JP4546322B2 - Oil-cooled compressor - Google Patents

Oil-cooled compressor Download PDF

Info

Publication number
JP4546322B2
JP4546322B2 JP2005140022A JP2005140022A JP4546322B2 JP 4546322 B2 JP4546322 B2 JP 4546322B2 JP 2005140022 A JP2005140022 A JP 2005140022A JP 2005140022 A JP2005140022 A JP 2005140022A JP 4546322 B2 JP4546322 B2 JP 4546322B2
Authority
JP
Japan
Prior art keywords
temperature
oil
discharge temperature
discharge
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005140022A
Other languages
Japanese (ja)
Other versions
JP2006316696A (en
Inventor
中村  元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005140022A priority Critical patent/JP4546322B2/en
Priority to CNB2006100798479A priority patent/CN100470054C/en
Publication of JP2006316696A publication Critical patent/JP2006316696A/en
Application granted granted Critical
Publication of JP4546322B2 publication Critical patent/JP4546322B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、空冷式油冷却器を備えた油冷式圧縮機に関するものである。   The present invention relates to an oil-cooled compressor provided with an air-cooled oil cooler.

従来、空冷式油冷却器を備えた油冷式圧縮機は公知である(例えば、特許文献1,2参照。)。
特開平6−213186号公報 特開2003−206864号公報
Conventionally, an oil-cooled compressor provided with an air-cooled oil cooler is known (see, for example, Patent Documents 1 and 2).
JP-A-6-213186 JP 2003-206864 A

特許文献1には、空冷式油冷却器(オイルクーラ)の出口における油温を検出し、この検出温度に基づき、空冷式油冷却器を冷却するための風量を制御して、圧縮機本体に入る油の温度を設定温度に保つことにより、油中での水分(ドレン)の凝縮を抑制するようにした油冷式圧縮機が開示されている。   In Patent Document 1, the oil temperature at the outlet of the air-cooled oil cooler (oil cooler) is detected, and based on this detected temperature, the air volume for cooling the air-cooled oil cooler is controlled, An oil-cooled compressor is disclosed in which condensation of moisture (drain) in oil is suppressed by keeping the temperature of oil entering at a set temperature.

特許文献2には、検出された吐出温度に基づき、空冷式油冷却器の冷却ファンの駆動部であるモータの回転数を制御し、吐出温度を吐出ガス中の水分が凝縮して析出する温度よりは高くする油温に維持するようにした油冷式圧縮機が開示されている。   In Patent Document 2, the rotation speed of a motor that is a driving unit of a cooling fan of an air-cooled oil cooler is controlled based on the detected discharge temperature, and the discharge temperature is a temperature at which moisture in the discharge gas is condensed and deposited. An oil-cooled compressor that maintains a higher oil temperature is disclosed.

油冷式圧縮機の性能はガス圧縮空間への給油温度が低い程良くなる反面、この給油温度低くなり過ぎると、圧縮ガスの吐出温度が下がり過ぎて、ガス中の水分が凝縮し、析出するという問題が生じる。   The performance of the oil-cooled compressor improves as the oil supply temperature to the gas compression space decreases. However, if the oil supply temperature becomes too low, the discharge temperature of the compressed gas decreases too much, causing moisture in the gas to condense and deposit. The problem arises.

圧縮機でガス中の水分が凝縮し、析出するのはガスが圧縮状態にある吐出側であり、特許文献1に記載の油冷式圧縮機の場合、空冷式油冷却器の出口側における油温は設定温度に保たれるとしても、上記吐出側での温度制御はできないため、ここでの水分の凝縮、析出を防止することはできないという問題がある。さらに、ガス中の水分の凝縮量は、ガスの圧力及び温度の関数であり、圧力が高い程、また温度が低い程、水分は凝縮し易くなる。従って、温度制御のみにより水分の凝縮を防止しようとすると、ガスの圧力が最も高い状態である吐出圧力を想定して温度制御する必要があり、結果的には、給油温度を低くすることができない。即ち、吐出温度を適正に維持することが重要であるのであって、給油温度の制御のみによれば、給油温度<吐出温度で、給油温度が水分の凝縮を生じさせる程低くとも、吐出温度が吐出ガス中の水分の凝縮温度以上になり、吐出温度が適正となる場合があるにも拘わらず、給油温度を吐出ガスでの水分の凝縮を防止し得る温度としているため、給油温度は高い温度になってしまい、圧縮機性能の低下を招来するという問題が生じる。   The moisture in the gas is condensed and precipitated in the compressor on the discharge side where the gas is in a compressed state. In the case of the oil-cooled compressor described in Patent Document 1, the oil on the outlet side of the air-cooled oil cooler Even if the temperature is kept at the set temperature, the temperature cannot be controlled on the discharge side, and therefore there is a problem that the condensation and precipitation of moisture cannot be prevented. Furthermore, the amount of moisture condensed in the gas is a function of the pressure and temperature of the gas. The higher the pressure and the lower the temperature, the easier it is for the moisture to condense. Therefore, if it is intended to prevent moisture condensation only by temperature control, it is necessary to control the temperature assuming the discharge pressure, which is the highest gas pressure, and as a result, the oil supply temperature cannot be lowered. . In other words, it is important to maintain the discharge temperature appropriately. According to the control of the oil supply temperature alone, even if the oil supply temperature is less than the discharge temperature and the oil supply temperature is low enough to cause condensation of the water, the discharge temperature is The oil supply temperature is set to a temperature that can prevent condensation of water in the discharge gas, even though the discharge temperature may be more appropriate than the condensation temperature of the water in the discharge gas. As a result, there arises a problem that the compressor performance is lowered.

特許文献2に記載の発明は、空冷式油冷却器の冷却ファンのモータ回転数を一定にした油冷式圧縮機に比して、吐出ガスにおける水分の凝縮回避のために吐出温度を適正に管理し、省エネルギーを可能にする等の効果を奏するものの、さらなる省エネルギーが要望されている。   In the invention described in Patent Document 2, the discharge temperature is appropriately set to avoid condensation of moisture in the discharge gas as compared with the oil-cooled compressor in which the motor rotation speed of the cooling fan of the air-cooled oil cooler is constant. Although there are effects such as management and energy saving, further energy saving is demanded.

本発明は、斯かる従来の問題をなくし、上記要望に応えることを課題としてなされたもので、吐出ガスにおいて水分の凝縮、析出を防止し、かつ省エネルギーを可能とした油冷式圧縮機を提供しようとするものである。   The present invention has been made to solve the above-mentioned problems and to meet the above-mentioned demands, and provides an oil-cooled compressor that prevents condensation and precipitation of moisture in the discharge gas and enables energy saving. It is something to try.

上記課題を解決するために、第1発明は、
圧縮機本体内のガス圧縮空間に供給された油を吐出ガスから分離、回収する油分離回収器の油溜まり部から二方向可変分流機能を有する温度調節弁に至り、冷却ファンで送風される空冷式油冷却器を経た後、或いは上記空冷式油冷却器を介することなくバイパス流路を経た後、上記ガス圧縮空間に通じる油流路と、
ガスの吐出温度を検出する吐出温度検出器と、
吐出温度検出器により検出された吐出温度に基づき、上記冷却ファンのモータ及び上記温度調節弁を制御し、上記モータの回転数及び上記温度調節弁での二方向分流比を調節するコントローラとを備え
上記コントローラに、上記圧縮機本体が吸込むガスが含有する水分の量Wsと、該圧縮機本体が飽和状態で吐き出すガスに随伴される水分の量Wdとが同一の値となる際の最適吐出温度T do が設定され、
上記コントローラが、
上記吐出温度T が上記最適吐出温度T do よりも高い場合には、そうでない場合よりも、上記空冷式油冷却器を経て上記ガス圧縮空間に通じる油量が増大し、上記温度調節弁を介して上記ガス圧縮空間に通じる油の全てが上記空冷式油冷却器を経るよう、
上記吐出温度T が上記最適吐出温度T do よりも低い場合には、そうでない場合よりも、上記バイパス流路を経て上記ガス圧縮空間に通じる油量が増大し、上記吐出温度Tと上記最適吐出温度T do の差分が大きい程、上記バイパス流路を経て上記ガス圧縮空間に通じる油量が増大するよう、
上記温度調節弁での二方向分流比を調節するものであり、
上記吐出温度T が上記最適吐出温度T do より温度ΔTだけ高い値よりも低ければ、上記モータの回転数を一定に保ち、
上記吐出温度T が上記最適吐出温度T do より温度ΔTだけ高い値よりも更に高ければ、吐出温度T が上記最適吐出温度T do より温度ΔTだけ高い値になるよう、上記モータの回転数を調節するものである。
In order to solve the above problems, the first invention is:
Air-cooled air that is blown by a cooling fan from the oil reservoir of the oil separator / collector that separates and recovers the oil supplied to the gas compression space in the compressor body from the oil reservoir to a temperature control valve that has a variable flow diversion function. After passing through the oil cooler, or after passing through the bypass flow path without going through the air-cooled oil cooler, the oil flow path leading to the gas compression space;
A discharge temperature detector for detecting the gas discharge temperature;
A controller for controlling the motor of the cooling fan and the temperature control valve based on the discharge temperature detected by the discharge temperature detector, and adjusting the rotational speed of the motor and the bi-directional diversion ratio at the temperature control valve; ,
Optimum discharge temperature when the amount of moisture Ws contained in the gas sucked into the compressor main body and the amount of water Wd accompanying the gas discharged from the compressor main body in the saturated state become the same value in the controller T do is set,
The controller
When the discharge temperature T d is higher than the optimum discharge temperature T do , the amount of oil passing through the air-cooled oil cooler to the gas compression space is increased and the temperature control valve is turned on. All of the oil that leads to the gas compression space through the air-cooled oil cooler,
When the discharge temperature T d is lower than the optimum discharge temperature T do , the amount of oil passing through the bypass flow path to the gas compression space is increased, and the discharge temperature T and the optimum discharge temperature T do. The larger the difference in the discharge temperature T do, the greater the amount of oil that passes through the bypass flow path to the gas compression space.
It adjusts the two-way diversion ratio in the temperature control valve,
If the discharge temperature T d is lower than the value higher than the optimum discharge temperature T do by a temperature ΔT, the rotation speed of the motor is kept constant,
In addition higher than higher by the value above the discharge temperature T d temperature than the optimum discharge temperature T do [Delta] T, so that the discharge temperature T d is higher by a value temperature [Delta] T from the optimum discharge temperature T do, the rotation speed of the motor Is to adjust.

発明は、第発明の構成に加えて、上記コントローラが、上記吐出温度Tが上記最適吐出温度Tdoより温度ΔTだけ高い値よりも更に高ければ、上記最適吐出温度Tdoより温度ΔTだけ高い値を吐出温度Tの目標値とするPID演算にて上記モータの回転数を調節するものである構成とした。 In the second aspect of the invention, in addition to the configuration of the first aspect of the invention, if the controller has a temperature higher than the optimum discharge temperature T do if the discharge temperature T d is higher than a value higher than the optimum discharge temperature T do by a temperature ΔT. The rotational speed of the motor is adjusted by PID calculation using a value higher by ΔT as a target value of the discharge temperature T.

発明は、第1又は第2発明の構成に加えて、上記温度ΔTが上記コントローラにおいてチャタリング現象が生じるのを防止するため導入された定数である構成とした。 In the third aspect of the invention, in addition to the structure of the first or second aspect of the invention , the temperature ΔT is a constant introduced to prevent the chattering phenomenon from occurring in the controller.

本発明に係る油冷式圧縮機によれば、吐出ガスにおいて水分の凝縮、析出を防止し、かつ省エネルギー及び騒音の抑制を可能になる等の効果を奏する。   The oil-cooled compressor according to the present invention has effects such as prevention of moisture condensation and precipitation in the discharge gas, energy saving and noise suppression.

次に、本発明の一実施形態を図面にしたがって説明する。
図1は、本発明に係る油冷式圧縮機1を示し、この油冷式圧縮機1の圧縮機本体11はモータ12を駆動部とし、吸込流路13及び吐出流路14に接続されている。
Next, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows an oil-cooled compressor 1 according to the present invention. A compressor main body 11 of the oil-cooled compressor 1 is connected to a suction flow path 13 and a discharge flow path 14 with a motor 12 as a drive unit. Yes.

吸込流路13には、吸込みガスの温度を検出する吸込温度検出器15と吸込みガスの湿度を検出する吸込湿度検出器16とが設けられ、吐出流路14には、油分離回収器19とが設けられている。また、油分離回収器19内の上部には油分離エレメント21が設けられ、油分離回収器19内の下部は油溜まり部22となっている。
そして、油分離回収器19における油分離エレメント21と油溜まり部22との間の空間部に吐出ガスの温度を検出する吐出温度検出器17と吐出ガスの圧力を検出する吐出圧力検出器18が設けられている。なお、図1では、吐出温度検出器17及び吐出圧力検出器18は、油分離回収器19における油分離エレメント21と油溜まり部22との間の空間部に配置されているが、上記空間部以外の吐出流路14の部分に配置されてもよい。
The suction flow path 13 is provided with a suction temperature detector 15 for detecting the temperature of the suction gas and a suction humidity detector 16 for detecting the humidity of the suction gas. The discharge flow path 14 is provided with an oil separation and recovery device 19 and Is provided. An oil separation element 21 is provided in the upper part of the oil separator / collector 19, and an oil reservoir 22 is provided in the lower part of the oil separator / collector 19.
A discharge temperature detector 17 that detects the temperature of the discharge gas and a discharge pressure detector 18 that detects the pressure of the discharge gas in the space between the oil separation element 21 and the oil reservoir 22 in the oil separation and recovery device 19 are provided. Is provided. In FIG. 1, the discharge temperature detector 17 and the discharge pressure detector 18 are disposed in a space portion between the oil separation element 21 and the oil reservoir 22 in the oil separation and recovery device 19. It may be arranged in a portion of the discharge flow path 14 other than the above.

油溜まり部22からは、油フィルタ23,温度調節弁24及び空冷式油冷却器25を経て、或いは油フィルタ23,温度調節弁24及びバイパス流路26を経て圧縮機本体11内のガス圧縮空間、軸受・軸封部等の給油箇所に通じる油流路27が延びている。なお、温度調節弁24は二方向可変分流機能を有している。即ち、温度調節弁24は、空冷式油冷却器25を経て圧縮機本体11内のガス圧縮空間等に通じる間の量と、バイパス流路26を経て、上記ガス圧縮空間等に通じる油の量をそれぞれ任意の分流比で以て調節することのできる機能を有している。また、空冷式油冷却器25は、モータ12とは独立した別個のモータ28により駆動される冷却ファン29を備えている。   From the oil reservoir 22, the gas compression space in the compressor body 11 passes through the oil filter 23, the temperature control valve 24 and the air-cooled oil cooler 25, or passes through the oil filter 23, the temperature control valve 24 and the bypass passage 26. An oil passage 27 leading to an oil supply location such as a bearing / shaft seal extends. The temperature control valve 24 has a two-way variable diversion function. That is, the temperature control valve 24 passes through the air-cooled oil cooler 25 and communicates with the gas compression space in the compressor body 11 and the amount of oil communicated with the gas compression space through the bypass passage 26. Each of which can be adjusted by an arbitrary diversion ratio. The air-cooled oil cooler 25 includes a cooling fan 29 that is driven by a separate motor 28 independent of the motor 12.

吸込温度検出器15、吸込湿度検出器16、吐出温度検出器17及び吐出圧力検出器18はコントローラ31に接続され、これらにより検出された吸込温度、吸込湿度、吐出温度及び吐出圧力を示す吸込温度信号、吸込湿度信号、吐出温度信号及び吐出圧力信号がコントローラ31に入力される。さらに、コントローラ31は温度調節弁24及びモータ28に接続され、入力された上記吸込温度信号、吸込湿度信号、吐出温度信号及び吐出圧力信号に基づき、上記ガス圧縮空間に注入される油の温度が適温になるように温度調節弁24及びモータ28がコントローラ31により制御される。即ち、温度調節弁24での二方向分流比が調節され、モータ28の回転数が調節される。   The suction temperature detector 15, the suction humidity detector 16, the discharge temperature detector 17 and the discharge pressure detector 18 are connected to the controller 31, and the suction temperature indicating the suction temperature, the suction humidity, the discharge temperature and the discharge pressure detected thereby. A signal, a suction humidity signal, a discharge temperature signal, and a discharge pressure signal are input to the controller 31. Further, the controller 31 is connected to the temperature control valve 24 and the motor 28, and the temperature of oil injected into the gas compression space is controlled based on the input suction temperature signal, suction humidity signal, discharge temperature signal and discharge pressure signal. The temperature control valve 24 and the motor 28 are controlled by the controller 31 so that the temperature is appropriate. That is, the two-way diversion ratio in the temperature control valve 24 is adjusted, and the rotation speed of the motor 28 is adjusted.

次に、上記構成からなる油冷式圧縮機1の運転方法について説明する。
上記構成からなる油冷式圧縮機1において、吸込流路13から圧縮機本体11に吸込まれたガスは、油流路27から油注入を受けつつガス圧縮空間にて圧縮され、昇圧、昇温し、油を伴って吐出流路14に吐出され、油分離回収器19に導かれる。この油分離回収器19では、圧縮ガスと油が分離され、圧縮ガスは油分離回収器19の上部から延びる吐出流路14の部分へと送り出され、油は油溜まり部22に一旦溜められる。そして、この油溜まり部22の油は、油流路27に流入し、油フィルタ23を経て、温度調節弁24にて、空冷式油冷却器25側とバイパス流路26側とに分流されて、上記ガス圧縮空間に送られ、その後吐出流路14から油分離回収器19に戻され、繰り返し循環させられる。
Next, an operation method of the oil-cooled compressor 1 having the above configuration will be described.
In the oil-cooled compressor 1 having the above-described configuration, the gas sucked into the compressor main body 11 from the suction flow path 13 is compressed in the gas compression space while receiving oil injection from the oil flow path 27, and is increased in pressure and temperature. Then, the oil is discharged into the discharge flow path 14 with the oil and guided to the oil separator / collector 19. In the oil separator / collector 19, the compressed gas and the oil are separated, and the compressed gas is sent out to the portion of the discharge passage 14 extending from the upper part of the oil separator / collector 19, and the oil is temporarily stored in the oil reservoir 22. The oil in the oil reservoir 22 flows into the oil flow path 27, passes through the oil filter 23, and is divided into the air-cooled oil cooler 25 side and the bypass flow path 26 side by the temperature control valve 24. The gas is then sent to the gas compression space, and then returned from the discharge flow path 14 to the oil separator / collector 19 and repeatedly circulated.

ところで、油分離回収器19では、圧縮ガスからの水分の凝縮を防ぐために、水分を確実にガス状態、即ち水蒸気にする温度に圧縮ガスを維持する必要がある。   By the way, in the oil separator / recovery unit 19, in order to prevent condensation of moisture from the compressed gas, it is necessary to maintain the compressed gas at a temperature at which the moisture is in a gas state, that is, water vapor.

圧縮機本体11の吸込みガスが、例えば空気である場合、吸込温度をT(℃)、吸込湿度でD(%)とすると、1m3当たりの吸込みガス中の含有水分量W(kg/m3)は次式で表される。

Figure 0004546322
When the suction gas of the compressor body 11 is air, for example, if the suction temperature is T s (° C.) and the suction humidity is D s (%), the moisture content W s (kg) in the suction gas per 1 m 3. / m 3 ) is expressed by the following equation.
Figure 0004546322

次に、圧縮空気の圧力、即ち吐出圧力をP(kg/cm2G)、圧縮空気の温度、即ち吐出温度をT(℃)とすると、1m3当たりの飽和状態の圧縮空気に随伴し、流出してゆく持出し水分量W(kg/m3)は次式で表される。

Figure 0004546322
Next, if the pressure of compressed air, that is, the discharge pressure is P d (kg / cm 2 G), and the temperature of the compressed air, that is, the discharge temperature is T d (° C.), it is accompanied by saturated compressed air per 1 m 3. The carried-out water amount W d (kg / m 3 ) flowing out is expressed by the following equation.
Figure 0004546322

吸込みガスが大気であって、吸込圧力Pを760mmHg、吸込温度Tを40℃、吸込湿度Dを75%とし、吐出圧力Pを7kg/cm2Gとした場合における吐出温度T(℃)と含有水分量W(kg/m3)及び持出し水分量W(kg/m3)のそれぞれとの関係についての演算結果は図2に示すようになり、図中曲線Iは含有水分量W、曲線IIは持出し水分量Wのそれぞれに対応している。 The discharge temperature T d when the suction gas is the atmosphere, the suction pressure P s is 760 mmHg, the suction temperature T s is 40 ° C., the suction humidity D s is 75%, and the discharge pressure P d is 7 kg / cm 2 G. The calculation results regarding the relationship between (° C.) and the contained water content W s (kg / m 3 ) and the carried-out water content W d (kg / m 3 ) are as shown in FIG. The water content W s and the curve II correspond to the carried water content W d , respectively.

油分離回収器19を含む吐出流路14において、圧縮空気からの凝縮した水の析出を防ぐためには、含有水分量W≦持出し水分量Wとすればよく、図2によれば、吐出温度が約80℃以上で、この大小関係の状態になり、吐出流路14において圧縮空気からの凝縮した水が析出しないことが分かる。 In order to prevent precipitation of condensed water from the compressed air in the discharge flow path 14 including the oil separator / recovery unit 19, the water content W s ≦ the water content W d taken out may be set. It can be seen that when the temperature is about 80 ° C. or higher, the magnitude relationship is reached, and condensed water from the compressed air does not precipitate in the discharge flow path 14.

油冷式圧縮機1において、できるだけエネルギーを無駄にせず、かつできるだけ騒音を抑制するためには、含有水分量W≦持出し水分量Wの関係を保ちつつ、吐出温度をできるだけ低くすることが望ましい。そこで、含有水分量W=持出し水分量Wとし、吸込温度検出器15、吸込湿度検出器16及び吐出圧力検出器18のそれぞれからコントローラ31への入力信号が示す吸込温度T、吸込湿度D及び吐出圧力Pに基づきコントローラ31において、最適吐出温度Tdoが算出される。なお、吸込みガスが大気であって、吸込圧力Pを760mmHg、吸込温度Tを40℃、吸込湿度Dを75%、吐出圧力Pを7kg/cm2Gとした場合には、上述したように、また図2に示すように、最適吐出温度Tdoは約80℃となる。 In the oil-cooled compressor 1, in order to minimize energy consumption and suppress noise as much as possible, it is necessary to reduce the discharge temperature as much as possible while maintaining the relationship of the content water content W s ≦ the export water content W d. desirable. Therefore, the moisture content W s = the moisture content W d taken out, and the suction temperature T s and the suction humidity indicated by the input signals to the controller 31 from the suction temperature detector 15, the suction humidity detector 16 and the discharge pressure detector 18, respectively. in the controller 31 on the basis of the D s and the discharge pressure P d, the optimum discharge temperature T do is calculated. Incidentally, the suction gas is a atmosphere, 760 mmHg suction pressure P s, 40 ° C. The inlet temperature T s, the suction humidity D s 75%, when the discharge pressure P d was 7 kg / cm 2 G, the above As shown in FIG. 2, the optimum discharge temperature T do is about 80 ° C.

続いて、最適吐出温度Tdoと吐出温度検出器17からコントローラ31への温度信号が示す検出された吐出温度Tとの差に基づき、コントローラ31により温度調節弁24及び冷却ファン29のモータ28が以下のように制御される。 Subsequently, based on the difference between the optimum discharge temperature T do and the detected discharge temperature T d indicated by the temperature signal from the discharge temperature detector 17 to the controller 31, the controller 31 controls the motor 28 of the temperature control valve 24 and the cooling fan 29. Is controlled as follows.

最適吐出温度Tdo+ΔT>検出吐出温度Tの場合には、冷却ファン29のモータ28を“一定の回転数”に保つ。同時に、検出吐出温度Tが最適吐出温度Tdoよりも高い場合には、そうでない場合よりも空冷式油冷却器25側への油量が増大するように、温度調節弁24が制御される。逆に検出吐出温度Tが最適吐出温度Tdoよりも低くければ、そうでない場合よりもバイパス流路26側への油量が増大するように温度調節弁24が制御される。つまり、例えば、検出吐出温度Tが最適吐出温度Tdoより高ければ、温度調節弁24を介して上記ガス圧縮空間に通じる油の全てが空冷式油冷却器25を経るように温度調節弁24が制御される。そして、検出吐出温度Tが最適吐出温度Tdoより低ければ、検出吐出温度Tと最適吐出温度Tdoとの差分が大きい程、バイパス流路26を経て上記ガス圧縮空間に通じる油量が増大するように温度制御弁24が制御される。 When the optimum discharge temperature T do + ΔT> the detected discharge temperature T d , the motor 28 of the cooling fan 29 is kept at “a constant rotational speed”. At the same time, when the detected discharge temperature T d is higher than the optimum discharge temperature T do , the temperature adjustment valve 24 is controlled so that the amount of oil to the air-cooled oil cooler 25 side is increased as compared to the case where it is not. . If Kere lower than the detected discharge temperature T d is the optimum discharge temperature T do the contrary, the temperature regulating valve 24 is controlled so that the oil amount to the bypass passage 26 side increases than would otherwise be the case. That is, for example, if the detected discharge temperature T d is higher than the optimum discharge temperature T do , the temperature control valve 24 allows all of the oil that passes through the gas compression space via the temperature control valve 24 to pass through the air-cooled oil cooler 25. Is controlled. Then, if lower than the optimum discharge temperature T do is detected discharge temperature T d, the more difference between the detected discharge temperature T d and the optimal discharge temperature T do is large, the amount of oil communicating with said gas compression space through the bypass passage 26 The temperature control valve 24 is controlled to increase.

上記ΔTは、コントローラ31においてチャタリング現象が生じるのを防止するために導入された定数であり、例えば最適吐出温度Tdoが約80℃の場合には、ΔTは2℃程度とされる。 ΔT is a constant introduced to prevent the chattering phenomenon from occurring in the controller 31. For example, when the optimum discharge temperature T do is about 80 ° C., ΔT is about 2 ° C.

上記“一定の回転数”は、一定の場合においてモータ12内のコイルの温度が許容最高温度以下に維持されるようにモータ12を空冷するために必要な単位時間当たりのモータ冷却用風量Qm_minと、一定の場合において油分離回収器19の二次側の吐出流路14から供給される吐出ガスが許容最高温度以下に維持されるように空冷式油冷却器25を空冷するために必要な単位時間当たりの油冷却器冷却用風量Qa_minの内、大きい方の風量を生じ得る冷却ファン29のモータ28の回転数を意味している。 The above "constant rotational speed" is a motor cooling air volume Q m_min per unit time necessary for air-cooling the motor 12 so that the temperature of the coil in the motor 12 is maintained below the allowable maximum temperature in a constant case. In a fixed case, it is necessary for air-cooling the oil-cooled oil cooler 25 so that the discharge gas supplied from the discharge channel 14 on the secondary side of the oil separator / collector 19 is maintained below the maximum allowable temperature. This means the number of rotations of the motor 28 of the cooling fan 29 that can generate a larger air volume out of the air volume Q a_min for cooling the oil cooler per unit time.

さらに、具体的には、モータ冷却用風量Qm_minについての上記一定の場合とは、油冷式圧縮機1の駆動部としてのモータ12の特性上、モータ12が許容される最低回転数で、かつモータ12の周囲温度が、モータ12が許容し得る最高温度である場合をいう。また、油冷却器冷却用風量Qa_minについての上記一定の場合とは、油冷式圧縮機1の駆動部としてのモータ12の特性上、モータ12が許容される最低回転数で、かつモータ12の周囲温度が、モータ12が許容し得る最高温度である場合で、かつ温度調節弁24を経て、全量が空冷式油冷却器25側に導かれる場合をいう。 Further, specifically, the above-mentioned fixed case of the air volume Q m_min for cooling the motor is the minimum number of rotations allowed for the motor 12 due to the characteristics of the motor 12 as the drive unit of the oil-cooled compressor 1. And the case where the ambient temperature of the motor 12 is the highest temperature that the motor 12 can tolerate. The above-mentioned fixed case of the air flow rate Q a_min for cooling the oil cooler is the minimum rotational speed allowed for the motor 12 due to the characteristics of the motor 12 as the drive unit of the oil-cooled compressor 1, and the motor 12 Is the maximum temperature that the motor 12 can tolerate, and the entire amount is led to the air-cooled oil cooler 25 side through the temperature control valve 24.

一方、最適吐出温度Tdo+ΔT≦検出吐出温度Tの場合には、検出吐出温度Tが最適吐出温度Tdo+ΔTになるように、冷却ファン29のモータ28の回転数を制御するとともに、油溜まり部22からの油の全量が空冷式油冷却器25に導かれるように温度調節弁24が制御される。 On the other hand, when the optimum discharge temperature T do + ΔT ≦ the detected discharge temperature T d , the rotational speed of the motor 28 of the cooling fan 29 is controlled so that the detected discharge temperature T d becomes the optimum discharge temperature T do + ΔT. The temperature control valve 24 is controlled so that the entire amount of oil from the oil reservoir 22 is guided to the air-cooled oil cooler 25.

なお、この場合、冷却ファン29のモータ28の回転数は上記“一定の回転数”以上となる。具体的には、最適吐出温度Tdoと、油分離回収器19に設けられた吐出温度検出器17により検出された吐出温度Tとの差に基づき、コントローラ31において、PID演算され、モータ28の回転数が算出され、この算出結果に基づきモータ28が制御される。 In this case, the number of rotations of the motor 28 of the cooling fan 29 is equal to or higher than the “constant number of rotations”. Specifically, based on the difference between the optimum discharge temperature T do and the discharge temperature T d detected by the discharge temperature detector 17 provided in the oil separator / collector 19, the controller 31 performs PID calculation, and the motor 28 , And the motor 28 is controlled based on the calculation result.

例えば、モータ28の回転数を算出するためのPID演算式は、以下のように表される。

Figure 0004546322
For example, a PID arithmetic expression for calculating the rotation speed of the motor 28 is expressed as follows.
Figure 0004546322

但し、実際に演算において使用されるのは、吐出温度Tの目標値は最適吐出温度Tdoそのものではなく、最適吐出温度Tdo+ΔTとされる故、式(3)に代えて次式がPID演算に用いられる。

Figure 0004546322
However, for use in the practice operation, the target value of the discharge temperature T d is the optimum discharge temperature T do not itself, because that is the optimum discharge temperature T do + [Delta] T, the following equation in place of Equation (3) is Used for PID calculation.
Figure 0004546322

このように、油冷式圧縮機1では、最適吐出温度Tdo+ΔT>検出吐出温度Tの場合にも、冷却ファン29の動力を必要最低限の状態に維持でき、吐出温度を適正に保ちつつ、水分の凝縮、析出回避において省エネルギーが可能になり、騒音も抑制できるようになっている。 As described above, in the oil-cooled compressor 1, even when the optimum discharge temperature T do + ΔT> the detected discharge temperature T d , the power of the cooling fan 29 can be maintained in the minimum necessary state, and the discharge temperature can be appropriately maintained. On the other hand, energy can be saved in avoiding condensation and precipitation of moisture, and noise can be suppressed.

更に、図3を元に説明する。この図3は、検出吐出温度Tと冷却ファン29のモータ28の回転数との相関図(線(ア)と線(イ))、さらには検出吐出温度Tと油フィルタ23から空冷式油冷却器25へつながる温度調節弁24の弁ポートの開度との相関図(線(ウ)と線(エ))である。 Further, a description will be given based on FIG. FIG. 3 is a correlation diagram (line (A) and line (A)) between the detected discharge temperature Td and the number of rotations of the motor 28 of the cooling fan 29. Further, the detected discharge temperature Td and the oil filter 23 are air-cooled. It is a correlation diagram (line (c) and line (d)) with the opening degree of the valve port of the temperature control valve 24 connected to the oil cooler 25.

図3の左側の縦軸は、油フィルタ23から空冷式油冷却器25へつながる温度調節弁24の弁ポートの開度を示すものである。その軸で100%と記されているところは、その弁ポートの開度が最大であること、すなわち、温度調節弁24を介して圧縮機本体11のガス圧縮空間に通じる油の全てが空冷式油冷却器25を経る状態であることを示している。換言すれば、この図3は、検出吐出温度Tと、温度調節弁24での二方向分流比との相関図とも言える。そして、図3の右側の縦軸は、冷却ファン29のモータ28の回転数を、最も高い回転数を100%とみなして、パーセントの単位で示すものである。 The vertical axis on the left side of FIG. 3 indicates the opening degree of the valve port of the temperature control valve 24 connected from the oil filter 23 to the air-cooled oil cooler 25. Where 100% is indicated on the shaft, the opening degree of the valve port is the maximum, that is, all of the oil communicating with the gas compression space of the compressor body 11 via the temperature control valve 24 is air-cooled. It shows that the oil cooler 25 has been passed. In other words, this FIG. 3 can also be said to be a correlation diagram between the detected discharge temperature Td and the two-way diversion ratio in the temperature control valve 24. The vertical axis on the right side of FIG. 3 indicates the number of rotations of the motor 28 of the cooling fan 29 in units of percent, assuming that the highest number of rotations is 100%.

上述のとおり、検出吐出温度Tが最適吐出温度Tdo+ΔT以上の場合には、検出吐出温度Tが最適吐出温度Tdo+ΔTになるように、冷却ファン29のモータ28の回転数が制御される。なお、図3の線(ア)からよく理解できるように、ここでは検出吐出温度Tが最適吐出温度Tdo+ΔT以上の場合には、検出吐出温度Tに応じて、ほぼ比例的に、その冷却ファン29のモータ28が増減されて、決定される。また、図3の線(イ)からよく理解できるように、検出吐出温度Tが最適吐出温度Tdo+ΔTよりも低ければ、モータ28の回転数は予め設定された最も低い回転数の”一定回転数”に保たれる。 As described above, when the detected discharge temperature T d is above the optimum discharge temperature T do + [Delta] T, as detected discharge temperature T d is optimum discharge temperature T do + [Delta] T, speed control of the motor 28 of the cooling fan 29 Is done. As can be understood from the line (a) in FIG. 3, here, when the detected discharge temperature T d is equal to or higher than the optimum discharge temperature T do + ΔT, it is approximately proportional to the detected discharge temperature T d . The motor 28 of the cooling fan 29 is increased or decreased. Further, as can be understood well from the line (A) in FIG. 3, if the detected discharge temperature Td is lower than the optimum discharge temperature Tdo + ΔT, the rotation speed of the motor 28 is fixed at a constant value of the lowest rotation speed. Rotational speed ”.

一方、検出吐出温度Tが最適吐出温度Tdoより高ければ、図3の線(ウ)からよく理解できるように、油フィルタ23から空冷式冷却器25へつながる温度調節弁24の弁ポートの開度は100%となり、温度調節弁24を介して圧縮機本体11のガス圧縮空間に通じる油の全てが空冷式油冷却器25を経る状態となる。また、図3の線(エ)からよく理解できるように、検出吐出温度Tが最適吐出温度Tdoよりも低い場合には、検出吐出温度Tと最適吐出温度Tdoの差分が大きい程、バイパス流路26を経て圧縮機本体11のガス圧縮空間に通じる油量が増大する。すなわち、検出吐出温度Tが低くなればなるほど、空冷式油冷却器25を経るよりも、バイパス流路26を経て、圧縮機本体11のガス圧縮空間に通じる油量が増大する。そして、図3における検出吐出温度Tminの時点で、油フィルタ23から空冷式冷却器25へつながる温度調節弁24の弁ポートの開度は0%となり、温度調節弁24を介して圧縮機本体11のガス圧縮空間に通じる油の全てがパイパス流路26を経る状態となる。 On the other hand, is higher than the optimum discharge temperature T do is detected discharge temperature T d, as can be seen better from the line of FIG. 3 (c), the valve port of the temperature control valve 24 leading from the oil filter 23 to the air-cooled cooler 25 The opening becomes 100%, and all of the oil that passes through the temperature adjustment valve 24 to the gas compression space of the compressor body 11 passes through the air-cooled oil cooler 25. Also, as can be understood better from the line of FIG. 3 (d), when the detected discharge temperature T d is lower than the optimum discharge temperature T do is enough difference between the detected discharge temperature T d and the optimal discharge temperature T do is greater The amount of oil that passes through the bypass passage 26 and the gas compression space of the compressor body 11 increases. That is, the lower the detected discharge temperature Td, the greater the amount of oil that passes through the bypass passage 26 and the gas compression space of the compressor body 11 than through the air-cooled oil cooler 25. At the time of the detected discharge temperature Tmin in FIG. 3, the opening degree of the valve port of the temperature control valve 24 connected from the oil filter 23 to the air-cooled cooler 25 becomes 0%, and the compressor body 11 is connected via the temperature control valve 24. All of the oil communicating with the gas compression space passes through the bypass passage 26.

なお、上述の例では温度調節弁24,冷却ファン29のモータ28の制御を吐出温度検出器17により検出された検出吐出温度Tに基づいて行っているが、コントローラ21が上述したようなPID演算の機能を有するものである場合、そのPID演算の出力Pa(図3の横軸(オ))をもとに上記制御を行っても良い。なお、系の時定数が大きい場合や、ゲインが小さい場合には、ΔTには幅を持たせない方が制御性に優れ、時定数が短くゲインが大きい場合には、ΔTに幅を持たせたほうが安定性に優れる。 In the above example, the temperature control valve 24 and the motor 28 of the cooling fan 29 are controlled based on the detected discharge temperature Td detected by the discharge temperature detector 17, but the controller 21 has the PID as described above. In the case of an arithmetic function, the above control may be performed based on the output Pa of the PID calculation (horizontal axis (e) in FIG. 3). When the time constant of the system is large or when the gain is small, it is better to give ΔT no width, and when the time constant is short and the gain is large, ΔT is wide. Better stability.

なお、本発明において、吐出温度は検出されなければならず、吐出温度検出器17は必要であるが、その他の吸込温度検出器15、吸込湿度検出器16、吐出圧力検出器18は必ずしも必要ではない。   In the present invention, the discharge temperature must be detected and the discharge temperature detector 17 is necessary, but the other suction temperature detector 15, the suction humidity detector 16, and the discharge pressure detector 18 are not necessarily required. Absent.

例えば、油冷式圧縮機1が吸気ガスを大気とし、その大気の湿度を最大時の100%と見なして運転される場合、圧縮機本体11の吸込み側における吸込湿度検出器16は不要となる。また、この場合、大気の最高温度を想定され得る温度、例えば40℃とし、この40℃以下の吸込み条件下で運転する限り、大気中の水分量はこの40℃の時よりも少なく、確実に圧縮空気中での凝縮した水の析出を防ぐことができる故、吸込み側の吸込温度検出器15も不要となる。さらに、吸気ガスを大気とした場合のように、吸込圧力が一定であると見なすことができれば、圧縮機本体11の仕様により吐出圧力も一義的に決まり、吐出圧力検出器18も不要となる。   For example, when the oil-cooled compressor 1 is operated assuming that the intake gas is the atmosphere and the humidity of the atmosphere is 100% of the maximum, the suction humidity detector 16 on the suction side of the compressor body 11 is not necessary. . In this case, the maximum atmospheric temperature is assumed to be 40 ° C, for example, and as long as the operation is performed under the suction condition of 40 ° C or less, the amount of moisture in the atmosphere is less than that at 40 ° C. Since precipitation of condensed water in the compressed air can be prevented, the suction temperature detector 15 on the suction side is also unnecessary. Further, if the intake pressure can be regarded as being constant as in the case where the intake gas is the atmosphere, the discharge pressure is uniquely determined by the specifications of the compressor body 11, and the discharge pressure detector 18 is not required.

本発明に係る油冷式圧縮機の全体構成を示す図である。It is a figure which shows the whole structure of the oil-cooled compressor which concerns on this invention. 図1に示す油冷式圧縮機における吐出温度と吐出ガスの含有数分量及び吐出ガスのそれぞれとの関係を示す図である。It is a figure which shows the relationship between the discharge temperature in the oil-cooled compressor shown in FIG. 1, each content amount of discharge gas, and each discharge gas. 検出吐出温度Tと冷却ファンのモータの回転数、温度調節弁の弁ポートの開度との相関図である。Detection discharge temperature T d and the rotation speed of the motor of the cooling fan is a correlation diagram between the opening degree of the valve port of the temperature control valve.

符号の説明Explanation of symbols

1 油冷式圧縮機
11 圧縮機本体
12 モータ
13 吸込流路
14 吐出流路
15 吸込温度検出器
16 吸込湿度検出器
17 吐出温度検出器
18 吐出圧力検出器
19 油分離回収器
21 油分離エレメント
22 油溜まり部
23 油フィルタ
24 温度調節弁
25 空冷式油冷却器
26 バイパス流路
27 油流路
28 モータ
29 冷却ファン
31 コントローラ
DESCRIPTION OF SYMBOLS 1 Oil-cooled compressor 11 Compressor main body 12 Motor 13 Suction flow path 14 Discharge flow path 15 Suction temperature detector 16 Suction humidity detector 17 Discharge temperature detector 18 Discharge pressure detector 19 Oil separation recovery device 21 Oil separation element 22 Oil reservoir 23 Oil filter 24 Temperature control valve 25 Air-cooled oil cooler 26 Bypass passage 27 Oil passage 28 Motor 29 Cooling fan 31 Controller

Claims (3)

圧縮機本体内のガス圧縮空間に供給された油を吐出ガスから分離、回収する油分離回収器の油溜まり部から二方向可変分流機能を有する温度調節弁に至り、冷却ファンで送風される空冷式油冷却器を経た後、或いは上記空冷式油冷却器を介することなくバイパス流路を経た後、上記ガス圧縮空間に通じる油流路と、
ガスの吐出温度を検出する吐出温度検出器と、
吐出温度検出器により検出された吐出温度に基づき、上記冷却ファンのモータ及び上記温度調節弁を制御し、上記モータの回転数及び上記温度調節弁での二方向分流比を調節するコントローラとを備え
上記コントローラに、上記圧縮機本体が吸込むガスが含有する水分の量Wsと、該圧縮機本体が飽和状態で吐き出すガスに随伴される水分の量Wdとが同一の値となる際の最適吐出温度T do が設定され、
上記コントローラが、
上記吐出温度T が上記最適吐出温度T do よりも高い場合には、そうでない場合よりも、上記空冷式油冷却器を経て上記ガス圧縮空間に通じる油量が増大し、上記温度調節弁を介して上記ガス圧縮空間に通じる油の全てが上記空冷式油冷却器を経るよう、
上記吐出温度T が上記最適吐出温度T do よりも低い場合には、そうでない場合よりも、上記バイパス流路を経て上記ガス圧縮空間に通じる油量が増大し、上記吐出温度Tと上記最適吐出温度T do の差分が大きい程、上記バイパス流路を経て上記ガス圧縮空間に通じる油量が増大するよう、
上記温度調節弁での二方向分流比を調節するものであり、
上記吐出温度T が上記最適吐出温度T do より温度ΔTだけ高い値よりも低ければ、上記モータの回転数を一定に保ち、
上記吐出温度T が上記最適吐出温度T do より温度ΔTだけ高い値よりも更に高ければ、吐出温度T が上記最適吐出温度T do より温度ΔTだけ高い値になるよう、上記モータの回転数を調節するものである
ことを特徴とする油冷式圧縮機。
Air-cooled air that is blown by a cooling fan from the oil reservoir of the oil separator / collector that separates and recovers the oil supplied to the gas compression space in the compressor body from the oil reservoir to a temperature control valve that has a variable flow diversion function. After passing through the oil cooler, or after passing through the bypass flow path without going through the air-cooled oil cooler, the oil flow path leading to the gas compression space;
A discharge temperature detector for detecting the gas discharge temperature;
A controller for controlling the motor of the cooling fan and the temperature control valve based on the discharge temperature detected by the discharge temperature detector, and adjusting the rotational speed of the motor and the bi-directional diversion ratio at the temperature control valve; ,
Optimum discharge temperature when the amount of water Ws contained in the gas sucked by the compressor main body and the amount of water Wd accompanying the gas discharged from the compressor main body in a saturated state are equal to the controller. T do is set,
The controller
When the discharge temperature T d is higher than the optimum discharge temperature T do , the amount of oil passing through the air-cooled oil cooler to the gas compression space is increased and the temperature control valve is turned on. All of the oil that leads to the gas compression space through the air-cooled oil cooler,
When the discharge temperature T d is lower than the optimum discharge temperature T do , the amount of oil passing through the bypass flow path to the gas compression space is increased, and the discharge temperature T and the optimum discharge temperature T do. The larger the difference in the discharge temperature T do, the greater the amount of oil that passes through the bypass flow path to the gas compression space.
It adjusts the two-way diversion ratio in the temperature control valve,
If the discharge temperature T d is lower than the value higher than the optimum discharge temperature T do by a temperature ΔT, the rotation speed of the motor is kept constant,
In addition higher than higher by the value above the discharge temperature T d is the temperature than the optimum discharge temperature T do [Delta] T, so that the discharge temperature T d is higher by a value temperature [Delta] T from the optimum discharge temperature T do, the rotation speed of the motor An oil-cooled compressor characterized by adjusting the pressure.
上記コントローラが、
上記吐出温度Tが上記最適吐出温度Tdoより温度ΔTだけ高い値よりも更に高ければ、上記最適吐出温度Tdoより温度ΔTだけ高い値を吐出温度Tの目標値とするPID演算にて上記モータの回転数を調節するものである
ことを特徴とする請求項に記載の油冷式圧縮機。
The controller
In addition higher than higher by the value above the discharge temperature T d is the temperature ΔT than the optimum discharge temperature T do, the at PID calculation a target value of the discharge temperature T as high a value temperature ΔT than the optimum discharge temperature T do The oil-cooled compressor according to claim 1 , wherein the number of rotations of the motor is adjusted.
上記温度ΔTが上記コントローラにおいてチャタリング現象が生じるのを防止するため導入された定数であることを特徴とする請求項1又は2に記載の油冷式圧縮機。 3. The oil-cooled compressor according to claim 1, wherein the temperature ΔT is a constant introduced to prevent a chattering phenomenon from occurring in the controller. 4.
JP2005140022A 2005-05-12 2005-05-12 Oil-cooled compressor Active JP4546322B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005140022A JP4546322B2 (en) 2005-05-12 2005-05-12 Oil-cooled compressor
CNB2006100798479A CN100470054C (en) 2005-05-12 2006-05-11 Oil cooling compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005140022A JP4546322B2 (en) 2005-05-12 2005-05-12 Oil-cooled compressor

Publications (2)

Publication Number Publication Date
JP2006316696A JP2006316696A (en) 2006-11-24
JP4546322B2 true JP4546322B2 (en) 2010-09-15

Family

ID=37389527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005140022A Active JP4546322B2 (en) 2005-05-12 2005-05-12 Oil-cooled compressor

Country Status (2)

Country Link
JP (1) JP4546322B2 (en)
CN (1) CN100470054C (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297945A (en) * 2007-05-30 2008-12-11 Kobe Steel Ltd Method for operating oil cooled compressor
JP4885077B2 (en) 2007-07-03 2012-02-29 株式会社日立産機システム Oil-free screw compressor
JP5268317B2 (en) 2007-09-28 2013-08-21 株式会社日立産機システム Oil-cooled air compressor
US20100206543A1 (en) * 2009-02-13 2010-08-19 Tylisz Brian M Two-stage heat exchanger with interstage bypass
JP5410123B2 (en) 2009-03-13 2014-02-05 株式会社日立産機システム air compressor
JP5495293B2 (en) 2009-07-06 2014-05-21 株式会社日立産機システム Compressor
CN101749223B (en) * 2009-10-31 2012-06-27 宁波奥克斯电气有限公司 Method for controlling temperature of lubricating oil of compressor with low pressure chamber
JP5502459B2 (en) * 2009-12-25 2014-05-28 三洋電機株式会社 Refrigeration equipment
EP2339265B1 (en) 2009-12-25 2018-03-28 Sanyo Electric Co., Ltd. Refrigerating apparatus
JP5650922B2 (en) * 2010-04-14 2015-01-07 株式会社神戸製鋼所 Compressor
CN101893020A (en) * 2010-07-29 2010-11-24 三一重机有限公司 Preheating structure for hydraulic system
JP5851148B2 (en) 2010-08-27 2016-02-03 株式会社日立産機システム Oil-cooled air compressor
US9658005B2 (en) * 2010-11-18 2017-05-23 Hamilton Sundstrand Corporation Heat exchanger system
JP5464447B2 (en) * 2011-01-26 2014-04-09 株式会社日立産機システム Liquid-cooled compressor
CN102506289A (en) * 2011-10-28 2012-06-20 大连橡胶塑料机械股份有限公司 Structural device for controlling flow direction of lubricant
JP5878737B2 (en) 2011-11-17 2016-03-08 株式会社神戸製鋼所 Compression device
JP5389893B2 (en) * 2011-12-07 2014-01-15 株式会社日立産機システム Oil-free screw compressor
CN102748291A (en) * 2012-07-25 2012-10-24 英凯尔(上海)能源技术有限公司 Energy saver system for air compressor
CN103017407B (en) * 2012-12-25 2016-04-06 克莱门特捷联制冷设备(上海)有限公司 Refrigeration and heat-pump apparatus
TWI527684B (en) 2013-07-17 2016-04-01 復盛股份有限公司 Air compression system and cooling structure thereof
CN104343683B (en) * 2013-07-31 2017-05-24 株式会社神户制钢所 Oil-cooled air compressor and control method thereof
JP5747058B2 (en) * 2013-08-22 2015-07-08 株式会社日立産機システム Compressor
CN109312746B (en) 2016-06-28 2021-02-09 株式会社日立制作所 Air compressor
ES2709337T5 (en) 2016-10-28 2022-04-05 Almig Kompressoren Gmbh Oil Injected Screw Air Compressor
EP3604819B1 (en) * 2017-03-31 2022-03-16 Hitachi Industrial Equipment Systems Co., Ltd. Gas compressor
JP6713439B2 (en) * 2017-09-06 2020-06-24 株式会社日立製作所 Refueling air compressor
EP3653882B1 (en) * 2018-11-19 2023-07-12 Wolfgang Feiler Virtual sensor for the water content in oil circuit
JP7190963B2 (en) * 2019-05-23 2022-12-16 コベルコ・コンプレッサ株式会社 Oil-cooled screw compressor
CN110318983B (en) * 2019-07-05 2021-07-27 南京中车浦镇海泰制动设备有限公司 Anti-ice-blockage operation control system and method for air compressor for rail transit
CN112682986B (en) * 2021-01-11 2024-03-22 珠海格力电器股份有限公司 Flash type oil cooling system and control method
CN112963332B (en) * 2021-02-25 2023-08-18 胡红婷 Lubricating oil cooling system of air compressor and control method thereof
CN113007071B (en) * 2021-02-25 2023-04-07 杰豹机械有限公司 Energy-saving air compressor system and control method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294188A (en) * 1985-06-20 1986-12-24 Kobe Steel Ltd Method for controlling discharge temperature in oil cooled displacement type rotary compressor
JPH09126176A (en) * 1995-10-30 1997-05-13 Hitachi Ltd Variable capacity compressor
JPH10266881A (en) * 1998-03-06 1998-10-06 Shin Caterpillar Mitsubishi Ltd Method for controlling hydraulic pump of hydraulic driving machine and device therefor
JP2000145636A (en) * 1998-11-05 2000-05-26 Hitachi Ltd Air compressor
JP2003206864A (en) * 2002-01-10 2003-07-25 Kobe Steel Ltd Oil-cooled compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61294188A (en) * 1985-06-20 1986-12-24 Kobe Steel Ltd Method for controlling discharge temperature in oil cooled displacement type rotary compressor
JPH09126176A (en) * 1995-10-30 1997-05-13 Hitachi Ltd Variable capacity compressor
JPH10266881A (en) * 1998-03-06 1998-10-06 Shin Caterpillar Mitsubishi Ltd Method for controlling hydraulic pump of hydraulic driving machine and device therefor
JP2000145636A (en) * 1998-11-05 2000-05-26 Hitachi Ltd Air compressor
JP2003206864A (en) * 2002-01-10 2003-07-25 Kobe Steel Ltd Oil-cooled compressor

Also Published As

Publication number Publication date
CN100470054C (en) 2009-03-18
CN1862019A (en) 2006-11-15
JP2006316696A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP4546322B2 (en) Oil-cooled compressor
JP5268317B2 (en) Oil-cooled air compressor
JP5084460B2 (en) Oil-cooled air compressor
US10788039B2 (en) Oil-cooled screw compressor and control method therefor
JP4627492B2 (en) Oil-cooled screw compressor
EP1475586A2 (en) Temperature control system for compressor exhaust
TWI526618B (en) Compression apparatus
CN110939571B (en) Oil-injected multi-stage compressor system and method of controlling oil-injected multi-stage compressor system
JP3891844B2 (en) Oil-cooled compressor
JP4532327B2 (en) Compressor and operation control method thereof
US20150027149A1 (en) Electric expansion valve control for a refrigeration system
US20040217180A1 (en) Temperature control system for compressor exhaust
JP4675774B2 (en) air compressor
US20130011274A1 (en) Compressed air supply for the operation of moving bed filters
RU2210007C2 (en) Method of and device for limiting critical control parameter of group of compressors or single operating compressor
JP2009287844A (en) Refrigeration device
KR20160022510A (en) Surge prevention apparatus and method for centrifugal compressor
JP2015513999A (en) Gas separation apparatus and method
JP5775061B2 (en) Compression device
JPH084679A (en) Oil cooling type compressor
WO2022044863A1 (en) Oil feed type air compressor
JPH09158870A (en) Water-cooled two-stage oil-free screw compressor
JP5464447B2 (en) Liquid-cooled compressor
EP3857067B1 (en) Oil-injected multistage compressor device and method for controlling a compressor device
JP2007247936A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4546322

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350