板1の表面は格子状に区分けした複数の大きさの等しい区画S1、S2、S3・・・に論理的に分けられている。
一つの区画の大きさはガルバノスキャナ16の一つの走査エリアの整数倍で、その大きさよりも相当大きい。プリント基板1の加工は、区画S1、S2、S3・・・のそれぞれにおいて、ガルバノスキャナ15の一つの走査エリアを単位にして行う。
図4は図3における区画Snの中を説明するための図である。P0は区画Sn内での二つの対角線の交点、P1〜4は区画Sn内での二つの対角線においてちょうど中間に位置する点を結んだ四辺形32の頂点である。
FIG. 3 is a plan view of the printed circuit board 1. The surface of the printed circuit board 1 is logically divided into a plurality of equal-sized compartments S1, S2, S3 ... Divided in a grid pattern.
The size of one compartment is an integral multiple of one scanning area of the galvano scanner 16 and is considerably larger than that size. The processing of the printed circuit board 1 is performed in each of the compartments S1, S2, S3 ... In units of one scanning area of the galvano scanner 15.
FIG. 4 is a diagram for explaining the inside of the compartment Sn in FIG. P0 is the intersection of two diagonals in the compartment Sn, and P1-4 are the vertices of the quadrilateral 32 connecting the points located exactly in the middle of the two diagonals in the compartment Sn.

このレーザ加工装置は、穴あけ加工を行うに先立って全体制御部19の制御の下で以下のように動作する。図5はこの動作のフローチャートである。
先ず、区画S1、S2、S3・・・の各々毎に、頂点P1〜4の座標に基づき加工テーブル11を介してプリント基板1を変位センサ17に対し相対移動させ、各頂点P1〜4での変位量を変位センサ17で検出し、Z軸補正記憶部25に記憶する(ステップ100)。Z軸補正記憶部25の内容を図6に示す。
次に、区画S1、S2、S3・・・の各々毎にZ軸補正記憶部25から4つの頂点P1〜4での変位量hを読出し、これらの変位量の平均hm(以下、平均変位量と呼ぶ)h10、h20、h30・・・を求め、Z軸補正記憶部25に記憶する(ステップ200)。
This laser machining apparatus operates as follows under the control of the overall control unit 19 prior to performing drilling. FIG. 5 is a flowchart of this operation.
First, the printed circuit board 1 is moved relative to the displacement sensor 17 via the processing table 11 based on the coordinates of the vertices P1 to 4 in each of the compartments S1, S2, S3 ... The displacement amount is detected by the displacement sensor 17 and stored in the Z-axis correction storage unit 25 (step 100). The contents of the Z-axis correction storage unit 25 are shown in FIG.
Next, the displacement amounts h at the four vertices P1 to 4 are read from the Z-axis correction storage unit 25 for each of the compartments S1, S2, S3 ..., And the average hm of these displacement amounts (hereinafter, the average displacement amount). H10, h20, h30 ... (referred to as) are obtained and stored in the Z-axis correction storage unit 25 (step 200).

加工品質を確保するためには、レーザ照射ユニット13を適正なZ軸位置Zにする必要がある。そこで、次に区画S1、S2、S3・・・の各々毎に、その平均変位量hmに基づき適正なZ軸位置Zまで駆動するための補正値(以下Z軸補正値と呼ぶ)を求め、Z軸補正記憶部25記憶する(ステップ300)。
例えば、図6において平均変位量hmがhm1、hm2、hm3ならば、それぞれZ軸補正値はk1、k2、k3、という具合である。
なお、図6はZ軸補正記憶部25に記憶されたデータの相互の論理的関係を説明するためのものであり、各種のデータが必ずしも図示の通りに記憶されている必要はない。要は、上記した論理的関係で各区画S1、S2、S3・・・のそれぞれのZ軸補正値K1、K2、K3・・・が得られるようになっていればよい。
In order to ensure the processing quality, it is necessary to set the laser irradiation unit 13 at an appropriate Z-axis position Z. Therefore, next, a correction value (hereinafter referred to as a Z-axis correction value) for driving to an appropriate Z-axis position Z is obtained for each of the sections S1, S2, S3 ... Based on the average displacement amount hm. The Z-axis correction storage unit 25 is stored (step 300).
For example, in FIG. 6, if the average displacement amount hm is hm1, hm2, and hm3, the Z-axis correction values are k1, k2, and k3, respectively.
Note that FIG. 6 is for explaining the mutual logical relationship between the data stored in the Z-axis correction storage unit 25, and various data do not necessarily have to be stored as shown in the figure. In short, it suffices that the Z-axis correction values K1, K2, K3 ... Of each section S1, S2, S3 ... Can be obtained by the above logical relationship.

このレーザ加工装置においては、上記のようにして全ての区画S1、S2、S3・・・のZ軸補正値K1、K2、K3・・・を求めたプリント基板1に穴あけ加工を行う場合、全体制御部19の制御の下で以下のように動作する。
図7は複数の区画の加工過程を説明するための図である。加工の順序は図3での矢印に示すように、区画S1、S2、S3の順に行われるものとする。図7において、相対移動N1とN2は、前の区画の加工が終了してガルバノスキャナ15の走査エリアを次の区画の最初の走査エリアに位置合わせするために、加工テーブル11を駆動する時間である。
In this laser machining apparatus, when drilling is performed on the printed circuit board 1 for which the Z-axis correction values K1, K2, K3 ... Of all the compartments S1, S2, S3 ... It operates as follows under the control of the control unit 19.
FIG. 7 is a diagram for explaining a processing process of a plurality of sections. As shown by the arrow in FIG. 3, the processing order is assumed to be performed in the order of sections S1, S2, and S3. In FIG. 7, the relative movements N1 and N2 are the time to drive the machining table 11 in order to align the scan area of the galvano scanner 15 with the first scan area of the next section after the machining of the previous section is completed. is there.

先ず、区画S1の加工については、レーザ照射ユニット13は適正な加工品質を確保できるようにZ軸位置が調整された状態で行われたものとする。本発明に従うと、区画S1の加工が終了したら相対移動N1を行っている期間において次の区画S2のためのZ軸補正値k1がZ軸補正記憶部25から読出され、照射ユニット駆動制御部22に与えられる。照射ユニット駆動制御部22はこのZ軸補正値k1に基づき照射ユニット駆動部18の位置決め動作を制御し、次の区画S2の加工を始める前までにレーザ照射ユニット13のZ軸位置を適正な加工品質を確保できる位置への位置決めを完了する。
また相対移動N2を行っている期間においては、同様にして次の区画S2の加工を始める前までにレーザ照射ユニット13のZ軸位置を適正な加工品質を確保できる位置への位置決めを完了する。
First, it is assumed that the processing of the section S1 is performed in a state where the Z-axis position is adjusted so that the laser irradiation unit 13 can ensure appropriate processing quality. According to the present invention, when the processing of the compartment S1 is completed, the Z-axis correction value k1 for the next compartment S2 is read out from the Z-axis correction storage unit 25 during the period during which the relative movement N1 is performed, and the irradiation unit drive control unit 22 Given to. The irradiation unit drive control unit 22 controls the positioning operation of the irradiation unit drive unit 18 based on the Z-axis correction value k1, and properly processes the Z-axis position of the laser irradiation unit 13 before starting the processing of the next section S2. Complete positioning to a position where quality can be ensured.
Further, during the period during which the relative movement N2 is performed, the positioning of the Z-axis position of the laser irradiation unit 13 to a position where appropriate processing quality can be ensured is completed before starting the processing of the next section S2 in the same manner.

以上の実施例によれば、プリント基板1の穴あけ位置が属する区画の変位量に基づいてレーザ照射ユニット13のZ軸位置を適正な加工品質を確保できる位置に位置決めしてから加工を行うので、加工テーブル11の平坦度と関係なく、全ての区画31において、穴あけ位置とレーザ照射ユニット13との間隔は集光レンズ15の焦点距離に対して適正なものとなり、加工品質を確保できる。 According to the above embodiment, the Z-axis position of the laser irradiation unit 13 is positioned at a position where appropriate machining quality can be ensured based on the displacement amount of the section to which the drilling position of the printed substrate 1 belongs, and then the machining is performed. Regardless of the flatness of the processing table 11, the distance between the drilling position and the laser irradiation unit 13 is appropriate for the focal length of the condenser lens 15 in all the sections 31, and the processing quality can be ensured.

また、以上の実施例においては、各区画31内の四辺形の4つの頂点P1〜4での平均変位量に基づいてレーザ照射ユニット13のZ軸方向位置を調整するようにしたが、他の複数位置での平均変位量、あるいは各区画31内での中央P0での変位量に基づいて調整するようにしてもよい。
要は、区画内でのいずれの位置においても適正な加工品質を確保できるように、区画の各々の大きさ及び変位量の検出方法を定めればよい。
さらに、区画S1、S2、S3・・・の各々の大きさは等しいものの場合を説明したが、異なっていてもよい。例えば、一つのZ軸補正値で補正できるように区画を設定するようにしてもよい。
Further, in the above embodiment, the Z-axis direction position of the laser irradiation unit 13 is adjusted based on the average displacement amount at the four vertices P1 to 4 of the quadrilateral in each section 31, but other The adjustment may be made based on the average displacement amount at the plurality of positions or the displacement amount at the center P0 in each section 31.
In short, it is sufficient to determine the detection method of the size and the amount of displacement of each section so that appropriate processing quality can be ensured at any position in the section.
Further, although the cases where the sizes of the compartments S1, S2, S3 ... Are the same are described, they may be different. For example, the partition may be set so that the correction can be performed with one Z-axis correction value.

以上、実施例に基づき本発明を説明したが、本発明は当該実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもなく、様々な変形例が含まれる。 Although the present invention has been described above based on the examples, the present invention is not limited to the examples, and it goes without saying that various modifications can be made without departing from the gist thereof. Is included.

1:プリント基板、11:加工テーブル、12:テーブル駆動部、
13:レーザ照射ユニット、14:集光レンズ、15:レーザ発振器、
16:ガルバノスキャナ、17:変位センサ、18:照射ユニット駆動部、
19:全体制御部、20:テーブル駆動制御部、21:ガルバノスキャナ制御部、
22:照射ユニット駆動制御部、23:プログラム記憶部、24:頂点記憶部、
25:Z軸補正記憶部
1: Printed circuit board, 11: Processing table, 12: Table drive unit,
13: Laser irradiation unit, 14: Condensing lens, 15: Laser oscillator,
16: Galvano scanner, 17: Displacement sensor, 18: Irradiation unit drive unit,
19: Overall control unit, 20: Table drive control unit, 21: Galvano scanner control unit,
22: Irradiation unit drive control unit, 23: Program storage unit, 24: Vertex storage unit,
25: Z-axis correction storage unit

このレーザ加工装置は、穴あけ加工を行うに先立って全体制御部19の制御の下で以下のように動作する。図5はこの動作のフローチャートである。
先ず、区画S1、S2、S3・・・の各々毎に、頂点P1〜4の座標に基づき加工テーブル11を介してプリント基板1を変位センサ17に対し相対移動させ、各頂点P1〜4での変位量を変位センサ17で検出し、Z軸補正記憶部25に記憶する(ステップ100)。Z軸補正記憶部25の内容を図6に示す。
次に、区画S1、S2、S3・・・の各々毎にZ軸補正記憶部25から4つの頂点P1〜4での変位量hを読出し、これらの変位量の平均hm(以下、平均変位量と呼ぶ)を求め、Z軸補正記憶部25に記憶する(ステップ200)。

This laser machining apparatus operates as follows under the control of the overall control unit 19 prior to performing drilling. FIG. 5 is a flowchart of this operation.
First, the printed circuit board 1 is moved relative to the displacement sensor 17 via the processing table 11 based on the coordinates of the vertices P1 to 4 in each of the compartments S1, S2, S3 ... The amount of displacement is detected by the displacement sensor 17 and stored in the Z-axis correction storage unit 25 (step 100). The contents of the Z-axis correction storage unit 25 are shown in FIG.
Next, the displacement amounts h at the four vertices P1 to 4 are read from the Z-axis correction storage unit 25 for each of the compartments S1, S2, S3 ..., And the average hm of these displacement amounts (hereinafter, the average displacement amount). (Called) is obtained and stored in the Z-axis correction storage unit 25 (step 200).

Claims (4)

被加工物を載置するテーブルと、集光レンズを介し前記被加工物にレーザを照射するレーザ照射部と、当該レーザ照射部を前記集光レンズの光軸方向での移動を行うための第1の駆動部と、当該第1の駆動部による移動動作を制御する移動制御部と、前記テーブルと前記レーザ照射部との相対移動を行う第2の駆動部とを有するレーザ加工装置において、複数の区画に論理的に分割された前記被加工物の表面の前記区画内の各々における少なくとも一つの位置の前記光軸方向での高さを検出するセンサを設け、前記移動制御部は、前記第2の駆動部による相対移動を伴って前記区画の各々での加工を順次行う場合、新たな加工位置となる区画への前記相対移動を行う期間において前記センサによる検出結果に基づいて前記第1の駆動部を動作させることを特徴とするレーザ加工装置。 A table on which a work piece is placed, a laser irradiation unit that irradiates the work piece with a laser via a condenser lens, and a third unit for moving the laser irradiation unit in the optical axis direction of the condenser lens. A plurality of laser processing devices having a drive unit 1, a movement control unit that controls a movement operation by the first drive unit, and a second drive unit that performs relative movement between the table and the laser irradiation unit. A sensor for detecting the height of at least one position in each of the surfaces of the workpiece logically divided into the compartments in the optical axis direction is provided, and the movement control unit is the first. When machining is sequentially performed in each of the sections with relative movement by the driving unit 2, the first method is based on the detection result by the sensor during the period of performing the relative movement to the section to be the new machining position. A laser processing device characterized by operating a drive unit. 請求項2に記載のレーザ加工装置において、前記センサが検出する前記位置は前記区画内に複数箇所設定され、前記移動制御部は前記複数箇所での平均した検出値に基づいて前記第1の駆動部の動作を制御することを特徴とするレーザ加工装置。 In the laser processing apparatus according to claim 2, the positions detected by the sensor are set at a plurality of locations in the compartment, and the movement control unit is driven by the first drive based on the average detection values at the plurality of locations. A laser processing device characterized by controlling the operation of a unit. 集光レンズを介して被加工物にレーザを照射するレーザ照射部であって前記集光レンズの光軸方向への移動ができるものと、被加工物を載置するテーブルとの相対移動を行うことにより、前記被加工物の表面における異なる位置での加工を行うようにしたレーザ加工方法において、前記被加工物を加工する前に複数の区画に論理的に分割された前記被加工物の表面の前記区画内の各々における少なくとも一つの位置の前記光軸方向での高さを検出し、当該検出結果に基づいて新たな加工位置となる区画への前記相対移動を行う期間において前記レーザ照射部の前記光軸方向への移動を行うことを特徴とするレーザ加工方法。 A laser irradiation unit that irradiates a work piece with a laser via a condenser lens that can move the condensing lens in the optical axis direction and a table on which the work piece is placed move relative to each other. As a result, in the laser processing method in which processing is performed at different positions on the surface of the work piece, the surface of the work piece is logically divided into a plurality of sections before the work piece is machined. The laser irradiation unit during a period in which the height of at least one position in each of the compartments in the above-mentioned section is detected in the optical axis direction, and the relative movement to the section to be a new processing position is performed based on the detection result. A laser processing method characterized by moving in the direction of the optical axis. 請求項3に記載のレーザ加工方法において、前記光軸方向での高さを検出する前記位置は前記区画内に複数箇所設定され、前記複数箇所での平均した検出値に基づいて前記レーザ照射部の前記光軸方向への移動を行うことを特特徴とするレーザ加工方法。
In the laser processing method according to claim 3, the positions for detecting the height in the optical axis direction are set at a plurality of locations in the compartment, and the laser irradiation unit is based on the average detection values at the plurality of locations. A laser processing method characterized by moving in the direction of the optical axis.
JP2019104137A 2019-06-04 2019-06-04 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD Active JP7283982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019104137A JP7283982B2 (en) 2019-06-04 2019-06-04 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019104137A JP7283982B2 (en) 2019-06-04 2019-06-04 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Publications (2)

Publication Number Publication Date
JP2020196032A true JP2020196032A (en) 2020-12-10
JP7283982B2 JP7283982B2 (en) 2023-05-30

Family

ID=73648300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019104137A Active JP7283982B2 (en) 2019-06-04 2019-06-04 LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD

Country Status (1)

Country Link
JP (1) JP7283982B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276986A (en) * 2000-03-29 2001-10-09 Nec Corp Laser processing apparatus and method
JP2006289419A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Laser beam machining apparatus
WO2013038606A1 (en) * 2011-09-15 2013-03-21 パナソニック株式会社 Laser processing device and laser processing method
JP2016173371A (en) * 2010-10-14 2016-09-29 コー・ヤング・テクノロジー・インコーポレーテッド Board inspection method
JP2017013092A (en) * 2015-07-01 2017-01-19 イビデン株式会社 Device for manufacturing printed wiring board and method of manufacturing printed wiring board

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001276986A (en) * 2000-03-29 2001-10-09 Nec Corp Laser processing apparatus and method
JP2006289419A (en) * 2005-04-08 2006-10-26 Mitsubishi Electric Corp Laser beam machining apparatus
JP2016173371A (en) * 2010-10-14 2016-09-29 コー・ヤング・テクノロジー・インコーポレーテッド Board inspection method
WO2013038606A1 (en) * 2011-09-15 2013-03-21 パナソニック株式会社 Laser processing device and laser processing method
JP2017013092A (en) * 2015-07-01 2017-01-19 イビデン株式会社 Device for manufacturing printed wiring board and method of manufacturing printed wiring board

Also Published As

Publication number Publication date
JP7283982B2 (en) 2023-05-30

Similar Documents

Publication Publication Date Title
KR20180105079A (en) Laser machining apparatus
WO2003097290A1 (en) Method and system for marking a workpiece such as a semiconductor wafer and laser marker for use therein
JP2005230886A (en) Nc-controlled laser beam machine
JP5798026B2 (en) Alignment mark detection method and laser processing apparatus
JP7307001B2 (en) LASER PROCESSING APPARATUS AND METHOD, CHIP TRANSFER APPARATUS AND METHOD
JP4048873B2 (en) Positioning method
CN105983788B (en) Method for setting laser drilling conditions and laser processing machine
JP5628524B2 (en) Processing control device, laser processing device, and processing control method
CN102216023A (en) Laser machining apparatus, laser machining method, machining control apparatus and machining control method
JP2020196032A (en) Laser processing device and laser processing method
JP2004358550A (en) Laser beam machining method and laser beam machining apparatus
JP4272667B2 (en) Drilling method and laser processing machine
JP2002137074A (en) Laser beam machining method and laser beam machine
JP2010051983A (en) Manufacturing apparatus of microwave circuit substrate and manufacturing method of the same
JP2009252892A (en) Laser machining method, method for manufacturing printed board, and laser machining apparatus
KR101166176B1 (en) Pattern forming device
KR101511645B1 (en) Method for calibrating irradiation position of laser beam
WO2016147977A1 (en) Image-rendering device
WO2016117224A1 (en) Marking device and method, pattern generation device, and workpiece
JP2021118284A (en) Chip transfer device
JP7294783B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
TWM590501U (en) Combined device capable of simultaneously conducting laser processing and CNC cutting
JP2823750B2 (en) Laser marking device
JP2016087660A (en) Laser processing method and laser processing apparatus
US20210197310A1 (en) Laser processing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20191218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230518

R150 Certificate of patent or registration of utility model

Ref document number: 7283982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150