JP2020191221A - Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device - Google Patents

Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device Download PDF

Info

Publication number
JP2020191221A
JP2020191221A JP2019095577A JP2019095577A JP2020191221A JP 2020191221 A JP2020191221 A JP 2020191221A JP 2019095577 A JP2019095577 A JP 2019095577A JP 2019095577 A JP2019095577 A JP 2019095577A JP 2020191221 A JP2020191221 A JP 2020191221A
Authority
JP
Japan
Prior art keywords
electrochemical cell
electrolyte
oxygen
cell
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019095577A
Other languages
Japanese (ja)
Inventor
雅弘 浅山
Masahiro Asayama
雅弘 浅山
吉野 正人
Masato Yoshino
正人 吉野
憲和 長田
Norikazu Osada
憲和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2019095577A priority Critical patent/JP2020191221A/en
Publication of JP2020191221A publication Critical patent/JP2020191221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

To provide an electrochemical cell, an electrochemical cell stack, a fuel cell, and a hydrogen production device in which oxygen ions can easily move between an oxygen electrode and an electrolyte.SOLUTION: In an electrochemical cell according to an embodiment of the present invention that sequentially stacks a hydrogen pole, an electrolyte, and an oxygen pole in order, the hydrogen pole includes a plurality of first crystal grains arranged at least in a region in contact with the electrolyte, and a second crystal grain arranged between a plurality of the first crystal grains, and has a smaller particle size than the first crystal grains. Further, according to the embodiment of the present invention, the ratio of the particle size of the second crystal grain to the first crystal grain is 0.025 or more and 0.14 or less.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、電気化学セル、電気化学セルスタック、燃料電池および水素製造装置に関する。 Embodiments of the present invention relate to electrochemical cells, electrochemical cell stacks, fuel cells and hydrogen production equipment.

固体酸化物形燃料電池(SOFC:Solid Oxide Fuel Cell)または水素製造装置(SOEC:Solid Oxide Electrolysis Cell)に用いられる固体酸化物形の電気化学セルは、平板型では、水素極、電解質、酸素極を順次積層して形成される。 Solid oxide fuel cell (SOFC: Solid Oxide Fuel Cell) or solid oxide fuel cell (SOEC) used in solid oxide fuel cell (SOEC) solid oxide fuel cell (SOFC) is a flat plate type, hydrogen electrode, electrolyte, oxygen electrode. Are sequentially laminated to form.

特開平4−104470号公報Japanese Unexamined Patent Publication No. 4-104470

電気化学セルの化学反応の効率よく生じさせるためには、酸素極と電解質との間を酸素イオンが容易に移動できることが求められる。 In order to efficiently generate the chemical reaction of the electrochemical cell, it is required that oxygen ions can easily move between the oxygen electrode and the electrolyte.

そこで、本発明が解決しようとする課題は、電解質と酸素極との間を酸素イオンが容易に移動できる電気化学セル、電気化学セルスタック、燃料電池および水素製造装置を提供することである。 Therefore, an object to be solved by the present invention is to provide an electrochemical cell, an electrochemical cell stack, a fuel cell, and a hydrogen production apparatus in which oxygen ions can easily move between an electrolyte and an oxygen electrode.

上記の課題を解決するために、実施形態の電気化学セルは、水素極、電解質、および酸素極を順次積層する電気化学セルであって、前記水素極は、少なくとも前記電解質と接する領域に配置される第一の結晶粒と、複数の前記第一の結晶粒の間に配置され、前記第一の結晶粒よりも粒径が小さい第二の結晶粒と、を備える。 In order to solve the above problems, the electrochemical cell of the embodiment is an electrochemical cell in which a hydrogen electrode, an electrolyte, and an oxygen electrode are sequentially laminated, and the hydrogen electrode is arranged at least in a region in contact with the electrolyte. The first crystal grain and the second crystal grain arranged between the plurality of the first crystal grains and having a particle size smaller than that of the first crystal grain are provided.

また、実施形態の電気化学セルスタック、燃料電池、または水素製造装置は、前記電気化学セルを備える。 Further, the electrochemical cell stack, the fuel cell, or the hydrogen production apparatus of the embodiment includes the electrochemical cell.

本発明の実施形態によれば、酸素極と電解質との間を酸素イオンが容易に移動できる。 According to the embodiment of the present invention, oxygen ions can easily move between the oxygen electrode and the electrolyte.

実施形態に係る電気化学セルの構成図である。It is a block diagram of the electrochemical cell which concerns on embodiment.

図1は、実施形態に係る電気化学セルの構成図である。以降の説明においては、電気化学セルをセル、電気化学セルスタックをセルスタックと表記する。また、以降の説明における積層方向とは、後述する水素極2、電解質3、および酸素極4を積層する方向を示し、その方向や特定の面を表す際には、特段の指定がない限り積層方向を基準として表記する。例えば、上面とは積層方向を基準とした上面、側面とは積層方向を基準とした側面、下側とは積層方向を基準とした下側をそれぞれ示す。なお、ここでいう積層方向は、重力方向とは必ずしも一致しない。 FIG. 1 is a block diagram of an electrochemical cell according to an embodiment. In the following description, the electrochemical cell is referred to as a cell, and the electrochemical cell stack is referred to as a cell stack. Further, the stacking direction in the following description indicates a direction in which the hydrogen pole 2, the electrolyte 3, and the oxygen pole 4 to be laminated, which will be described later, are laminated, and when the direction or a specific surface is represented, the stacking direction is specified unless otherwise specified. Notated based on the direction. For example, the upper surface indicates the upper surface based on the stacking direction, the side surface indicates the side surface based on the stacking direction, and the lower side indicates the lower side based on the stacking direction. The stacking direction referred to here does not always coincide with the direction of gravity.

図1に示すように、セル1は、水素極2と、電解質3と、酸素極4とを備える。セル1は平板型のセルであり、セルスタック、固体酸化物形燃料電池(SOFC)、または高温水蒸気電解を利用した水素製造装置(SOEC)に搭載される。ここでいうセルスタックは、少なくとも一層が本実施形態のセル1であるセルスタックを示す。 As shown in FIG. 1, the cell 1 includes a hydrogen electrode 2, an electrolyte 3, and an oxygen electrode 4. The cell 1 is a flat plate type cell, and is mounted on a cell stack, a solid oxide fuel cell (SOFC), or a hydrogen production apparatus (SOEC) using high-temperature steam electrolysis. The cell stack referred to here refers to a cell stack in which at least one layer is cell 1 of the present embodiment.

水素極2は、平板型の電極である。水素極2の材料には、金属粒子と金属酸化物を含む結合体を用いることができる。ここでいう金属粒子は、例えばニッケル、コバルト、鉄と銅の少なくとも一つが挙げられる。また、ここでいう金属酸化物は、例えばY2O3、Sc2O3、Yb2O3、Gd2O3、CaO、MgO、CeO2の少なくとも一つを含む安定化剤が固溶された安定化ジルコニアや、Sm2O3、Gd2O3、Y2O3の少なくとも一つを含む酸化物とCeO2とを固溶させたドープセリアが挙げられる。なお、本実施形態では水素極支持型のセルを例示して説明するが、例えば電解質支持型や酸素極支持型のセルでもよい。また、本実施形態の変形例として、水素極、電解質、および酸素極とは別に支持体を設ける構成としてもよい。 The hydrogen electrode 2 is a flat plate type electrode. As the material of the hydrogen electrode 2, a conjugate containing metal particles and a metal oxide can be used. Examples of the metal particles referred to here include at least one of nickel, cobalt, iron and copper. Further, the metal oxide referred to here is, for example, stabilized zirconia in which a stabilizer containing at least one of Y2O3, Sc2O3, Yb2O3, Gd2O3, CaO, MgO and CeO2 is dissolved, and at least Sm2O3, Gd2O3 and Y2O3. Examples thereof include dope ceria in which an oxide containing one and CeO2 are solid-dissolved. In this embodiment, a hydrogen pole-supported cell will be described as an example, but for example, an electrolyte-supported cell or an oxygen pole-supported cell may be used. Further, as a modification of the present embodiment, a support may be provided separately from the hydrogen electrode, the electrolyte, and the oxygen electrode.

電解質3は、水素極2に積層された平板型の薄膜である。電解質3の材料には、例えばY2O3、Sc2O3、Yb2O3、Gd2O3、CaO、MgO、CeO2の少なくとも一つを含む安定化剤が固溶された安定化ジルコニアや、Sm2O3、Gd2O3とY2O3の少なくとも一つを含む酸化物とCeO2とを固溶したドープセリアが挙げられる。 The electrolyte 3 is a flat plate type thin film laminated on the hydrogen electrode 2. As the material of the electrolyte 3, for example, stabilized zirconia in which a stabilizer containing at least one of Y2O3, Sc2O3, Yb2O3, Gd2O3, CaO, MgO, and CeO2 is dissolved, and at least one of Sm2O3, Gd2O3, and Y2O3 are used. Examples thereof include dope ceria in which the containing oxide and CeO2 are solid-dissolved.

酸素極4は、平板型の薄膜電極であり、電解質3に積層される。酸素極4は、少なくとも電解質3と接する領域に配置される第一の結晶粒4aと、第一の結晶粒4aよりも粒径の小さい第二の結晶粒4bとを含む。なお、ここでいう電解質3と接する領域とは、電解質3との界面の一部を含む領域を指し、必ずしもこの界面全体を含む必要はない。本実施形態における第一の結晶粒4aの粒径は5.0マイクロメートル以上10マイクロメートル以下、第二の結晶粒4bの粒径は0.10マイクロメートル以上1.0マイクロメートル以下である。ただし、これらの粒径はこの範囲に限定されるものではなく、第一の結晶粒4aに対する第二の結晶粒4bの粒径の比が0.025以上0.14以下の範囲を満たす粒径であればよい。 The oxygen electrode 4 is a flat plate type thin film electrode and is laminated on the electrolyte 3. The oxygen electrode 4 includes at least a first crystal grain 4a arranged in a region in contact with the electrolyte 3 and a second crystal grain 4b having a particle size smaller than that of the first crystal grain 4a. The region in contact with the electrolyte 3 as used herein refers to a region including a part of the interface with the electrolyte 3, and does not necessarily have to include the entire interface. The particle size of the first crystal grain 4a in the present embodiment is 5.0 micrometers or more and 10 micrometers or less, and the particle size of the second crystal grain 4b is 0.10 micrometer or more and 1.0 micrometer or less. However, these particle sizes are not limited to this range, and the ratio of the particle size of the second crystal grain 4b to the first crystal grain 4a is 0.025 or more and 0.14 or less. It should be.

酸素極4は、複数の第一の結晶粒4aの隙間に第二の結晶粒4bが配置されている。酸素極4の材料には、ペロブスカイト型酸化物やこれらの一部を置換した酸化物、例えばLaSrCoFe酸化物、LaSrMn酸化物(LSM)、LaSrCo酸化物(LSC)、LaSrFe酸化物(LSF)や、電解質に用いている固体酸化物との混合体、例えばLSM−YSZ、LSM−ScSZ、LSC−GDC等が挙げられる。 In the oxygen electrode 4, the second crystal grain 4b is arranged in the gap between the plurality of first crystal grains 4a. The material of the oxygen electrode 4 includes perovskite-type oxides and oxides in which a part thereof is substituted, for example, LaSrCoFe oxide, LaSrMn oxide (LSM), LaSrCo oxide (LSC), LaSrFe oxide (LSF), and the like. Examples thereof include a mixture with a solid oxide used as an electrolyte, such as LSM-YSZ, LSM-ScSZ, and LSC-GDC.

次に、セル1の製造方法について説明する。まず、水素極2、および電解質3を順次積層する。次に、スクリーン印刷によって、第一の結晶粒4aと第二の結晶粒4bとの混合材料が電解質3上に積層される。次に、水素極2、電解質3、および混合材料を積層した積層体が乾燥および焼付処理される。この乾燥および焼付処理を通して混合材料が焼き固められて、酸素極4になる。 Next, the manufacturing method of the cell 1 will be described. First, the hydrogen electrode 2 and the electrolyte 3 are sequentially laminated. Next, the mixed material of the first crystal grain 4a and the second crystal grain 4b is laminated on the electrolyte 3 by screen printing. Next, the laminate in which the hydrogen electrode 2, the electrolyte 3, and the mixed material are laminated is dried and baked. Through this drying and baking process, the mixed material is compacted to oxygen pole 4.

なお、ここでいう混合材料は、例えば第一の結晶粒4aの粉末と第二の結晶粒4bの粉末とをポッドブレンダで混合させて製造することができる。ただし、第一の結晶粒4aの粉末は、例えば第二の結晶粒4bの粉末の一部に仮焼処理を施して第一の結晶粒4aの粉末としてもよい。また、本実施形態ではスクリーン印刷により電解質3上に混合材料を積層する場合を例示して説明するが、例えばこの混合材料を電解質3上にはけ塗りしてもよい。さらに、水素極2、電解質3、および混合材料を積層した積層体を乾燥および焼付処理することで、混合材料が焼き固められて酸素極4になる。 The mixed material referred to here can be produced, for example, by mixing the powder of the first crystal grains 4a and the powder of the second crystal grains 4b with a pod blender. However, the powder of the first crystal grains 4a may be obtained by subjecting a part of the powder of the second crystal grains 4b to a calcining treatment to obtain the powder of the first crystal grains 4a, for example. Further, in the present embodiment, the case where the mixed material is laminated on the electrolyte 3 by screen printing will be described as an example, but for example, the mixed material may be smeared on the electrolyte 3. Further, by drying and baking the laminate in which the hydrogen electrode 2, the electrolyte 3, and the mixed material are laminated, the mixed material is baked and hardened to become the oxygen electrode 4.

次に、本実施形態の作用について説明する。 Next, the operation of this embodiment will be described.

セル1をSOFCとして動作させる場合、外部から水素極2に水素を、酸素極4に酸素をそれぞれ供給して、セル1で化学反応を引き起こす。具体的には、酸素極4では、酸素と電子とが反応して酸素イオンを生成する。この酸素イオンは、酸素極4から電解質を経て水素極2に移動する。水素極2では、酸素イオンと外部から供給された水素とが反応して、水蒸気と電子とを生成する。水素極2で生成された電子は酸素極4に供給され、酸素極4での反応に用いられる。 When the cell 1 is operated as an SOFC, hydrogen is supplied to the hydrogen electrode 2 and oxygen is supplied to the oxygen electrode 4 from the outside, and a chemical reaction is caused in the cell 1. Specifically, at the oxygen electrode 4, oxygen and electrons react to generate oxygen ions. This oxygen ion moves from the oxygen electrode 4 to the hydrogen electrode 2 via the electrolyte. At the hydrogen electrode 2, oxygen ions react with hydrogen supplied from the outside to generate water vapor and electrons. The electrons generated at the hydrogen pole 2 are supplied to the oxygen pole 4 and used for the reaction at the oxygen pole 4.

セル1をSOECとして動作させる場合、外部から水素極2に水蒸気を供給すると共に、水素極2と酸素極4との間に電圧を印加して、セル1で化学反応を引き起こす。具体的には、水素極2において、水蒸気と電子とが反応して水素と酸素イオンとに分解される。この酸素イオンは、水素極2から電解質3を経て酸素極4に移動する。酸素極4では、酸素イオンが反応して酸素と電子とを生成する。 When the cell 1 is operated as a SOC, water vapor is supplied to the hydrogen electrode 2 from the outside, and a voltage is applied between the hydrogen electrode 2 and the oxygen electrode 4 to cause a chemical reaction in the cell 1. Specifically, at the hydrogen electrode 2, water vapor and electrons react and are decomposed into hydrogen and oxygen ions. This oxygen ion moves from the hydrogen electrode 2 to the oxygen electrode 4 via the electrolyte 3. At the oxygen pole 4, oxygen ions react to generate oxygen and electrons.

本実施形態では、複数の第一の結晶粒4aの隙間に第二の結晶粒4bが配置されているため、酸素極4は密な構造となり、電解質3への接触面積が向上する。したがって、電解質3と酸素極4との間を酸素イオンが移動しやすくなり、セル1の反応効率が向上する。 In the present embodiment, since the second crystal grains 4b are arranged in the gaps between the plurality of first crystal grains 4a, the oxygen poles 4 have a dense structure and the contact area with the electrolyte 3 is improved. Therefore, oxygen ions easily move between the electrolyte 3 and the oxygen electrode 4, and the reaction efficiency of the cell 1 is improved.

上述した実施形態によれば、複数の第一の結晶粒4aの隙間に第二の結晶粒4bが配置されているため、酸素極4は密な構造となり、電解質3への接触面積が向上する。したがって、電解質3と酸素極4との間を酸素イオンが移動しやすくなり、セル1の反応効率を向上させることができる。 According to the above-described embodiment, since the second crystal grains 4b are arranged in the gaps between the plurality of first crystal grains 4a, the oxygen pole 4 has a dense structure and the contact area with the electrolyte 3 is improved. .. Therefore, oxygen ions can easily move between the electrolyte 3 and the oxygen electrode 4, and the reaction efficiency of the cell 1 can be improved.

なお、本実施形態では、電解質3に酸素極4を積層する場合を例示して説明したが、本実施形態の変形例として、例えば電解質3と酸素極4との間に中間層を設けてもよい。また、本実施形態の他の変形例として、例えば酸素極4上に従来の酸素極を積層してもよい。 In the present embodiment, the case where the oxygen electrode 4 is laminated on the electrolyte 3 has been described as an example, but as a modification of the present embodiment, for example, an intermediate layer may be provided between the electrolyte 3 and the oxygen electrode 4. Good. Further, as another modification of the present embodiment, for example, a conventional oxygen electrode may be laminated on the oxygen electrode 4.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の趣旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1.セル、2.水素極、3.電解質、4.酸素極、4a.第一の結晶粒、4b.第二の結晶粒 1. 1. Cell, 2. Hydrogen pole, 3. Electrolyte, 4. Oxygen pole, 4a. First crystal grain, 4b. Second grain

Claims (5)

水素極、電解質、および酸素極を順次積層する電気化学セルであって、
前記酸素極は、
少なくとも前記電解質と接する領域に配置される複数の第一の結晶粒と、
複数の前記第一の結晶粒の間に配置され、前記第一の結晶粒よりも粒径が小さい第二の結晶粒と、
を備える電気化学セル。
An electrochemical cell in which a hydrogen electrode, an electrolyte, and an oxygen electrode are sequentially laminated.
The oxygen electrode is
A plurality of first crystal grains arranged at least in a region in contact with the electrolyte,
A second crystal grain that is arranged between the plurality of the first crystal grains and has a smaller grain size than the first crystal grain,
An electrochemical cell equipped with.
前記第一の結晶粒に対する前記第二の結晶粒の粒径の比は、0.025以上0.14以下である請求項1に記載された電気化学セル。 The electrochemical cell according to claim 1, wherein the ratio of the particle size of the second crystal grain to the first crystal grain is 0.025 or more and 0.14 or less. 請求項1または2に記載された電気化学セルを備える電気化学セルスタック。 An electrochemical cell stack comprising the electrochemical cell according to claim 1 or 2. 請求項1または2に記載された電気化学セルを備える燃料電池。 A fuel cell comprising the electrochemical cell according to claim 1 or 2. 請求項1または2に記載された電気化学セルを備える水素製造装置。 A hydrogen production apparatus comprising the electrochemical cell according to claim 1 or 2.
JP2019095577A 2019-05-21 2019-05-21 Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device Pending JP2020191221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019095577A JP2020191221A (en) 2019-05-21 2019-05-21 Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019095577A JP2020191221A (en) 2019-05-21 2019-05-21 Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device

Publications (1)

Publication Number Publication Date
JP2020191221A true JP2020191221A (en) 2020-11-26

Family

ID=73454661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019095577A Pending JP2020191221A (en) 2019-05-21 2019-05-21 Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device

Country Status (1)

Country Link
JP (1) JP2020191221A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196069A (en) * 1999-11-01 2001-07-19 Mitsubishi Heavy Ind Ltd Fuel cell
JP2006283103A (en) * 2005-03-31 2006-10-19 Univ Of Yamanashi Steam electrolysis cell
WO2017154038A1 (en) * 2016-03-08 2017-09-14 株式会社 東芝 Flat plate electrochemical cell
JP2018152200A (en) * 2017-03-10 2018-09-27 株式会社日本触媒 Half cell of solid oxide type electrochemical cell, solid oxide type electrochemical cell, and method for manufacturing half cell of solid oxide type electrochemical cell
JP2018190650A (en) * 2017-05-10 2018-11-29 株式会社豊田中央研究所 Power storage/supply system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196069A (en) * 1999-11-01 2001-07-19 Mitsubishi Heavy Ind Ltd Fuel cell
JP2006283103A (en) * 2005-03-31 2006-10-19 Univ Of Yamanashi Steam electrolysis cell
WO2017154038A1 (en) * 2016-03-08 2017-09-14 株式会社 東芝 Flat plate electrochemical cell
JP2018152200A (en) * 2017-03-10 2018-09-27 株式会社日本触媒 Half cell of solid oxide type electrochemical cell, solid oxide type electrochemical cell, and method for manufacturing half cell of solid oxide type electrochemical cell
JP2018190650A (en) * 2017-05-10 2018-11-29 株式会社豊田中央研究所 Power storage/supply system

Similar Documents

Publication Publication Date Title
KR100886239B1 (en) Preventing method of generating by-product and solid oxide fuel cell using the preventing method and method of the solid oxide fuel cell
CN105409041B (en) Solid oxide fuel cell and its manufacturing method
JP2009152016A (en) Protection film coating method on interconnector for solid oxide fuel cell
WO2013054631A1 (en) Fuel battery cell
US20100186220A1 (en) Fabrication method of metal supported solid oxide fuel cell
JP2021155852A (en) Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell
JP2010238431A (en) Power generation cell of fuel battery
JP2014207215A (en) Solid oxide fuel battery half cell, and solid oxide fuel battery
KR20200019623A (en) Solid electrolyte member, solid oxide fuel cell, water electrolysis device, hydrogen pump and method for producing solid electrolyte member
WO2017002608A1 (en) Fuel cell
KR20100108956A (en) Electrolyte for solid oxide fuel cell and manufacturing method of the electrolyte and cell having the electrolyte and manufacturing method of the cell
WO2017002556A1 (en) Fuel cell
JP2020187864A (en) Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen production device
JP2014067686A (en) Fuel battery cell
JP2020191221A (en) Electrochemical cell, electrochemical cell stack, fuel cell, and hydrogen manufacturing device
US10658677B2 (en) Solid oxide fuel cell manufacturing method, solid oxide fuel cell and cell module comprising same
JP7301768B2 (en) Electrochemical cells, electrochemical cell stacks and electrolytes for electrochemical cells
JP2012142241A (en) Method for manufacturing single cell for solid oxide fuel cell
JP7170986B2 (en) FUEL CELL AND FUEL CELL MANUFACTURING METHOD
US20140017598A1 (en) Fuel cell
JP2014067692A (en) Fuel cell unit cell
JP7202172B2 (en) Anode and Solid Oxide Electrochemical Cell
JP7152142B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
JP6808010B2 (en) Electrochemical cell
JP7245210B2 (en) Electrochemical reaction single cell and electrochemical reaction cell stack

Legal Events

Date Code Title Description
RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20191219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230106