JP2020188130A - Thickness measurement method for coated body, and grinding method - Google Patents

Thickness measurement method for coated body, and grinding method Download PDF

Info

Publication number
JP2020188130A
JP2020188130A JP2019091683A JP2019091683A JP2020188130A JP 2020188130 A JP2020188130 A JP 2020188130A JP 2019091683 A JP2019091683 A JP 2019091683A JP 2019091683 A JP2019091683 A JP 2019091683A JP 2020188130 A JP2020188130 A JP 2020188130A
Authority
JP
Japan
Prior art keywords
wafer
thickness
coating
film
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019091683A
Other languages
Japanese (ja)
Other versions
JP7088125B2 (en
Inventor
稜 多賀
Ryo Taga
稜 多賀
佑宜 田中
Yuki Tanaka
佑宜 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2019091683A priority Critical patent/JP7088125B2/en
Priority to TW109113996A priority patent/TW202108975A/en
Priority to CN202010355482.8A priority patent/CN111941266A/en
Priority to KR1020200057100A priority patent/KR20200131763A/en
Publication of JP2020188130A publication Critical patent/JP2020188130A/en
Application granted granted Critical
Publication of JP7088125B2 publication Critical patent/JP7088125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Abstract

To provide a thickness measurement method for a coated body capable of stably measuring a thickness of a coated body, and a grinding method capable of improving thickness precision of a wafer having been ground.SOLUTION: The present invention relates to a thickness measurement method for a coated body comprising: laminating a long-sized film, resin, and a wafer in this order and then hardening the resin while pressing the film and a surface plate having a flat surface into contact so as to form a laminate having a coated body including the film and the resin and having a flat surface, and the wafer laminated; and measuring, by an optical sensor, a thickness of the coated body at a plurality of measurement places in at least one diameter direction on the wafer, wherein the thickness measurement method for the coated body measures the thicknesses of the coated body such that the at least one diameter direction on the wafer in which the thicknesses of the coated body are measured is different from an MD direction and a TD direction of the long-sized film.SELECTED DRAWING: Figure 4

Description

本発明は、ウェーハ上に形成した被覆物の厚さ測定方法、及び、該厚さ測定方法を利用した研削方法に関する。 The present invention relates to a method for measuring the thickness of a coating formed on a wafer and a grinding method using the method for measuring the thickness.

ウェーハの片面に樹脂やワックス等を塗布し、この樹脂等を長尺のフィルムを載置した平坦な定盤上で押圧、硬化させてウェーハ上に表面が平坦な被覆物を形成し、この被覆物の平坦な表面を基準面としてウェーハを研削することで、ウェーハのうねりや反りを除去する平面研削方法が知られている(特許文献1)。この研削方法では、研削後のウェーハを均一な厚さとするために、被覆物の厚さを計測することが必要であり、そのために光透過性のあるフィルムを使用することが一般的である。また、従来は、長尺のフィルムの縦方向(長手方向、MD:Machine Direction)と、ウェーハに形成されたノッチとウェーハの中心とを結ぶ直線とが90°の角度を成すように、ウェーハを長尺のフィルム上に設置して被覆物を形成していた。そして、被覆物の厚さ測定は、ウェーハ及び被覆物へダメージを与えないように干渉式の光学センサを使用し、例えば、ウェーハ中心とノッチとを結ぶ直線やこの直線に直交する直線に沿って、直径方向に非接触計測していた。 A resin, wax, etc. is applied to one side of the wafer, and this resin, etc. is pressed and cured on a flat surface plate on which a long film is placed to form a coating with a flat surface on the wafer. A surface grinding method for removing undulations and warpage of a wafer by grinding the wafer with a flat surface of an object as a reference surface is known (Patent Document 1). In this grinding method, it is necessary to measure the thickness of the coating in order to obtain a uniform thickness of the wafer after grinding, and for this purpose, a light-transmitting film is generally used. Further, conventionally, the wafer is formed so that the vertical direction (longitudinal direction, MD: Machine Direction) of the long film and the straight line connecting the notch formed in the wafer and the center of the wafer form an angle of 90 °. It was installed on a long film to form a coating. Then, the thickness of the coating is measured by using an interference type optical sensor so as not to damage the wafer and the coating, for example, along a straight line connecting the center of the wafer and the notch or a straight line orthogonal to this straight line. , Non-contact measurement in the radial direction.

特開2009−148866号公報JP-A-2009-148866

しかしながら、本発明者は、長尺のフィルムの特定の方向に沿って被覆物の厚さの測定を行うと、測定値がばらつき、安定しない場合があるという問題点を見出した。特に、長尺のフィルムのMD方向やTD(Transeverse Direction)方向に沿った方向で、被覆物厚さを安定して高い精度で計測することが困難であることがわかった。図7に、従来行っていた被覆物の厚さ測定の例を示す。図7の上図は、ウェーハを長尺フィルムに載せた状態をウェーハ側から見た図を示し、図7の下図は、フィルム側から見た図を示す。図7の下図に示すウェーハ面内の矢印は、被覆物の厚さ測定方向を示し、「〇」、「△」、「×」の順に、被覆物の厚さ測定精度が悪化することを意味する。このように、従来は、被覆物の測定の精度が低いという問題があり、また、被覆物を含めたウェーハの厚さがばらつきを含んだままのデータを用い、厚さが不明瞭なまま研削を行うこととなり、研削後に被覆物を除去したウェーハの厚さ精度が悪化するという問題があった。 However, the present inventor has found that when the thickness of the coating is measured along a specific direction of a long film, the measured values may vary and may not be stable. In particular, it has been found that it is difficult to stably measure the coating thickness with high accuracy in the MD direction and the TD (Transverse Direction) direction of a long film. FIG. 7 shows an example of conventional coating thickness measurement. The upper view of FIG. 7 shows a state in which the wafer is placed on the long film as viewed from the wafer side, and the lower figure of FIG. 7 shows a view as seen from the film side. The arrow in the wafer surface shown in the lower part of FIG. 7 indicates the thickness measurement direction of the coating, and means that the thickness measurement accuracy of the coating deteriorates in the order of “〇”, “Δ”, and “×”. To do. As described above, conventionally, there is a problem that the measurement accuracy of the coating is low, and the data in which the thickness of the wafer including the coating is not included is used for grinding while the thickness is unclear. There is a problem that the thickness accuracy of the wafer from which the coating material has been removed after grinding deteriorates.

本発明は、上記問題を解決するためになされたものであり、被覆物の厚さをばらつきが小さく安定して計測可能な被覆物の厚さ測定方法、及び、研削後のウェーハの厚さ精度を向上することが可能な研削方法を提供することを目的とする。 The present invention has been made to solve the above problems, and is a method for measuring the thickness of a coating that can stably measure the thickness of the coating with little variation, and the accuracy of the thickness of the wafer after grinding. It is an object of the present invention to provide a grinding method capable of improving the above.

本発明は、上記目的を達成するためになされたものであり、長尺のフィルムと樹脂とウェーハとをこの順に積層し、前記フィルムと平坦な面を有する定盤とが接するように押圧し前記樹脂を硬化させることにより、前記フィルムと前記樹脂とを含み表面が平坦な被覆物と前記ウェーハとが積層された積層体を形成し、前記ウェーハ上の少なくとも1本の直径方向において、複数の測定箇所で前記被覆物の厚さを光学センサにより測定する方法であって、前記ウェーハにおける、前記被覆物の厚さを測定する前記少なくとも1本の直径方向が、前記長尺のフィルムのMD方向及びTD方向とは異なる方向となるようにして、前記被覆物の厚さを測定する被覆物の厚さ測定方法を提供する。 The present invention has been made to achieve the above object, and a long film, a resin, and a wafer are laminated in this order, and the film and a platen having a flat surface are pressed so as to be in contact with each other. By curing the resin, a laminate containing the film and the resin and having a flat surface and the wafer is laminated is formed, and a plurality of measurements are taken in at least one radial direction on the wafer. A method of measuring the thickness of the coating at a location with an optical sensor, wherein at least one diameter direction of measuring the thickness of the coating on the wafer is the MD direction of the long film and the MD direction of the long film. Provided is a method for measuring the thickness of a coating film, which measures the thickness of the coating film so as to be in a direction different from the TD direction.

このような被覆物の厚さ測定方法によれば、長尺のフィルムの屈折率の影響による被覆物の厚さ測定値のバラツキを排除でき、精度高い厚さ測定ができる。 According to such a coating thickness measuring method, it is possible to eliminate variations in the coating thickness measurement value due to the influence of the refractive index of a long film, and it is possible to measure the thickness with high accuracy.

このとき、前記ウェーハとしてノッチ又はオリフラを有するウェーハを用い、前記被覆物の厚さの測定を、前記ウェーハ面内に含まれる領域を均等に分割するN本(但し、Nは1以上の整数)の直径方向について行うこととし、前記N本の直径方向のうち、前記ウェーハの中心と前記ノッチ又は前記オリフラの中央部とを通る直径方向を第1の直径方向とし、前記第1の直径方向と前記長尺のフィルムのTD方向とが成す角度の最小値をθ(°)としたときに、前記Nが奇数の場合はθ=45/N(°)、前記Nが偶数の場合はθ=90/N(°)となるように、前記長尺のフィルムと前記ウェーハとの位置関係を設定して前記積層体を形成する被覆物の厚さ測定方法とすることができる。 At this time, a wafer having a notch or an orifra is used as the wafer, and the thickness of the coating is measured by N wafers (where N is an integer of 1 or more) that evenly divides the region included in the wafer surface. Of the N number of diametrical directions, the diametrical direction passing through the center of the wafer and the notch or the central portion of the olifra is set as the first diametrical direction, and the first diametrical direction and When the minimum value of the angle formed by the TD direction of the long film is θ (°), θ = 45 / N (°) when the N is an odd number, and θ = when the N is an even number. The thickness of the coating material forming the laminate can be measured by setting the positional relationship between the long film and the wafer so as to be 90 / N (°).

これにより、より精度高く被覆物の厚さを測定することができる。 As a result, the thickness of the coating can be measured with higher accuracy.

このとき、前記被覆物の表面の平坦面を基準面として前記ウェーハを研削する方法であって、上記被覆物の厚さ測定方法により前記被覆物の厚さを測定し、前記測定した被覆物の厚さと前記ウェーハの仕上がり厚さの合計を研削の終点値として研削を行う研削方法とすることができる。 At this time, it is a method of grinding the wafer with the flat surface of the surface of the coating as a reference surface, the thickness of the coating is measured by the method of measuring the thickness of the coating, and the measured coating is measured. A grinding method can be used in which grinding is performed by using the sum of the thickness and the finished thickness of the wafer as the end point value of grinding.

これにより、研削後のウェーハ厚さの狙い値との誤差を小さくすることができ、精度高く研削加工を行うことが可能となる。 As a result, the error of the wafer thickness after grinding from the target value can be reduced, and the grinding process can be performed with high accuracy.

以上のように、本発明の被覆物の厚さ測定方法によれば、長尺のフィルムの屈折率の影響による被覆物の厚さ測定値のバラツキを排除でき、精度高い厚さ測定を行うことが可能となる。また、本発明の被覆物の厚さ測定方法を用いたウェーハの研削方法により、研削後のウェーハの厚さと狙い値との差を小さくすることが可能になる。 As described above, according to the coating thickness measuring method of the present invention, it is possible to eliminate the variation in the coating thickness measurement value due to the influence of the refractive index of the long film, and to perform the thickness measurement with high accuracy. Is possible. Further, the wafer grinding method using the coating thickness measuring method of the present invention makes it possible to reduce the difference between the thickness of the wafer after grinding and the target value.

本発明に係る厚さ測定及び研削方法の工程フローを示す。The process flow of the thickness measurement and grinding method which concerns on this invention is shown. 積層体の製造工程の一例を示す。An example of the manufacturing process of the laminated body is shown. 被覆物の厚さ測定の概念図を示す。The conceptual diagram of the thickness measurement of a covering is shown. 被覆物の厚さ測定方向の設定例を示す。An example of setting the thickness measurement direction of the covering is shown. 被覆物の厚さ測定方向の他の設定例を示す。Another setting example in the thickness measurement direction of the covering is shown. 実施例1,2及び比較例の、研削後のウェーハ厚さ(狙い値との差)を示す。The wafer thickness (difference from the target value) after grinding of Examples 1 and 2 and Comparative Example is shown. 従来の被覆物の厚さ測定の例を示す。An example of conventional coating thickness measurement is shown.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

上述のように、被覆物の厚さをばらつきが小さく安定して計測可能な、被覆物の厚さ測定方法が求められていた。 As described above, there has been a demand for a coating thickness measuring method capable of stably measuring the coating thickness with little variation.

本発明者らは、上記課題について鋭意調査を行った結果、長尺のフィルムのMD方向及びTD方向は、フィルムの屈折率が安定しないために厚さ測定結果が安定せず、厚さ測定の精度が低下することを見出し、本発明を完成した。すなわち、本発明者らは、長尺のフィルムと樹脂とウェーハとをこの順に積層し、前記フィルムと平坦な面を有する定盤とが接するように押圧し前記樹脂を硬化させることにより、前記フィルムと前記樹脂とを含み表面が平坦な被覆物と前記ウェーハとが積層された積層体を形成し、前記ウェーハ上の少なくとも1本の直径方向において、複数の測定箇所で前記被覆物の厚さを測定する方法であって、前記ウェーハにおける、前記被覆物の厚さを測定する前記少なくとも1本の直径方向が、前記長尺のフィルムのMD方向及びTD方向とは異なる方向となるようにして、前記被覆物の厚さを測定する被覆物の厚さ測定方法により、被覆物の厚さの測定を精度高く行うことができること、この厚さ測定方法を採用することで、ウェーハの研削を行ったときに狙い値からの誤差を小さくできることを見出し、本発明を完成した。 As a result of diligent investigation on the above-mentioned problems, the present inventors have not stabilized the thickness measurement result in the MD direction and the TD direction of the long film because the refractive index of the film is not stable, and the thickness measurement is performed. The present invention has been completed by finding that the accuracy is lowered. That is, the present inventors stack a long film, a resin, and a wafer in this order, press the film so that the surface plate having a flat surface is in contact with the film, and cure the resin to cure the film. To form a laminate in which a coating film containing the resin and a flat surface and the wafer are laminated, and the thickness of the coating film is measured at a plurality of measurement points in at least one radial direction on the wafer. In the measuring method, the diameter direction of at least one film for measuring the thickness of the coating film on the wafer is set to be different from the MD direction and the TD direction of the long film. By the coating thickness measuring method for measuring the coating thickness, the coating thickness can be measured with high accuracy, and by adopting this thickness measuring method, the wafer is ground. The present invention was completed by finding that the error from the target value can sometimes be reduced.

以下、図面を参照して説明する。 Hereinafter, description will be made with reference to the drawings.

まず、本発明に係る被覆物の厚さ測定方法について説明する。この厚さ測定は、ウェーハの研削加工の前に行う測定である。まず、図1のS01に示すように、長尺のフィルムと樹脂とウェーハとをこの順に積層し、フィルムと平坦な面を有する定盤とが接するように押圧し、樹脂を硬化させることにより、フィルムと前記樹脂とを含み表面が平坦な被覆物と、ウェーハとが積層された積層体を形成する。 First, a method for measuring the thickness of the coating material according to the present invention will be described. This thickness measurement is a measurement performed before grinding the wafer. First, as shown in S01 of FIG. 1, a long film, a resin, and a wafer are laminated in this order, and the film and a surface plate having a flat surface are pressed so as to be in contact with each other to cure the resin. A laminate containing a film and the resin and having a flat surface and a wafer are laminated to form a laminate.

フィルムと樹脂とを含み表面が平坦な被覆物とウェーハとが積層された積層体の製造工程の一例をあげると、図2に示すように、まず、平坦な面を有する定盤(下定盤)1の上に光透過性で長尺のフィルム2を敷き、その上に可塑状態、例えば液状の樹脂3を供給、塗布する。さらに樹脂の上にウェーハ4を載せ、フィルム2の面が平坦となるように定盤(上定盤)5を用いて押圧する。その後、使用する樹脂3の種類に応じた硬化処理を行う。図に示す例では、樹脂3としてUV硬化樹脂を用い、UV光6をフィルム2の側から照射することにより硬化を行う。このようにして積層体10を得ることができる。 To give an example of a manufacturing process of a laminate in which a coating material containing a film and a resin and having a flat surface and a wafer are laminated, as shown in FIG. 2, first, a surface plate having a flat surface (lower surface plate) A light-transmitting and long film 2 is laid on top of 1, and a plastic state, for example, a liquid resin 3 is supplied and coated on the film 2. Further, the wafer 4 is placed on the resin and pressed by using the surface plate (upper surface plate) 5 so that the surface of the film 2 is flat. After that, a curing treatment is performed according to the type of resin 3 used. In the example shown in the figure, a UV curable resin is used as the resin 3, and the film is cured by irradiating the film 2 with UV light 6. In this way, the laminated body 10 can be obtained.

長尺状のフィルムの種類としては、後述のように、フィルムと硬化した樹脂とを含む被覆物の厚さ測定を光学的に行うため、厚さ測定の光を透過する材料であれば、特に限定されない。例えば、PETフィルムなどを好適に用いることができる。 As a type of long film, as will be described later, since the thickness of the coating film containing the film and the cured resin is optically measured, any material that transmits the light of the thickness measurement is particularly suitable. Not limited. For example, a PET film or the like can be preferably used.

樹脂としては、硬化後にフィルム、ウェーハと一体となり積層体を形成できるものであれば、特に限定されない。例えば、熱硬化樹脂、光硬化樹脂、常温で固体となる熱可塑性樹脂などを使用することができる。なお、ここでいう樹脂には、ワックスも含まれる。なかでも、UV硬化樹脂等の光硬化樹脂を使用することが好ましい。硬化処理が容易に行えるためである。 The resin is not particularly limited as long as it can be integrated with the film and the wafer to form a laminate after curing. For example, a thermosetting resin, a photocurable resin, a thermoplastic resin that becomes solid at room temperature, and the like can be used. The resin referred to here also includes wax. Of these, it is preferable to use a photocurable resin such as a UV curable resin. This is because the curing process can be easily performed.

ウェーハとしては、例えば、シリコンなどの単結晶材料からなる半導体ウェーハを用いることができる。特に、ノッチやオリフラが形成されたウェーハであれば、フィルム上へのウェーハの設置位置の調整や、膜厚の測定箇所の設定などが容易になる。 As the wafer, for example, a semiconductor wafer made of a single crystal material such as silicon can be used. In particular, in the case of a wafer having a notch or an orientation flat, it becomes easy to adjust the mounting position of the wafer on the film and set the measurement point of the film thickness.

次に、図1のS02に示すように、上記積層体10における、フィルムと樹脂を含む被覆物の厚さの測定を行う。被覆物の厚さ測定は、光学的な方法で行う。例えば、図3に示すように、干渉式の光学センサ7を用い、フィルム2の側から光を照射して測定する。フィルム2の材質や樹脂の種類など、被覆物に応じた適切な波長の光等、適宜条件を設定すればよい。ウェーハ4と光学センサ7の少なくとも一方を直線状に動かすことで、面内の厚さのラインプロファイルを取得することができる。 Next, as shown in S02 of FIG. 1, the thickness of the coating material containing the film and the resin in the laminate 10 is measured. The thickness of the coating is measured by an optical method. For example, as shown in FIG. 3, an interference type optical sensor 7 is used to irradiate light from the film 2 side for measurement. Conditions such as light having an appropriate wavelength according to the coating material, such as the material of the film 2 and the type of resin, may be set as appropriate. By moving at least one of the wafer 4 and the optical sensor 7 in a straight line, a line profile of the in-plane thickness can be obtained.

膜厚の測定は、積層体面内のできるだけ多くの箇所を測定することが好ましいが、本発明では、少なくとも1つの直径方向において、複数の箇所の測定を行うこととする。簡便に、積層体面内の分布を測定できるからである。 The film thickness is preferably measured at as many points as possible within the surface of the laminate, but in the present invention, a plurality of points are measured in at least one radial direction. This is because the distribution in the plane of the laminated body can be easily measured.

このとき、本発明は、測定を行う直径方向を、長尺のフィルムのMD方向及びTD方向と異なる方向とする点に、特徴を有する。上述のように、本発明者は、長尺フィルムのMD方向やTD方向に沿った方向で被覆物の測定を行うと、フィルムの屈折率の影響により、測定精度が下がり、得られる測定結果のばらつきが大きくなることを見出した。特にMD方向に沿った方向では、厚さの測定精度の低下が顕著である。このため、測定を行う直径方向を、長尺のフィルムのMD方向及びTD方向と異なる方向とすることで、被覆物の厚さの測定精度を向上することができる。 At this time, the present invention is characterized in that the diameter direction in which the measurement is performed is different from the MD direction and the TD direction of the long film. As described above, when the present inventor measures the coating in the direction along the MD direction or the TD direction of the long film, the measurement accuracy is lowered due to the influence of the refractive index of the film, and the obtained measurement result is obtained. We found that the variation became large. In particular, in the direction along the MD direction, the thickness measurement accuracy is significantly reduced. Therefore, the accuracy of measuring the thickness of the coating can be improved by setting the diameter direction in which the measurement is performed to be different from the MD direction and the TD direction of the long film.

被覆物の厚さの測定を行うときの測定方向の設定は、例えば、ノッチ又はオリフラが形成されたウェーハを使用し、ノッチ又はオリフラの中央部とウェーハの中心を通る直径方向を測定することとして、フィルムと樹脂の上にウェーハを載せるときのウェーハの位置(回転方向)を調節して、ウェーハの測定場所(直径方向)と、長尺のフィルムのMD方向又はTD方向との相対的な位置関係を調整する方法や、フィルムと樹脂の上にウェーハを載せるときの位置関係(回転方向)は変えず、測定時の測定場所(直径方向)を変える方法などが挙げられる。 The setting of the measurement direction when measuring the thickness of the coating is, for example, using a wafer in which a notch or an orifra is formed, and measuring the radial direction passing through the center of the notch or the orifla and the center of the wafer. By adjusting the position (rotation direction) of the wafer when the wafer is placed on the film and resin, the position relative to the measurement location (diameter direction) of the wafer and the MD direction or TD direction of the long film. Examples thereof include a method of adjusting the relationship and a method of changing the measurement location (diameter direction) at the time of measurement without changing the positional relationship (rotation direction) when the wafer is placed on the film and the resin.

前者、すなわち、フィルムと樹脂の上にウェーハを載せるときのウェーハの位置(回転方向)を調節して、ウェーハの測定場所(直径方向)と、長尺のフィルムのMD方向又はTD方向との相対的な位置関係を調整する方法を採用する場合には、図4に示すように、従来のウェーハ位置(図4の(A))に対し、ウェーハの中心を基準に所定角度を回転させてウェーハをフィルムに載せることで(図4の(B))、被覆物の厚さ測定の直径方向の設定を行うことができる。この場合、積層体を形成する装置にウェーハのノッチ又はオリフラを検出する検出機構、及び、ノッチ又はオリフラに対する回転角度調整機構を設け、ウェーハの回転角度の調節を行うと、高い精度で位置調整ができる。 The former, that is, the position (rotation direction) of the wafer when the wafer is placed on the film and resin is adjusted so that the measurement location (diameter direction) of the wafer is relative to the MD direction or TD direction of the long film. When a method of adjusting the positional relationship is adopted, as shown in FIG. 4, the wafer is rotated by a predetermined angle with respect to the conventional wafer position ((A) in FIG. 4) with respect to the center of the wafer. Is placed on the film ((B) in FIG. 4), and the thickness of the coating can be set in the radial direction. In this case, if the apparatus for forming the laminate is provided with a detection mechanism for detecting the notch or the orientation flat of the wafer and a rotation angle adjusting mechanism for the notch or the orientation flat, and the rotation angle of the wafer is adjusted, the position adjustment can be performed with high accuracy. it can.

測定精度は、測定する直径方向の本数を多くすることで、より高くすることができる。特に、ウェーハ面内に含まれる領域を均等に分割するような複数の直径方向について測定を行うことで、測定精度をより向上することができる。ウェーハ面内に含まれる領域を均等に分割するような複数の直径方向とは、言い換えると、隣り合った複数の直径方向の交差角度がすべて等しいことを意味する。 The measurement accuracy can be improved by increasing the number of measurements in the radial direction. In particular, the measurement accuracy can be further improved by performing the measurement in a plurality of diameter directions such that the region included in the wafer surface is evenly divided. The plurality of diametrical directions that evenly divide the region included in the wafer surface means, in other words, that the intersecting angles of the plurality of adjacent diametrical directions are all equal.

また、ウェーハの中心とノッチ又はオリフラの中央部とを通る直径方向を第1の直径方向とし、前記第1の直径方向と長尺のフィルムのTD方向とが成す角度の最小値をθ(°)としたときに、Nが奇数の場合はθ=45/N(°)、Nが偶数の場合はθ=90/N(°)となるように、長尺のフィルムとウェーハとの位置関係を設定して積層体を形成すると、厚さ測定で得られた測定結果のばらつきが非常に小さくなり、より高精度の測定を行うことができる。 Further, the diameter direction passing through the center of the wafer and the notch or the center of the orientation flat is defined as the first diameter direction, and the minimum value of the angle formed by the first diameter direction and the TD direction of the long film is θ (°). ), The positional relationship between the long film and the wafer is such that θ = 45 / N (°) when N is an odd number and θ = 90 / N (°) when N is an even number. When the above is set to form a laminated body, the variation in the measurement results obtained by the thickness measurement becomes very small, and more accurate measurement can be performed.

例えば、図4に示した例は、N=2とした場合である。フィルム上にウェーハを載せるときに、ウェーハを中心周りにθ=90/2=45°回転させて設置することで、第1の直径方向と、第1の直径方向に直交する第2の直径方向で被覆物の厚さを測定したときに、測定の精度が高くなる。なお、図7の説明と同様に、図4や、以下に述べる図5中、「〇」で示した測定方向は測定値の精度が高い方向、「△」、「×」の順に、測定値の精度が低くなる方向を示す。 For example, the example shown in FIG. 4 is the case where N = 2. When the wafer is placed on the film, the wafer is rotated by θ = 90/2 = 45 ° around the center, so that the wafer is placed in the first diametrical direction and in the second diametrical direction orthogonal to the first diametrical direction. When the thickness of the coating is measured with, the measurement accuracy becomes high. As in the explanation of FIG. 7, in FIG. 4 and FIG. 5 described below, the measurement directions indicated by “◯” are the measured values in the order of high accuracy of the measured values, “Δ”, and “×”. Indicates the direction in which the accuracy of

図5には、N=4としたときの例を示す。従来は、図5(A)に示すように、第1の直径方向と長尺フィルムのTD方向とが一致するように、ウェーハとフィルムとの位置関係を設定しているため、厚さの測定を行う4つの直径方向のうちの2つがTD方向及びMD方向と一致する。 FIG. 5 shows an example when N = 4. Conventionally, as shown in FIG. 5A, the positional relationship between the wafer and the film is set so that the first diameter direction and the TD direction of the long film coincide with each other, so that the thickness is measured. Two of the four radial directions coincide with the TD and MD directions.

一方、図5(B)に示すように、第1の直径方向と長尺のフィルムのTD方向との成す角度θがθ=90/4=22.5°(図5の例では、時計回りに22.5°)となるように設定して積層体を形成して被覆物の厚さの測定を行うと、4つの直径方向のすべてがTD方向及びMD方向と異なる方向となる。 On the other hand, as shown in FIG. 5B, the angle θ formed by the first diameter direction and the TD direction of the long film is θ = 90/4 = 22.5 ° (clockwise in the example of FIG. 5). 22.5 °) to form a laminate and measure the thickness of the coating, all four radial directions are different from the TD direction and the MD direction.

しかしながら、図5(C)に示すように、第1の直径方向と長尺のフィルムのTD方向との成す角度θがθ=45°(図5の例では、時計回りに45°)となるように設定して積層体を形成して被覆物の厚さの測定を行うと、4つの直径方向のうちの2つがTD方向及びMD方向と一致するようになるため、図5(A)の場合と同様に、被覆物の測定精度は低下する。 However, as shown in FIG. 5C, the angle θ formed by the first radial direction and the TD direction of the long film is θ = 45 ° (in the example of FIG. 5, 45 ° clockwise). When the thickness of the coating is measured by forming the laminate in this way, two of the four radial directions coincide with the TD direction and the MD direction. Therefore, in FIG. 5 (A). As in the case, the measurement accuracy of the coating is reduced.

そこで、上述のように、ウェーハの中心とノッチ又はオリフラの中央部とを通る直径方向を第1の直径方向とし、前記第1の直径方向と長尺のフィルムのTD方向とが成す角度の最小値をθ(°)としたときに、Nが奇数の場合はθ=45/N(°)、Nが偶数の場合はθ=90/N(°)となるように、長尺のフィルムとウェーハとの位置関係を設定して積層体を形成すると、厚さ測定で得られた測定結果のばらつきが非常に小さくなり、より高精度の測定を行うことができる。 Therefore, as described above, the diametrical direction passing through the center of the wafer and the notch or the central portion of the orientation flat is set as the first diametrical direction, and the minimum angle formed by the first diametrical direction and the TD direction of the long film is the minimum. When the value is θ (°), when N is odd, θ = 45 / N (°), and when N is even, θ = 90 / N (°). When the laminated body is formed by setting the positional relationship with the wafer, the variation in the measurement results obtained by the thickness measurement becomes very small, and more accurate measurement can be performed.

なお、測定を行う直径方向の本数であるNは、多いほど測定精度が向上するが、測定に要する時間が長くなるため、Nは10以下とすることが好ましい。Nを6以下とすれば、測定に係る時間の短縮化と、厚さ測定精度の向上を両立でき、好ましい。 The larger the number of N in the diameter direction for measurement, the better the measurement accuracy, but the longer the time required for measurement, so N is preferably 10 or less. When N is set to 6 or less, it is possible to both shorten the time required for measurement and improve the thickness measurement accuracy, which is preferable.

このようにして被覆物の厚さを測定したら、図1のS03に示すように、測定結果を用いて、ウェーハの研削加工における終点値の設定を行う。具体的には、「研削の終点値=測定した被覆物の厚さ+ウェーハの仕上がり厚さ(狙い値)」とする。このようにすることで、研削後のウェーハの厚さの、狙い値からのずれ(誤差)を小さくできる。 After measuring the thickness of the coating in this way, as shown in S03 of FIG. 1, the end point value in the grinding process of the wafer is set using the measurement result. Specifically, "grinding end point value = measured coating thickness + wafer finished thickness (target value)". By doing so, it is possible to reduce the deviation (error) of the thickness of the wafer after grinding from the target value.

この後、図1のS04に示すように、ウェーハの研削を行う。研削加工は、例えば特許文献1に記載されるような公知の研削方法を採用することができる。 After that, as shown in S04 of FIG. 1, the wafer is ground. For the grinding process, for example, a known grinding method as described in Patent Document 1 can be adopted.

以下、実施例を挙げて本発明について詳細に説明するが、これは本発明を限定するものではない。 Hereinafter, the present invention will be described in detail with reference to examples, but this does not limit the present invention.

まず、ウェーハ上に、樹脂とフィルムとを含む被覆物を形成し積層体を得るための条件について説明する。なお、以下に説明する比較例と実施例1,2とは、被覆物とウェーハとを含む積層体における測定場所は予め設定したN=4本の測定場所(直径方向)に固定し、フィルムと樹脂の上にウェーハを載せるときのウェーハの位置(回転方向)を調節して、ウェーハの測定場所(直径方向)と、長尺のフィルムのMD方向又はTD方向との相対的な位置関係を調整する方法を採用した。 First, the conditions for forming a coating material containing a resin and a film on a wafer to obtain a laminate will be described. In Comparative Examples and Examples 1 and 2 described below, the measurement locations in the laminate including the coating material and the wafer were fixed at preset N = 4 measurement locations (diameter direction), and the film and the film. Adjust the position (rotation direction) of the wafer when mounting the wafer on the resin to adjust the relative positional relationship between the measurement location (diameter direction) of the wafer and the MD direction or TD direction of the long film. Adopted the method of

ウェーハとして、外周部にノッチを有する直径300mmのP型Si単結晶ウェーハを用いた。被覆物のうち、樹脂としてはUV硬化性樹脂、長尺のフィルムとしてはPETフィルムを用いた。 As the wafer, a P-type Si single crystal wafer having a notch on the outer peripheral portion and having a diameter of 300 mm was used. Among the coating materials, a UV curable resin was used as the resin, and a PET film was used as the long film.

まず、平坦な石定盤(下定盤)上にPETフィルムを敷き、そのPETフィルム上にUV硬化性樹脂を10ml滴下した。その後、ウェーハを、長尺のフィルムと一体化したときに、ウェーハの中心とノッチとを通る直径方向(第1の直径方向)が、長尺のフィルムのMD方向と直交する方向(TD方向と平行となる方向)となる場合を基準(0°)とし、下記に示す回転角度となるように、ウェーハを中心周りに回転させてセラミック定盤(上定盤)に吸着保持させた。 First, a PET film was laid on a flat stone surface plate (lower surface plate), and 10 ml of a UV curable resin was dropped on the PET film. After that, when the wafer is integrated with the long film, the diametrical direction (first diametrical direction) passing through the center and the notch of the wafer is parallel to the MD direction of the long film (TD direction). The wafer was rotated around the center and held by the ceramic platen (upper platen) so as to have the rotation angle shown below, based on the case where the wafer was in the parallel direction (0 °).

(比較例)
ウェーハの第1の直径方向が、長尺のフィルムのMD方向と直交する方向(TD方向と平行となる方向)、すなわち、ウェーハの第1の直径方向とTD方向との成す角度が0°となるように、セラミック定盤(上定盤)に吸着保持させて、積層体を形成した。
(Comparison example)
The first radial direction of the wafer is perpendicular to the MD direction of the long film (the direction parallel to the TD direction), that is, the angle formed by the first radial direction of the wafer and the TD direction is 0 °. A laminated body was formed by adsorbing and holding it on a ceramic surface plate (upper surface plate) so as to be.

(実施例1)
ウェーハの第1の直径方向と、長尺のフィルムのTD方向とのなす角の最小値が、10.0°となるようにウェーハを回転させてセラミック定盤(上定盤)に吸着保持させ、積層体を形成した。
(Example 1)
The wafer is rotated so that the minimum value of the angle between the first diameter direction of the wafer and the TD direction of the long film is 10.0 °, and the wafer is attracted and held on the ceramic surface plate (upper surface plate). , A laminate was formed.

(実施例2)
ウェーハの第1の直径方向と、長尺のフィルムのTD方向とのなす角の最小値が、22.5°となるようにウェーハを回転させてセラミック定盤(上定盤)に吸着保持させ、積層体を形成した。
(Example 2)
The wafer is rotated so that the minimum value of the angle formed by the first diameter direction of the wafer and the TD direction of the long film is 22.5 °, and the wafer is attracted and held on the ceramic surface plate (upper surface plate). , A laminate was formed.

セラミック定盤(上定盤)に吸着保持させたウェーハを、上記樹脂の滴下点とウェーハの中心が同一となるように押圧して接着した。押圧の制御は、セラミック定盤を保持するサーボモータを駆動させて行い、圧力が2000Nとなるまで加圧した。その後、波長365nmのUV−LEDを用いてフィルム側から紫外線を照射し、樹脂を硬化させ積層体を得た。 The wafer adsorbed and held on the ceramic surface plate (upper surface plate) was pressed and bonded so that the dropping point of the resin and the center of the wafer were the same. The pressure was controlled by driving a servomotor holding a ceramic surface plate, and the pressure was increased until the pressure reached 2000 N. Then, ultraviolet rays were irradiated from the film side using a UV-LED having a wavelength of 365 nm to cure the resin to obtain a laminate.

樹脂を硬化させた後、積層体のウェーハ部を保持して、被覆物の厚さを測定する測定機まで搬送した。被覆物の厚さ測定用光学センサは、Keyence社製のSI−T80を使用した。センサを固定し、被覆物とウェーハの積層体を直線状に走査することで、厚さプロファイルを計測した。 After the resin was cured, the wafer portion of the laminate was held and transported to a measuring machine for measuring the thickness of the coating. The SI-T80 manufactured by Keyence Corporation was used as the optical sensor for measuring the thickness of the coating. The thickness profile was measured by fixing the sensor and scanning the laminate of the covering and the wafer in a straight line.

また、比較例、実施例1,2の測定は、ウェーハ面内の直径方向に4本の測定ラインで、1本の測定ラインにつき0.25mmピッチで1160点の測定を行った。4本の測定ラインは、ウェーハ面内を均等な領域に分割するように設定した。つまり、中心とノッチとを通る直径方向(第1の直径方向)と、該第1の直径方向からウェーハ中心を基準に45°ずつ回転した直径方向(第2〜4の直径方向)を測定ラインとした。このようにして測定して得た被覆物厚さプロファイルの平均値を被覆物厚さとした。 Further, in the measurements of Comparative Examples and Examples 1 and 2, 1160 points were measured at a pitch of 0.25 mm per one measurement line with four measurement lines in the diameter direction in the wafer surface. The four measurement lines were set so as to divide the inside of the wafer plane into equal regions. That is, the measurement lines are the diametrical direction (first diametrical direction) passing through the center and the notch and the diametrical direction (second to fourth diametrical directions) rotated by 45 ° with respect to the wafer center from the first diametrical direction. And said. The average value of the coating thickness profile obtained by measuring in this manner was taken as the coating thickness.

被覆物の厚さを測定した後の積層体は、研削加工装置に搬送し、研削加工を行った。研削加工装置は、ディスコ社製のDFG8360を使用した。研削ホイールは、ダイヤ砥粒が結合されたものを用いた。被覆物側を真空吸着し、「測定した被覆物の厚さ+狙い仕上がり厚さ」を研削の終点値として研削加工を行った。ここでの狙い仕上がり厚さは820μmとした。 After measuring the thickness of the coating, the laminate was transferred to a grinding apparatus and subjected to grinding. As the grinding apparatus, DFG8360 manufactured by DISCO was used. The grinding wheel used was one in which diamond abrasive grains were combined. The coating side was vacuum-adsorbed, and grinding was performed with "measured coating thickness + target finished thickness" as the end point value of grinding. The target finished thickness here was 820 μm.

研削加工を行った後、ウェーハの厚さを測定した。測定には、コベルコ科研社製のSBW−330を使用した。ウェーハの厚さの測定箇所は、ウェーハ面内の直径方向に4本の測定ラインで、1本の測定ラインにつき1mmピッチで290点の測定を行った。4本の測定ラインは、被覆物厚さの測定箇所と同一のラインとした。得られた測定値の平均値を研削後のウェーハ厚さとした。 After grinding, the thickness of the wafer was measured. For the measurement, SBW-330 manufactured by Kobelco Kaken Co., Ltd. was used. The thickness of the wafer was measured at four measurement lines in the diameter direction in the wafer surface, and 290 points were measured at a pitch of 1 mm per measurement line. The four measurement lines were the same as the measurement points for the coating thickness. The average value of the obtained measured values was taken as the wafer thickness after grinding.

研削後のウェーハについて評価した結果の比較を図6に示す。図6の縦軸は、研削後のウェーハの狙い厚さと、実際の研削後のウェーハの厚さとの差を示す。図6に示すように、比較例では、従来のように、第1の直径方向が、フィルムのMD方向と直交する関係になるように上定盤に吸着させて積層体を形成しているため、被覆物の厚さを測定する4本の直径方向のうちの2本が、長尺フィルムのTD方向及びMD方向と一致する方向となっている。このため、被覆物の厚さの測定の精度が低く、ばらつきが大きくなり、この測定結果を用いて研削加工終点を設定した場合に、目標とした狙い厚さからの誤差が大きくなった。 FIG. 6 shows a comparison of the evaluation results of the ground wafer. The vertical axis of FIG. 6 shows the difference between the target thickness of the wafer after grinding and the actual thickness of the wafer after grinding. As shown in FIG. 6, in the comparative example, as in the conventional case, the first radial direction is attracted to the upper surface plate so as to be orthogonal to the MD direction of the film to form a laminated body. , Two of the four diameter directions for measuring the thickness of the coating are in directions that coincide with the TD direction and the MD direction of the long film. For this reason, the accuracy of measuring the thickness of the coating is low and the variation becomes large, and when the grinding end point is set using this measurement result, the error from the target thickness becomes large.

一方、実施例1,2では、被覆物の厚さを測定する4本の直径方向のすべてが、長尺フィルムのTD方向及びMD方向と一致していないため、比較例よりも、狙い厚さに近いものを得ることができた。特に、実施例2では、ウェーハの中心とノッチとを通る直径方向である第1の直径方向と、長尺のフィルムのTD方向との成す角度の最小値θ(°)を、θ=90/4=22.5(°)としており、さらに狙い値に近いウェーハを得ることができた。 On the other hand, in Examples 1 and 2, since all four diameter directions for measuring the thickness of the coating do not match the TD direction and MD direction of the long film, the target thickness is higher than that of the comparative example. I was able to get something close to. In particular, in the second embodiment, the minimum value θ (°) of the angle formed by the first radial direction, which is the radial direction passing through the center and the notch of the wafer, and the TD direction of the long film is set to θ = 90 /. 4 = 22.5 (°), and a wafer closer to the target value could be obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

1…定盤(下定盤)、 2…フィルム、 3…樹脂、 4…ウェーハ、
5…定盤(上定盤)、 6…UV光、 7…光学センサ、 10…積層体。
1 ... Surface plate (lower surface plate), 2 ... Film, 3 ... Resin, 4 ... Wafer,
5 ... Surface plate (upper surface plate), 6 ... UV light, 7 ... Optical sensor, 10 ... Laminate.

Claims (3)

長尺のフィルムと樹脂とウェーハとをこの順に積層し、前記フィルムと平坦な面を有する定盤とが接するように押圧し前記樹脂を硬化させることにより、前記フィルムと前記樹脂とを含み表面が平坦な被覆物と前記ウェーハとが積層された積層体を形成し、前記ウェーハ上の少なくとも1本の直径方向において、複数の測定箇所で前記被覆物の厚さを光学センサにより測定する方法であって、
前記ウェーハにおける、前記被覆物の厚さを測定する前記少なくとも1本の直径方向が、前記長尺のフィルムのMD方向及びTD方向とは異なる方向となるようにして、前記被覆物の厚さを測定することを特徴とする被覆物の厚さ測定方法。
By laminating a long film, a resin, and a wafer in this order and pressing the film so that a surface plate having a flat surface is in contact with the resin to cure the resin, the surface containing the film, the resin, and the surface is formed. A method of forming a laminate in which a flat coating and the wafer are laminated, and measuring the thickness of the coating with an optical sensor at a plurality of measurement points in at least one radial direction on the wafer. hand,
The thickness of the coating is adjusted so that at least one diameter direction for measuring the thickness of the coating on the wafer is different from the MD direction and the TD direction of the long film. A method for measuring the thickness of a coating, which comprises measuring.
前記ウェーハとしてノッチ又はオリフラを有するウェーハを用い、
前記被覆物の厚さの測定を、前記ウェーハ面内に含まれる領域を均等に分割するN本(但し、Nは1以上の整数)の直径方向について行うこととし、
前記N本の直径方向のうち、前記ウェーハの中心と前記ノッチ又は前記オリフラの中央部とを通る直径方向を第1の直径方向とし、前記第1の直径方向と前記長尺のフィルムのTD方向とが成す角度の最小値をθ(°)としたときに、
前記Nが奇数の場合はθ=45/N(°)、前記Nが偶数の場合はθ=90/N(°)となるように、前記長尺のフィルムと前記ウェーハとの位置関係を設定して前記積層体を形成することを特徴とする請求項1に記載の被覆物の厚さ測定方法。
A wafer having a notch or an orientation flat is used as the wafer.
The thickness of the coating is measured in the diameter direction of N lines (where N is an integer of 1 or more) that evenly divides the region included in the wafer surface.
Of the N radial directions, the radial direction passing through the center of the wafer and the notch or the central portion of the orientation flat is defined as the first radial direction, and the first radial direction and the TD direction of the long film. When the minimum value of the angle formed by and is θ (°),
The positional relationship between the long film and the wafer is set so that θ = 45 / N (°) when the N is an odd number and θ = 90 / N (°) when the N is an even number. The method for measuring the thickness of a coating material according to claim 1, wherein the laminate is formed.
前記被覆物の表面の平坦面を基準面として前記ウェーハを研削する方法であって、
請求項1又は2に記載の被覆物の厚さ測定方法により前記被覆物の厚さを測定し、
前記測定した被覆物の厚さと前記ウェーハの仕上がり厚さの合計を研削の終点値として研削を行うことを特徴とする研削方法。
A method of grinding the wafer using the flat surface of the surface of the coating as a reference surface.
The thickness of the coating is measured by the method for measuring the thickness of the coating according to claim 1 or 2.
A grinding method characterized in that grinding is performed with the sum of the measured thickness of the covering and the finished thickness of the wafer as the end point value of grinding.
JP2019091683A 2019-05-14 2019-05-14 Coating thickness measurement method and grinding method Active JP7088125B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019091683A JP7088125B2 (en) 2019-05-14 2019-05-14 Coating thickness measurement method and grinding method
TW109113996A TW202108975A (en) 2019-05-14 2020-04-27 Thickness measurement method for coated body, and grinding method
CN202010355482.8A CN111941266A (en) 2019-05-14 2020-04-29 Method for measuring thickness of covering and grinding method
KR1020200057100A KR20200131763A (en) 2019-05-14 2020-05-13 Thickness measuring method of covering materials and grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019091683A JP7088125B2 (en) 2019-05-14 2019-05-14 Coating thickness measurement method and grinding method

Publications (2)

Publication Number Publication Date
JP2020188130A true JP2020188130A (en) 2020-11-19
JP7088125B2 JP7088125B2 (en) 2022-06-21

Family

ID=73222881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019091683A Active JP7088125B2 (en) 2019-05-14 2019-05-14 Coating thickness measurement method and grinding method

Country Status (4)

Country Link
JP (1) JP7088125B2 (en)
KR (1) KR20200131763A (en)
CN (1) CN111941266A (en)
TW (1) TW202108975A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664984B2 (en) * 2001-02-15 2005-06-29 独立行政法人科学技術振興機構 Electric vehicle suspension mechanism

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249621A (en) * 1993-02-24 1994-09-09 Sumitomo Heavy Ind Ltd Instrument for measuring film thickness distribution
JP2004226340A (en) * 2003-01-27 2004-08-12 Toray Ind Inc Film thickness measuring method and film manufacturing method
JP2009148866A (en) * 2007-12-21 2009-07-09 Disco Abrasive Syst Ltd Resin coating method and device
JP2011245610A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3841306B2 (en) * 2004-08-05 2006-11-01 日東電工株式会社 Method for producing retardation film
JP4728023B2 (en) * 2005-03-24 2011-07-20 株式会社ディスコ Wafer manufacturing method
US8111406B2 (en) * 2007-11-14 2012-02-07 Nikon Corporation Surface position detecting apparatus, surface position detecting method, exposure apparatus, and device manufacturing method
JP5320058B2 (en) * 2008-12-26 2013-10-23 株式会社ディスコ Resin coating method and resin coating apparatus
JP6036732B2 (en) * 2014-03-18 2016-11-30 信越半導体株式会社 Manufacturing method of bonded wafer
JP6500796B2 (en) * 2016-02-03 2019-04-17 株式会社Sumco Wafer manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249621A (en) * 1993-02-24 1994-09-09 Sumitomo Heavy Ind Ltd Instrument for measuring film thickness distribution
JP2004226340A (en) * 2003-01-27 2004-08-12 Toray Ind Inc Film thickness measuring method and film manufacturing method
JP2009148866A (en) * 2007-12-21 2009-07-09 Disco Abrasive Syst Ltd Resin coating method and device
JP2011245610A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device

Also Published As

Publication number Publication date
KR20200131763A (en) 2020-11-24
CN111941266A (en) 2020-11-17
JP7088125B2 (en) 2022-06-21
TW202108975A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
KR102588457B1 (en) Rectangular substrate for imprint lithography and making method
TWI658497B (en) Imprint apparatus, and method of manufacturing article
KR102032095B1 (en) Method of curing uncured material and method of manufacturing article
US8765034B2 (en) Pattern formation method, pattern formation apparatus, and recording medium recorded with alignment program
JP2015029070A (en) Pattern formation method, lithography device, lithography system, and article manufacturing method
KR101777905B1 (en) Imprint apparatus, and method of manufacturing article
KR20130061065A (en) Imprint apparatus, imprint method, and article manufacturing method
JP6606567B2 (en) Imprint apparatus and article manufacturing method
JP6512840B2 (en) Imprint apparatus and method, and method of manufacturing article
JP2016018824A (en) Imprint device and method of manufacturing article
JP2016225433A (en) Mold, imprint method, imprint device, and method for producing article
JP7088125B2 (en) Coating thickness measurement method and grinding method
JP6395352B2 (en) Imprint apparatus, imprint method, and article manufacturing method using the same
JP7278828B2 (en) Molding method, molding apparatus, imprinting method, and article manufacturing method
JP2021176200A (en) Imprint device and article manufacturing method
JP5406777B2 (en) Transfer apparatus and transfer method
KR102059758B1 (en) Imprint apparatus and article manufacturing method
JP7171394B2 (en) Molding Apparatus, Molding Method, and Article Manufacturing Method
JP2020092178A (en) Imprint apparatus, imprint method, and article manufacturing method
JP7337682B2 (en) IMPRINT APPARATUS, IMPRINT METHOD, AND PRODUCT MANUFACTURING METHOD
JP2006064455A (en) Reference grid manufacturing method and reference grid manufacture device
JP2019062164A (en) Imprint device, imprint method, determination method of arrangement pattern of imprint material, and manufacturing method of article
KR101991640B1 (en) Imprint apparatus, imprint method and article manufacturing method
JP2019179926A (en) Pattern formation method, lithographic apparatus, lithographic system, and article manufacturing method
KR102352474B1 (en) Imprint apparatus and method of manufacturing article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R150 Certificate of patent or registration of utility model

Ref document number: 7088125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150