JP2020190240A - Hydraulic cooling type screw compressor - Google Patents

Hydraulic cooling type screw compressor Download PDF

Info

Publication number
JP2020190240A
JP2020190240A JP2019096865A JP2019096865A JP2020190240A JP 2020190240 A JP2020190240 A JP 2020190240A JP 2019096865 A JP2019096865 A JP 2019096865A JP 2019096865 A JP2019096865 A JP 2019096865A JP 2020190240 A JP2020190240 A JP 2020190240A
Authority
JP
Japan
Prior art keywords
oil
flow path
supply flow
compressor
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019096865A
Other languages
Japanese (ja)
Other versions
JP7190963B2 (en
Inventor
修人 弥久保
Shuto Yakubo
修人 弥久保
明 星川
Akira Hoshikawa
明 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019096865A priority Critical patent/JP7190963B2/en
Priority to PCT/JP2020/018459 priority patent/WO2020235338A1/en
Priority to CN202080037919.1A priority patent/CN113939654B/en
Publication of JP2020190240A publication Critical patent/JP2020190240A/en
Application granted granted Critical
Publication of JP7190963B2 publication Critical patent/JP7190963B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/06Cooling; Heating; Prevention of freezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Abstract

To secure stable oil supply to a rotor chamber even if the discharge pressure of a compressor main body is low, and a rotation number of the compressor is small.SOLUTION: A hydraulic cooling type screw compressor 1 comprises an auxiliary oil supply flow passage 31 for fluidly connecting an oil sump 4a of a main oil supply flow passage 11 or an oil separation/collection implement 4 and a rotor chamber 21c, and guiding oil in the oil sump 4a to the rotor chamber 2c by compressed air discharged from the compressor main body 2 and a pressure difference in the rotor chamber 2c. An oil flow control part 32 which can switch a first state that a flow of the oil passing the auxiliary oil supply flow passage 31 is blocked or limited, and a second state that the flow of the oil passing the auxiliary oil supply flow passage 31 is permitted or alleviated in the limit is arranged in the auxiliary oil supply flow passage 31. When pressure detected by a pressure detection part 42 is dropped to threshold pressure or lower, and a rotation number of the compressor main body 2 reaches a threshold rotation number or smaller, a control device 100 switches the oil flow control part 32 to the second state from the first state.SELECTED DRAWING: Figure 1

Description

本発明は、油冷式スクリュ圧縮機に関する。 The present invention relates to an oil-cooled screw compressor.

特許文献1に開示された油冷式スクリュ圧縮機は、油分離回収器から圧縮機本体の給油箇所に対してポンプにより加圧することなく油を導く給油流路を備えている。 The oil-cooled screw compressor disclosed in Patent Document 1 is provided with an oil supply flow path that guides oil from the oil separation / recovery device to the oil supply portion of the compressor body without pressurizing with a pump.

特開2003−328943号公報JP-A-2003-32843

本発明の発明者らは、油冷式スクリュ圧縮機において、油分離回収器から圧縮機本体のロータ室に対してポンプによって加圧することなく油を導く給油流路を備える油冷式スクリュ圧縮機において、ロータ室への給油量が安定しない現象を新たに見出した。具体的には、本発明の発明者らは、かかる給油流路を有する油冷式空気圧縮機において、圧縮機本体の吐出圧が低圧で、圧縮機本体の回転数が低速であるときに、ロータ室への油供給が不安定となり、予想に反してロータ室への給油量が低下する場合があることを新たに見出した。 In the oil-cooled screw compressor, the inventors of the present invention provide an oil-cooled screw compressor provided with an oil supply flow path for guiding oil from the oil separation / recovery device to the rotor chamber of the compressor body without being pressurized by a pump. In, a new phenomenon was found in which the amount of oil supplied to the rotor chamber was not stable. Specifically, the inventors of the present invention have an oil-cooled air compressor having such an oil supply flow path when the discharge pressure of the compressor body is low and the rotation speed of the compressor body is low. It was newly discovered that the oil supply to the rotor chamber becomes unstable and the amount of oil supplied to the rotor chamber may decrease unexpectedly.

本発明は、かかる新たに見出された課題を解決するためになされたものである。つまり、本発明は、油分離回収器から圧縮機本体のロータ室に対してポンプにより加圧することなく油を導く給油流路を備える油冷式スクリュ圧縮機において、圧縮機本体の吐出圧が低圧で、圧縮機本体の回転数が低速であるときにも、ロータ室への安定した給油を確保することを課題とする。 The present invention has been made to solve such newly discovered problems. That is, according to the present invention, in an oil-cooled screw compressor provided with an oil supply flow path that guides oil from the oil separation / recovery device to the rotor chamber of the compressor body without being pressurized by a pump, the discharge pressure of the compressor body is low. Therefore, it is an issue to secure stable refueling to the rotor chamber even when the rotation speed of the compressor main body is low.

本発明の一態様は、空気を圧縮する一対のロータが収容されたロータ室を備える圧縮機本体と、前記圧縮機本体から吐出された圧縮空気から油を分離して回収する油分離回収器と、前記油分離回収器の油溜まりと前記ロータ室とを流体的に接続し、前記圧縮空気と前記ロータ室内の圧力差によって前記油溜まりの油を前記ロータ室に導く主給油流路と、前記主給油流路に設けられたオイルクーラと、前記主給油流路又は前記油分離回収器の前記油溜まりと前記ロータ室とを流体的に接続し、前記圧力差によって前記油溜まりの油を前記ロータ室に導く補助給油流路と、前記補助給油流路に設けられ、前記補助給油流路を通る前記油の流れを遮断又は制限する第1状態と、前記補助給油流路を通る前記油の流れを許容又は制限緩和する第2状態とに切り換え可能な油流れ制御部と、前記圧縮空気の圧力を直接的又は間接的に検出する圧力検出部と、前記圧力検出部により検出された前記圧力が閾値圧力以下となり、かつ前記圧縮機本体の回転数が閾値回転数以下となると、前記油流れ制御部を前記第1状態から前記第2状態に切り換える制御装置とを備える油冷式スクリュ圧縮機を提供する。 One aspect of the present invention is a compressor main body including a rotor chamber containing a pair of rotors for compressing air, and an oil separation / recovery device that separates and recovers oil from the compressed air discharged from the compressor main body. A main oil flow path that fluidly connects the oil sump of the oil separation and recovery device and the rotor chamber and guides the oil in the oil sump to the rotor chamber by the pressure difference between the compressed air and the rotor chamber, and the above. The oil cooler provided in the main oil supply flow path is fluidly connected to the oil reservoir of the main oil supply flow path or the oil separation / recovery device and the rotor chamber, and the oil in the oil pool is supplied by the pressure difference. The auxiliary oil flow path leading to the rotor chamber, the first state provided in the auxiliary oil supply flow path and blocking or restricting the flow of the oil through the auxiliary oil supply flow path, and the oil passing through the auxiliary oil supply flow path. An oil flow control unit that can switch to a second state that allows or relaxes the flow, a pressure detection unit that directly or indirectly detects the pressure of the compressed air, and the pressure detected by the pressure detection unit. An oil-cooled screw compressor including a control device for switching the oil flow control unit from the first state to the second state when is equal to or lower than the threshold pressure and the rotation speed of the compressor main body is equal to or lower than the threshold rotation speed. I will provide a.

圧力検出部により検出された吐出圧が閾値圧力以下、かつ圧縮機本体の回転数が閾値回転数以下の状態、つまり、圧縮機本体の吐出圧が低く、かつ圧縮機本体の回転数が低い状態となると、油分離回収器から主給油流路を介してロータ室に導かれる油の量が減少する。しかし、当該状態となると、制御装置は油流れ制御部を第1状態から第2状態に切り換える。この切り換えにより、補助給油流路を介して油分離回収器からロータ室へ油が供給される。つまり、圧縮機本体の吐出圧が低く、かつ圧縮機本体の回転数が低い状態となると、主給油流路を介してだけでなく、補助給油流路も介して、油分離回収器からロータ室へ油が供給される。その結果、圧縮機本体の吐出圧が低く、かつ圧縮機本体の回転数が低い状態でも、ロータ室への安定した給油が確保でき、ロータ室への必要な給油量を確保できる。 The discharge pressure detected by the pressure detector is below the threshold pressure and the rotation speed of the compressor body is below the threshold speed, that is, the discharge pressure of the compressor body is low and the rotation speed of the compressor body is low. Then, the amount of oil guided from the oil separation / recovery device to the rotor chamber via the main oil supply flow path is reduced. However, in this state, the control device switches the oil flow control unit from the first state to the second state. By this switching, oil is supplied from the oil separation / recovery device to the rotor chamber via the auxiliary oil supply flow path. That is, when the discharge pressure of the compressor body is low and the rotation speed of the compressor body is low, the oil separation and recovery device is used in the rotor chamber not only through the main oil supply flow path but also through the auxiliary oil supply flow path. Oil is supplied to the compressor. As a result, even when the discharge pressure of the compressor body is low and the rotation speed of the compressor body is low, stable refueling to the rotor chamber can be ensured, and the required amount of refueling to the rotor chamber can be secured.

前記補助給油流路は、前記ロータ室の前記主給油流路の接続位置よりも前記圧縮機本体の吸込口側に接続していてもよい。 The auxiliary refueling flow path may be connected to the suction port side of the compressor main body rather than the connection position of the main refueling flow path in the rotor chamber.

前記補助給油流路は、前記オイルクーラよりも圧縮機本体側の前記主給油流路から分岐していてもよい。 The auxiliary refueling flow path may be branched from the main refueling flow path on the compressor main body side of the oil cooler.

前記主給油流路には、前記オイルクーラよりも油分離回収器側に配置されたオイルフィルタが設けられ、前記補助給油流路は、前記オイルフィルタと前記オイルクーラとの間の前記主給油流路から分岐していてもよい。 The main oil supply flow path is provided with an oil filter arranged closer to the oil separation and recovery device than the oil cooler, and the auxiliary oil supply flow path is the main oil supply flow between the oil filter and the oil cooler. It may branch off the road.

この構成により、オイルクーラの目詰まりが補助給油流路を介したロータ室への給油に影響するのを回避できる。 With this configuration, it is possible to prevent the clogging of the oil cooler from affecting the refueling to the rotor chamber via the auxiliary refueling flow path.

前記主給油流路には、前記オイルクーラよりも油分離回収器側に配置されたオイルフィルタが設けられ、前記補助給油流路は、前記油分離回収器と前記オイルフィルタとの間の前記主給油流路から分岐していてもよい。 The main oil supply flow path is provided with an oil filter arranged closer to the oil separation and recovery device than the oil cooler, and the auxiliary oil supply flow path is the main oil filter between the oil separation and recovery device and the oil filter. It may branch from the refueling flow path.

この構成により、オイルフィルタの目詰まりが補助給油流路を介したロータ室への給油に影響するのを回避できる。 With this configuration, it is possible to prevent the clogging of the oil filter from affecting the oil supply to the rotor chamber via the auxiliary oil supply flow path.

前記補助給油流路は、前記油分離回収器の前記油溜まりと前記ロータ室とを前記主給油流路を介することなく直接接続していてもよい。 The auxiliary oil supply flow path may directly connect the oil sump of the oil separation and recovery device and the rotor chamber without passing through the main oil supply flow path.

前記圧力検出部は、前記油分離回収器内の圧力を検出する圧力センサであってもよい。 The pressure detection unit may be a pressure sensor that detects the pressure in the oil separation / recovery device.

前記圧力検出部は、前記圧縮機本体の吐出口と前記油分離回収器とを接続する空気流路内の圧力を検出する圧力センサであってもよい。 The pressure detection unit may be a pressure sensor that detects the pressure in the air flow path connecting the discharge port of the compressor body and the oil separation / recovery device.

前記圧力検出部は、前記圧縮空気で加圧された油の流通する前記主給油流路内の油の圧力を検出する圧力センサであってもよい。 The pressure detection unit may be a pressure sensor that detects the pressure of the oil in the main oil supply flow path through which the oil pressurized by the compressed air flows.

前記圧力圧検出部は、前記圧縮空気で加圧された油の流通する前記主給油流路の油の流量を検出する流量センサであってもよい。 The pressure pressure detecting unit may be a flow rate sensor that detects the flow rate of oil in the main oil supply flow path through which the oil pressurized by the compressed air flows.

前記主給油流路は、前記ロータ室の圧縮側空間に接続しており、前記補助給油流路は、前記ロータ室の吸込側空間に接続していてもよい。 The main oil supply flow path may be connected to the compression side space of the rotor chamber, and the auxiliary oil supply flow path may be connected to the suction side space of the rotor chamber.

前記オイルクーラは、前記圧縮機本体から吐出された前記圧縮空気の温度又は前記油溜まりの油の温度に基づいて回転数制御されるファンによって冷却する空冷式のオイルクーラであってもよい。 The oil cooler may be an air-cooled oil cooler that is cooled by a fan whose rotation speed is controlled based on the temperature of the compressed air discharged from the compressor body or the temperature of the oil in the oil sump.

油冷式スクリュ圧縮機は、前記圧縮機本体を駆動するモータと、前記モータの回転数を制御するインバータとをさらに備え、前記一対のロータのうちの一方のシャフトが前記モータの出力シャフトと一体構造であり、前記圧縮機本体の前記回転数は、前記モータの前記回転数であってもよい。 The oil-cooled screw compressor further includes a motor for driving the compressor body and an inverter for controlling the rotation speed of the motor, and one shaft of the pair of rotors is integrated with the output shaft of the motor. It is a structure, and the rotation speed of the compressor body may be the rotation speed of the motor.

本発明の油冷式スクリュ圧縮機によれば、圧縮機本体の吐出圧が低圧で、圧縮機本体の回転数が低速であるときにも、ロータ室への安定した給油を確保できる。 According to the oil-cooled screw compressor of the present invention, stable refueling to the rotor chamber can be ensured even when the discharge pressure of the compressor body is low and the rotation speed of the compressor body is low.

本発明の第1実施形態に係る油冷式スクリュ圧縮機の概略構成図。The schematic block diagram of the oil-cooled screw compressor which concerns on 1st Embodiment of this invention. 運転中の電磁弁の制御を説明するためのフローチャート。A flowchart for explaining the control of the solenoid valve during operation. 起動時の電磁弁の制御を説明するためのフローチャート。A flowchart for explaining the control of the solenoid valve at the time of starting. 本体回転数と給油量の関係を示すグラフ。A graph showing the relationship between the number of revolutions of the main body and the amount of refueling. 第1実施形態の第1変形例に係る油冷式スクリュ圧縮機の概略構成図。The schematic block diagram of the oil-cooled screw compressor which concerns on 1st modification of 1st Embodiment. 第1実施形態の第2変形例に係る油冷式スクリュ圧縮機の概略構成図。The schematic block diagram of the oil-cooled screw compressor which concerns on 2nd modification of 1st Embodiment. 第1実施形態の第3変形例に係る油冷式スクリュ圧縮機の概略構成図。The schematic block diagram of the oil-cooled screw compressor which concerns on 3rd modification of 1st Embodiment. 第1実施形態の第4変形例に係る油冷式スクリュ圧縮機の概略構成図。The schematic block diagram of the oil-cooled screw compressor which concerns on 4th modification of 1st Embodiment. 本発明の第2実施形態に係る油冷式スクリュ圧縮機の概略構成図。The schematic block diagram of the oil-cooled screw compressor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る油冷式空気圧縮機の概略構成図。The schematic block diagram of the oil-cooled air compressor which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る油冷式空気圧縮機の概略構成図。The schematic block diagram of the oil-cooled air compressor which concerns on 4th Embodiment of this invention. 従来の油冷式空気圧縮機における本体回転数と給油量の関係を示すグラフ。A graph showing the relationship between the main body rotation speed and the amount of oil supplied in a conventional oil-cooled air compressor.

本発明の発明者らは、油冷式スクリュ圧縮機において、油分離回収器から圧縮機本体のロータ室に対してポンプにより加圧することなく油を導く給油流路を備える油冷式スクリュ圧縮機において起こり得るロータ室への給油量の低下を新たに見出した。以下、この点について説明する。 In the oil-cooled screw compressor, the inventors of the present invention provide an oil-cooled screw compressor provided with an oil supply flow path for guiding oil from the oil separation / recovery compressor to the rotor chamber of the compressor body without pressurizing with a pump. We have newly found a possible decrease in the amount of oil supplied to the rotor chamber. This point will be described below.

図12は、油分離回収器から圧縮機本体のロータ室に対してポンプにより加圧することなく油を導く給油流路を備える油冷式スクリュ圧縮機における圧縮機本体の回転数(本体回転数)と、ロータ室への給油量の関係を示すグラフである。 FIG. 12 shows the rotation speed (main body rotation speed) of the compressor body in an oil-cooled screw compressor provided with an oil supply flow path for guiding oil from the oil separation / recovery device to the rotor chamber of the compressor main body without being pressurized by a pump. It is a graph showing the relationship between the amount of oil supplied to the rotor chamber and the amount of oil supplied to the rotor chamber.

図12のグラフにおいて、「◆」印は吐出圧が設計吐出圧のP1の場合、「■」印は吐出圧がP2の場合、「▲」印は吐出圧が設計吐出圧のP1でオイルクーラ用のファンの回転数制御を実行した場合、「×」印は吐出圧がP2でオイルクーラ用のファンの回転数制御を実行した場合、「*」印は吐出圧がP3でオイルクーラ用のファンの回転数制御を実行した場合、「●」印は吐出圧がP4でオイルクーラ用のファンの回転数制御を実行した場合(給油温度が上限値)、「+」印は吐出圧がP4でオイルクーラ用のファンの回転数制御を実行した場合(給油温度が下限値)である。本体回転数については、V1が定格回転数で、V1、V2、V3、V4、V5、V6の順で回転数が高い。また、吐出圧については、P1、P2、P3、P4の順で吐出圧は高い。オイルクーラ用のファンの回転数制御では、油分離回収器の油溜まりの油温が高い程、ファンの回転数を高くしている。 In the graph of FIG. 12, the “◆” mark indicates that the discharge pressure is P1 of the design discharge pressure, the “■” mark indicates that the discharge pressure is P2, and the “▲” mark indicates that the discharge pressure is P1 of the design discharge pressure and the oil cooler. When the rotation speed control of the fan for the oil cooler is executed, the "x" mark indicates that the discharge pressure is P2 and the rotation speed control of the fan for the oil cooler is executed, and the "*" mark indicates that the discharge pressure is P3 for the oil cooler. When the fan speed control is executed, the "●" mark indicates that the discharge pressure is P4 and the oil cooler fan speed control is executed (the oil supply temperature is the upper limit), and the "+" mark indicates that the discharge pressure is P4. When the rotation speed control of the fan for the oil cooler is executed in (the refueling temperature is the lower limit). Regarding the main body rotation speed, V1 is the rated rotation speed, and the rotation speed is higher in the order of V1, V2, V3, V4, V5, V6. Regarding the discharge pressure, the discharge pressure is higher in the order of P1, P2, P3, P4. In controlling the rotation speed of the fan for the oil cooler, the higher the oil temperature in the oil pool of the oil separation / recovery device, the higher the rotation speed of the fan.

図12を参照すると、高い吐出圧P1,P2,P3であれば、定格回転数V1を下回る本体回転数V2〜V6での運転、つまり部分負荷運転であっても、ロータ室への給油量は安定しており、定格回転数V1での運転、つまり全負荷運転と比較してロータ室への給油量の顕著な減少はない。これに対して、低い吐出圧P4の場合には、本体回転数V2〜V6での運転(部分負荷運転)において、ロータ室への給油量が不安定で、全負荷運転と比較したロータ室への給油量の減少が著しい。特に、同じ低吐出圧P4でも、給油温度が下限値の場合、給油温度が上限値の場合よりも、部分負荷運転時のロータ室への給油量の不安定化と減少が著しい。 With reference to FIG. 12, if the discharge pressures are high P1, P2, P3, the amount of oil supplied to the rotor chamber is the amount of oil supplied to the rotor chamber even when the main body rotation speed is V2 to V6, which is lower than the rated rotation speed V1, that is, even in the partial load operation. It is stable and there is no significant reduction in the amount of oil supplied to the rotor chamber compared to operation at rated speed V1, that is, full load operation. On the other hand, in the case of low discharge pressure P4, the amount of oil supplied to the rotor chamber is unstable during operation at the main body rotation speed V2 to V6 (partial load operation), and the rotor chamber is compared to full load operation. The amount of refueling is significantly reduced. In particular, even with the same low discharge pressure P4, when the refueling temperature is the lower limit value, the amount of refueling to the rotor chamber during partial load operation becomes more unstable and decreases more than when the refueling temperature is the upper limit value.

以上のように、油分離回収器から圧縮機本体のロータ室に対してポンプにより加圧することなく油を導く給油流路を備える油冷式スクリュ圧縮機では、吐出圧が低く、かつ本体回転数が低い運転条件下でロータ室への油供給が不安定となり、予想に反してロータ室への給油量が低下する場合があるという新たに知見が得られた。以下の実施形態はかかる新たな知見に基づくものである。 As described above, in the oil-cooled screw compressor provided with an oil supply flow path that guides oil from the oil separation / recovery device to the rotor chamber of the compressor body without pressurizing by a pump, the discharge pressure is low and the rotation speed of the main body is low. A new finding has been obtained that the oil supply to the rotor chamber may become unstable under low operating conditions, and the amount of oil supplied to the rotor chamber may unexpectedly decrease. The following embodiments are based on such new findings.

(第1実施形態)
図1を参照すると、本発明の第1実施形態にかかる油冷式スクリュ圧縮機1は、圧縮機本体2、圧縮機本体2を駆動するためのモータ3、及び圧縮機本体2から吐出された圧縮空気から油を分離して回収する油分離回収器4を備える。
(First Embodiment)
Referring to FIG. 1, the oil-cooled screw compressor 1 according to the first embodiment of the present invention is discharged from the compressor main body 2, the motor 3 for driving the compressor main body 2, and the compressor main body 2. An oil separation / recovery device 4 that separates and recovers oil from compressed air is provided.

圧縮機本体2は、一対のロータ、つまり雄ロータ2aと雌ロータ2bが収容されたロータ室2cを備える。また、圧縮機本体2はフィルタ5と吸気調整弁6とを介して外気が吸い込まれる吸込口2dと、雌雄ロータ2a,2bにより圧縮された圧縮空気が吐き出される吐出口2eとを備える。 The compressor main body 2 includes a pair of rotors, that is, a rotor chamber 2c in which a male rotor 2a and a female rotor 2b are housed. Further, the compressor main body 2 includes a suction port 2d in which outside air is sucked in through a filter 5 and an intake air regulating valve 6, and a discharge port 2e in which compressed air compressed by male and female rotors 2a and 2b is discharged.

本実施形態では、雄ロータ2aのシャフト2fは、モータ3の出力シャフト3aと一体構造である。モータ3の回転数、従って、圧縮機本体2の雌雄ロータ2a,2bの回転数はインバータ21により制御される。 In the present embodiment, the shaft 2f of the male rotor 2a has an integral structure with the output shaft 3a of the motor 3. The rotation speed of the motor 3, and therefore the rotation speeds of the male and female rotors 2a and 2b of the compressor body 2, are controlled by the inverter 21.

油冷式スクリュ圧縮機1は、圧縮機本体2で生成された圧縮空気を、図示しない圧縮空気の供給先に送るための空気流路7を備える。空気流路7は、圧縮機本体2の吐出口2eと油分離回収器4とを流体的に接続する第1部分7a、油分離回収器4とアフタクーラ9とを流体的に接続する第2部分7b、及びアフタクーラ9と供給先を流体的に接続する第3部分7cを備える。第2部分7bには保圧逆止弁8が設けられている。 The oil-cooled screw compressor 1 includes an air flow path 7 for sending the compressed air generated by the compressor main body 2 to a supply destination of compressed air (not shown). The air flow path 7 is a first portion 7a that fluidly connects the discharge port 2e of the compressor main body 2 and the oil separation / recovery device 4, and a second portion that fluidly connects the oil separation recovery device 4 and the aftercooler 9. 7b and a third portion 7c that fluidly connects the aftercooler 9 and the supply destination are provided. A pressure-holding check valve 8 is provided in the second portion 7b.

本実施形態では、空気流路7の第1部分7aから油分離回収器4内に流入した圧縮空気から、遠心力よる分離作用で油が分離される。分離され油は油分離回収器4の下部の油溜まり4aに溜まる。また、油分離回収器4は二次的な油分離のためのエレメント4bを備える。油分離回収器4から空気流路7の第2部分7bに導出された圧縮空気は、アフタクーラ9で空冷された後、空気流路7の第3部分7cを介して供給先に送られる。 In the present embodiment, oil is separated from the compressed air that has flowed into the oil separation / recovery device 4 from the first portion 7a of the air flow path 7 by a separation action by centrifugal force. The separated oil is collected in the oil sump 4a at the lower part of the oil separation and recovery device 4. Further, the oil separation / recovery device 4 includes an element 4b for secondary oil separation. The compressed air led out from the oil separation / recovery device 4 to the second portion 7b of the air flow path 7 is air-cooled by the aftercooler 9 and then sent to the supply destination via the third portion 7c of the air flow path 7.

油冷式スクリュ圧縮機1は、油分離回収器4の油溜まり4aの油を圧縮機本体2のロータ室2cに戻すための主給油流路11を備える。 The oil-cooled screw compressor 1 includes a main oil supply flow path 11 for returning the oil in the oil sump 4a of the oil separation / recovery device 4 to the rotor chamber 2c of the compressor main body 2.

本実施形態における主給油流路11は、油分離回収器4の油溜まり4aとオイルクーラ12とを流体的に接続する第1部分11aと、オイルクーラ12とロータ室2cの閉じ込み後の圧縮側空間とを流体的に接続する第2部分11bとを備える。主給油流路11の第1部分11aにはオイルフィルタ13が設けられている。また、第1部分11aと第2部分11bとを、オイルクーラ12をバイパスして接続するように、温度調整弁14が設けられている。さらに、主給油流路11の第2部分11bから分岐する、圧縮機本体2の軸受、軸封部等への給油のための給油流路15が設けられている。主給油流路11には給油のためのポンプは設けられておらず、油分離回収器4の油溜まり4aの油をポンプで加圧することなく、圧縮機本体1の吐出圧のみによってロータ室2cに導く。すなわち、圧縮機本体1から油分離回収器4内に吐出された圧縮空気とロータ室2c内の圧力差によって、油分離回収器4の油溜まり4aの油が主給油流路11を介してロータ室2cに導かれる。 The main oil supply flow path 11 in the present embodiment is a first portion 11a that fluidly connects the oil sump 4a of the oil separation and recovery device 4 and the oil cooler 12, and compression after the oil cooler 12 and the rotor chamber 2c are closed. It includes a second portion 11b that fluidly connects the side space. An oil filter 13 is provided in the first portion 11a of the main oil supply flow path 11. Further, a temperature control valve 14 is provided so as to connect the first portion 11a and the second portion 11b by bypassing the oil cooler 12. Further, a refueling flow path 15 for refueling the bearing of the compressor main body 2, the shaft sealing portion, etc., which branches from the second portion 11b of the main refueling flow path 11, is provided. A pump for refueling is not provided in the main refueling flow path 11, and the rotor chamber 2c is provided only by the discharge pressure of the compressor body 1 without pressurizing the oil in the oil sump 4a of the oil separation and recovery device 4 with the pump. Lead to. That is, due to the pressure difference between the compressed air discharged from the compressor main body 1 into the oil separation / recovery device 4 and the rotor chamber 2c, the oil in the oil sump 4a of the oil separation / recovery device 4 passes through the main oil supply flow path 11 to the rotor. Guided to room 2c.

本実施形態の油冷式スクリュ圧縮機1は、主給油流路11の第2部分11b、より具体的には給油流路15の分岐位置よりもオイルクーラ12側の第2部分11bから分岐してロータ室2cに接続された補助給油流路31を備える。補助給油流路31には給油のためのポンプは設けられておらず、油分離回収器4の油溜まり4aの油をポンプで加圧することなく、圧縮機本体1の吐出圧のみによってロータ室2cに導く。すなわち、圧縮機本体1から油分離回収器4内に吐出された圧縮空気とロータ室2c内の圧力差によって、油分離回収器4の油溜まり4aの油が補助給油流路31を介してロータ室2cに導かれる。 The oil-cooled screw compressor 1 of the present embodiment branches from the second portion 11b of the main oil supply flow path 11, more specifically, from the second portion 11b on the oil cooler 12 side of the branch position of the oil supply flow path 15. An auxiliary oil supply flow path 31 connected to the rotor chamber 2c is provided. A pump for refueling is not provided in the auxiliary refueling flow path 31, and the rotor chamber 2c is provided only by the discharge pressure of the compressor body 1 without pressurizing the oil in the oil sump 4a of the oil separation and recovery device 4 with the pump. Lead to. That is, due to the pressure difference between the compressed air discharged from the compressor main body 1 into the oil separation / recovery device 4 and the rotor chamber 2c, the oil in the oil pool 4a of the oil separation / recovery device 4 passes through the auxiliary oil supply flow path 31 to the rotor. Guided to room 2c.

補助給油流路31は、主給油流路11の第2部分11bのロータ室2cへの接続位置よりも吸込口2d側で、ロータ室2cに接続されている。補助給油流路31のロータ室2cへの接続位置は、吸込口2dから主給油流路11の第2部分11bのロータ室2cへの接続位置までの範囲で設定できる。この設定により、圧縮機本体1の吐出圧のみによる補助給油流路31を介した給油を実現できる。吐出圧のみによる補助給油流路31を介して給油をより確実にするには、補助給油流路31の吸込口2dの接続位置は圧縮側空間よりも吸込口2d側の閉じ込み前の吸込側空間に設定することがより好ましい。より多くの給油量確保のために、補助給油流路31を複数箇所でロータ室2cに接続してもよい。 The auxiliary oil supply flow path 31 is connected to the rotor chamber 2c on the suction port 2d side of the connection position of the second portion 11b of the main oil supply flow path 11 to the rotor chamber 2c. The connection position of the auxiliary oil supply flow path 31 to the rotor chamber 2c can be set within a range from the suction port 2d to the connection position of the second portion 11b of the main oil supply flow path 11 to the rotor chamber 2c. With this setting, it is possible to realize refueling via the auxiliary refueling flow path 31 using only the discharge pressure of the compressor main body 1. In order to ensure refueling through the auxiliary refueling flow path 31 using only the discharge pressure, the connection position of the suction port 2d of the auxiliary refueling flow path 31 is the suction side before closing on the suction port 2d side of the compression side space. It is more preferable to set it in space. In order to secure a larger amount of refueling, the auxiliary refueling flow path 31 may be connected to the rotor chamber 2c at a plurality of locations.

補助給油流路31には、本発明における油流れ制御部の一例である、常閉の電磁弁32が設けられている。電磁弁32の閉弁時(第1状態)には、補助給油流路31を介したロータ室2cへの油の流れが遮断され、電磁弁32の開弁時(第2状態)には、補助給油流路31を介したロータ室2cへの油の流れが許容される。 The auxiliary oil supply flow path 31 is provided with a normally closed solenoid valve 32, which is an example of the oil flow control unit in the present invention. When the solenoid valve 32 is closed (first state), the flow of oil to the rotor chamber 2c via the auxiliary oil supply flow path 31 is blocked, and when the solenoid valve 32 is opened (second state), the flow of oil is blocked. The flow of oil to the rotor chamber 2c through the auxiliary oil supply flow path 31 is allowed.

油冷式スクリュ圧縮機1は、アフタクーラ9とオイルクーラ12における空冷のためのファン22を備える。このファン22は、インバータ23によって回転数が制御されるファンモータ24で駆動される。 The oil-cooled screw compressor 1 includes an aftercooler 9 and a fan 22 for air cooling in the oil cooler 12. The fan 22 is driven by a fan motor 24 whose rotation speed is controlled by an inverter 23.

油冷式スクリュ圧縮機1は、油分離回収器4内の圧縮空気の圧力を検出する圧力センサ41(圧力検出部)を備える。また、油冷式スクリュ圧縮機1は、油分離回収器4内の油溜まり4aに溜まった油の温度を検出する温度センサ42を備える。 The oil-cooled screw compressor 1 includes a pressure sensor 41 (pressure detection unit) that detects the pressure of the compressed air in the oil separation / recovery device 4. Further, the oil-cooled screw compressor 1 includes a temperature sensor 42 that detects the temperature of the oil accumulated in the oil reservoir 4a in the oil separation / recovery device 4.

制御装置100は、圧縮機本体1を駆動するモータ3のインバータ21、ファン22を駆動するファンモータ24のインバータ23、及び電磁弁32を含む、油冷式スクリュ圧縮機1の構成要素を統括的に制御する。制御装置100には、圧力センサ41と温度センサ42から検出信号が入力される。 The control device 100 controls the components of the oil-cooled screw compressor 1, including the inverter 21 of the motor 3 that drives the compressor body 1, the inverter 23 of the fan motor 24 that drives the fan 22, and the solenoid valve 32. To control. A detection signal is input to the control device 100 from the pressure sensor 41 and the temperature sensor 42.

制御装置100は、温度センサ42から入力される検出信号に基づいて、ファンモータ24のインバータ23によって、ファン22の回転数を制御する。具体的には、制御装置100は油溜まり4aの油の温度Tdと相関のある圧縮機本体1から吐出される圧縮空気の温度が所定値になるようにファン22の回転数を制御する。本実施形態では、制御装置100は、温度センサ42によって検出される油分離回収器4の油溜まり4aの油の温度Tdが高い程、ファン22の回転数を高くし、この検出温度Tdが低い程、ファン22の回転数を低くする。圧縮機本体1から吐出される圧縮空気の温度を直接測定するセンサを設け、制御装置100がこのセンサによって検出される圧縮空気の温度が所定値になるようにファン22の回転数を制御してもよい。 The control device 100 controls the rotation speed of the fan 22 by the inverter 23 of the fan motor 24 based on the detection signal input from the temperature sensor 42. Specifically, the control device 100 controls the rotation speed of the fan 22 so that the temperature of the compressed air discharged from the compressor main body 1, which correlates with the temperature Td of the oil in the oil sump 4a, becomes a predetermined value. In the present embodiment, in the control device 100, the higher the oil temperature Td of the oil sump 4a of the oil separation / recovery device 4 detected by the temperature sensor 42, the higher the rotation speed of the fan 22, and the lower the detected temperature Td. The rotation speed of the fan 22 is lowered. A sensor for directly measuring the temperature of the compressed air discharged from the compressor main body 1 is provided, and the control device 100 controls the rotation speed of the fan 22 so that the temperature of the compressed air detected by this sensor becomes a predetermined value. May be good.

本実施形態における温度調整弁14は、ワックス式の自動温度調整弁である。温度調整弁14は圧縮機本体2の給油温度が所定温度に調整されるように自律的に動作する。具体的には、温度調整弁14は、圧縮機本体2の給油温度を低下させる必要があるときは、油分離回収器4からオイルクーラ12を経てロータ室2cに供給される油の量が相対的に増加する状態となり。また、温度調整弁14は、圧縮機本体2の給油温度を上昇させる必要があるときは、油分離回収器4からオイルクーラ12を経ることなくロータ室2cに供給される油の量が相対的に増加する状態となる。 The temperature control valve 14 in the present embodiment is a wax type automatic temperature control valve. The temperature control valve 14 operates autonomously so that the refueling temperature of the compressor main body 2 is adjusted to a predetermined temperature. Specifically, when it is necessary to lower the oil supply temperature of the compressor main body 2 of the temperature control valve 14, the amount of oil supplied from the oil separation / recovery device 4 to the rotor chamber 2c via the oil cooler 12 is relative. It will be in a state of increasing. Further, when the temperature control valve 14 needs to raise the oil supply temperature of the compressor main body 2, the amount of oil supplied from the oil separation / recovery device 4 to the rotor chamber 2c without passing through the oil cooler 12 is relative. It will be in a state of increasing.

以下、制御装置100によって実行される電磁弁32の制御を説明する。 Hereinafter, the control of the solenoid valve 32 executed by the control device 100 will be described.

圧縮機本体2の運転中、油分離回収器4の油溜まり4aの油が、圧縮機本体2の吐出圧によって、主給油流路11を介してロータ室2cに供給される。かかる圧縮機本体2の運転中、図2に示す以下の制御が実行される。 During the operation of the compressor main body 2, the oil in the oil sump 4a of the oil separation / recovery device 4 is supplied to the rotor chamber 2c via the main oil supply flow path 11 by the discharge pressure of the compressor main body 2. During the operation of the compressor main body 2, the following control shown in FIG. 2 is executed.

ステップS1において、圧力センサ41によって検出された油分離回収器4内の圧縮空気の圧力、つまり吐出圧Poが第1閾値圧力Poth1以下になると、ステップS2に移行する。ステップS2において、圧縮機本体2の回転数(本体回転数)Vcompが第1閾値回転数Vth1以下となると、ステップS3に移行する。 In step S1, when the pressure of the compressed air in the oil separation / recovery device 4 detected by the pressure sensor 41, that is, the discharge pressure Po becomes equal to or less than the first threshold pressure Poth1, the process proceeds to step S2. In step S2, when the rotation speed (main body rotation speed) Vcomp of the compressor main body 2 becomes equal to or less than the first threshold rotation speed Vth1, the process proceeds to step S3.

前述のように、本実施形態では、雄ロータ2aのシャフト2fは、モータ3の出力シャフト3aと一体構造であるので、モータ3に電力供給しているインバータ21の駆動周波数から本体回転数Vcompが得られる。制御装置100は、インバータ21を駆動しているので、本体回転数Vcompを常に取得している。例えば、モータ3と圧縮機本体2との間に減速ギア或いは増速ギアが介在する場合、インバータ21の駆動周波数から得られるモータ回転数と減速比或いは増速比とから演算により本体回転数Vcompを取得できる。 As described above, in the present embodiment, the shaft 2f of the male rotor 2a has an integral structure with the output shaft 3a of the motor 3, so that the main body rotation speed Vcomp is determined from the drive frequency of the inverter 21 that supplies power to the motor 3. can get. Since the control device 100 drives the inverter 21, the main body rotation speed Vcomp is constantly acquired. For example, when a reduction gear or a speed-up gear is interposed between the motor 3 and the compressor body 2, the body speed Vcomp is calculated from the motor speed and the reduction ratio or the speed-up ratio obtained from the drive frequency of the inverter 21. Can be obtained.

ステップS3では、電磁弁32が閉弁から開弁に切り換えられると共に、タイマTimの計時が開始される。電磁弁32が開弁されると、油分離回収器4の油溜まり4aの油が、圧縮機本体2の吐出圧によって、補助給油流路31を介してロータ室2cに供給される。 In step S3, the solenoid valve 32 is switched from the closed valve to the open valve, and the timer Tim is started to be timed. When the solenoid valve 32 is opened, the oil in the oil sump 4a of the oil separation / recovery device 4 is supplied to the rotor chamber 2c via the auxiliary oil supply flow path 31 by the discharge pressure of the compressor main body 2.

ステップS1の第1閾値圧力Poth1は、圧縮機本体2の回転数との関係でロータ室2cへの給油量が不安定な状態が生じる始める圧縮機本体2の吐出圧である。第1閾値圧力Poth1は実験的に求めることができる。第1閾値圧力Poth1は、定格圧力(圧縮機本体2の適切な動作ないし性能が補償されている吐出圧力で、最大吐出圧よりは低圧)以下である。 The first threshold pressure Poth1 in step S1 is the discharge pressure of the compressor main body 2 at which the amount of oil supplied to the rotor chamber 2c begins to become unstable in relation to the rotation speed of the compressor main body 2. The first threshold pressure Poth1 can be obtained experimentally. The first threshold pressure Poth1 is equal to or lower than the rated pressure (the discharge pressure at which the appropriate operation or performance of the compressor main body 2 is compensated, which is lower than the maximum discharge pressure).

ステップS2の第1閾値回転数Vth1は、圧縮機本体2の吐出圧との関係でロータ室2cへの給油量が不安定な状態が生じる始める圧縮機本体2の回転数である。第1閾値回転数Vth1は、実験的に求めることができる。第1閾値回転数Vth1は圧縮機本体2の最大回転数の80%以下である。 The first threshold rotation speed Vth1 in step S2 is the rotation speed of the compressor main body 2 at which the amount of oil supplied to the rotor chamber 2c begins to become unstable in relation to the discharge pressure of the compressor main body 2. The first threshold rotation speed Vth1 can be obtained experimentally. The first threshold rotation speed Vth1 is 80% or less of the maximum rotation speed of the compressor main body 2.

ステップS1で吐出圧Poが第1閾値圧力Poth1という条件が成立し、かつステップS2で本体回転数Vcompが第1閾値回転数Vth1以下という条件が成立するのは、圧縮機本体2の吐出圧が低く、かつ圧縮機本体2の回転数が低い状態である。この状態では、油分離回収器4から主給油流路11を介してロータ室2cに導かれる油の量が減少する。ステップS3で電磁弁32を開弁することで、つまり圧縮機本体2の吐出圧が低く、かつ圧縮機本体2の回転数が低い状態となったときに電磁弁32を開弁することで、主給油流路11を介してだけでなく、補助給油流路31も介して、油分離回収器4からロータ2c室へ油が供給される。その結果、圧縮機本体2の吐出圧が低く、かつ圧縮機本体2の回転数が低い状態でも、ロータ室2cへの必要な給油量を確保できる。 In step S1, the condition that the discharge pressure Po is the first threshold pressure Poth1 is satisfied, and in step S2, the condition that the main body rotation speed Vcomp is the first threshold rotation speed Vth1 or less is satisfied because the discharge pressure of the compressor main body 2 is satisfied. It is in a low state and the rotation speed of the compressor main body 2 is low. In this state, the amount of oil guided from the oil separation / recovery device 4 to the rotor chamber 2c via the main oil supply flow path 11 decreases. By opening the solenoid valve 32 in step S3, that is, by opening the solenoid valve 32 when the discharge pressure of the compressor main body 2 is low and the rotation speed of the compressor main body 2 is low. Oil is supplied from the oil separation / recovery device 4 to the rotor 2c chamber not only through the main oil supply flow path 11 but also through the auxiliary oil supply flow path 31. As a result, even when the discharge pressure of the compressor main body 2 is low and the rotation speed of the compressor main body 2 is low, the required amount of oil supply to the rotor chamber 2c can be secured.

ステップS3での電磁弁32を開弁後、つまり補助給油流路31を介したロータ室2cへの給油開始後は、ステップS4〜S8の処理が実行される。 After opening the solenoid valve 32 in step S3, that is, after starting refueling to the rotor chamber 2c via the auxiliary refueling flow path 31, the processes of steps S4 to S8 are executed.

まず、ステップS4において、吐出圧Poが第2圧力閾値Poth2以上となると、ステップS5に移行する。第2圧力閾値Poth2は、本実施形態では、第1圧力閾値Poth1より低圧である。第2圧力閾値Poth2は、第1圧力閾値Poth1値以下で第1圧力閾値Poth1より0.1MPa低圧の範囲で設定され得る。ステップS4において、吐出圧Poが第2圧力閾値Poth2以上という条件が成立しないことは、吐出圧Poが、第1圧力閾値Poth1、つまり補助給油流路31を介した給油が必要な値をさらに下回るような状態であることを意味する。 First, in step S4, when the discharge pressure Po becomes equal to or higher than the second pressure threshold value Poth2, the process proceeds to step S5. In the present embodiment, the second pressure threshold value Poth2 is lower than the first pressure threshold value Poth1. The second pressure threshold Poth2 can be set in the range of 0.1 MPa lower than the first pressure threshold Poth1 below the first pressure threshold Poth1 value. In step S4, the fact that the condition that the discharge pressure Po is equal to or higher than the second pressure threshold value Poth2 is not satisfied means that the discharge pressure Po is further lower than the first pressure threshold value Poth1, that is, the value required for refueling via the auxiliary refueling flow path 31. It means that it is in such a state.

ステップS5において、吐出圧力Poが第3圧力閾値Poth3未満であればステップS6に移行し、吐出圧力Poが第3圧力閾値Poth3以上であればステップS7に移行する。第3圧力閾値Poth3は、本実施形態では、第1圧力閾値Poth1より高圧である。第3圧力閾値Poth3は、第1圧力閾値Poth1以上で第1圧力閾値Poth1より0.1MPa高圧の範囲で設定され得る。ステップS5で、吐出圧力Poが第3圧力閾値Poth3以上という条件が成立することは、吐出圧Poは補助給油流路31を介した給油が必要な値(第1圧力閾値Poth1)を十分に上回っていることを意味する。 In step S5, if the discharge pressure Po is less than the third pressure threshold value Poth3, the process proceeds to step S6, and if the discharge pressure Po is greater than or equal to the third pressure threshold value Poth3, the process proceeds to step S7. In the present embodiment, the third pressure threshold value Poth3 is higher than the first pressure threshold value Poth1. The third pressure threshold value Poth3 can be set in a range of 0.1 MPa higher pressure than the first pressure threshold value Poth1 at the first pressure threshold value Poth1 or higher. In step S5, the condition that the discharge pressure Po is equal to or higher than the third pressure threshold value Poth3 is satisfied, the discharge pressure Po sufficiently exceeds the value required for refueling via the auxiliary oil supply flow path 31 (first pressure threshold value Poth1). It means that it is.

第2圧力閾値Poth2と第3圧力閾値Poth3はいずれも、第1圧力閾値Poth1と同一の値でも良いでが、電磁弁32の開閉タイミングが頻繁になることを避けるために、0.1MPa以内の差圧を設けることが好ましい。 Both the second pressure threshold value Poth2 and the third pressure threshold value Poth3 may have the same value as the first pressure threshold value Poth1, but the opening / closing timing of the solenoid valve 32 may be within 0.1 MPa in order to avoid frequent opening / closing timing. It is preferable to provide a differential pressure.

ステップS6において、本体回転数Vcompが第2閾値回転数Vth2以上であればステップS7に移行し、本体回転数Vcompが第2閾値回転数Vth2未満であればステップS4に戻る。第2閾値回転数Vth2は、本実施形態では、第1閾値回転数Vth1より高速である。第2閾値回転数Vth2は、第1閾値回転数Vth1以上で第1閾値回転数Vth1の125%の範囲で設定され得る。ステップS6で本体回転数Vcompが第2閾値回転数Vth2以上という条件が成立することは、本体回転数Vcompが補助給油流路31を介した給油が必要な値(第1閾値回転数Vth1)を十分に上回ることを意味する。 In step S6, if the main body rotation speed Vcomp is the second threshold rotation speed Vth2 or more, the process proceeds to step S7, and if the main body rotation speed Vcomp is less than the second threshold rotation speed Vth2, the process returns to step S4. The second threshold rotation speed Vth2 is faster than the first threshold rotation speed Vth1 in the present embodiment. The second threshold rotation number Vth2 can be set in the range of 125% of the first threshold rotation number Vth1 at the first threshold rotation number Vth1 or higher. If the condition that the main body rotation speed Vcomp is equal to or higher than the second threshold rotation speed Vth2 is satisfied in step S6, the main body rotation speed Vcomp determines the value (first threshold rotation speed Vth1) that requires refueling via the auxiliary refueling flow path 31. It means that it exceeds enough.

第2閾値回転数Vth2は、第1閾値回転数Vth1と同一の値でも良いが、電磁弁32の開閉タイミングが頻繁になることを避けるため、また第2閾値回転数Vth2が定格回転数に近づくほど省エネ性が低下するので、本実施形態では、第2閾値回転数Vth2を第1閾値回転数Vth1の125%以下とすることが好ましい。 The second threshold rotation speed Vth2 may be the same value as the first threshold rotation speed Vth1, but in order to avoid frequent opening / closing timing of the electromagnetic valve 32, the second threshold rotation speed Vth2 approaches the rated rotation speed. In this embodiment, it is preferable that the second threshold rotation speed Vth2 is 125% or less of the first threshold rotation speed Vth1 because the energy saving property is lowered as much as possible.

ステップS7において、電磁弁32の開弁時(ステップS3)に計時を開始したタイマTimが予め定められた補助給油時間Tupを経過していれば、ステップS8に移行し、タイマTimが補助給油時間Tupを経過していなければステップS4に戻る。 In step S7, if the timer Tim that started timing when the solenoid valve 32 is opened (step S3) has passed the predetermined auxiliary refueling time Tup, the process proceeds to step S8, and the timer Tim moves to the auxiliary refueling time. If Tup has not passed, the process returns to step S4.

ステップS8では、電磁弁32が開弁から閉弁に切り換えられる。電磁弁32の閉弁によって補助給油経路31を介した油分離回収器4からロータ室2cへの油の流れは遮断される。電磁弁32の閉弁後は、主給油経路11のみを介して油分離回収器4からロータ室2cへ油が供給される。ステップS8での電磁弁32の閉弁後、ステップS1に戻る。 In step S8, the solenoid valve 32 is switched from opening to closing. By closing the solenoid valve 32, the flow of oil from the oil separation / recovery device 4 to the rotor chamber 2c via the auxiliary oil supply path 31 is blocked. After the solenoid valve 32 is closed, oil is supplied from the oil separation / recovery device 4 to the rotor chamber 2c only through the main oil supply path 11. After closing the solenoid valve 32 in step S8, the process returns to step S1.

以上のように、本実施形態では、電磁弁32を閉弁から開弁に切り換えた後、以下の閉弁条件1,2のいずれか一方が成立した場合に、電磁弁32を開弁から閉弁に戻す。 As described above, in the present embodiment, after the solenoid valve 32 is switched from the valve closing to the valve opening, the solenoid valve 32 is closed from the valve opening when any one of the following valve closing conditions 1 and 2 is satisfied. Return to the valve.

閉弁条件1:
圧縮機本体1の吐出圧Poが第3閾値圧力Poth3以上、かつタイマTimの計時時間が補助給油時間Tupを経過。
Valve closing condition 1:
The discharge pressure Po of the compressor body 1 is equal to or higher than the third threshold pressure Poth3, and the time counting time of the timer Tim has passed the auxiliary refueling time Tup.

閉弁条件2:
圧縮機本体1の吐出圧Poが第2閾値圧力Poth2以上、本体回転数Vcompが第2閾値回転数Vth2以上、かつタイマTimの計時時間が補助給油時間Tupを経過。
Valve closing condition 2:
The discharge pressure Po of the compressor main body 1 is the second threshold pressure Poth2 or more, the main body rotation speed Vcomp is the second threshold rotation speed Vth2 or more, and the time counting time of the timer Tim has passed the auxiliary refueling time Tup.

前述のように、電磁弁32を閉弁から開弁に切り換える条件は、圧縮機本体1の吐出圧Poが第1閾値圧力Poth1以下、かつ本体回転数Vcompが第1閾値回転数Vth1以下である。つまり、圧縮機本体2の吐出圧Poが低く、かつ圧縮機本体2の回転数Vcompが低い状態となると、補助給油流路31を介したロータ室2cへの給油を実行する。これに対して、閉弁条件1は、圧縮機本体2の吐出圧Poが十分に高い状態が、ある程度の時間継続することを意味する。また、閉弁条件2は、圧縮機本体2の回転数Vcompが十分に高い状態が、ある程度の時間継続することを意味する。つまり、圧縮機本体2の吐出圧Poと圧縮機本体2の回転数Vcompのいずれか一方が回復すれば、補助給油流路31を介したロータ室2cへの給油を終了する。 As described above, the conditions for switching the solenoid valve 32 from the closed valve to the open valve are that the discharge pressure Po of the compressor main body 1 is the first threshold pressure Poth1 or less and the main body rotation speed Vcomp is the first threshold rotation speed Vth1 or less. .. That is, when the discharge pressure Po of the compressor main body 2 is low and the rotation speed Vcomp of the compressor main body 2 is low, refueling to the rotor chamber 2c via the auxiliary refueling flow path 31 is executed. On the other hand, the valve closing condition 1 means that the state in which the discharge pressure Po of the compressor main body 2 is sufficiently high continues for a certain period of time. Further, the valve closing condition 2 means that the state in which the rotation speed Vcomp of the compressor main body 2 is sufficiently high continues for a certain period of time. That is, when either the discharge pressure Po of the compressor main body 2 or the rotation speed Vcomp of the compressor main body 2 recovers, the refueling to the rotor chamber 2c via the auxiliary refueling flow path 31 is completed.

圧縮機本体2の起動時には、図3に示す制御が実行される。圧縮機本体2の起動時には、圧縮機本体2の吐出圧Poと圧縮機本体2の回転数Vcompはいずれも低いので、圧縮機本体2の吐出圧Poと圧縮機本体2の回転数Vcompとのうちのいずれか一方が上昇するまでは、電磁弁32を開弁し、補助給油経路31を介したロータ室2cへの給油を実行する。具体的には、図3のステップS11〜S16は、図2のステップS3〜S8と同一である。 When the compressor main body 2 is started, the control shown in FIG. 3 is executed. When the compressor body 2 is started, the discharge pressure Po of the compressor body 2 and the rotation speed Vcomp of the compressor body 2 are both low, so that the discharge pressure Po of the compressor body 2 and the rotation speed Vcomp of the compressor body 2 are Until one of them rises, the electromagnetic valve 32 is opened and the rotor chamber 2c is refueled via the auxiliary refueling path 31. Specifically, steps S11 to S16 in FIG. 3 are the same as steps S3 to S8 in FIG.

図4は、圧縮機本体の回転数(本体回転数)と、ロータ室への給油量の関係を示すグラフである。このグラフにおいて、「●」印と「+」印は、補助給油流路を備えない従来の油冷式スクリュ圧縮機の場合であり、図12のものと同じである。図4中のその他の記号も特に言及しない限り、図12のものと同じである。図4において、「●」印は吐出圧がP4でファン22の回転数制御を実行した場合(給油温度が上限値)、「+」印は吐出圧がP4でファン22の回転数制御を実行した場合(給油温度が下限値)である。一方、図4において「◆」印と「■」印は、本実施形態に係る油冷式スクリュ圧縮機1の場合であり、圧縮機本体1の吐出圧が低く、かつ圧縮機本体2の回転数が低い場合に補助給油流路31による給油を行っている。「◆」印は吐出圧がP4でファン22の回転数制御を実行した場合(給油温度が上限値)、「■」印は吐出圧がP4でファン22の回転数制御を実行した場合(給油温度が下限値)である。この図12のグラフから、本実施形態に係る油冷式スクリュ圧縮機1では、圧縮機本体の吐出圧が低く、かつ圧縮機本体の回転数が低い部分負荷運転時であっても、ロータ室2cへの給油量が安定し、かつ必要な給油量を確保できることを理解できる。 FIG. 4 is a graph showing the relationship between the rotation speed of the compressor main body (main body rotation speed) and the amount of oil supplied to the rotor chamber. In this graph, the “●” mark and the “+” mark are for a conventional oil-cooled screw compressor not provided with an auxiliary oil supply flow path, and are the same as those in FIG. Other symbols in FIG. 4 are the same as those in FIG. 12 unless otherwise specified. In FIG. 4, the “●” mark indicates that the fan 22 rotation speed control is executed when the discharge pressure is P4 (the refueling temperature is the upper limit value), and the “+” mark indicates that the fan 22 rotation speed control is executed when the discharge pressure is P4. (The refueling temperature is the lower limit). On the other hand, in FIG. 4, the “◆” mark and the “■” mark indicate the case of the oil-cooled screw compressor 1 according to the present embodiment, the discharge pressure of the compressor main body 1 is low, and the rotation of the compressor main body 2 When the number is low, refueling is performed by the auxiliary refueling flow path 31. The "◆" mark indicates that the discharge pressure is P4 and the fan 22 rotation speed control is executed (refueling temperature is the upper limit), and the "■" mark indicates that the discharge pressure is P4 and the fan 22 rotation speed control is executed (refueling). The temperature is the lower limit). From the graph of FIG. 12, in the oil-cooled screw compressor 1 according to the present embodiment, the rotor chamber is operated even during partial load operation in which the discharge pressure of the compressor body is low and the rotation speed of the compressor body is low. It can be understood that the amount of oil supplied to 2c is stable and the required amount of oil can be secured.

(第1実施形態の変形例)
図5から図8は第1実施形態の種々の変形例を示す。これらの変形例の構成は、後述する第2から第4実施形態(図9から図11)にも適用できる。
(Modified example of the first embodiment)
5 to 8 show various modifications of the first embodiment. The configurations of these modified examples can also be applied to the second to fourth embodiments (FIGS. 9 to 11) described later.

図5の変形例では、電磁弁32(図1参照)に代えて、流量制御弁33が補助給油経路31に設けられている。流量制御弁33は補助給油流路31を介したロータ室2cへの油の流れを微流量に制限する第1状態と、制限を緩和して補助給油流路31を介したロータ室21への十分な流量の油の流れを許容する第2状態とに切り換え可能である。制御装置100は、第1実施形態における電磁弁32を閉弁する条件が成立する場合には流量制御弁33を第1状態とし、第1実施形態における電磁弁32を開弁する条件が成立する場合には流量制御弁33を第2状態とする。 In the modified example of FIG. 5, a flow rate control valve 33 is provided in the auxiliary oil supply path 31 instead of the solenoid valve 32 (see FIG. 1). The flow rate control valve 33 has a first state of limiting the flow of oil to the rotor chamber 2c through the auxiliary oil supply flow path 31 to a minute flow rate, and a first state in which the restriction is relaxed to the rotor chamber 21 via the auxiliary oil supply flow path 31. It is possible to switch to a second state that allows a sufficient flow of oil. When the condition for closing the solenoid valve 32 in the first embodiment is satisfied, the control device 100 sets the flow control valve 33 in the first state, and the condition for opening the solenoid valve 32 in the first embodiment is satisfied. In this case, the flow control valve 33 is set to the second state.

図6の変形例では、補助給油流路31は、オイルフィルタ13とオイルクーラ12との間の主給油流路11(第1部分11a)から分岐している。この構成により、オイルクーラ12の目詰まりが補助給油流路31を介したロータ室2cへの給油に影響するのを回避できる。 In the modified example of FIG. 6, the auxiliary oil supply flow path 31 branches from the main oil supply flow path 11 (first portion 11a) between the oil filter 13 and the oil cooler 12. With this configuration, it is possible to prevent the clogging of the oil cooler 12 from affecting the refueling to the rotor chamber 2c via the auxiliary refueling flow path 31.

図7の変形例では、補助給油流路31は、油分離回収器4とオイルフィルタ12との間の主給油流路11(第1部分11a)から分岐している。この構成により、オイルフィルタ13の目詰まりが補助給油流路11を介したロータ室2cへの給油に影響するのを回避できる。 In the modified example of FIG. 7, the auxiliary oil supply flow path 31 branches from the main oil supply flow path 11 (first portion 11a) between the oil separation / recovery device 4 and the oil filter 12. With this configuration, it is possible to prevent the clogging of the oil filter 13 from affecting the oil supply to the rotor chamber 2c via the auxiliary oil supply flow path 11.

図8の変形例では、補助給油流路31は、油分離回収器4の油溜まり4aとロータ室2cとを直接接続している。補助給油経路31をこのように構成することで、油分離回収器4の油溜まり4aからロータ室2cへ流れる油の圧損を効果的に低減できる。そのため、この変形例の補助給油経路31のロータ室2cへの接続位置は、閉じ込み後の圧縮側空間に設定し得る。 In the modified example of FIG. 8, the auxiliary oil supply flow path 31 directly connects the oil sump 4a of the oil separation / recovery device 4 and the rotor chamber 2c. By configuring the auxiliary oil supply path 31 in this way, it is possible to effectively reduce the pressure loss of the oil flowing from the oil reservoir 4a of the oil separation and recovery device 4 to the rotor chamber 2c. Therefore, the connection position of the auxiliary refueling path 31 of this modification to the rotor chamber 2c can be set in the compression side space after confinement.

第1実施形態(図1)並びに図6から図8の変形例に係る補助給油経路31のうちの2以上を1つの油冷式スクリュ圧縮機1に設けても良い。 Two or more of the auxiliary refueling paths 31 according to the first embodiment (FIG. 1) and the modified examples of FIGS. 6 to 8 may be provided in one oil-cooled screw compressor 1.

以下、本発明の第2から第4実施形態を説明する。これらの実施形態について、特に言及しない要素及び機能は、第1実施形態と同様である。 Hereinafter, the second to fourth embodiments of the present invention will be described. The elements and functions not particularly mentioned with respect to these embodiments are the same as those of the first embodiment.

(第2実施形態)
図9に示す本発明の第2実施形態に係る油冷式スクリュ圧縮機1では、圧力センサ(圧力検出部)41が、油分離回収器4ではなく、圧縮機本体2の吐出口2eと油分離回収器4とを接続する空気流路7(第1部分7a)に設けられている。この圧力センサ41によって空気流路7の第1部分7aの圧縮空気の圧力が検出される。
(Second Embodiment)
In the oil-cooled screw compressor 1 according to the second embodiment of the present invention shown in FIG. 9, the pressure sensor (pressure detection unit) 41 is not the oil separation / recovery device 4, but the discharge port 2e of the compressor body 2 and the oil. It is provided in an air flow path 7 (first portion 7a) that connects to the separation / recovery device 4. The pressure sensor 41 detects the pressure of the compressed air in the first portion 7a of the air flow path 7.

(第3実施形態)
図10に示す本発明の第3実施形態に係る油冷式スクリュ圧縮機1では、圧力センサ41(図1及び図9参照)は設けなくてもよく、主給油流路11の油の圧力Psを検出する圧力センサ(圧力検出部)43が設けられている。主給油流路11は油分離回収器4の油溜まり4aの油をポンプで加圧することなく圧縮機本体2のロータ室2cに導く。すなわち、圧縮機本体1から油分離回収器4内に吐出された圧縮空気とロータ室2c内の圧力差によって、油分離回収器4の油溜まり4aの油をロータ室2cに導く。従って、主給油流路11の油の圧力Psを検出することで、圧縮機本体2の吐出圧Poを間接的に検出できる。
(Third Embodiment)
In the oil-cooled screw compressor 1 according to the third embodiment of the present invention shown in FIG. 10, the pressure sensor 41 (see FIGS. 1 and 9) does not have to be provided, and the pressure Ps of the oil in the main oil supply flow path 11 A pressure sensor (pressure detection unit) 43 for detecting the above is provided. The main oil supply flow path 11 guides the oil in the oil sump 4a of the oil separation / recovery device 4 to the rotor chamber 2c of the compressor main body 2 without pressurizing it with a pump. That is, the oil in the oil sump 4a of the oil separation / recovery device 4 is guided to the rotor chamber 2c by the pressure difference between the compressed air discharged from the compressor main body 1 into the oil separation / recovery device 4 and the rotor chamber 2c. Therefore, the discharge pressure Po of the compressor main body 2 can be indirectly detected by detecting the oil pressure Ps of the main oil supply flow path 11.

(第4実施形態)
図11に示す本発明の第4実施形態に係る油冷式スクリュ圧縮機1では、圧力センサ41(図1及び図9)は設けなくてもよく、主給油流路11の油の流量FLを検出する流量センサ(圧力検出部)44が設けられている。上記した実施形態と同様に主給油流路11は油分離回収器4の油溜まり4aの油をポンプで加圧することなく圧縮機本体2のロータ室2cに導くので、主給油流路11の油の流量FLは圧縮機本体2の吐出圧Poと正の相関を有する。従って、主給油流路11の油の流量FLを検出することで、圧縮機本体2の吐出圧Poを間接的に検出できる。
(Fourth Embodiment)
In the oil-cooled screw compressor 1 according to the fourth embodiment of the present invention shown in FIG. 11, the pressure sensor 41 (FIGS. 1 and 9) does not have to be provided, and the flow rate FL of the oil in the main oil supply flow path 11 is measured. A flow rate sensor (pressure detection unit) 44 for detection is provided. Similar to the above embodiment, the main oil flow path 11 guides the oil in the oil reservoir 4a of the oil separation and recovery device 4 to the rotor chamber 2c of the compressor main body 2 without pressurizing the oil in the oil reservoir 4a. The flow rate FL of is positively correlated with the discharge pressure Po of the compressor body 2. Therefore, the discharge pressure Po of the compressor main body 2 can be indirectly detected by detecting the flow rate FL of the oil in the main oil supply flow path 11.

1 油冷式スクリュ圧縮機
2 圧縮機本体
2a 雄ロータ
2b 雌ロータ
2c ロータ室
2d 吸込口
2e 吐出口
2f シャフト
3 モータ
3a 出力シャフト
4 油分離回収器
4a 油溜まり
4b エレメント
5 エアフィルタ
6 吸気調整弁
7 空気流路
7a 第1部分
7b 第2部分
7c 第3部分
8 保圧逆止弁
9 アフタクーラ
11 主給油流路
11a 第1部分
11b 第2部分
12 オイルクーラ
13 オイルフィルタ
14 温度調整弁
15 給油流路
21,23 インバータ
22 ファン
24 ファンモータ
31 補助給油流路
32 電磁弁
41,43 圧力センサ(圧力検出部)
42 温度センサ
44 流量センサ(圧力検出部)
33 流量制御弁
100 制御装置
1 Oil-cooled screw compressor 2 Compressor body 2a Male rotor 2b Female rotor 2c Rotor chamber 2d Suction port 2e Discharge port 2f Shaft 3 Motor 3a Output shaft 4 Oil separation and recovery device 4a Oil pool 4b Element 5 Air filter 6 Intake control valve 7 Air flow path 7a 1st part 7b 2nd part 7c 3rd part 8 Pressure-holding check valve 9 Aftercooler 11 Main oil flow path 11a 1st part 11b 2nd part 12 Oil cooler 13 Oil filter 14 Temperature control valve 15 Oil flow Roads 21 and 23 Inverter 22 Fan 24 Fan motor 31 Auxiliary oil supply flow path 32 Electromagnetic valve 41,43 Pressure sensor (pressure detector)
42 Temperature sensor 44 Flow sensor (pressure detector)
33 Flow control valve 100 Control device

Claims (13)

空気を圧縮する一対のロータが収容されたロータ室を備える圧縮機本体と、
前記圧縮機本体から吐出された圧縮空気から油を分離して回収する油分離回収器と、
前記油分離回収器の油溜まりと前記ロータ室とを流体的に接続し、前記圧縮空気と前記ロータ室内の圧力差によって前記油溜まりの油を前記ロータ室に導く主給油流路と、
前記主給油流路に設けられたオイルクーラと、
前記主給油流路又は前記油分離回収器の前記油溜まりと前記ロータ室とを流体的に接続し、前記圧力差によって前記油溜まりの油を前記ロータ室に導く補助給油流路と、
前記補助給油流路に設けられ、前記補助給油流路を通る前記油の流れを遮断又は制限する第1状態と、前記補助給油流路を通る前記油の流れを許容又は制限緩和する第2状態とに切り換え可能な油流れ制御部と、
前記圧縮空気の圧力を直接的又は間接的に検出する圧力検出部と、
前記圧力検出部により検出された前記圧力が閾値圧力以下となり、かつ前記圧縮機本体の回転数が閾値回転数以下となると、前記油流れ制御部を前記第1状態から前記第2状態に切り換える制御装置と
を備える油冷式スクリュ圧縮機。
A compressor body with a rotor chamber containing a pair of rotors that compress air,
An oil separation / recovery device that separates and recovers oil from the compressed air discharged from the compressor body.
A main oil supply flow path that fluidly connects the oil sump of the oil separation and recovery device and the rotor chamber and guides the oil in the oil sump to the rotor chamber by the pressure difference between the compressed air and the rotor chamber.
An oil cooler provided in the main refueling flow path and
An auxiliary oil flow path that fluidly connects the oil pool of the main oil flow path or the oil separation / recovery device and the rotor chamber, and guides the oil in the oil pool to the rotor chamber by the pressure difference.
A first state provided in the auxiliary oil supply flow path to block or restrict the flow of the oil through the auxiliary oil supply flow path, and a second state to allow or relax the flow of the oil through the auxiliary oil supply flow path. Oil flow control unit that can be switched to
A pressure detector that directly or indirectly detects the pressure of the compressed air,
Control to switch the oil flow control unit from the first state to the second state when the pressure detected by the pressure detection unit becomes equal to or less than the threshold pressure and the rotation speed of the compressor main body becomes equal to or less than the threshold rotation speed. An oil-cooled screw compressor equipped with a device.
前記補助給油流路は、前記ロータ室の前記主給油流路の接続位置よりも前記圧縮機本体の吸込口側に接続している、請求項1に記載の油冷式スクリュ圧縮機。 The oil-cooled screw compressor according to claim 1, wherein the auxiliary oil supply flow path is connected to the suction port side of the compressor main body from the connection position of the main oil supply flow path in the rotor chamber. 前記補助給油流路は、前記オイルクーラよりも圧縮機本体側の前記主給油流路から分岐している、請求項1又は請求項2に記載の油冷式スクリュ圧縮機。 The oil-cooled screw compressor according to claim 1 or 2, wherein the auxiliary oil supply flow path branches from the main oil supply flow path on the compressor main body side of the oil cooler. 前記主給油流路には、前記オイルクーラよりも油分離回収器側に配置されたオイルフィルタが設けられ、
前記補助給油流路は、前記オイルフィルタと前記オイルクーラとの間の前記主給油流路から分岐している、請求項1又は請求項2に記載の油冷式スクリュ圧縮機。
An oil filter arranged on the oil separation / recovery device side of the oil cooler is provided in the main oil supply flow path.
The oil-cooled screw compressor according to claim 1 or 2, wherein the auxiliary oil supply flow path branches from the main oil supply flow path between the oil filter and the oil cooler.
前記主給油流路には、前記オイルクーラよりも油分離回収器側に配置されたオイルフィルタが設けられ、
前記補助給油流路は、前記油分離回収器と前記オイルフィルタとの間の前記主給油流路から分岐している、請求項1又は請求項2に記載の油冷式スクリュ圧縮機。
An oil filter arranged on the oil separation / recovery device side of the oil cooler is provided in the main oil supply flow path.
The oil-cooled screw compressor according to claim 1 or 2, wherein the auxiliary oil supply flow path branches from the main oil supply flow path between the oil separation and recovery device and the oil filter.
前記補助給油流路は、前記油分離回収器の前記油溜まりと前記ロータ室とを前記主給油流路を介することなく接続している、請求項1又は請求項2に記載の油冷式スクリュ圧縮機。 The oil-cooled screw according to claim 1 or 2, wherein the auxiliary oil supply flow path connects the oil sump of the oil separation and recovery device and the rotor chamber without passing through the main oil supply flow path. Compressor. 前記圧力検出部は、前記油分離回収器内の圧力を検出する圧力センサである、請求項1から請求項6のいずれか1項に記載の油冷式スクリュ圧縮機。 The oil-cooled screw compressor according to any one of claims 1 to 6, wherein the pressure detection unit is a pressure sensor that detects the pressure in the oil separation / recovery device. 前記圧力検出部は、前記圧縮機本体の吐出口と前記油分離回収器とを接続する空気流路内の圧力を検出する圧力センサである、請求項1から請求項6のいずれか1項に記載の油冷式スクリュ圧縮機。 The pressure detection unit is a pressure sensor that detects the pressure in the air flow path connecting the discharge port of the compressor body and the oil separation / recovery device, according to any one of claims 1 to 6. The oil-cooled screw compressor described. 前記圧力検出部は、前記圧縮空気で加圧された油の流通する前記主給油流路内の圧力を検出する圧力センサである、請求項1から請求項6のいずれか1項に記載の油冷式スクリュ圧縮機。 The oil according to any one of claims 1 to 6, wherein the pressure detection unit is a pressure sensor that detects the pressure in the main oil supply flow path through which the oil pressurized by the compressed air flows. Cold screw compressor. 前記圧力検出部は、前記圧縮空気で加圧された油の流通する前記主給油流路の油の流量を検出する流量センサである、請求項1から請求項6のいずれか1項に記載の油冷式スクリュ圧縮機。 The pressure detection unit is the flow rate sensor that detects the flow rate of oil in the main oil flow path through which the oil pressurized by the compressed air flows, according to any one of claims 1 to 6. Oil-cooled screw compressor. 前記主給油流路は、前記ロータ室の圧縮側空間に接続しており、
前記補助給油流路は、前記ロータ室の吸込側空間に接続している、請求項1に記載の油冷式スクリュ圧縮機。
The main lubrication flow path is connected to the compression side space of the rotor chamber, and is connected to the compression side space.
The oil-cooled screw compressor according to claim 1, wherein the auxiliary oil supply flow path is connected to the suction side space of the rotor chamber.
前記オイルクーラは、前記圧縮機本体から吐出された圧縮空気の温度又は前記油溜まりの油の温度に基づいて回転数制御されるファンによって冷却する空冷式のオイルクーラである、請求項11に記載の油冷式スクリュ圧縮機。 11. The oil cooler according to claim 11, wherein the oil cooler is an air-cooled oil cooler that is cooled by a fan whose rotation speed is controlled based on the temperature of the compressed air discharged from the compressor body or the temperature of the oil in the oil sump. Oil-cooled screw compressor. 前記圧縮機本体を駆動するモータと、
前記モータの回転数を制御するインバータと
をさらに備え、
前記一対のロータのうちの一方のシャフトが前記モータの出力シャフトと一体構造であり、
前記圧縮機本体の前記回転数は、前記モータの前記回転数である、請求項1又は請求項12に記載の油冷式スクリュ圧縮機。
The motor that drives the compressor body and
Further equipped with an inverter that controls the rotation speed of the motor,
One shaft of the pair of rotors has an integral structure with the output shaft of the motor.
The oil-cooled screw compressor according to claim 1 or 12, wherein the rotation speed of the compressor body is the rotation speed of the motor.
JP2019096865A 2019-05-23 2019-05-23 Oil-cooled screw compressor Active JP7190963B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019096865A JP7190963B2 (en) 2019-05-23 2019-05-23 Oil-cooled screw compressor
PCT/JP2020/018459 WO2020235338A1 (en) 2019-05-23 2020-05-01 Oil-cooled screw compressor
CN202080037919.1A CN113939654B (en) 2019-05-23 2020-05-01 Oil-cooled screw compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019096865A JP7190963B2 (en) 2019-05-23 2019-05-23 Oil-cooled screw compressor

Publications (2)

Publication Number Publication Date
JP2020190240A true JP2020190240A (en) 2020-11-26
JP7190963B2 JP7190963B2 (en) 2022-12-16

Family

ID=73453505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019096865A Active JP7190963B2 (en) 2019-05-23 2019-05-23 Oil-cooled screw compressor

Country Status (3)

Country Link
JP (1) JP7190963B2 (en)
CN (1) CN113939654B (en)
WO (1) WO2020235338A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114718847A (en) * 2022-03-29 2022-07-08 深圳市海格金谷工业科技有限公司 Reciprocating compressor lubricating oil cooling system and using method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073950A (en) * 1998-09-02 2000-03-07 Anest Iwata Corp Method and device for lubricating oil feeding type compressor
JP2008115769A (en) * 2006-11-06 2008-05-22 Mitsubishi Electric Corp Refrigerant compressor
JP2008128085A (en) * 2006-11-20 2008-06-05 Hokuetsu Kogyo Co Ltd Oil cooled screw compressor and load reducing method for oil cooled screw compressor
JP2015078607A (en) * 2013-10-15 2015-04-23 株式会社神戸製鋼所 Starting device and starting method of compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5626470A (en) * 1996-04-10 1997-05-06 Ingersoll-Rand Company Method for providing lubricant to thrust bearing
JP3916511B2 (en) * 2002-06-03 2007-05-16 株式会社神戸製鋼所 Oil-cooled compressor
JP4145830B2 (en) * 2004-04-09 2008-09-03 株式会社神戸製鋼所 Oil-cooled compressor
JP4546322B2 (en) * 2005-05-12 2010-09-15 株式会社神戸製鋼所 Oil-cooled compressor
CN104343683B (en) * 2013-07-31 2017-05-24 株式会社神户制钢所 Oil-cooled air compressor and control method thereof
JP6220291B2 (en) * 2013-07-31 2017-10-25 株式会社神戸製鋼所 Oil-cooled air compressor and control method thereof
JP6843033B2 (en) * 2017-11-09 2021-03-17 株式会社神戸製鋼所 Refueling screw compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073950A (en) * 1998-09-02 2000-03-07 Anest Iwata Corp Method and device for lubricating oil feeding type compressor
JP2008115769A (en) * 2006-11-06 2008-05-22 Mitsubishi Electric Corp Refrigerant compressor
JP2008128085A (en) * 2006-11-20 2008-06-05 Hokuetsu Kogyo Co Ltd Oil cooled screw compressor and load reducing method for oil cooled screw compressor
JP2015078607A (en) * 2013-10-15 2015-04-23 株式会社神戸製鋼所 Starting device and starting method of compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114718847A (en) * 2022-03-29 2022-07-08 深圳市海格金谷工业科技有限公司 Reciprocating compressor lubricating oil cooling system and using method

Also Published As

Publication number Publication date
JP7190963B2 (en) 2022-12-16
WO2020235338A1 (en) 2020-11-26
CN113939654A (en) 2022-01-14
CN113939654B (en) 2024-03-19

Similar Documents

Publication Publication Date Title
JP4627492B2 (en) Oil-cooled screw compressor
JP6713439B2 (en) Refueling air compressor
JP6170334B2 (en) Oil-cooled compressor
JP6412992B2 (en) Oil-cooled air compressor
JP5084460B2 (en) Oil-cooled air compressor
JP4532327B2 (en) Compressor and operation control method thereof
WO2020235338A1 (en) Oil-cooled screw compressor
CN105612353A (en) Oil supply type compressor
JP5506830B2 (en) Screw compressor
US10316842B2 (en) Air compressor
CN103486028A (en) Oil-free helical-lobe compressor
JP4792383B2 (en) Operation method of screw compressor
EP3225848A1 (en) Screw compressor and refrigeration cycle device
JP3897751B2 (en) Refrigeration equipment
JP6712135B2 (en) Oil-cooled air compressor
JP7267407B2 (en) gas compressor
JP5980754B2 (en) Oil-cooled air compressor and control method thereof
JP2015048766A (en) Oil-cooled air compressor
JP6249671B2 (en) Inverter-driven compressor operation control method and inverter-driven compressor
CN111902631B (en) Gas compressor
JP2001280275A (en) Method for operating screw compressor and the screw compressor
JP5997670B2 (en) Oil-cooled air compressor
JP2013227902A (en) Oil-cooling type screw compressor
JP2011012583A (en) Screw compressor
JPH05141383A (en) Oil-cooled type compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210817

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221206

R151 Written notification of patent or utility model registration

Ref document number: 7190963

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151