JP7309642B2 - High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell - Google Patents

High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell Download PDF

Info

Publication number
JP7309642B2
JP7309642B2 JP2020048711A JP2020048711A JP7309642B2 JP 7309642 B2 JP7309642 B2 JP 7309642B2 JP 2020048711 A JP2020048711 A JP 2020048711A JP 2020048711 A JP2020048711 A JP 2020048711A JP 7309642 B2 JP7309642 B2 JP 7309642B2
Authority
JP
Japan
Prior art keywords
component
cell
hydrogen production
temperature steam
steam electrolysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048711A
Other languages
Japanese (ja)
Other versions
JP2021147664A (en
Inventor
雅弘 浅山
常治 亀田
憲和 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=77848078&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7309642(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020048711A priority Critical patent/JP7309642B2/en
Publication of JP2021147664A publication Critical patent/JP2021147664A/en
Application granted granted Critical
Publication of JP7309642B2 publication Critical patent/JP7309642B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

本発明の実施形態は、高温水蒸気電解水素製造用セル及び高温水蒸気電解水素製造用セルの製造方法に関する。 Embodiments of the present invention relate to a high-temperature steam electrolysis hydrogen production cell and a method for manufacturing a high-temperature steam electrolysis hydrogen production cell.

近年、化石燃料の枯渇、および大気中への二酸化炭素の放出による地球温暖化などの環境問題、エネルギーセキュリティー、などの観点から、太陽光や風力、地熱などに代表される再生可能エネルギーの導入が推進されている。また、二次エネルギーとして、貯蔵や輸送の観点から、水素エネルギーが注目されている。この水素エネルギーは、例えば燃料電池自動車への適用が期待されており、低コストで品質の高い水素の製造や貯蔵が求められている。 In recent years, from the perspective of environmental issues such as the depletion of fossil fuels, global warming caused by the release of carbon dioxide into the atmosphere, and energy security, the introduction of renewable energy represented by solar, wind, and geothermal power is increasing. being promoted. Hydrogen energy is attracting attention as a secondary energy from the viewpoint of storage and transportation. This hydrogen energy is expected to be applied to fuel cell vehicles, for example, and there is a demand for low-cost, high-quality hydrogen production and storage.

水素製造においては、現在はコストや技術の観点から化石燃料を改質して製造する手法が主流である。しかし、化石燃料改質による水素製造は、その製造過程において二酸化炭素を不可避的に発生させる。 In terms of cost and technology, currently the mainstream method of hydrogen production is to reform and produce hydrogen from fossil fuels. However, hydrogen production by fossil fuel reforming inevitably generates carbon dioxide during the production process.

一方、水や水蒸気を原料とし、再生可能エネルギーを用いて水素を製造する方法は、二酸化炭素を発生させず、環境負荷が少ないことが分かっている。この水や水蒸気を電解して水素を製造する方法には、固体高分子電解質膜を用いるPEM型や、固体酸化物を用いるSOEC型が知られている。 On the other hand, it is known that the method of producing hydrogen using water or steam as a raw material and using renewable energy does not generate carbon dioxide and has a low environmental load. A PEM type using a solid polymer electrolyte membrane and an SOEC type using a solid oxide are known as methods for producing hydrogen by electrolyzing water or steam.

なかでも固体酸化物を用いるSOEC型は、水素を製造するための電力が原理的に少なく、将来の水素製造方法として期待されている。この水素製造の電解に必須な固体酸化物セルは、電子を通す支持層、水を電解する活性層、酸素イオンを導伝する電解質層、酸素イオンを結合し酸素分子にする酸素極より構成されている。 Among them, the SOEC type, which uses a solid oxide, is expected as a future hydrogen production method because it theoretically requires less electric power for producing hydrogen. The solid oxide cell, which is essential for the electrolysis of hydrogen production, consists of a support layer that conducts electrons, an active layer that electrolyzes water, an electrolyte layer that conducts oxygen ions, and an oxygen electrode that combines oxygen ions into oxygen molecules. ing.

固体酸化物セルは、600~1000℃程度の高温で動作するため、各構成層には熱的安定性が求められる。特に熱的に不安定な多孔質セラミックスであり、最も体積割合が大きな支持層には、高い安定性が要求されている。そのため、支持層には電子を通す第1成分に加えて、結晶粒や気孔径の成長を抑制する第2成分を添加する場合が多く、安定化のために第2成分を多く加えると電子伝導性が低下するという課題があった。 Since solid oxide cells operate at high temperatures of about 600 to 1000° C., each constituent layer is required to have thermal stability. In particular, the support layer, which is a thermally unstable porous ceramic and has the largest volume ratio, is required to have high stability. Therefore, in addition to the first component that allows electrons to pass through, the support layer often contains a second component that suppresses the growth of crystal grains and pore diameters. There was a problem of declining performance.

特許第5498191号Patent No. 5498191

高温水蒸気電解水素製造用セルは、電解により水素を生成するため、その電子伝導性が優れていることが望まれる。一方、高温での安定化のためには構造安定化のため第2成分を添加する必要があるが、第2成分の配置構造に関しては、検討が十分とは言えず、セルの高温での電子伝導性の安定化は大きな課題であった。 Since the high-temperature steam electrolysis hydrogen production cell produces hydrogen by electrolysis, it is desired that the electron conductivity is excellent. On the other hand, it is necessary to add a second component for structural stability in order to stabilize the cell at high temperatures. Stabilization of conductivity was a big issue.

そこで、本発明の課題は、高温での安定性が高く、かつ、電子伝導性に優れた高温水蒸気電解水素製造用セル及び高温水蒸気電解水素製造用セルの製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a cell for producing hydrogen by high-temperature steam electrolysis, which has high stability at high temperatures and excellent electron conductivity, and a method for producing a cell for producing hydrogen by high-temperature steam electrolysis.

実施形態の高温水蒸気電解水素製造用セルは、電子を伝導可能でありかつガスを通し、セルの主たる強度保持の役割を有する支持層と、ガス及び酸素イオンを通し水を電解する活性層と、酸素イオンを導伝しガスを通さない電解質層と、酸素イオンを結合し酸素分子にする酸素極と、を備えた高温水蒸気電解水素製造用セルであって、前記支持層は、電気伝導性を有する材料からなる第1成分と、高温強度を維持するための材料からなる第2成分と、ガス透過性を有する気孔と、を有し、前記第1成分の結晶粒子の、前記第2成分の結晶粒子による被覆率が、10%~55%の範囲内である。 The cell for high-temperature steam electrolysis hydrogen production of the embodiment comprises: a support layer which is capable of conducting electrons and allows gas to pass through and plays a major role in maintaining the strength of the cell; an active layer which allows gas and oxygen ions to pass through and electrolyzes water; A cell for high-temperature steam electrolysis hydrogen production, comprising an electrolyte layer that conducts oxygen ions but impermeable to gas, and an oxygen electrode that binds oxygen ions to form oxygen molecules, wherein the support layer has electrical conductivity. a second component made of a material for maintaining high-temperature strength; and pores having gas permeability; The coverage with crystal grains is in the range of 10% to 55%.

実施形態に係る高温水蒸気電解水素製造用セルの断面概略構成を示す図。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing a schematic cross-sectional structure of a high-temperature steam electrolysis hydrogen production cell according to an embodiment; 支持層の構成を拡大して模式的に示す図。The figure which expands and shows the structure of a support layer typically.

以下、図面を参照して、実施形態に係る高温水蒸気電解水素製造用セルについて説明する。 A high-temperature steam electrolysis hydrogen production cell according to an embodiment will be described below with reference to the drawings.

図1は、実施形態に係る高温水蒸気電解水素製造用セル(SOEC)100の断面概略構成を示している。図1に示すように、高温水蒸気電解水素製造用セル100は、電子を伝導可能でありかつガスを通す支持層101と、ガス及び酸素イオンを通し水を電解する活性層102と、酸素イオンを導伝しガスを通さない電解質層103と、酸素イオンを結合し酸素分子にする酸素極104とを備えている。 FIG. 1 shows a schematic cross-sectional configuration of a high-temperature steam electrolysis hydrogen production cell (SOEC) 100 according to an embodiment. As shown in FIG. 1, a high-temperature steam electrolysis hydrogen production cell 100 includes a support layer 101 that can conduct electrons and allows gas to pass through, an active layer 102 that allows gas and oxygen ions to pass through to electrolyze water, and oxygen ions. It has an electrolyte layer 103 that is conductive and impermeable to gas, and an oxygen electrode 104 that combines oxygen ions into oxygen molecules.

図2は、図1に示す支持層101の構造を拡大して模式的に示す図である。支持層101は、多孔質セラミックスからなり、図2に示すように、電子を通す第1成分(図2中ハッチングを付した部分。)と、高温での構造安定性を持たせるために加えられた第2成分(図2中ハッチングを付していない部分。)と、を具備している。第2成分は、結晶粒や気孔径の成長を抑制して高温での構造安定化を図るためのものである。 FIG. 2 is an enlarged diagram schematically showing the structure of the support layer 101 shown in FIG. The support layer 101 is made of porous ceramics, and as shown in FIG. 2, the first component (the hatched portion in FIG. 2) that allows electrons to pass through and the structural stability at high temperatures are added. and a second component (part not hatched in FIG. 2). The second component is for stabilizing the structure at high temperatures by suppressing the growth of crystal grains and pore diameters.

第1成分としては、例えば、Ni(ニッケル)、Co(コバルト)、Fe(鉄)、Cu(銅)、Ru(ルテニウム)からなる群より選ばれた少なくとも一種の酸化物を用いることができ、これら元素を含む合金も用いることができる。 As the first component, for example, at least one oxide selected from the group consisting of Ni (nickel), Co (cobalt), Fe (iron), Cu (copper), and Ru (ruthenium) can be used, Alloys containing these elements can also be used.

第2成分としては、例えば、Ce(セリウム)、Gd(ガドリニウム)、Sm(サマリウム)、Y(イットリウム)、Zr(ジルコニウム)、Sc(スカンジウム)からなる群より選ばれた少なくとも一種の酸化物を用いることができ、これら元素を含む合金も用いることができる。 As the second component, for example, at least one oxide selected from the group consisting of Ce (cerium), Gd (gadolinium), Sm (samarium), Y (yttrium), Zr (zirconium), and Sc (scandium). can be used, and alloys containing these elements can also be used.

上記第2成分としては、例えば、Y,Sc,Yb,Gd,CaO,MgO,CeO等の安定化剤が固溶された安定化ジルコニアを用いることができる。また、第2成分としては、例えば、Gd等の酸化物とCeOが固溶したガドリニアドープセリア(GDC)等を用いることができる。 As the second component, for example, stabilized zirconia in which a stabilizer such as Y2O3 , Sc2O3 , Yb2O3 , Gd2O3 , CaO, MgO, CeO2 is dissolved is used. be able to. As the second component, for example, gadolinia-doped ceria (GDC) in which an oxide such as Gd 2 O 3 and CeO 2 are solid-dissolved can be used.

本実施形態において、支持層101は、以下に示す被覆率が10%から55%の範囲内となるように構成されている。
被覆率(%)=(第1成分が第2成分と接触している長さ/第1成分結晶粒の周囲長さ)×100
In this embodiment, the support layer 101 is configured so that the coverage shown below is in the range of 10% to 55%.
Coverage (%) = (length of contact between the first component and the second component/peripheral length of the first component crystal grain) x 100

上記のように、被覆率を10%から55%の範囲内とすることにより、支持層101の電気伝導度を高める(電気抵抗を低くする)ことができる。 As described above, by setting the coverage within the range of 10% to 55%, the electrical conductivity of the support layer 101 can be increased (the electrical resistance can be decreased).

電解質層103を構成する材料としては、例えば、上述した安定化ジルコニアや、ガドリニアドープセリア(GDC)等を用いることができる。 As a material forming the electrolyte layer 103, for example, the above-described stabilized zirconia, gadolinia-doped ceria (GDC), or the like can be used.

酸素極104を構成する材料としは、例えば、ペロブスカイト構造を有する酸化物を含む焼結体や、ガドリニアドープセリア(GDC)等を用いることができる。 As a material forming the oxygen electrode 104, for example, a sintered body containing an oxide having a perovskite structure, gadolinia-doped ceria (GDC), or the like can be used.

(実施例)
次に、実施例について説明する。
図1に示した支持層101を製作するにあたり、まず、平均粒径が0.7μmの酸化ニッケルと、粉末の平均粒径が0.05μmから4μmの安定化ジルコニアを、重量比で6:4になるよう調合し、さらに有機溶媒(エタノール)を加えボールミルにて24時間混合し、スラリーを得た。
(Example)
Next, examples will be described.
In manufacturing the support layer 101 shown in FIG. 1, nickel oxide with an average particle size of 0.7 μm and stabilized zirconia powder with an average particle size of 0.05 μm to 4 μm were mixed at a weight ratio of 6:4. Further, an organic solvent (ethanol) was added and mixed in a ball mill for 24 hours to obtain a slurry.

次に、上記のようにして作製したスラリーに、粒径1μmの気孔形成剤を重量比で5%添加するとともに、バインダーを10%加え十分撹拌した後にシート成形にて厚さが0.6mmの成形体からなる支持層シートを得た。 Next, 5% by weight of a pore-forming agent having a particle size of 1 μm was added to the slurry prepared as described above, and 10% of a binder was added, and after sufficient stirring, the slurry was formed into a sheet having a thickness of 0.6 mm. A support layer sheet composed of a molded body was obtained.

次に、上記のようにして作製した支持層シート上に電解質層103を形成するにあたり、支持層シート上に安定化ジルコニアスラリーを0.01mmの厚さでスクリーン印刷してその層を形成した。 Next, in forming the electrolyte layer 103 on the support layer sheet produced as described above, the stabilized zirconia slurry was screen-printed on the support layer sheet to a thickness of 0.01 mm to form the layer.

次に、上記の支持層シートを乾燥後、600℃で2時間の脱脂を行い、気孔形成剤およびバインダーを除去した脱脂体を得た。さらに1400℃で2時間焼結を行った。この焼結の際、昇温時に1000℃以上の温度域での昇温速度を変えることで第2成分の凝集状態を変え、第1成分への被覆率を制御した。 Next, after drying the support layer sheet, it was degreased at 600° C. for 2 hours to obtain a degreased body from which the pore-forming agent and the binder were removed. Further, sintering was performed at 1400° C. for 2 hours. During this sintering, the rate of temperature increase in the temperature range of 1000° C. or higher was changed to change the aggregation state of the second component, thereby controlling the coverage of the first component.

上記焼結の際の第1成分への被覆率を制御は、1000℃以上の温度域での1時間あたりの昇温速度を、10℃/h~60℃/hの範囲で7通りの昇温速度として行った。なお、1000度未満の昇温速度は、いずれも25℃/hである。したがって、1000℃以上の温度域での昇温速度を25℃/hとした場合、1000℃未満の昇温速度と1000℃以上の温度域での昇温速度は、同じである。 The control of the coverage of the first component during the sintering is performed by increasing the temperature increase rate per hour in the temperature range of 1000 ° C. or higher in seven ways in the range of 10 ° C./h to 60 ° C./h. It was carried out as a temperature rate. Note that the rate of temperature increase below 1000°C is 25°C/h in all cases. Therefore, when the temperature increase rate in the temperature range of 1000° C. or higher is 25° C./h, the temperature increase rate of less than 1000° C. and the temperature range of 1000° C. or higher are the same.

以上のように1000℃以上の温度域での昇温速度を下げると被覆率が大きくなり、昇温速度を上げると被覆率が小さくなる傾向を示す。なお、1000℃以上の温度域での昇温速度を25℃/hとした場合被覆率は40%となり、1000℃以上の温度域での昇温速度を25℃/hより高くした場合被覆率は40%より少なくなり、低くした場合被覆率は40%より多くなった。 As described above, there is a tendency that when the heating rate is lowered in the temperature range of 1000° C. or higher, the coverage increases, and when the heating rate is raised, the coverage decreases. The coverage rate is 40% when the temperature increase rate in the temperature range of 1000 ° C. or higher is 25 ° C./h, and the coverage rate is higher than 25 ° C./h in the temperature range of 1000 ° C. or higher. was less than 40%, and when lowered the coverage was greater than 40%.

次に、得られた焼結体を、幅20mm厚さ0.5mmに切出した後、4端子法にて電気伝導度を測定した。なお、電気伝導度の測定は5回行い平均値を算出し、平均被覆率40%の値で規格化した。 Next, the obtained sintered body was cut into pieces having a width of 20 mm and a thickness of 0.5 mm, and the electric conductivity was measured by the four-probe method. The electrical conductivity was measured five times, and the average value was calculated and normalized by the value at an average coverage of 40%.

また、被覆率は、以下のようにして評価した。
まず、セル断面を鏡面研磨後、SEM(走査型電子顕微鏡)にて、組織観察を行い、典型的な粒子径を有する第1成分の結晶粒子を20個選択する。その粒子の周囲の長さを測定した(長さA)。
Moreover, the coverage was evaluated as follows.
First, after the cross section of the cell is mirror-polished, the structure is observed with a SEM (scanning electron microscope), and 20 crystal grains of the first component having a typical grain size are selected. The perimeter of the particle was measured (length A).

次に、第1成分の粒子に接触している第2成分の粒子(こちらが重元素なので明るく見えて容易に識別可能)の長さを測定した(長さB)。 Next, the length of the particles of the second component (because they are heavy elements, they look bright and can be easily identified) in contact with the particles of the first component were measured (length B).

被覆率は、
被覆率=B÷A×100
により算出し、20個の粒子に対してこれを求め平均した値を求めた。
The coverage is
Coverage = B/A x 100
, and the values were obtained and averaged for 20 particles.

なお、この時の理論相対密度は72%であった。理論相対密度が高くなるとガスを通すための多孔質性が減少するため、理論相対密度は最大でも80%以下とすることが好ましい。また、第1成分と第2成分の熱膨張係数差が大きいと、焼結後冷却した際などにおいて割れを生じる可能性がある。したがって、第1成分と第2成分の熱膨張係数差は、1~4×10-6/K以内とすることが好ましい。この場合、一般的に第1成分の熱膨張係数のほうが、第2成分の熱膨張係数より大きい。 The theoretical relative density at this time was 72%. As the theoretical relative density increases, the porosity for gas passage decreases, so the theoretical relative density is preferably 80% or less at the maximum. In addition, if the difference in thermal expansion coefficient between the first component and the second component is large, cracks may occur during cooling after sintering. Therefore, the difference in thermal expansion coefficient between the first component and the second component is preferably within 1 to 4×10 −6 /K. In this case, the coefficient of thermal expansion of the first component is generally greater than the coefficient of thermal expansion of the second component.

測定によって得られた電気伝導度比(被覆率40%の値で規格化)と、被覆率との関係を、表1に示す。 Table 1 shows the relationship between the electrical conductivity ratio (normalized by the value at a coverage of 40%) obtained by measurement and the coverage.

Figure 0007309642000001
Figure 0007309642000001

表1において、試料の被覆率が60%,55%,50%,40%,30%,20%,10%と異なっている。これは、1000℃以上の温度域での1時間あたりの昇温速度を、異ならせたことによる。そして、被覆率が10~55%の範囲において電気伝導度が良好(電気抵抗値が低い)になっていることが分かる。また、被覆率が10~30%の範囲においては、さらに電気伝導度が良好(電気抵抗値が低い)になっている。 In Table 1, the coverage of the samples is different from 60%, 55%, 50%, 40%, 30%, 20% and 10%. This is because the heating rate per hour in the temperature range of 1000° C. or higher was varied. It can also be seen that the electrical conductivity is good (the electrical resistance is low) when the coverage is in the range of 10 to 55%. Further, in the range of 10 to 30% coverage, the electrical conductivity is even better (the electrical resistance value is low).

すなわち、1000℃以上の温度域での昇温速度を、速めることによって、被覆率を減少させることができ、電気伝導度を高めることができる。被覆率の観点から見れば、被覆率を10%~55%程度とすることが好ましく、10%~30%程度とすることがさらに好ましい。 That is, by increasing the temperature increase rate in the temperature range of 1000° C. or higher, the coverage can be reduced and the electrical conductivity can be increased. From the viewpoint of coverage, the coverage is preferably about 10% to 55%, more preferably about 10% to 30%.

次に、焼結時の保持時間を5時間から100時間の範囲で変更し、焼結体中の第1成分の結晶粒の大きさ(平均粒径)を変化させるとともに、気孔形成剤の粒径を変更して気孔径を変えた試料を作成し、これらの相違が電気伝導度に与える影響について調べた結果について説明する。なお、上記した焼結時の保持時間と気孔形成剤の粒径以外の製作条件は、表1に示した電気伝導度比1の試料と同様である。また、電気伝導度の測定は、前述した方法により行った。 Next, the holding time during sintering was changed in the range of 5 hours to 100 hours to change the size of the crystal grains (average grain size) of the first component in the sintered body, and to change the grain size of the pore-forming agent. We prepared samples with different pore sizes by changing the diameter, and investigated the effect of these differences on the electrical conductivity. The manufacturing conditions other than the holding time during sintering and the particle size of the pore-forming agent are the same as those for the sample with an electrical conductivity ratio of 1 shown in Table 1. Also, the electrical conductivity was measured by the method described above.

平均粒径及び気孔径の測定は、SEMにて典型的な粒子を20個抽出し、ランダムに縦と横の長さを測定し平均値を求めた。なお、アスペクト比が大きい場合は実情を反映しないことになるが、実際の測定ではそのような例はなかった。 The average particle size and pore size were measured by extracting 20 typical particles by SEM, randomly measuring lengths and widths, and obtaining average values. In addition, when the aspect ratio is large, the actual situation is not reflected, but there was no such example in the actual measurement.

以下の表2に上記の結果を示す。電気伝導度比は、粒径0.3μm、気孔径0.5μmの値で規格化した。 Table 2 below shows the above results. The electrical conductivity ratio was standardized based on the values for a particle size of 0.3 μm and a pore size of 0.5 μm.

Figure 0007309642000002
Figure 0007309642000002

表2に示されるように、焼結体中の第1成分の結晶粒の大きさ(平均粒径)は、0.3μm,1μm,5μm,10μm,20μmとなったが、これらは保持時間が5h,10h,20h,50h,100hの場合であり、保持時間が長くなるほど結晶粒の大きさ(平均粒径)は、大きくなる。 As shown in Table 2, the crystal grain size (average grain size) of the first component in the sintered body was 0.3 μm, 1 μm, 5 μm, 10 μm, and 20 μm. These are the cases of 5 hours, 10 hours, 20 hours, 50 hours, and 100 hours, and the longer the holding time, the larger the grain size (average grain size).

気孔径(平均径)については、0.5μm,1μm,6μm,12μm,20μm,30μmとなったが、これらは気孔形成剤の粒径が1μm,1.5μm,5μm,20μm,30μm,50μmの場合である。 The pore diameters (average diameter) were 0.5 μm, 1 μm, 6 μm, 12 μm, 20 μm and 30 μm. is the case.

焼結体中の第1成分の結晶粒の大きさ(平均粒径)は、20μmの場合に、電気伝導度が低下する傾向が見られた。したがって、焼結体中の結晶粒の大きさ(平均粒径)は、0.3μm~10μmの範囲とすることが好ましい。 When the crystal grain size (average grain size) of the first component in the sintered body was 20 μm, the electrical conductivity tended to decrease. Therefore, the size of crystal grains (average grain size) in the sintered body is preferably in the range of 0.3 μm to 10 μm.

また、気孔径については、0.5μmの場合及び30μmの場合に、電気伝導度が低下する傾向が見られた。したがって、気孔径については、1μm~20μmの範囲とすることが好ましい。 Also, with respect to the pore diameter, there was a tendency for the electrical conductivity to decrease when the pore diameter was 0.5 μm and 30 μm. Therefore, the pore diameter is preferably in the range of 1 μm to 20 μm.

上記のように、第1成分の結晶粒の大きさ(平均粒径)を、0.3μm~10μmの範囲、気孔径を1μm~20μmの範囲とすることによって、支持層の電気伝導度を高めることができる。 As described above, by setting the crystal grain size (average grain size) of the first component in the range of 0.3 μm to 10 μm and the pore diameter in the range of 1 μm to 20 μm, the electrical conductivity of the support layer is increased. be able to.

温水蒸気を電解して水素を発生させる平板型固体酸化物形電気化学セルを用いたSOECは、PEM法や、アルカリ水電解法よりも水電解効率が高く水素製造コストが低く抑えられることが知られている。一方、高温動作のためセルの支持層の材質が多孔質セラミックであり、強度が低いことに起因する構造部材としての信頼性が低いこと、電子伝導性とガス透過性が必要であることが課題となっている。 It is known that SOEC, which uses a flat-plate solid oxide electrochemical cell that generates hydrogen by electrolyzing hot steam, has higher water electrolysis efficiency than the PEM method and alkaline water electrolysis, and can keep hydrogen production costs low. ing. On the other hand, due to the high temperature operation, the material of the support layer of the cell is porous ceramic, and the reliability as a structural member is low due to its low strength, and the electronic conductivity and gas permeability are required. It has become.

セルの電子伝導性は、水素製造における損失である内部抵抗であることから低いことが求められる。本実施形態は多孔質セラミックスの主構成要素部材である支持層の電子伝導性を保持させるための構成であり、電子伝導を担う第1成分の結晶粒子の周囲に対する高温での構造安定性をもたせる第2成分の被覆率を規定することでセルの電子伝導性を高く保持させることが可能となる。 The electronic conductivity of the cell is required to be low because it is the internal resistance that is loss in hydrogen production. This embodiment is a configuration for maintaining the electronic conductivity of the support layer, which is the main component member of the porous ceramics, and provides structural stability at high temperatures around the crystal grains of the first component responsible for electronic conduction. By defining the coverage of the second component, it is possible to maintain high electronic conductivity of the cell.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the invention have been described above, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the scope of the invention described in the claims and equivalents thereof.

100……高温水蒸気電解水素製造用セル、101……支持層、102……活性層、103……電解質層、104……酸素極。 100... High-temperature steam electrolysis hydrogen production cell, 101... Support layer, 102... Active layer, 103... Electrolyte layer, 104... Oxygen electrode.

Claims (6)

電子を伝導可能でありかつガスを通し、セルの主たる強度保持の役割を有する支持層と、ガス及び酸素イオンを通し水を電解する活性層と、酸素イオンを導伝しガスを通さない電解質層と、酸素イオンを結合し酸素分子にする酸素極と、を備えた高温水蒸気電解水素製造用セルであって、
前記支持層は、電気伝導性を有する材料からなる第1成分と、高温強度を維持するための材料からなる第2成分と、ガス透過性を有する気孔と、を有し、
前記第1成分の結晶粒子の、前記第2成分の結晶粒子による被覆率が、10%~55%の範囲内であることを特徴とする高温水蒸気電解水素製造用セル。
A support layer capable of conducting electrons and permeable to gas and having the primary role of maintaining the strength of the cell, an active layer permeable to gas and oxygen ions to electrolyze water, and an electrolyte layer that conducts oxygen ions and is impermeable to gas. and an oxygen electrode that combines oxygen ions into oxygen molecules, the cell for producing hydrogen by high-temperature steam electrolysis,
The support layer has a first component made of a material having electrical conductivity, a second component made of a material for maintaining high-temperature strength, and pores having gas permeability,
A cell for high-temperature steam electrolysis hydrogen production, wherein the coverage of the crystal grains of the first component with the crystal grains of the second component is in the range of 10% to 55%.
前記第1成分の結晶粒子の平均粒径が0.3μm~10μmの範囲であり、かつ、前記気孔の平均径が1μm~20μmの範囲であることを特徴とする請求項1に記載の高温水蒸気電解水素製造用セル。 2. The high-temperature steam according to claim 1, wherein the average particle diameter of the crystal particles of the first component is in the range of 0.3 μm to 10 μm, and the average diameter of the pores is in the range of 1 μm to 20 μm. Cell for electrolytic hydrogen production. 前記支持層は、理論相対密度で、80%以下であることを特徴とする請求項1又は2に記載の高温水蒸気電解水素製造用セル。 3. The high-temperature steam electrolysis hydrogen production cell according to claim 1, wherein the support layer has a theoretical relative density of 80% or less. 前記第1成分と前記第2成分の熱膨張係数差が1~4×10-6/K以内であることを特徴とする請求項1~3の何れか1項に記載の高温水蒸気電解水素製造用セル。 The high-temperature steam electrolysis hydrogen production according to any one of claims 1 to 3, characterized in that the difference in thermal expansion coefficient between the first component and the second component is within 1 to 4 × 10 -6 /K. cell for. 前記第1成分の結晶粒子の、前記第2成分の結晶粒子による被覆率が、10%~30%の範囲内であることを特徴とする請求項1~4の何れか1項に記載の高温水蒸気電解水素製造用セル。 The high temperature according to any one of claims 1 to 4, wherein the coverage of the crystal grains of the first component with the crystal grains of the second component is in the range of 10% to 30%. Cell for steam electrolysis hydrogen production. 請求項1乃至5の何れか1項記載の高温水蒸気電解水素製造用セルの製造方法であって、
前記支持層の焼結時における昇温速度を調節して、前記第1成分の結晶粒子の、前記第2成分の結晶粒子による被覆率を、10%~55%の範囲内とする
ことを特徴とする高温水蒸気電解水素製造用セルの製造方法。
A method for manufacturing a cell for high-temperature steam electrolysis hydrogen production according to any one of claims 1 to 5,
The rate of temperature increase during sintering of the support layer is adjusted so that the coverage of the crystal grains of the first component with the crystal grains of the second component is in the range of 10% to 55%. A method for manufacturing a cell for high-temperature steam electrolysis hydrogen production.
JP2020048711A 2020-03-19 2020-03-19 High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell Active JP7309642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048711A JP7309642B2 (en) 2020-03-19 2020-03-19 High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048711A JP7309642B2 (en) 2020-03-19 2020-03-19 High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell

Publications (2)

Publication Number Publication Date
JP2021147664A JP2021147664A (en) 2021-09-27
JP7309642B2 true JP7309642B2 (en) 2023-07-18

Family

ID=77848078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048711A Active JP7309642B2 (en) 2020-03-19 2020-03-19 High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell

Country Status (1)

Country Link
JP (1) JP7309642B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241644A (en) 2012-05-18 2013-12-05 Toshiba Corp Electrochemical cell and hydrogen producing apparatus
JP2017022111A (en) 2015-07-08 2017-01-26 株式会社日本触媒 Laminate
JP2018154864A (en) 2017-03-16 2018-10-04 東芝エネルギーシステムズ株式会社 High temperature steam electrolysis cell, hydrogen electrode layer therefor, and solid oxide electrochemical cell
JP2018172763A (en) 2017-03-31 2018-11-08 株式会社日本触媒 Steam electrolytic cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013241644A (en) 2012-05-18 2013-12-05 Toshiba Corp Electrochemical cell and hydrogen producing apparatus
JP2017022111A (en) 2015-07-08 2017-01-26 株式会社日本触媒 Laminate
JP2018154864A (en) 2017-03-16 2018-10-04 東芝エネルギーシステムズ株式会社 High temperature steam electrolysis cell, hydrogen electrode layer therefor, and solid oxide electrochemical cell
JP2018172763A (en) 2017-03-31 2018-11-08 株式会社日本触媒 Steam electrolytic cell

Also Published As

Publication number Publication date
JP2021147664A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5689107B2 (en) Manufacturing method of NiO-ceramic composite powder and NiO-ceramic composite fuel electrode
JP6398647B2 (en) Method for producing anode for solid oxide fuel cell and method for producing electrolyte layer-electrode assembly for fuel cell
US10581102B2 (en) Ceria electrolyte for low-temperature sintering and solid oxide fuel cell using the same
KR101637917B1 (en) Protonic conducting solid oxide fuel cell and method for preparing thereof
KR20130123189A (en) Anode support for solid oxide fuel cell and manufacturing method thereof, and solid oxide fuel cell including the anode support
Liu et al. Fabrication and characterization of a co-fired La0. 6Sr0. 4Co0. 2Fe0. 8O3− δ cathode-supported Ce0. 9Gd0. 1O1. 95 thin-film for IT-SOFCs
KR101307560B1 (en) Fabrication and structure of low- and intermediate-temperature-operating solid oxide fuel cell by spin coating and low-temperature sintering
KR20110107187A (en) Metal doping oxide particle, preparation method thereof, and solid oxide electrolyte using the same
JP2011142042A (en) Power generation cell for solid oxide fuel battery and its manufacturing method
KR101124859B1 (en) Manufacturing method of lscf powder and cell having the powder for solid oxide fuel cell
Suzuki et al. Low temperature densification process of solid-oxide fuel cell electrolyte controlled by anode support shrinkage
JP6664132B2 (en) Porous structure, method of manufacturing the same, and electrochemical cell using the same and method of manufacturing the same
Torres-Garibay et al. Ln0. 6Sr0. 4Co1− yFeyO3− δ (Ln= La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells
JP2019521496A (en) Medium temperature fuel cell adapted for efficient utilization of methane
JP7309642B2 (en) High-temperature steam electrolysis hydrogen production cell and method for producing high-temperature steam electrolysis hydrogen production cell
KR101521508B1 (en) Fuel electrode which also serves as supporting body of solid oxide fuel cell, and fuel electrode-supported solid oxide fuel cell
JP2008234915A (en) Collector material of solid oxide fuel cell, air electrode collector, and the solid oxide fuel cell
JP2014067562A (en) Solid oxide type fuel cell and power generating method using the same
KR101335063B1 (en) Method of large powewr solid oxide fuel cell
JP6891008B2 (en) Ion conductive materials and solid oxide electrochemical cells
US20100297527A1 (en) Fast Ion Conducting Composite Electrolyte for Solid State Electrochemical Devices
JP6562623B2 (en) Mixed air electrode material for solid oxide fuel cell and solid oxide fuel cell
KR20180018231A (en) Manufacturing method of core­shell structured composite powder for solid oxide fuel cell
Sivasankaran et al. Gd0. 1O2− x
JP2023182176A (en) High temperature steam electrolytic cell and production method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7309642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150