JP2021155852A - Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell - Google Patents

Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell Download PDF

Info

Publication number
JP2021155852A
JP2021155852A JP2021095743A JP2021095743A JP2021155852A JP 2021155852 A JP2021155852 A JP 2021155852A JP 2021095743 A JP2021095743 A JP 2021095743A JP 2021095743 A JP2021095743 A JP 2021095743A JP 2021155852 A JP2021155852 A JP 2021155852A
Authority
JP
Japan
Prior art keywords
particles
layer
hydrogen electrode
composite
skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021095743A
Other languages
Japanese (ja)
Inventor
憲和 長田
Norikazu Osada
憲和 長田
雅弘 浅山
Masahiro Asayama
雅弘 浅山
常治 亀田
Tsuneji Kameda
常治 亀田
敏夫 清水
Toshio Shimizu
敏夫 清水
純一 多々見
Junichi Tadami
純一 多々見
健司 梶井
Kenji Kajii
健司 梶井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Toshiba Energy Systems and Solutions Corp
Original Assignee
Yokohama National University NUC
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC, Toshiba Energy Systems and Solutions Corp filed Critical Yokohama National University NUC
Priority to JP2021095743A priority Critical patent/JP2021155852A/en
Publication of JP2021155852A publication Critical patent/JP2021155852A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

To bring a behavior in which a hydrogen electrode layer shrinks closer to a behavior in which an electrolyte layer shrinks as much as possible.SOLUTION: A high temperature steam electrolytic cell of an embodiment of the present invention comprises: a reticulate skeleton; a porous material, which allows a gas to pass through open pores surrounded by the skeleton; and a hydrogen electrode layer that can electrolyze steam, which flows into the open pores, into oxygen ions and hydrogen. The hydrogen electrode layer includes: first particles for forming a skeleton base material; and a composite layer composed with second particles more difficult to be reduced than the first particles, in which the second particles are dispersedly distributed on the surface facing the open pores of the skeleton. A step for forming the composite layer includes: a step in which composite particles, where the second particle adhere to around the first particles, are produced by performing a composite processing to a mixed powder of the first and second particles; and a step in which a precursor of the composite layer is produced by making a paste produced using the composite particles into a sheet.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、固体酸化物電気化学セルに関し、特に、高温水蒸気電解セルに関する。 Embodiments of the present invention relate to solid oxide electrochemical cells, especially high temperature steam electrolysis cells.

固体酸化物電気化学セルには、例えば、高温の水蒸気を電気分解することにより水素と酸素を生成するための高温水蒸気電解セル(SOEC)がある。SOECは、水蒸気を電気分解して水素と酸素イオンを生じさせる、いわゆる水素極と、高温でイオンを伝導可能な固体酸化物で構成された電解質と、水素極から電解質を通って伝わった酸素イオンを酸素にして放出する酸素極とを有している。このようなSOECは、高い動作温度により低い電解電圧で水素を製造することが可能である。なお、このような固体酸化物電気化学セルは、固体酸化物燃料電池(SOFC)として作動させることも可能である。 Solid oxide electrochemical cells include, for example, a high temperature steam electrolysis cell (SOEC) for producing hydrogen and oxygen by electrolyzing high temperature steam. SOEC is a so-called hydrogen electrode that electrolyzes water vapor to generate hydrogen and oxygen ions, an electrolyte composed of a solid oxide capable of conducting ions at high temperatures, and oxygen ions transmitted from the hydrogen electrode through the electrolyte. It has an oxygen electrode that is released as oxygen. Such a SOEC is capable of producing hydrogen at a low electrolytic voltage due to a high operating temperature. It should be noted that such a solid oxide electrochemical cell can also be operated as a solid oxide fuel cell (SOFC).

このような固体酸化物電気化学セルにおいては、一般的に、酸素イオンの伝導性が高く且つガスを通さない材料で構成された電解質が、ガスを通す多孔質材料で構成されたアノード及びカソードに挟まれている。例えば、SOECの場合、電解質の厚さ方向の一方の外側には、水蒸気が内部に流通可能な多孔質部材が配置され、例えば、水蒸気を電気分解して水素と酸素イオンを生じさせる水素極が配置される。 In such a solid oxide electrochemical cell, in general, an electrolyte made of a material having high conductivity of oxygen ions and not allowing gas to pass through is applied to an anode and a cathode made of a porous material that allows gas to pass through. It is sandwiched. For example, in the case of SOEC, a porous member through which water vapor can flow is arranged on one outside of the electrolyte in the thickness direction. For example, a hydrogen electrode that electrolyzes water vapor to generate hydrogen and oxygen ions is provided. Be placed.

このような水素極等を構成する多孔質材料には、一般的に、酸化ニッケルとセラミックスとの複合材料が用いられ、例えば、酸化ニッケル(NiO)とイットリア安定化ジルコニア(YSZ)との焼結体が用いられる。SOECの場合、SOFCと異なり、水素極等を形成する多孔質部材の内部には、比較的に高いガス圧力、具体的には、水蒸気分圧が作用する。このため、SOEC用水素極等を構成する多孔質材料には、金属とセラミックス粒子を含むサーメット材料や、電子・イオン混合導伝性を有する母材に触媒として機能する金属微粒子を担持させたものを用いることが提案されている。 A composite material of nickel oxide and ceramics is generally used as the porous material constituting such a hydrogen electrode, and for example, sintering of nickel oxide (NiO) and yttria-stabilized zirconia (YSZ). The body is used. In the case of SOEC, unlike SOFC, a relatively high gas pressure, specifically, a partial pressure of water vapor acts inside the porous member forming a hydrogen electrode or the like. For this reason, the porous material constituting the hydrogen electrode for SOCC or the like is a cermet material containing metal and ceramic particles, or a base material having electron / ion mixed conductivity in which metal fine particles functioning as a catalyst are supported. It has been proposed to use.

J.Electrochem.Soc., 154, A619-A626 (2007)J. Electrochem.Soc., 154, A619-A626 (2007) J.Electrochem.Soc., 153, A816-A820 (2006)J.Electrochem.Soc., 153, A816-A820 (2006)

ところで、上述した材料で構成された電極は、SOEC用として、十分な初期活性や、耐久性が実証されていない。SOECにおいては、水素極に高加湿された還元性ガスを導入するため、水蒸気利用率の低い条件下においては、触媒や電子導伝パスとして機能する金属粒子が酸化し、水素極内の触媒活性の低下および電子導伝性の低下を導く。また、導入ガスによる酸化と、電極反応で生成したガスによる還元が、金属粒子に繰り返されることで、当該金属粒子の粒成長が生じ、触媒活性の低下や、電子導伝性の低下が、より顕著なものとなる。よって、SOECの水素極では、触媒作用および電子導伝性パスとなる金属粒子の網状構造(ネットワーク構造)の骨格を安定的に形成する必要がある。 By the way, electrodes made of the above-mentioned materials have not been demonstrated to have sufficient initial activity and durability for SOCC. In SOEC, a highly humidified reducing gas is introduced into the hydrogen electrode. Therefore, under conditions of low water vapor utilization, metal particles that function as catalysts and electron conduction paths are oxidized, and the catalytic activity in the hydrogen electrode. And leads to a decrease in electron conductivity. Further, oxidation by the introduced gas and reduction by the gas generated by the electrode reaction are repeated on the metal particles, so that the metal particles grow, and the catalytic activity is lowered and the electron conductivity is lowered. It will be remarkable. Therefore, in the hydrogen electrode of SOEC, it is necessary to stably form the skeleton of the network structure (network structure) of the metal particles that serves as a catalytic action and an electron-conducting path.

このような固体酸化物電気化学セルは、通常、酸素イオンを伝導可能であり且つガスを通さない電解質で構成された層(以下、電解質層と記す)を有している。加えて、固体酸化物電気化学セルは、当該電解質層の厚さ方向の外側に積層されており、網状構造の骨格を有して開放気孔にガスを通す多孔質材料で構成されており、水素極として機能する層(以下、水素極層と記す)とを有している。固体酸化物電気化学セルがSOECである場合、水素極層は、当該開放気孔に流入した水蒸気を酸素イオンと水素に電気分解する。 Such a solid oxide electrochemical cell usually has a layer (hereinafter, referred to as an electrolyte layer) composed of an electrolyte capable of conducting oxygen ions and impermeable to gas. In addition, the solid oxide electrochemical cell is laminated on the outside in the thickness direction of the electrolyte layer, and is composed of a porous material having a skeleton of a network structure and allowing gas to pass through open pores, and hydrogen. It has a layer that functions as a pole (hereinafter referred to as a hydrogen pole layer). When the solid oxide electrochemical cell is SOEC, the hydrogen electrode layer electrolyzes the water vapor flowing into the open pores into oxygen ions and hydrogen.

このような電解質層と水素極層は、焼結する際の体積収縮率が異なる。体積収縮率の差が大きく、焼結する際に収縮する挙動が異なると、電解質層と水素極層が良好に密着しないという問題がある。よって、水素極層が収縮する挙動を、なるべく電解質層が収縮する挙動に近づけて、電解質層と水素極層を密着させることが求められている。 Such an electrolyte layer and a hydrogen electrode layer have different volume shrinkage rates when sintered. If the difference in volume shrinkage is large and the shrinkage behavior during sintering is different, there is a problem that the electrolyte layer and the hydrogen electrode layer do not adhere well. Therefore, it is required that the behavior of the hydrogen electrode layer contracting be as close as possible to the behavior of the electrolyte layer contracting so that the electrolyte layer and the hydrogen electrode layer are brought into close contact with each other.

本発明が解決しようとする課題は、水素極層が収縮する挙動を、なるべく電解質層が収縮する挙動に近づけることが可能な固体酸化物電気化学セルを提供することである。 An object to be solved by the present invention is to provide a solid oxide electrochemical cell capable of making the behavior of the hydrogen electrode layer contracting as close as possible to the behavior of the electrolyte layer contracting.

本発明の実施形態の高温水蒸気電解セルは、酸素イオンを伝導可能であり且つガスを通さない電解質で構成された電解質層と、前記電解質層の厚さ方向の外側に積層されており、網状構造をなす骨格を有して開放気孔にガスを通す多孔質材料で構成されており、且つ当該開放気孔に流入した水蒸気を酸素イオンと水素に電気分解可能な水素極層と、を有し、当該水素極層は、前記骨格の母材を形成する第1粒子と、第1の粒子に比べて還元されにくい第2の粒子が、複合化された層であって、当該骨格のうち前記開放気孔に面する表面に第2の粒子が分散して配置された少なくとも一つの複合層を、含む。前記複合層を形成する工程は、前記第1の粒子と前記第2の粒子とを混合した粉末について複合化処理を行うことによって、前記第1の粒子の周りに前記第2の粒子が付着した複合化粒子を作製する、複合化処理工程と、前記複合化粒子を用いて作製したペーストをシート化することによって前記複合層の前駆体を作製する、前駆体作製工程とを含み、前記複合層の前駆体を焼結することによって、前記複合層が形成される。 The high-temperature steam electrolysis cell according to the embodiment of the present invention has an electrolyte layer composed of an electrolyte capable of conducting oxygen ions and impermeable to gas, and is laminated on the outer side of the electrolyte layer in the thickness direction, and has a network structure. It is composed of a porous material that has a skeleton that forms a gas and allows gas to pass through the open pores, and has a hydrogen electrode layer that can electrolyze the water vapor that has flowed into the open pores into oxygen ions and hydrogen. The hydrogen electrode layer is a layer in which the first particles forming the base material of the skeleton and the second particles that are less likely to be reduced than the first particles are composited, and the open pores of the skeleton are formed. Includes at least one composite layer in which the second particles are dispersed and arranged on a surface facing the surface. In the step of forming the composite layer, the second particles are adhered around the first particles by performing a composite treatment on a powder obtained by mixing the first particles and the second particles. The composite layer includes a composite treatment step of producing composite particles and a precursor preparation step of preparing a precursor of the composite layer by sheeting a paste prepared by using the composite particles. The composite layer is formed by sintering the precursor of.

また、本発明の実施形態の高温水蒸気電解セル用水素極層は、酸素イオンを伝導可能であり且つガスを通さない電解質で構成された電解質層の厚さ方向の外側に積層されており、網状構造をなす骨格を有して開放気孔にガスを通す多孔質材料で構成されており、且つ当該開放気孔に流入した水蒸気を酸素イオンと水素に電気分解可能な水素極層であって、前記骨格の母材を形成する第1粒子と、第1の粒子に比べて還元されにくい第2の粒子が、複合化された層であって、当該骨格のうち前記開放気孔に面する表面に第2の粒子が分散して配置された少なくとも一つの複合層を、含む。前記複合層を形成する工程は、前記第1の粒子と前記第2の粒子とを混合した粉末について複合化処理を行うことによって、前記第1の粒子の周りに前記第2の粒子が付着した複合化粒子を作製する、複合化処理工程と、前記複合化粒子を用いて作製したペーストをシート化することによって前記複合層の前駆体を作製する、前駆体作製工程とを含み、前記複合層の前駆体を焼結することによって、前記複合層が形成される。 Further, the hydrogen electrode layer for a high-temperature steam electrolysis cell according to the embodiment of the present invention is laminated on the outer side in the thickness direction of an electrolyte layer composed of an electrolyte that can conduct oxygen ions and does not allow gas to pass through, and has a network shape. A hydrogen electrode layer having a structural skeleton and being composed of a porous material that allows gas to pass through open pores, and capable of electrolyzing water vapor flowing into the open pores into oxygen ions and hydrogen. The first particle forming the base material of the above and the second particle which is less likely to be reduced than the first particle are a composite layer, and the second particle on the surface of the skeleton facing the open pores. Contains at least one composite layer in which the particles of the above are dispersedly arranged. In the step of forming the composite layer, the second particles are adhered around the first particles by performing a composite treatment on a powder obtained by mixing the first particles and the second particles. The composite layer includes a composite treatment step of producing composite particles and a precursor preparation step of preparing a precursor of the composite layer by sheeting a paste prepared by using the composite particles. The composite layer is formed by sintering the precursor of.

また、本発明の実施形態の固体酸化物電気化学セルは、酸素イオンを伝導可能であり且つガスを通さない電解質で構成された電解質層と、前記電解質層の厚さ方向の外側に積層されており、網状構造をなす骨格を有して開放気孔にガスを通す多孔質材料で構成された水素極層と、を有し、当該水素極層は、前記骨格の母材を形成する第1粒子と、第1の粒子に比べて還元されにくい第2の粒子が、複合化された層であって、当該骨格のうち前記開放気孔に面する表面に第2の粒子が分散して配置された少なくとも一つの複合層を、含む。前記複合層を形成する工程は、前記第1の粒子と前記第2の粒子とを混合した粉末について複合化処理を行うことによって、前記第1の粒子の周りに前記第2の粒子が付着した複合化粒子を作製する、複合化処理工程と、前記複合化粒子を用いて作製したペーストをシート化することによって前記複合層の前駆体を作製する、前駆体作製工程とを含み、前記複合層の前駆体を焼結することによって、前記複合層が形成される。 Further, the solid oxide electrochemical cell of the embodiment of the present invention is laminated on the outer side of the electrolyte layer in the thickness direction with an electrolyte layer composed of an electrolyte capable of conducting oxygen ions and impermeable to gas. It has a hydrogen electrode layer made of a porous material having a skeleton forming a network structure and allowing gas to pass through open pores, and the hydrogen electrode layer is a first particle forming a base material of the skeleton. The second particle, which is less likely to be reduced than the first particle, is a composite layer, and the second particle is dispersed and arranged on the surface of the skeleton facing the open pores. Includes at least one composite layer. In the step of forming the composite layer, the second particles are adhered around the first particles by performing a composite treatment on a powder obtained by mixing the first particles and the second particles. The composite layer includes a composite treatment step of producing composite particles and a precursor preparation step of preparing a precursor of the composite layer by sheeting a paste prepared by using the composite particles. The composite layer is formed by sintering the precursor of.

本発明の実施形態によれば、水素極層が収縮する挙動を、電解質層が収縮する挙動に極力近づけて電解質層と水素極層とを良好に密着させることができ、当該水素極層に網状構造の骨格を安定的に形成することができる。 According to the embodiment of the present invention, the behavior of the hydrogen electrode layer contracting can be made as close as possible to the behavior of the electrolyte layer contracting so that the electrolyte layer and the hydrogen electrode layer can be brought into good contact with each other, and the hydrogen electrode layer can be reticulated. The skeleton of the structure can be stably formed.

本実施形態の高温水蒸気電解セルのうち電解質と、その周辺の構造を示す断面図である。It is sectional drawing which shows the electrolyte of the high temperature steam electrolysis cell of this embodiment, and the structure around it. 本実施形態の高温水蒸気電解セルのうち水素極基体の走査型電子顕微鏡(SEM)による観察結果を示す画像である。It is an image which shows the observation result by the scanning electron microscope (SEM) of the hydrogen electrode substrate in the high temperature steam electrolysis cell of this embodiment. 比較例の高温水蒸気電解セルのうち水素極基体の走査型電子顕微鏡(SEM)による観察結果を示す画像である。It is an image which shows the observation result by the scanning electron microscope (SEM) of the hydrogen electrode substrate in the high temperature steam electrolysis cell of the comparative example. 本実施形態の高温水蒸気電解セルの製造例の焼結時における水素極基体の収縮挙動を示すグラフである。It is a graph which shows the shrinkage behavior of the hydrogen electrode substrate at the time of sintering of the manufacturing example of the high temperature steam electrolysis cell of this embodiment. 本実施形態の高温水蒸気電解セルの比較例の焼結時における水素極基体の収縮挙動を示すグラフである。It is a graph which shows the shrinkage behavior of the hydrogen electrode substrate at the time of sintering of the comparative example of the high temperature steam electrolysis cell of this embodiment. NiO単体の焼結時における収縮挙動を示すグラフである。It is a graph which shows the shrinkage behavior at the time of sintering of NiO simple substance. GDC単体の焼結時における収縮挙動を示すグラフである。It is a graph which shows the shrinkage behavior at the time of sintering of GDC alone.

以下に、本発明の実施形態について図面を参照して説明する。なお、以下に説明する実施形態により、本発明が限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、以下の説明で参照する模式図は、各構成の位置関係を示す図であり、粒子の大きさや各層の厚さの比等は実際のものと必ずしも一致するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the embodiments described below do not limit the present invention, and various modifications can be made without departing from the gist thereof. Further, the schematic diagram referred to in the following description is a diagram showing the positional relationship of each configuration, and the particle size, the ratio of the thickness of each layer, and the like do not always match the actual ones.

本実施形態の固体酸化物電気化学セルのうち電解質周辺の断面構造について図1を用いて説明する。図1は、固体酸化物電気化学セルのうち電解質層と、その周辺の構造を示す断面図である。 The cross-sectional structure of the solid oxide electrochemical cell of the present embodiment around the electrolyte will be described with reference to FIG. FIG. 1 is a cross-sectional view showing the structure of the electrolyte layer and its surroundings in the solid oxide electrochemical cell.

本実施形態の固体酸化物電気化学セルは、図1に示すように、高温の水蒸気を電気分解することにより水素と酸素を生成する高温水蒸気電解セル(以下、SOECと記す)1である。SOEC1は、ガスを通さない電解質で構成された層(以下、電解質層と記す)13と、ガスを通す多孔質材料で構成されており、開放気孔に流入した水蒸気を酸素イオンと水素に電気分解可能な層(以下、水素極層と記す)10を有している。水素極層10は、電解質層13の厚さ方向(図1に矢印Tで示す)の外側(一方側)に積層されている。 As shown in FIG. 1, the solid oxide electrochemical cell of the present embodiment is a high-temperature steam electrolysis cell (hereinafter referred to as SOEC) 1 that produces hydrogen and oxygen by electrolyzing high-temperature steam. SOEC1 is composed of a layer made of an electrolyte that does not allow gas to pass through (hereinafter referred to as an electrolyte layer) 13 and a porous material that allows gas to pass through, and electrolyzes water vapor that has flowed into open pores into oxygen ions and hydrogen. It has a possible layer (hereinafter referred to as a hydrogen electrode layer) 10. The hydrogen electrode layer 10 is laminated on the outside (one side) of the electrolyte layer 13 in the thickness direction (indicated by the arrow T in FIG. 1).

本実施形態において、水素極層10は、電解質層13と隣接しており且つ膜状をなしている水素極活性層102と、当該水素極活性層102に隣接しており、厚さ方向Tにおいて当該水素極活性層102に比べて厚い層状をなしている水素極基体101とを有している。水素極基体101は、当該水素極活性層102を構成する材料とは異なる材料で構成されている。水素極基体101及び水素極活性層102は、それぞれ、多孔質材料で構成されており、具体的には、網状構造(network structure)の骨格を有している。また、水素極基体101及び水素極活性層102は、それぞれ、内部に網状構造の骨格に少なくとも部分的に囲まれた開放気孔(open pore)を有しており、当該開放気孔に流入した水蒸気を酸素イオンと水素に電気分解可能なものである。水素極基体101は、水蒸気が流通可能な水蒸気通路(図示せず)に面している。当該水蒸気通路から水素極基体101内にある開放気孔に流入した水蒸気は、さらに当該水素極活性層102内にある開放気孔に流入する。水蒸気通路からの水蒸気は、主に水素極活性層102内において酸素イオンと水素に電気分解される。 In the present embodiment, the hydrogen electrode layer 10 is adjacent to the hydrogen electrode active layer 102, which is adjacent to the electrolyte layer 13 and has a film shape, and the hydrogen electrode active layer 102, and is adjacent to the hydrogen electrode active layer 102 in the thickness direction T. It has a hydrogen electrode substrate 101 that is thicker than the hydrogen electrode active layer 102. The hydrogen electrode substrate 101 is made of a material different from the material constituting the hydrogen electrode active layer 102. The hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 are each made of a porous material, and specifically have a network structure skeleton. Further, the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 each have open pores that are at least partially surrounded by a skeleton having a network structure, and the water vapor that has flowed into the open pores can be absorbed. It can be electrolyzed into oxygen ions and hydrogen. The hydrogen electrode substrate 101 faces a water vapor passage (not shown) through which water vapor can flow. The water vapor that has flowed into the open pores in the hydrogen electrode substrate 101 from the water vapor passage further flows into the open pores in the hydrogen electrode active layer 102. The water vapor from the water vapor passage is mainly electrolyzed into oxygen ions and hydrogen in the hydrogen polar active layer 102.

また、SOEC1は、電解質層13に対して水素極層10と前記厚さ方向の反対側には、電解質層13からの酸素イオンを酸素にして開放気孔に放出する酸素極15を有している。本実施形態において、当該酸素極15と電解質層13との間には、当該酸素極15と当該電解質層13との間における元素の拡散と反応を防止する反応防止層14が配置されている。すなわち、本実施形態のSOEC1は、水素極基体101、水素極活性層102、電解質層13、反応防止層14及び酸素極層15酸素極層15の順に積層されている。より具体的には、水素極基体101上に水素極活性層102の薄膜を形成し、さらに水素極活性層102上に、電解質層13の薄膜を形成する。さらに当該電解質層13上に、反応防止層14と酸素極15とを形成した構造である。 Further, SOEC1 has an oxygen electrode 15 on the opposite side of the hydrogen electrode layer 10 with respect to the electrolyte layer 13 in the thickness direction, which converts oxygen ions from the electrolyte layer 13 into oxygen and releases them into open pores. .. In the present embodiment, a reaction prevention layer 14 for preventing the diffusion and reaction of elements between the oxygen electrode 15 and the electrolyte layer 13 is arranged between the oxygen electrode 15 and the electrolyte layer 13. That is, the SOEC1 of the present embodiment is laminated in the order of the hydrogen electrode substrate 101, the hydrogen electrode active layer 102, the electrolyte layer 13, the reaction prevention layer 14, and the oxygen electrode layer 15 oxygen electrode layer 15. More specifically, a thin film of the hydrogen electrode active layer 102 is formed on the hydrogen electrode substrate 101, and a thin film of the electrolyte layer 13 is further formed on the hydrogen electrode active layer 102. Further, the structure is such that the reaction prevention layer 14 and the oxygen electrode 15 are formed on the electrolyte layer 13.

次に、本実施形態のSOEC1の各層を構成する材料について説明する。
水素極層10すなわち水素極基体101及び水素極活性層102は、例えば、複数種類の金属酸化物の粒子(第1、第2の粒子)が複合化された複合粒子を用いて製作される。具体的には、水素極基体101及び水素極活性層102は、それぞれ、網状構造の骨格の母材を形成する第1粒子と、第1の粒子に比べて還元されにくい第2の粒子が、焼結により複合化されたものである。
Next, the materials constituting each layer of SOEC1 of the present embodiment will be described.
The hydrogen electrode layer 10, that is, the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 are produced, for example, by using composite particles in which particles of a plurality of types of metal oxides (first and second particles) are composited. Specifically, in the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102, the first particles forming the base material of the skeleton of the network structure and the second particles that are less likely to be reduced than the first particles are respectively. It is composited by sintering.

なお、後述の製造例のように、水素極基体101のみを複合粒子を用いて製作し、水素極活性層102は複合化していない非複合化粒子を用いて製作してもよい。一般に、水素極基体101は水素極活性層102より厚いので、水素極基体101のみを複合化しても、後述の応力低減は実現可能である。 As in the production example described later, only the hydrogen electrode substrate 101 may be produced using composite particles, and the hydrogen electrode active layer 102 may be produced using uncomposited particles. In general, since the hydrogen electrode substrate 101 is thicker than the hydrogen electrode active layer 102, the stress reduction described later can be realized even if only the hydrogen electrode substrate 101 is composited.

骨格の母材を形成する第1の粒子は、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Cu(銅)、Ru(ルテニウム)からなる群より選ばれた少なくとも一種の酸化物であり、これら元素を含む合金が含まれる。 The first particles forming the base material of the skeleton are at least one oxide selected from the group consisting of Ni (nickel), Co (cobalt), Fe (iron), Cu (copper), and Ru (ruthenium). Yes, including alloys containing these elements.

一方、第2の粒子は、第1の粒子に比べて還元されにくいものであり、具体的には、Ce(セリウム)、Gd(ガドリニウム)、Sm(サマリウム)、Y(イットリウム)、Zr(ジルコニウム)、Sc(スカンジウム)からなる群より選ばれた少なくとも一種の酸化物であり、これら元素を含む合金が含まれる。このような第2の粒子には、Y,Sc,Yb,Gd,CaO,MgO,CeO等からなる群から選ばれた少なくとも一種の安定化剤が固溶された安定化ジルコニアが含まれる。また、第2の粒子には、Sm、GdとY等からなる群から選ばれる1種以上の酸化物とCeOが固溶したドープセリアが含まれる。
なお、第1の粒子の粒径は、100nm〜50μmであり、且つ第2の粒子の粒径は、10nm〜5μmであることが好適である。
On the other hand, the second particle is less likely to be reduced than the first particle, and specifically, Ce (cerium), Gd (gadolinium), Sm (samarium), Y (yttrium), Zr (zirconium). ), At least one kind of oxide selected from the group consisting of Sc (scandium), and includes alloys containing these elements. Such second particles include at least one stabilizer selected from the group consisting of Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , CaO, MgO, CeO 2, and the like. Includes stabilized zirconia in which is dissolved. In addition, the second particle contains a dope ceria in which CeO 2 is dissolved in one or more oxides selected from the group consisting of Sm 2 O 3 , Gd 2 O 3, Gd 2 O 3, and Y 2 O 3.
It is preferable that the particle size of the first particle is 100 nm to 50 μm and the particle size of the second particle is 10 nm to 5 μm.

電解質13を構成する材料には、Y,Sc,Yb,Gd,CaO,MgO,CeO等からなる群から選ばれた少なくとも一種の安定化剤が固溶された安定化ジルコニアや、Sm、GdとY等からなる群から選ばれた少なくとも一種の酸化物とCeOが固溶したドープセリアである。 The material constituting the electrolyte 13 includes at least one stabilizer selected from the group consisting of Y 2 O 3 , Sc 2 O 3 , Yb 2 O 3 , Gd 2 O 3 , CaO, MgO, CeO 2, and the like. It is a solid-dissolved stabilized zirconia and a dope ceria in which CeO 2 is solid-dissolved with at least one oxide selected from the group consisting of Sm 2 O 3 , Gd 2 O 3 and Y 2 O 3.

反応防止層14を構成する材料は、Sm、GdとY等からなる群から選ばれた少なくとも一種の酸化物とCeOが固溶したドープセリアである。 The material constituting the reaction prevention layer 14 is a dope ceria in which CeO 2 is solid-solved with at least one oxide selected from the group consisting of Sm 2 O 3 , Gd 2 O 3 and Y 2 O 3.

酸素極15を構成する材料は、ペロブスカイト(Perovskite)構造を有する酸化物(以下、ペロブスカイト酸化物と記す)を含む焼結体である。ペロブスカイト酸化物は主として、Ln1−x1−y3−δで表される。Lnは、例えば、Laなどの希土類が挙げられる。Aは、例えば、Sr,CaとBa等が挙げられる。B及びCは、例えば、Cr,Mn,Co,FeとNi等が挙げられる。
ペロブスカイト酸化物のx、y及びδは、以下の式(1)、式(2)、式(3)の関係を満たす。
0≦x≦1 ・・・(1)
0≦y≦1 ・・・(2)
0≦δ≦1 ・・・(3)
なお、酸素極15を構成する材料には、上述したペロブスカイト酸化物の他に、Sm、GdとY等からなる群から選ばれた少なくとも1種の酸化物をCeOにドープしたセリアをさらに含むものとしても良い。
The material constituting the oxygen electrode 15 is a sintered body containing an oxide having a perovskite structure (hereinafter, referred to as perovskite oxide). The perovskite oxide is mainly represented by Ln 1-x A x B 1-y Cy O 3-δ . Examples of Ln include rare earths such as La. Examples of A include Sr, Ca and Ba. Examples of B and C include Cr, Mn, Co, Fe and Ni.
The x, y and δ of the perovskite oxide satisfy the relations of the following formulas (1), (2) and (3).
0 ≦ x ≦ 1 ・ ・ ・ (1)
0 ≦ y ≦ 1 ・ ・ ・ (2)
0 ≦ δ ≦ 1 ・ ・ ・ (3)
In addition to the above-mentioned perovskite oxide, at least one oxide selected from the group consisting of Sm 2 O 3 , Gd 2 O 3 , Y 2 O 3, etc. is used as the material constituting the oxygen electrode 15. It may further contain ceria doped in CeO 2.

(製造例)
次に、本実施形態のSOEC1の製造方法の一例について説明する。
まず、第1の粒子としての酸化ニッケル(NiO)の粉末と、第2の粒子としての(Gd0.1(CeO0.9の組成になるようにGdをドープしたセリア(GDC)の粉末を重量比7:3で混合する。
(Manufacturing example)
Next, an example of the method for producing SOC1 of the present embodiment will be described.
First, a powder of nickel oxide as first particles (NiO), as a second particles (Gd 2 O 3) 0.1 Gd 2 O 3 so that the composition of (CeO 2) 0.9 Dope ceria (GDC) powder is mixed at a weight ratio of 7: 3.

そして、混合した粉末を、粒子複合化装置に投入し、複合化処理を行う。複合化処理は、乾式、湿式のいずれを用いてもよい。乾式では、粒子間に応力を印加することによって,粒子を複合化する。湿式では、水や高分子溶液などを噴霧して、粉体同士を結びつける。このような複合化処理によって、第1の粒子の周りに第2の粒子が付着した複合化粒子が作製される。
複合化処理後に、開放気孔を形成するための粒子(例えば、発泡剤)が混合される。
Then, the mixed powder is put into the particle compounding apparatus to perform the compounding process. As the compounding treatment, either a dry type or a wet type may be used. In the dry method, the particles are compounded by applying stress between the particles. In the wet method, water or a polymer solution is sprayed to bond the powders together. By such a compounding treatment, composite particles in which the second particle is adhered around the first particle are produced.
After the compounding treatment, particles (eg, foaming agent) for forming open pores are mixed.

複合化したNiO/GDC粒子を用い、水素極基体101となるペーストを作製し、当該ペーストをシート化して水素極基体101の前駆体、いわゆるプリカーサ(precursor)を作製する。当該前駆体には、開放気孔を形成するため発泡剤が含まれている。 Using the composited NiO / GDC particles, a paste to be a hydrogen electrode substrate 101 is prepared, and the paste is made into a sheet to prepare a precursor of the hydrogen electrode substrate 101, a so-called precursor. The precursor contains a foaming agent to form open pores.

そして、水素極基体101の前駆体上に、水素極活性層102となるNiOとGDCの混合物の膜と、電解質層13となるイットリア安定化ジルコニア(YSZ)の膜と、反応防止層14となるGDCの膜を、スプレーコーティング法により順次、形成する。これにより、水素極基体101の前駆体、水素極活性層102、電解質層13、反応防止層14の順に積層された未焼成の積層体が形成される。ここでは、水素極活性層102は、複合化されていない酸化ニッケル(NiO)とセリア(GDC)の混合粉末を用いて、作製される。 Then, on the precursor of the hydrogen electrode substrate 101, a film of a mixture of NiO and GDC serving as a hydrogen electrode active layer 102, a film of yttria-stabilized zirconia (YSZ) serving as an electrolyte layer 13, and a reaction prevention layer 14 are formed. The GDC film is sequentially formed by the spray coating method. As a result, an unfired laminate in which the precursor of the hydrogen electrode substrate 101, the hydrogen electrode active layer 102, the electrolyte layer 13, and the reaction prevention layer 14 are laminated in this order is formed. Here, the hydrogen polar active layer 102 is prepared by using a mixed powder of uncomposited nickel oxide (NiO) and ceria (GDC).

その後、1200℃以上、1600℃以下の範囲内で、当該積層体の焼成(いわゆる仮焼)を行う。水素極基体101の前駆体、水素極活性層102、電解質層13、反応防止層14のそれぞれが所定の強度となり、且つ各層の間が所定の強度で密着するまで焼成する。 After that, the laminate is fired (so-called calcining) within the range of 1200 ° C. or higher and 1600 ° C. or lower. The precursor of the hydrogen electrode substrate 101, the hydrogen electrode active layer 102, the electrolyte layer 13, and the reaction prevention layer 14 are each fired until they have a predetermined strength and the layers are in close contact with each other with a predetermined strength.

そして、仮焼された積層体のうち反応防止層14上に、酸素極15となるLa(Sr)Co(Fe)O3−δを、スプレーコーティング法により形成する。そして、900℃以上、1300℃以下の範囲内で、酸素極15が反応防止層14に強固に結合されるように焼成(いわゆる焼結)を行う。これにより、水素極基体101、水素極活性層102、電解質層13、反応防止層14及び酸素極15の順に積層された焼結体としてのSOEC1が得られる。このように作製された水素極基体101中の複合化したNiO/GDC粒子は、焼成によって、NiO粒子とGDC粒子とがより強固に結合(焼結)した状態となる。 Then, La (Sr) Co (Fe) O 3-δ, which is the oxygen electrode 15, is formed on the reaction prevention layer 14 of the calcined laminate by a spray coating method. Then, firing (so-called sintering) is performed so that the oxygen electrode 15 is firmly bonded to the reaction prevention layer 14 within the range of 900 ° C. or higher and 1300 ° C. or lower. As a result, SOEC1 as a sintered body in which the hydrogen electrode substrate 101, the hydrogen electrode active layer 102, the electrolyte layer 13, the reaction prevention layer 14 and the oxygen electrode 15 are laminated in this order can be obtained. The composited NiO / GDC particles in the hydrogen electrode substrate 101 thus produced are in a state in which the NiO particles and the GDC particles are more firmly bonded (sintered) by firing.

なお、上述した製造例においては、第1の粒子としての酸化ニッケル(NiO)の粉末と、第2の粒子としての(Gd0.1(CeO0.9の組成になるようにGdをドープしたセリア(GDC)の粉末は、重量比7:3で混合されるものとしたが、当該混合比(重量比)やGDCの組成は、これに限定されるものではない。第1の粒子としてのNiOと、第2の粒子としてのGDCの粉末は、重量比5:5〜75:25で
混合されることが望ましく、GDC中の(Gd)量は0.1〜0.3であることが望ましい。
In the above-mentioned production example, the composition is nickel oxide (NiO) powder as the first particle and (Gd 2 O 3 ) 0.1 (CeO 2 ) 0.9 as the second particle. As described above, the powder of ceria (GDC) doped with Gd 2 O 3 was assumed to be mixed at a weight ratio of 7: 3, but the mixing ratio (weight ratio) and the composition of GDC are limited to this. is not it. It is desirable that NiO as the first particle and the powder of GDC as the second particle are mixed at a weight ratio of 5: 5 to 75:25, and the amount of (Gd 2 O 3 ) in the GDC is 0. It is preferably 1 to 0.3.

なお、比較例では、NiOとGDCを重量比7:3で混合した混合粉末と、溶媒を混合して、水素極基体101のペーストを作製した。すなわち、粉末はボールミル装置などで混合したのみで、複合化されていない(非複合化粉末)。これ以外の工程は、実施例と同様とした。 In the comparative example, a mixed powder obtained by mixing NiO and GDC at a weight ratio of 7: 3 and a solvent were mixed to prepare a paste of the hydrogen electrode substrate 101. That is, the powder is only mixed by a ball mill or the like and is not composited (non-composite powder). The steps other than this were the same as in the examples.

(水素極基体の構造観察)
以上のようにして得られたSOEC1のうち水素極基体101の走査型電子顕微鏡(SEM:scanning electron microscope)による観察結果を、図2に示す。図2は、本実施形態の高温水蒸気電解セルのうち水素極基体の走査型電子顕微鏡(SEM)による観察結果を示す画像である。
(Observation of structure of hydrogen electrode substrate)
FIG. 2 shows the observation results of the hydrogen electrode substrate 101 of the SOEC1 obtained as described above by a scanning electron microscope (SEM). FIG. 2 is an image showing the observation results of the hydrogen electrode substrate of the high-temperature steam electrolysis cell of the present embodiment by a scanning electron microscope (SEM).

なお、図3は、比較例の高温水蒸気電解セルのうち水素極基体の走査型電子顕微鏡(SEM)による観察結果を示す画像である。図2及び図3に示すSEM画像は、反射電子像であるため、図中の明部がGDCに相当し、暗部がNiOに相当する。 Note that FIG. 3 is an image showing the observation results of the hydrogen electrode substrate of the high-temperature steam electrolysis cell of the comparative example by a scanning electron microscope (SEM). Since the SEM images shown in FIGS. 2 and 3 are reflected electron images, the bright part in the figure corresponds to GDC and the dark part corresponds to NiO.

本実施形態の製造例では、図2に示すように、暗部であるNiOの焼結が十分に進み、良好な網状構造(ネットワーク構造)を形成していることが観察される。また、そのNiOの網状構造の骨格の表面に、明部であるGDCの粒子が凝集無く、均一に形成することができており、SOEC1の作動中に起こるNiOの過剰な焼結を防ぐことが可能になる。GDC粒子(第2の粒子)は、網状構造の骨格のうち開放気孔に面する表面において、10〜90%の面積を占める。 In the production example of this embodiment, as shown in FIG. 2, it is observed that the sintering of NiO, which is a dark portion, has progressed sufficiently to form a good network structure (network structure). Further, the particles of GDC, which is a bright part, can be uniformly formed on the surface of the skeleton of the network structure of NiO without agglomeration, and it is possible to prevent excessive sintering of NiO that occurs during the operation of SOEC1. It will be possible. The GDC particles (second particles) occupy 10 to 90% of the area of the skeleton of the network structure facing the open pores.

一方、比較例においては、比較例1では、暗部であるNiOの焼結が十分に進み、良好な網状構造(ネットワーク構造)を形成しているものの、明部であるGDCの凝集が観察されていることから、作動中に網状構造の骨格の母材を形成しているNiOの焼結が進行し、水素極基体101としての機能が低下するものと考えられる。 On the other hand, in Comparative Example 1, in Comparative Example 1, although the sintering of NiO in the dark part proceeded sufficiently and a good network structure (network structure) was formed, aggregation of GDC in the bright part was observed. Therefore, it is considered that the sintering of NiO forming the base material of the skeleton having a network structure progresses during the operation, and the function as the hydrogen electrode substrate 101 deteriorates.

(SOECの作動による還元)
SOEC1の水素極基体101および水素極活性層102は、運転時、600℃〜900℃の高温の作動条件下で、水蒸気と水素の共存下の還元雰囲気に曝される。酸化物である水素極基体101および水素極活性層102は、上述した作動条件下において部分的に還元される。上述した製造例および比較例の水素極基体101および水素極活性層102では、還元されやすさが異なる二種の粒子、すなわち第1の粒子と第2の粒子から成るため、還元されやすいNiOが還元されて体積収縮を伴いながらNiになり、GDCは、酸化物のまま構造を維持する。
(Reduction by operating SOEC)
The hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 of SOEC1 are exposed to a reducing atmosphere in the coexistence of water vapor and hydrogen under high temperature operating conditions of 600 ° C. to 900 ° C. during operation. The hydrogen electrode substrate 101 and the hydrogen electrode active layer 102, which are oxides, are partially reduced under the above-mentioned operating conditions. In the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 of the above-mentioned production example and comparative example, since they are composed of two kinds of particles having different easiness of reduction, that is, the first particle and the second particle, NiO which is easily reduced is produced. It is reduced to Ni with volume shrinkage, and GDC maintains its structure as an oxide.

製造例においては、比較的還元されやすいNiO粒子(第1の粒子)が均一な網状構造の骨格の母材を形成し、骨格のうち開口気孔に面する表面上に還元されにくいGDC粒子(第2の粒子)が分散して配置されている。このため、上述したSOECの作動条件下で水素極基体101および水素極活性層102が均一に還元収縮され、且つ水素極基体101および水素極活性層102を含む水素極層10が収縮する挙動を、電解質層13が収縮する挙動に極力、近づけることができる。これにより、水素極基体101および水素極活性層102に作用する応力や、水素極活性層102と電解質層13との間に作用する応力を低減することができる。 In the production example, NiO particles (first particles) that are relatively easily reduced form a base material of a skeleton having a uniform network structure, and GDC particles (first particles) that are difficult to be reduced on the surface of the skeleton facing the open pores. 2 particles) are dispersed and arranged. Therefore, the hydrogen electrode base 101 and the hydrogen electrode active layer 102 are uniformly reduced and shrunk under the above-mentioned SOEC operating conditions, and the hydrogen electrode layer 10 including the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 contracts. , The behavior of the electrolyte layer 13 contracting can be as close as possible. Thereby, the stress acting on the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 and the stress acting between the hydrogen electrode active layer 102 and the electrolyte layer 13 can be reduced.

なお、比較例のように、GDCの偏りがある場合には、水素極基体101および水素極活性層102の還元収縮にも偏りが生じ、水素極基体101および水素極活性層102内
や、水素極活性層102と電解質層13との間に生じる応力により、水素極基体101および水素極活性層102内にマイクロクラックが生じ、SOEC1の性能が低下する場合がある。
When the GDC is biased as in the comparative example, the reduction shrinkage of the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 is also biased, and the hydrogen electrode substrate 101 and the hydrogen electrode active layer 102 and hydrogen are also biased. Due to the stress generated between the polar active layer 102 and the electrolyte layer 13, microcracks may occur in the hydrogen electrode substrate 101 and the hydrogen polar active layer 102, and the performance of SOC1 may be deteriorated.

(焼結時の収縮挙動)
上述した製造例および比較例で用いた水素極基体101や、NiO単体、およびGDC単体の焼結時の収縮挙動を測定した。以下に、本実施形態の高温水蒸気電解セルの製造例の焼結時における水素極基体の収縮挙動を、比較例の焼結時における水素極基体の収縮挙動、NiO単体の焼結時における収縮挙動及びGDC単体の焼結時における収縮挙動と比較して説明する。
(Shrinking behavior during sintering)
The shrinkage behavior of the hydrogen electrode substrate 101 used in the above-mentioned production examples and comparative examples, NiO alone, and GDC alone during sintering was measured. The following shows the shrinkage behavior of the hydrogen electrode substrate during sintering of the production example of the high-temperature steam electrolysis cell of the present embodiment, the shrinkage behavior of the hydrogen electrode substrate during sintering of the comparative example, and the shrinkage behavior of NiO alone during sintering. And, it will be described in comparison with the shrinkage behavior at the time of sintering the GDC alone.

図4は、本実施形態の高温水蒸気電解セルの製造例の焼結時における水素極基体の収縮挙動を示すグラフである。図5は、本実施形態の高温水蒸気電解セルの比較例の焼結時における水素極基体の収縮挙動を示すグラフである。図6は、NiO単体の焼結時における収縮挙動を示すグラフである。図7は、GDC単体の焼結時における収縮挙動を示すグラフである。なお、図4に示す製造例の焼結時の熱量は、807kJ/molであり、図5に示す比較例の焼結時の熱量は、762kJ/molであり、図6に示すNiO単体の焼結時の熱量は、372kJ/molであり、図7に示すGDC単体の焼結時の熱量は、765kJ/molである。 FIG. 4 is a graph showing the shrinkage behavior of the hydrogen electrode substrate at the time of sintering in the production example of the high-temperature steam electrolysis cell of the present embodiment. FIG. 5 is a graph showing the shrinkage behavior of the hydrogen electrode substrate during sintering of the comparative example of the high-temperature steam electrolysis cell of the present embodiment. FIG. 6 is a graph showing the shrinkage behavior of NiO alone during sintering. FIG. 7 is a graph showing the shrinkage behavior of GDC alone during sintering. The calorific value at the time of sintering in the production example shown in FIG. 4 is 807 kJ / mol, and the calorific value at the time of sintering in the comparative example shown in FIG. 5 is 762 kJ / mol. The amount of heat at the time of binding is 372 kJ / mol, and the amount of heat at the time of sintering the GDC alone shown in FIG. 7 is 765 kJ / mol.

図4及び図5に示すNiO粒子(第1の粒子)とGDC粒子(第2の粒子)との混合粒子の焼結時における収縮挙動は、網状構造の骨格の母材を当該NiO粒子(第1の粒子)が形成しているにも拘わらず、図6に示すNiO単体の焼結時の収縮挙動よりも、図7に示すGDC単体の焼結時の収縮挙動に近くなっている。すなわち、網状構造の骨格に分散して配置されたGDCの粒子(第2の粒子)が、NiO粒子(第1の粒子)の焼結による過剰な収縮挙動を抑制しているものと考えられる。これにより水素極層10が収縮する挙動を抑制して、電解質層13が収縮する挙動に近づけることができる。 The shrinkage behavior of the mixed particles of the NiO particles (first particles) and GDC particles (second particles) shown in FIGS. 4 and 5 at the time of sintering shows that the base material of the skeleton of the network structure is the NiO particles (second particles). Despite the formation of the particles of 1), the shrinkage behavior of NiO alone shown in FIG. 6 during sintering is closer to the shrinkage behavior of GDC alone shown in FIG. 7 during sintering. That is, it is considered that the GDC particles (second particles) dispersed and arranged in the skeleton of the network structure suppress the excessive shrinkage behavior due to the sintering of the NiO particles (first particles). As a result, the behavior of the hydrogen electrode layer 10 contracting can be suppressed, and the behavior of the electrolyte layer 13 contracting can be approached.

また、SOEC1の作動条件下で電子導伝性を有するNiO粒子と、イオン導伝性を有するGDC粒子を予め混合した複合粒子により網状構造の骨格を形成することにより、これら粒子自身が良好な電子とイオンの導電体とすることができ、水素極層10内に電子・イオン導伝する網状(ネットワーク)構造を形成することができ、SOEC1の作動条件下において金属の過剰な焼きしまりが起こらず、高い触媒活性を維持することが可能となる。また、網状構造の骨格を形成する粒子を、母材を形成する第1の粒子と、第1の粒子に比べて還元されにくい第2の粒子との複合粒子とし、第1の粒子と第2の粒子との比率を調整することで焼結特性を制御することが可能となる。 Further, by forming a skeleton of a network structure with composite particles in which NiO particles having electron conductivity and GDC particles having ion conductivity are mixed in advance under the operating conditions of SOC1, these particles themselves have good electrons. And can be a conductor of ions, a network structure that conducts electrons and ions can be formed in the hydrogen electrode layer 10, and excessive burning of metal does not occur under the operating conditions of SOEC1. , It becomes possible to maintain high catalytic activity. Further, the particles forming the skeleton of the network structure are composite particles of the first particles forming the base material and the second particles which are less likely to be reduced than the first particles, and the first particles and the second particles are used. It is possible to control the sintering characteristics by adjusting the ratio of the particles to the particles.

〔他の実施形態〕
なお、上述した実施形態において、水素極層10(図1参照)は、電解質層13と隣接しており且つ膜状をなしている水素極活性層102と、当該水素極活性層102に隣接しており、当該水素極活性層102と材料が異なり、且つ厚さ方向Tにおいて当該水素極活性層102に比べて厚い層状をなしている水素極基体101とを含み、網状構造の骨格のうち開放気孔に面する表面に第2の粒子が分散して配置された複合層は、水素極基体101及び水素極活性層102であるものとしたが、本実施形態に係る複合層は、この態様に限定されるものではない。本実施形態に係る複合層は、例えば、水素極基体101のみであるものとしても良い。水素極基体101と電解質層13との焼結時の収縮挙動を近づけることで、その間にある薄膜状の水素極活性層102の収縮挙動も、その厚さ方向Tの両側にある水素極基体101及び電解質層13に近づけることができる。
[Other Embodiments]
In the above-described embodiment, the hydrogen electrode layer 10 (see FIG. 1) is adjacent to the electrolyte layer 13 and has a film-like hydrogen electrode active layer 102, and is adjacent to the hydrogen electrode active layer 102. The hydrogen electrode active layer 102 is different from the hydrogen electrode active layer 102, and the hydrogen electrode substrate 101 is thicker than the hydrogen electrode active layer 102 in the thickness direction T, and is open in the skeleton of the network structure. The composite layer in which the second particles are dispersed and arranged on the surface facing the pores is assumed to be a hydrogen electrode substrate 101 and a hydrogen electrode active layer 102, but the composite layer according to the present embodiment is in this embodiment. It is not limited. The composite layer according to the present embodiment may be, for example, only the hydrogen electrode substrate 101. By bringing the shrinkage behavior of the hydrogen electrode base 101 and the electrolyte layer 13 during sintering closer to each other, the shrinkage behavior of the thin-film hydrogen pole active layer 102 between them also becomes the hydrogen pole base 101 on both sides in the thickness direction T. And can be brought closer to the electrolyte layer 13.

また、上述した実施形態において、水素極層10は、水素極活性層102と、水素極基体101との材料や厚さの異なる2つの層を含むものとしたが、本実施形態に係る水素極層は、この態様に限定されるものではない。水素極層は、同一材料且つ同一構造の単数の層、すなわち単数の水素極(水素極活性層のみ)とし、当該水素極が、網状構造の骨格のうち開放気孔に面する表面に第2の粒子が分散して配置された複合層としても良い。 Further, in the above-described embodiment, the hydrogen electrode layer 10 includes two layers having different materials and thicknesses from the hydrogen electrode active layer 102 and the hydrogen electrode substrate 101, but the hydrogen electrode according to the present embodiment. The layer is not limited to this aspect. The hydrogen electrode layer is a single layer of the same material and the same structure, that is, a single hydrogen electrode (only the hydrogen electrode active layer), and the hydrogen electrode is the second surface of the skeleton of the network structure facing the open pores. It may be a composite layer in which particles are dispersed and arranged.

また、上述した実施形態において、固定酸化物電気化学セルは、高温水蒸気電解セル(SOEC)1であるものとしたが、本実施形態に係る固定酸化物電気化学セルは、これに限定されるものではなく、固体酸化物燃料電池(SOFC)にも適用することができる。
以上説明したように、少なくともひとつの実施形態によれば、水素極層が収縮する挙動を、なるべく電解質層が収縮する挙動に近づけることができる。
Further, in the above-described embodiment, the fixed oxide electrochemical cell is a high-temperature steam electrolysis cell (SOEC) 1, but the fixed oxide electrochemical cell according to the present embodiment is limited to this. However, it can also be applied to solid oxide fuel cells (SOFCs).
As described above, according to at least one embodiment, the behavior of the hydrogen electrode layer contracting can be made as close as possible to the behavior of the electrolyte layer contracting.

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

1 高温水蒸気電解セル(固体酸化物電気化学セル)、10 水素極層、101 水素極基体(水素極層、複合層)、102 水素極活性層(水素極層、複合層)、13 電解質層(電解質)、14 反応防止層、15 酸素極 1 High temperature steam electrolysis cell (solid oxide electrochemical cell), 10 hydrogen electrode layer, 101 hydrogen electrode substrate (hydrogen electrode layer, composite layer), 102 hydrogen electrode active layer (hydrogen electrode layer, composite layer), 13 electrolyte layer ( Electrolyte), 14 Anti-reaction layer, 15 Oxygen electrode

Claims (9)

酸素イオンを伝導可能であり且つガスを通さない電解質で構成された電解質層と、前記電解質層の厚さ方向の外側に積層されており、網状構造の骨格を有し、当該骨格に囲まれた開放気孔にガスを通す多孔質材料で構成されており、且つ当該開放気孔に流入した水蒸気を酸素イオンと水素に電気分解可能な水素極層と、を有し、当該水素極層は、前記骨格の母材を形成する第1の粒子と、第1の粒子に比べて還元されにくい第2の粒子が、複合化された層であって、当該骨格のうち前記開放気孔に面する表面に第2の粒子が分散して配置された少なくとも一つの複合層を含む高温水蒸気電解セルの製造方法であって、
前記複合層を形成する工程は、
前記第1の粒子と前記第2の粒子とを混合した粉末について複合化処理を行うことによって、前記第1の粒子の周りに前記第2の粒子が付着した複合化粒子を作製する、複合化処理工程と、
前記複合化粒子を用いて作製したペーストをシート化することによって前記複合層の前駆体を作製する、前駆体作製工程と
を含み、前記複合層の前駆体を焼結することによって、前記複合層が形成される、
高温水蒸気電解セルの製造方法。
It has an electrolyte layer composed of an electrolyte that can conduct oxygen ions and does not allow gas to pass through, and is laminated on the outside in the thickness direction of the electrolyte layer, has a skeleton of a network structure, and is surrounded by the skeleton. It is made of a porous material that allows gas to pass through the open pores, and has a hydrogen electrode layer that can electrolyze the water vapor that has flowed into the open pores into oxygen ions and hydrogen. The hydrogen electrode layer is the skeleton. The first particle forming the base material of the above and the second particle which is less likely to be reduced than the first particle are a composite layer, and the surface of the skeleton facing the open pores is the first. A method for producing a high-temperature steam electrolysis cell containing at least one composite layer in which two particles are dispersed and arranged.
The step of forming the composite layer is
By performing a compounding treatment on a powder obtained by mixing the first particles and the second particles, composite particles in which the second particles are adhered around the first particles are produced. Processing process and
The composite layer includes a precursor preparation step of preparing a precursor of the composite layer by sheeting a paste prepared by using the composite particles, and by sintering the precursor of the composite layer. Is formed,
A method for manufacturing a high-temperature steam electrolysis cell.
前記複合層の前駆体は、前記開放気孔を形成するための発泡剤を含む、
請求項1に記載の高温水蒸気電解セルの製造方法。
The precursor of the composite layer contains a foaming agent for forming the open pores.
The method for producing a high-temperature steam electrolysis cell according to claim 1.
前記第1の粒子は、Ni、Co、Fe、Cu、Ruからなる群より選ばれた少なくとも一種の酸化物であり、
前記第2の粒子は、Ce、Gd、Sm、Y、Zr、Scからなる群より選ばれた少なくとも一種の酸化物である
請求項2に記載の高温水蒸気電解セルの製造方法。
The first particle is at least one oxide selected from the group consisting of Ni, Co, Fe, Cu, and Ru.
The method for producing a high-temperature steam electrolysis cell according to claim 2, wherein the second particle is at least one oxide selected from the group consisting of Ce, Gd, Sm, Y, Zr, and Sc.
前記水素極層は、
前記電解質層と隣接している水素極活性層と、
当該水素極活性層に隣接しており、当該水素極活性層と材料が異なり、且つ前記厚さ方向において当該水素極活性層に比べて厚い層状をなしている水素極基体と、
を含み、
前記複合層は、当該水素極基体及び当該水素極活性層のうち少なくとも水素極基体である
請求項1から3のいずれかに記載の高温水蒸気電解セルの製造方法。
The hydrogen electrode layer is
The hydrogen pole active layer adjacent to the electrolyte layer and
A hydrogen electrode substrate that is adjacent to the hydrogen electrode active layer, has a different material from the hydrogen electrode active layer, and has a thicker layer than the hydrogen electrode active layer in the thickness direction.
Including
The method for producing a high-temperature steam electrolysis cell according to any one of claims 1 to 3, wherein the composite layer is at least a hydrogen electrode substrate among the hydrogen electrode substrate and the hydrogen electrode active layer.
前記電解質層に対して前記水素極層と前記厚さ方向の反対側に配置されており、ガスを通す多孔質材料で構成されており、前記電解質層からの酸素イオンを酸素にして開放気孔に放出する酸素極と、
当該酸素極と前記電解質層との間に配置されて当該酸素極と当該電解質層との間における元素の拡散と反応を防止する反応防止層と、
をさらに有する請求項1から4のいずれかに記載の高温水蒸気電解セルの製造方法。
It is arranged on the opposite side of the hydrogen electrode layer from the electrolyte layer in the thickness direction, and is composed of a porous material that allows gas to pass through. Oxygen ions from the electrolyte layer are converted into oxygen to form open pores. The oxygen electrode to be released and
An anti-reaction layer arranged between the oxygen electrode and the electrolyte layer to prevent the diffusion and reaction of elements between the oxygen electrode and the electrolyte layer,
The method for producing a high-temperature steam electrolysis cell according to any one of claims 1 to 4, further comprising.
前記第1の粒子の粒径は、100nm〜50μmであり、
前記第2の粒子の粒径は、10nm〜5μmである
請求項1から5のいずれかに記載の高温水蒸気電解セルの製造方法。
The particle size of the first particle is 100 nm to 50 μm.
The method for producing a high-temperature steam electrolysis cell according to any one of claims 1 to 5, wherein the particle size of the second particle is 10 nm to 5 μm.
前記第2の粒子は、当該骨格のうち前記開放気孔に面する表面において、10〜90%の面積を占める
請求項1から6のいずれかに記載の高温水蒸気電解セルの製造方法。
The method for producing a high-temperature steam electrolysis cell according to any one of claims 1 to 6, wherein the second particles occupy an area of 10 to 90% on the surface of the skeleton facing the open pores.
酸素イオンを伝導可能であり且つガスを通さない電解質で構成された電解質層の厚さ方向の外側に積層されており、網状構造の骨格を有し、当該骨格に囲まれた開放気孔にガスを通す多孔質材料で構成されており、且つ当該開放気孔に流入した水蒸気を酸素イオンと水素に電気分解可能な水素極層であって、前記骨格の母材を形成する第1粒子と、第1の粒子に比べて還元されにくい第2の粒子が、複合化された層であって、当該骨格のうち前記開放気孔に面する表面に第2の粒子が分散して配置された少なくとも一つの複合層を含む高温水蒸気電解セル用水素極層の製造方法であって、
前記複合層を形成する工程は、
前記第1の粒子と前記第2の粒子とを混合した粉末について複合化処理を行うことによって、前記第1の粒子の周りに前記第2の粒子が付着した複合化粒子を作製する、複合化処理工程と、
前記複合化粒子を用いて作製したペーストをシート化することによって前記複合層の前駆体を作製する、前駆体作製工程と
を含み、前記複合層の前駆体を焼結することによって、前記複合層が形成される、
高温水蒸気電解セル用水素極層の製造方法。
It is laminated on the outside in the thickness direction of the electrolyte layer composed of an electrolyte that can conduct oxygen ions and does not allow gas to pass through, has a skeleton of a network structure, and gas is supplied to the open pores surrounded by the skeleton. A first particle and a first particle which is a hydrogen electrode layer which is composed of a porous material through which the gas passes and is capable of electrolyzing the water vapor flowing into the open pores into oxygen ions and hydrogen, and which forms the base material of the skeleton. The second particle, which is less likely to be reduced than the particles of, is a composite layer, and at least one composite in which the second particle is dispersed and arranged on the surface of the skeleton facing the open pores. A method for producing a hydrogen electrode layer for a high-temperature steam electrolytic cell including a layer.
The step of forming the composite layer is
By performing a compounding treatment on a powder obtained by mixing the first particles and the second particles, composite particles in which the second particles are adhered around the first particles are produced. Processing process and
The composite layer includes a precursor preparation step of preparing a precursor of the composite layer by sheeting a paste prepared by using the composite particles, and by sintering the precursor of the composite layer. Is formed,
A method for manufacturing a hydrogen electrode layer for a high-temperature steam electrolytic cell.
酸素イオンを伝導可能であり且つガスを通さない電解質で構成された電解質層と、
前記電解質層の厚さ方向の外側に積層されており、網状構造の骨格を有し、当該骨格に囲まれた開放気孔にガスを通す多孔質材料で構成された水素極層と、を有し、当該水素極層は、前記骨格の母材を形成する第1粒子と、第1の粒子に比べて還元されにくい第2の粒子が、複合化された層であって、当該骨格のうち前記開放気孔に面する表面に第2の粒子が分散して配置された少なくとも一つの複合層を含む、固体酸化物電気化学セルの製造方法であって、
前記複合層を形成する工程は、
前記第1の粒子と前記第2の粒子とを混合した粉末について複合化処理を行うことによって、前記第1の粒子の周りに前記第2の粒子が付着した複合化粒子を作製する、複合化処理工程と、
前記複合化粒子を用いて作製したペーストをシート化することによって前記複合層の前駆体を作製する、前駆体作製工程と
を含み、前記複合層の前駆体を焼結することによって、前記複合層が形成される、
固体酸化物電気化学セルの製造方法。
An electrolyte layer composed of an electrolyte that can conduct oxygen ions and does not allow gas to pass through.
It has a hydrogen electrode layer that is laminated on the outside in the thickness direction of the electrolyte layer, has a skeleton of a network structure, and is composed of a porous material that allows gas to pass through open pores surrounded by the skeleton. The hydrogen electrode layer is a layer in which the first particles forming the base material of the skeleton and the second particles that are less likely to be reduced than the first particles are composited, and the skeleton is described above. A method for producing a solid oxide electrochemical cell, which comprises at least one composite layer in which second particles are dispersed and arranged on a surface facing open pores.
The step of forming the composite layer is
By performing a compounding treatment on a powder obtained by mixing the first particles and the second particles, composite particles in which the second particles are adhered around the first particles are produced. Processing process and
The composite layer includes a precursor preparation step of preparing a precursor of the composite layer by sheeting a paste prepared by using the composite particles, and by sintering the precursor of the composite layer. Is formed,
A method for producing a solid oxide electrochemical cell.
JP2021095743A 2017-03-16 2021-06-08 Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell Pending JP2021155852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021095743A JP2021155852A (en) 2017-03-16 2021-06-08 Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017051262A JP2018154864A (en) 2017-03-16 2017-03-16 High temperature steam electrolysis cell, hydrogen electrode layer therefor, and solid oxide electrochemical cell
JP2021095743A JP2021155852A (en) 2017-03-16 2021-06-08 Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017051262A Division JP2018154864A (en) 2017-03-16 2017-03-16 High temperature steam electrolysis cell, hydrogen electrode layer therefor, and solid oxide electrochemical cell

Publications (1)

Publication Number Publication Date
JP2021155852A true JP2021155852A (en) 2021-10-07

Family

ID=63717142

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017051262A Pending JP2018154864A (en) 2017-03-16 2017-03-16 High temperature steam electrolysis cell, hydrogen electrode layer therefor, and solid oxide electrochemical cell
JP2021095743A Pending JP2021155852A (en) 2017-03-16 2021-06-08 Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017051262A Pending JP2018154864A (en) 2017-03-16 2017-03-16 High temperature steam electrolysis cell, hydrogen electrode layer therefor, and solid oxide electrochemical cell

Country Status (1)

Country Link
JP (2) JP2018154864A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7114555B2 (en) * 2019-11-27 2022-08-08 株式会社豊田中央研究所 Electrodes for water vapor electrolysis
JP7309642B2 (en) * 2020-03-19 2023-07-18 株式会社東芝 High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell
JP2022022700A (en) 2020-07-02 2022-02-07 東芝エネルギーシステムズ株式会社 Electrochemical cell and electrochemical cell stack
EP4306502A1 (en) 2021-03-11 2024-01-17 NGK Insulators, Ltd. Methane production system and methane production method
CN116867928A (en) 2021-03-11 2023-10-10 日本碍子株式会社 Methane production system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283103A (en) * 2005-03-31 2006-10-19 Univ Of Yamanashi Steam electrolysis cell
JP2009263741A (en) * 2008-04-28 2009-11-12 Univ Of Yamanashi High-temperature steam electrolytic cell
JP2012514827A (en) * 2009-01-05 2012-06-28 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for producing nickel cermet electrode
JP2012146459A (en) * 2011-01-11 2012-08-02 Toshiba Corp Solid oxide electrochemical cell and method of manufacturing the same
KR20130047534A (en) * 2011-10-28 2013-05-08 한국전력공사 Solid oxide fuel cell and solid oxide electrolysis cell including ni-ysz fuel(hydrogen) electrode, and fabrication method thereof
JP2013175479A (en) * 2013-05-09 2013-09-05 Toshiba Corp Fuel electrode of solid oxide electrochemical cell, and solid oxide electrochemical cell
JP2014089816A (en) * 2012-10-29 2014-05-15 Toshiba Corp Electrochemical cell and manufacturing method thereof
JP2017022111A (en) * 2015-07-08 2017-01-26 株式会社日本触媒 Laminate

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5093741B2 (en) * 2005-05-25 2012-12-12 三菱マテリアル株式会社 Power generation cell for solid oxide fuel cell and manufacturing method thereof
EP2333883A1 (en) * 2009-11-18 2011-06-15 Forschungszentrum Jülich Gmbh (FJZ) Anode for a high temperature fuel cell and production of same
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP6202784B2 (en) * 2012-05-18 2017-09-27 株式会社東芝 Hydrogen production equipment
KR20140048738A (en) * 2012-10-16 2014-04-24 삼성전자주식회사 Cathode composite for solid oxide fuel cell, method for preparing the same and solid oxide fuel cell including the same
CN103872366B (en) * 2012-12-12 2016-12-07 中国科学院上海硅酸盐研究所 A kind of metal-supported solid oxide fuel cell and preparation method thereof
JP6396127B2 (en) * 2013-09-25 2018-09-26 株式会社デンソー Anode for fuel cell and single cell for fuel cell

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283103A (en) * 2005-03-31 2006-10-19 Univ Of Yamanashi Steam electrolysis cell
JP2009263741A (en) * 2008-04-28 2009-11-12 Univ Of Yamanashi High-temperature steam electrolytic cell
JP2012514827A (en) * 2009-01-05 2012-06-28 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ Method for producing nickel cermet electrode
JP2012146459A (en) * 2011-01-11 2012-08-02 Toshiba Corp Solid oxide electrochemical cell and method of manufacturing the same
KR20130047534A (en) * 2011-10-28 2013-05-08 한국전력공사 Solid oxide fuel cell and solid oxide electrolysis cell including ni-ysz fuel(hydrogen) electrode, and fabrication method thereof
JP2014089816A (en) * 2012-10-29 2014-05-15 Toshiba Corp Electrochemical cell and manufacturing method thereof
JP2013175479A (en) * 2013-05-09 2013-09-05 Toshiba Corp Fuel electrode of solid oxide electrochemical cell, and solid oxide electrochemical cell
JP2017022111A (en) * 2015-07-08 2017-01-26 株式会社日本触媒 Laminate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
村田 憲司, 外4名: "固体酸化物形燃料電池用Ni-YSZ系燃料極特性に及ぼす粒子複合条件の影響", 粉体工学会誌, vol. 第42巻, 第5号, JPN6022016360, 10 May 2005 (2005-05-10), pages 312 - 316, ISSN: 0005006861 *

Also Published As

Publication number Publication date
JP2018154864A (en) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5208518B2 (en) Method for producing a reversible solid oxide fuel cell
JP2021155852A (en) Production method of high temperature steam electrolytic cell, production method of hydrogen electrode layer for high temperature steam electrolytic cell, and production method of solid oxide electrochemical cell
US20130280634A1 (en) Unit Cell of Metal-Supported Solid Oxide Fuel Cell, Preparation Method Thereof, and Solid Oxide Fuel Cell Stack Using the Unit Cell
JP6658754B2 (en) Solid oxide fuel cell and method for producing electrolyte layer-anode assembly
JP2016100196A (en) Anode for solid oxide type fuel battery, manufacturing method thereof, and method for manufacturing electrolyte layer-electrode assembly for fuel battery
US20120037499A1 (en) Composite oxygen electrode and method for preparing same
JP2013201035A (en) Solid oxide electrochemical cell
CN112447982A (en) Solid oxide fuel cell and method for manufacturing same
JP2015062164A (en) Solid oxide fuel cell
US11682771B2 (en) Electrochemical cell and electrochemical cell stack
CN112701298B (en) Solid oxide fuel cell and method for manufacturing same
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
JP2021144794A (en) Solid oxide fuel cell and manufacturing method for the same
DK2669984T3 (en) Layered anode system for electrochemical applications and processes for their preparation
WO2018167889A1 (en) Oxygen electrode for electrochemical cell, and electrochemical cell
JP6088949B2 (en) Fuel cell single cell and manufacturing method thereof
JP7107875B2 (en) Manufacturing method of fuel electrode-solid electrolyte layer composite
KR20120085488A (en) Solid electrolyte for solid oxide fuel cell, and solid oxide fuel cell including the solid electrolyte
KR101335063B1 (en) Method of large powewr solid oxide fuel cell
KR100957794B1 (en) The manufacturing method of solid oxide fuel cell with CGO coating layer
JP2016085921A (en) Cell support and solid oxide fuel cell
JP6712119B2 (en) Solid oxide fuel cell stack
JP6075924B2 (en) Fuel cell single cell and manufacturing method thereof
JP7349847B2 (en) Electrochemical cell, electrochemical reaction cell stack
WO2023190016A1 (en) Solid oxide electrolyzer cell, production method for solid oxide electrolyzer cell, solid oxide electrolyzer module, electrochemical device, and energy system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230307