KR20200131763A - Thickness measuring method of covering materials and grinding method - Google Patents

Thickness measuring method of covering materials and grinding method Download PDF

Info

Publication number
KR20200131763A
KR20200131763A KR1020200057100A KR20200057100A KR20200131763A KR 20200131763 A KR20200131763 A KR 20200131763A KR 1020200057100 A KR1020200057100 A KR 1020200057100A KR 20200057100 A KR20200057100 A KR 20200057100A KR 20200131763 A KR20200131763 A KR 20200131763A
Authority
KR
South Korea
Prior art keywords
wafer
thickness
coating
film
resin
Prior art date
Application number
KR1020200057100A
Other languages
Korean (ko)
Inventor
료 타가
유키 타나카
Original Assignee
신에쯔 한도타이 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 신에쯔 한도타이 가부시키가이샤 filed Critical 신에쯔 한도타이 가부시키가이샤
Publication of KR20200131763A publication Critical patent/KR20200131763A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67253Process monitoring, e.g. flow or thickness monitoring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/34Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

The purpose of the present invention is to provide a thickness measurement method for a coating material, which can stably measure the thickness of a coating material, and a grinding method capable of improving thickness precision of a wafer having been ground. The thickness measurement method for a coating material comprising: laminating a long film, a resin, and a wafer in this order and then hardening the resin while pressing the film and a surface plate having a flat surface into contact so as to form a laminate in which a coating material including the film and the resin and having a flat surface, and the wafer are laminated; and measuring, by an optical sensor, the thickness of the coating material at a plurality of measurement places in at least one diameter direction on the wafer. The thickness measurement method for a coating material measures the thicknesses of the coating material so that the at least one diameter direction in which the thickness of the coating material is measured is different from an MD direction and a TD direction of the long film.

Description

피복물의 두께측정방법 및 연삭방법{THICKNESS MEASURING METHOD OF COVERING MATERIALS AND GRINDING METHOD}Coating thickness measurement method and grinding method {THICKNESS MEASURING METHOD OF COVERING MATERIALS AND GRINDING METHOD}

본 발명은, 웨이퍼 상에 형성한 피복물의 두께측정방법, 및, 이 두께측정방법을 이용한 연삭방법에 관한 것이다.The present invention relates to a method for measuring the thickness of a coating formed on a wafer, and a grinding method using the method for measuring the thickness.

웨이퍼의 편면에 수지나 왁스 등을 도포하고, 이 수지 등을 장척(長尺)의 필름을 재치(載置)한 평탄한 정반 상에서 누르고, 경화시켜 웨이퍼 상에 표면이 평탄한 피복물을 형성하고, 이 피복물의 평탄한 표면을 기준면으로 하여 웨이퍼를 연삭함으로써, 웨이퍼의 굴곡이나 휨을 제거하는 평면연삭방법이 알려져 있다(특허문헌 1). 이 연삭방법에서는, 연삭 후의 웨이퍼를 균일한 두께로 하기 위해, 피복물의 두께를 계측하는 것이 필요하며, 그래서 광투과성이 있는 필름을 사용하는 것이 일반적이다. 또한, 종래는, 장척의 필름의 종방향(긴쪽 방향, MD: Machine Direction)과, 웨이퍼에 형성된 노치와 웨이퍼의 중심을 잇는 직선이 90°의 각도를 이루도록, 웨이퍼를 장척의 필름 상에 설치하여 피복물을 형성했었다. 그리고, 피복물의 두께측정은, 웨이퍼 및 피복물에 데미지를 주지 않도록 간섭식의 광학센서를 사용하고, 예를 들어, 웨이퍼중심과 노치를 잇는 직선이나 이 직선에 직교하는 직선을 따라, 직경방향으로 비접촉계측했었다.A resin or wax is applied to one side of the wafer, and the resin is pressed on a flat surface plate on which a long film is placed, and cured to form a coating with a flat surface on the wafer. A planar grinding method is known in which a wafer is ground using the flat surface of the wafer as a reference surface to remove bending or warpage of the wafer (Patent Document 1). In this grinding method, it is necessary to measure the thickness of the coating in order to obtain a uniform thickness of the wafer after grinding, so it is common to use a light-transmitting film. In addition, conventionally, the wafer is installed on the long film so that the longitudinal direction (long direction, MD: Machine Direction) of the long film and the straight line connecting the notch formed on the wafer and the center of the wafer form an angle of 90°. It had formed a coating. In addition, for measuring the thickness of the coating, an interference type optical sensor is used so as not to damage the wafer and the coating, and for example, a straight line connecting the center of the wafer and the notch or a straight line orthogonal to this straight line is non-contact in the radial direction. I measured it.

일본특허공개 2009-148866호 공보Japanese Patent Publication No. 2009-148866

그러나, 본 발명자는, 장척의 필름의 특정의 방향을 따라 피복물의 두께의 측정을 행하자, 측정값이 불균일하여, 안정되지 않는 경우가 있다는 문제점을 발견하였다. 특히, 장척의 필름의 MD방향이나 TD(Transeverse Direction)방향을 따른 방향에서, 피복물두께를 안정되게 높은 정밀도(精度)로 계측하는 것이 곤란한 것을 알게 되었다. 도 7에, 종래 행했었던 피복물의 두께측정의 예를 나타낸다. 도 7의 상도는, 웨이퍼를 장척필름에 얹은 상태를 웨이퍼측에서 본 도면을 나타내고, 도 7의 하도는, 필름측에서 본 도면을 나타낸다. 도 7의 하도에 나타내는 웨이퍼면내의 화살표는, 피복물의 두께측정방향을 나타내고, 「○」, 「△」, 「×」의 순으로, 피복물의 두께측정정밀도가 악화되는 것을 의미한다. 이처럼, 종래는, 피복물의 측정의 정밀도가 낮다는 문제가 있고, 또한, 피복물을 포함시킨 웨이퍼의 두께가 불균일을 포함한 채의 데이터를 이용하고, 두께가 불명료한 채 연삭을 행하게 되어, 연삭 후에 피복물을 제거한 웨이퍼의 두께 정밀도가 악화된다는 문제가 있었다.However, the inventor of the present invention discovered a problem in that when the thickness of the coating was measured along a specific direction of a long film, the measured value was uneven and may not be stable. In particular, it has been found that it is difficult to measure the coating thickness stably with high precision in the direction along the MD direction or the TD (Transeverse Direction) direction of a long film. Fig. 7 shows an example of the thickness measurement of a coating that has been performed in the past. The top view of FIG. 7 shows a view when the wafer is placed on a long film as viewed from the wafer side, and the bottom view of FIG. 7 shows a view seen from the film side. The arrows in the wafer surface shown in the bottom diagram of FIG. 7 indicate the thickness measurement direction of the coating, in the order of "○", "Δ", and "x", meaning that the thickness measurement accuracy of the coating is deteriorated. As such, conventionally, there is a problem that the accuracy of the measurement of the coating material is low, and the data of the thickness of the wafer including the coating material with non-uniformity is used, and grinding is performed with the thickness unclear. There is a problem that the thickness accuracy of the wafer from which is removed is deteriorated.

본 발명은, 상기 문제를 해결하기 위해 이루어진 것으로, 피복물의 두께를 불균일이 작아 안정되게 계측가능한 피복물의 두께측정방법, 및, 연삭 후의 웨이퍼의 두께정밀도를 향상하는 것이 가능한 연삭방법을 제공하는 것을 목적으로 한다.The present invention has been made in order to solve the above problem, and an object of the present invention is to provide a method for measuring the thickness of a coating capable of stably measuring the thickness of the coating with a small non-uniformity, and a grinding method capable of improving the thickness precision of a wafer after grinding. To do.

본 발명은, 상기 목적을 달성하기 위해 이루어진 것으로, 장척의 필름과 수지와 웨이퍼를 이 순으로 적층하고, 상기 필름과 평탄한 면을 갖는 정반이 접하도록 눌러서(압압하여) 상기 수지를 경화시킴으로써, 상기 필름과 상기 수지를 포함하며 표면이 평탄한 피복물과 상기 웨이퍼가 적층된 적층체를 형성하고, 상기 웨이퍼 상의 적어도 1개의 직경방향에 있어서, 복수의 측정개소에서 상기 피복물의 두께를 광학센서에 의해 측정하는 방법으로서, 상기 웨이퍼에 있어서의, 상기 피복물의 두께를 측정하는 상기 적어도 1개의 직경방향이, 상기 장척의 필름의 MD방향 및 TD방향과는 상이한 방향이 되도록 하여, 상기 피복물의 두께를 측정하는 피복물의 두께측정방법을 제공한다.The present invention has been made in order to achieve the above object, by laminating a long film, a resin, and a wafer in this order, pressing (pressing) the film and a platen having a flat surface to contact (pressing) the resin, Forming a laminate in which a coating material containing a film and the resin and having a flat surface and the wafer is stacked, and measuring the thickness of the coating material at a plurality of measurement points in at least one radial direction on the wafer As a method, a coating for measuring the thickness of the coating by making the at least one radial direction in the wafer for measuring the thickness of the coating material different from the MD direction and the TD direction of the long film Provides a method of measuring the thickness of

이러한 피복물의 두께측정방법에 따르면, 장척의 필름의 굴절률의 영향에 따른 피복물의 두께측정값의 불균일을 배제할 수 있어, 정밀도 높은 두께측정이 가능하다.According to this method of measuring the thickness of the coating, it is possible to eliminate unevenness in the thickness measurement value of the coating due to the influence of the refractive index of the long film, and thus, it is possible to measure the thickness with high precision.

이때, 상기 웨이퍼로서 노치 또는 오리엔테이션 플랫을 갖는 웨이퍼를 이용하고, 상기 피복물의 두께의 측정을, 상기 웨이퍼 면내에 포함되는 영역을 균등하게 분할하는 N개(단, N은 1 이상의 정수)의 직경방향에 대하여 행하기로 하고, 상기 N개의 직경방향 중, 상기 웨이퍼의 중심과 상기 노치 또는 상기 오리엔테이션 플랫의 중앙부를 통과하는 직경방향을 제1의 직경방향으로 하고, 상기 제1의 직경방향과 상기 장척의 필름의 TD방향이 이루는 각도의 최소값을 θ(°)로 했을 때에, 상기 N이 홀수인 경우는 θ=45/N(°), 상기 N이 짝수인 경우는 θ=90/N(°)이 되도록, 상기 장척의 필름과 상기 웨이퍼의 위치관계를 설정하여 상기 적층체를 형성하는 피복물의 두께측정방법으로 할 수 있다.At this time, a wafer having a notch or an orientation flat is used as the wafer, and the measurement of the thickness of the coating is performed in a radial direction of N (wherein N is an integer greater than 1) equally dividing the area included in the wafer surface. In the N diameter directions, the diameter direction passing through the center of the wafer and the center of the notch or the orientation flat is a first radial direction, and the first radial direction and the long length When the minimum value of the angle formed by the TD direction of the film of is θ(°), θ=45/N(°) when N is an odd number, and θ=90/N(°) when N is an even number To this end, the positional relationship between the long film and the wafer can be set, and a method for measuring the thickness of the coating forming the laminate can be used.

이에 따라, 보다 정밀도 높게 피복물의 두께를 측정할 수 있다.Accordingly, it is possible to measure the thickness of the coating with higher precision.

이때, 상기 피복물의 표면의 평탄면을 기준면으로 하여 상기 웨이퍼를 연삭하는 방법으로서, 상기 피복물의 두께측정방법에 의해 상기 피복물의 두께를 측정하고, 상기 측정한 피복물의 두께와 상기 웨이퍼의 마무리 두께(혹은, 완성 두께)의 합계를 연삭의 종점값으로 하여 연삭을 행하는 연삭방법으로 할 수 있다.At this time, as a method of grinding the wafer using the flat surface of the coating as a reference plane, the thickness of the coating is measured by the thickness measurement method of the coating, and the measured thickness of the coating and the finished thickness of the wafer ( Alternatively, the total of the finished thickness) can be used as a grinding method in which grinding is performed by using the total value of the grinding end point.

이에 따라, 연삭 후의 웨이퍼두께의 목표값과의 오차를 줄일 수 있어, 정밀도 높게 연삭가공을 행하는 것이 가능해진다.Accordingly, it is possible to reduce the error of the wafer thickness after grinding from the target value, and it becomes possible to perform grinding with high precision.

이상과 같이, 본 발명의 피복물의 두께측정방법에 따르면, 장척의 필름의 굴절률의 영향에 따른 피복물의 두께측정값의 불균일을 배제할 수 있어, 정밀도 높은 두께측정을 행하는 것이 가능해진다. 또한, 본 발명의 피복물의 두께측정방법을 이용한 웨이퍼의 연삭방법에 의해, 연삭 후의 웨이퍼의 두께와 목표값의 차를 줄이는 것이 가능해진다.As described above, according to the method for measuring the thickness of a coating according to the present invention, it is possible to eliminate unevenness in the thickness measurement value of the coating due to the influence of the refractive index of a long film, and thus it is possible to perform thickness measurement with high precision. Further, by the method of grinding a wafer using the method of measuring the thickness of the coating of the present invention, it becomes possible to reduce the difference between the thickness of the wafer and the target value after grinding.

도 1은 본 발명에 따른 두께측정 및 연삭방법의 공정플로우를 나타낸다.
도 2는 적층체의 제조공정의 일 예를 나타낸다.
도 3은 피복물의 두께측정의 개념도를 나타낸다.
도 4는 피복물의 두께측정방향의 설정예를 나타낸다.
도 5는 피복물의 두께측정방향의 다른 설정예를 나타낸다.
도 6은 실시예 1, 2 및 비교예의, 연삭 후의 웨이퍼두께(목표값과의 차)를 나타낸다.
도 7은 종래의 피복물의 두께측정의 예를 나타낸다.
1 shows the process flow of the thickness measurement and grinding method according to the present invention.
2 shows an example of a manufacturing process of a laminate.
3 shows a conceptual diagram of the thickness measurement of the coating.
4 shows an example of setting the thickness measurement direction of the coating.
5 shows another example of setting the thickness measurement direction of the coating.
6 shows wafer thicknesses (difference from target values) after grinding in Examples 1 and 2 and Comparative Examples.
7 shows an example of the thickness measurement of a conventional coating.

이하, 본 발명을 상세하게 설명하나, 본 발명은 이것들로 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail, but the present invention is not limited thereto.

상기 서술한 바와 같이, 피복물의 두께를 불균일이 작아 안정되게 계측가능한, 피복물의 두께측정방법이 요구되었다.As described above, there has been a demand for a method for measuring the thickness of a coating that can stably measure the thickness of a coating with a small non-uniformity.

본 발명자들은, 상기 과제에 대하여 예의조사를 행한 결과, 장척의 필름의 MD방향 및 TD방향은, 필름의 굴절률이 안정되지 않으므로 두께측정결과가 안정되지 않아, 두께측정의 정밀도가 저하되는 것을 발견하여, 본 발명을 완성하였다. 즉, 본 발명자들은, 장척의 필름과 수지와 웨이퍼를 이 순으로 적층하고, 상기 필름과 평탄한 면을 갖는 정반이 접하도록 눌러서 상기 수지를 경화시킴으로써, 상기 필름과 상기 수지를 포함하며 표면이 평탄한 피복물과 상기 웨이퍼가 적층된 적층체를 형성하고, 상기 웨이퍼 상의 적어도 1개의 직경방향에 있어서, 복수의 측정개소에서 상기 피복물의 두께를 측정하는 방법으로서, 상기 웨이퍼에 있어서의, 상기 피복물의 두께를 측정하는 상기 적어도 1개의 직경방향이, 상기 장척의 필름의 MD방향 및 TD방향과는 상이한 방향이 되도록 하여, 상기 피복물의 두께를 측정하는 피복물의 두께측정방법에 의해, 피복물의 두께의 측정을 정밀도 높게 행할 수 있는 것, 이 두께측정방법을 채용함으로써, 웨이퍼의 연삭을 행했을 때에 목표값으로부터의 오차를 줄일 수 있는 것을 발견하여, 본 발명을 완성하였다.The inventors of the present invention found that, as a result of careful investigation on the above problems, the MD direction and TD direction of the long film were not stable because the refractive index of the film was not stable, so that the accuracy of the thickness measurement decreased. , Completed the present invention. That is, the present inventors laminate a long film, a resin, and a wafer in this order, and cure the resin by pressing the film and a surface plate having a flat surface in contact with each other to cure the resin, thereby comprising the film and the resin, and a coating having a flat surface. And a method of forming a laminate in which the wafers are stacked, and measuring the thickness of the coating at a plurality of measurement points in at least one radial direction on the wafer, wherein the thickness of the coating is measured on the wafer. By making the at least one radial direction different from the MD direction and the TD direction of the long film, the thickness of the coating can be measured with high precision by a thickness measurement method of measuring the thickness of the coating. What can be done, by employing this thickness measurement method, it has been found that errors from the target value can be reduced when the wafer is ground, and the present invention has been completed.

이하, 도면을 참조하여 설명한다.Hereinafter, it will be described with reference to the drawings.

먼저, 본 발명에 따른 피복물의 두께측정방법에 대하여 설명한다. 이 두께측정은, 웨이퍼의 연삭가공의 전에 행하는 측정이다. 먼저, 도 1의 S01에 나타내는 바와 같이, 장척의 필름과 수지와 웨이퍼를 이 순으로 적층하고, 필름과 평탄한 면을 갖는 정반이 접하도록 누르고, 수지를 경화시킴으로써, 필름과 상기 수지를 포함하며 표면이 평탄한 피복물과, 웨이퍼가 적층된 적층체를 형성한다.First, a method for measuring the thickness of a coating according to the present invention will be described. This thickness measurement is a measurement performed before grinding of the wafer. First, as shown in S01 of FIG. 1, a long film, a resin, and a wafer are stacked in this order, pressed so that the film and a platen having a flat surface are in contact, and the resin is cured, thereby including the film and the resin. The flat coating and the wafer are laminated to form a laminate.

필름과 수지를 포함하며 표면이 평탄한 피복물과 웨이퍼가 적층된 적층체의 제조공정의 일 예를 들면, 도 2에 나타내는 바와 같이, 우선, 평탄한 면을 갖는 정반(하정반)(1)의 위에 광투과성이며 장척인 필름(2)를 깔고, 그 위에 가소상태, 예를 들어 액상의 수지(3)를 공급, 도포한다. 다시 수지의 위에 웨이퍼(4)를 얹고, 필름(2)의 면이 평탄해지도록 정반(상정반)(5)을 이용하여 누른다(압압한다). 그 후, 사용하는 수지(3)의 종류에 따른 경화처리를 행한다. 도면에 나타내는 예에서는, 수지(3)로서 UV경화수지를 이용하고, UV광(6)을 필름(2)의 측으로부터 조사함으로써 경화를 행한다. 이렇게 하여 적층체(10)를 얻을 수 있다.For example, as shown in FIG. A transparent and elongated film 2 is laid, and a plasticized state, for example, a liquid resin 3 is supplied and applied thereon. The wafer 4 is placed on the resin again, and the surface of the film 2 is pressed using a platen (top plate) 5 so that the surface of the film 2 is flat (pressed). After that, curing treatment according to the kind of resin 3 to be used is performed. In the example shown in the drawing, a UV curable resin is used as the resin 3 and curing is performed by irradiating the UV light 6 from the side of the film 2. In this way, the laminate 10 can be obtained.

장척 상(형태)의 필름의 종류로는, 후술하는 바와 같이, 필름과 경화한 수지를 포함하는 피복물의 두께측정을 광학적으로 행하기 때문에, 두께측정의 광을 투과하는 재료이면, 특별히 한정되지 않는다. 예를 들어, PET필름 등을 호적하게 이용할 수 있다.The type of the elongate (shape) film is not particularly limited as long as it is a material that transmits the light of the thickness measurement, since the thickness measurement of the coating comprising the film and the cured resin is optically performed as described later. . For example, PET film or the like can be suitably used.

수지로는, 경화 후에 필름, 웨이퍼와 일체가 되어 적층체를 형성할 수 있는 것이면, 특별히 한정되지 않는다. 예를 들어, 열경화수지, 광경화수지, 상온에서 고체가 되는 열가소성 수지 등을 사용할 수 있다. 한편, 여기서 말하는 수지에는, 왁스도 포함된다. 이 중에서도, UV경화수지 등의 광경화수지를 사용하는 것이 바람직하다. 경화처리를 용이하게 행할 수 있기 때문이다.The resin is not particularly limited as long as it is integral with the film and the wafer after curing to form a laminate. For example, thermosetting resins, photocuring resins, thermoplastic resins that become solid at room temperature, and the like can be used. In addition, wax is also contained in the resin mentioned here. Among these, it is preferable to use a photocurable resin such as a UV curable resin. This is because hardening treatment can be easily performed.

웨이퍼로는, 예를 들어, 실리콘 등의 단결정재료로 이루어지는 반도체웨이퍼를 이용할 수 있다. 특히, 노치나 오리엔테이션 플랫이 형성된 웨이퍼이면, 필름 상에의 웨이퍼의 설치위치의 조정이나, 막두께의 측정개소의 설정 등이 용이해진다.As the wafer, for example, a semiconductor wafer made of a single crystal material such as silicon can be used. In particular, in the case of a wafer in which notches or orientation flats are formed, it becomes easy to adjust the mounting position of the wafer on the film and to set the measurement point of the film thickness.

다음에, 도 1의 S02에 나타내는 바와 같이, 상기 적층체(10)에 있어서의, 필름과 수지를 포함하는 피복물의 두께의 측정을 행한다. 피복물의 두께측정은, 광학적인 방법으로 행한다. 예를 들어, 도 3에 나타내는 바와 같이, 간섭식의 광학센서(7)를 이용하고, 필름(2)의 측으로부터 광을 조사하여 측정한다. 필름(2)의 재질이나 수지의 종류 등, 피복물에 따른 적절한 파장의 광 등, 적당히 조건을 설정하면 된다. 웨이퍼(4)와 광학센서(7) 중 적어도 일방을 직선상으로 움직이게 함으로써, 면내의 두께의 라인프로파일을 취득할 수 있다.Next, as shown in S02 of FIG. 1, the thickness of the coating material of the laminated body 10 containing a film and a resin is measured. The thickness of the coating is measured by an optical method. For example, as shown in FIG. 3, the interference type optical sensor 7 is used, and light is irradiated from the side of the film 2, and it measures. Conditions such as light of an appropriate wavelength depending on the coating material, such as the material of the film 2 or the type of resin, etc. may be set as appropriate. By moving at least one of the wafer 4 and the optical sensor 7 in a straight line, a line profile having an in-plane thickness can be obtained.

막두께의 측정은, 적층체 면내의 가능한 한 많은 개소를 측정하는 것이 바람직한데, 본 발명에서는, 적어도 1개의 직경방향에 있어서, 복수의 개소의 측정을 행하는 것으로 한다. 간편히, 적층체면내의 분포를 측정할 수 있기 때문이다.In the measurement of the film thickness, it is preferable to measure as many locations as possible in the plane of the laminate. In the present invention, it is assumed that a plurality of locations are measured in at least one radial direction. This is because the distribution in the plane of the laminate can be measured easily.

이때, 본 발명은, 측정을 행하는 직경방향을, 장척의 필름의 MD방향 및 TD방향과 상이한 방향으로 하는 점에, 특징을 갖는다. 상기 서술한 바와 같이, 본 발명자는, 장척필름의 MD방향이나 TD방향을 따른 방향에서 피복물의 측정을 행하면, 필름의 굴절률의 영향에 따라, 측정 정밀도가 낮아지고, 얻어지는 측정결과의 불균일이 커지는 것을 발견하였다. 특히 MD방향을 따른 방향에서는, 두께의 측정 정밀도의 저하가 현저하다. 그러므로, 측정을 행하는 직경방향을, 장척의 필름의 MD방향 및 TD방향과 상이한 방향으로 함으로써, 피복물의 두께의 측정 정밀도를 향상시킬 수 있다.At this time, the present invention has a characteristic in that the radial direction to be measured is a direction different from the MD direction and the TD direction of a long film. As described above, the inventors have found that when measuring the coating in the direction along the MD direction or the TD direction of the long film, the measurement accuracy is lowered and the unevenness of the obtained measurement result is increased depending on the influence of the refractive index of the film. I found it. Particularly in the direction along the MD direction, the decrease in thickness measurement accuracy is remarkable. Therefore, the measurement accuracy of the thickness of the coating can be improved by setting the radial direction to be measured in a direction different from the MD direction and the TD direction of the long film.

피복물의 두께의 측정을 행할 때의 측정방향의 설정은, 예를 들어, 노치 또는 오리엔테이션 플랫이 형성된 웨이퍼를 사용하여, 노치 또는 오리엔테이션 플랫의 중앙부와 웨이퍼의 중심을 통과하는 직경방향을 측정하는 것으로서, 필름과 수지의 위에 웨이퍼를 얹을 때의 웨이퍼의 위치(회전방향)를 조절하여, 웨이퍼의 측정장소(직경방향)와, 장척의 필름의 MD방향 또는 TD방향과의 상대적인 위치관계를 조정하는 방법이나, 필름과 수지의 위에 웨이퍼를 얹을 때의 위치관계(회전방향)는 바꾸지 않고, 측정시의 측정장소(직경방향)를 바꾸는 방법 등을 들 수 있다.When measuring the thickness of the coating, the measurement direction is set, for example, by using a wafer with a notch or orientation flat, and measuring a radial direction passing through the center of the notch or orientation flat and the wafer, A method of adjusting the position (rotation direction) of the wafer when placing the wafer on the film and resin to adjust the relative positional relationship between the measurement location (diameter direction) of the wafer and the MD direction or TD direction of the long film. , A method of changing the measurement location (diameter direction) at the time of measurement without changing the positional relationship (rotation direction) when placing the wafer on the film and the resin.

전자, 즉, 필름과 수지의 위에 웨이퍼를 얹을 때의 웨이퍼의 위치(회전방향)를 조절하여, 웨이퍼의 측정장소(직경방향)와, 장척의 필름의 MD방향 또는 TD방향과의 상대적인 위치관계를 조정하는 방법을 채용하는 경우에는, 도 4에 나타내는 바와 같이, 종래의 웨이퍼 위치(도 4의 (A))에 대해, 웨이퍼의 중심을 기준으로 소정각도를 회전시켜 웨이퍼를 필름에 얹음으로써(도 4의 (B)), 피복물의 두께측정의 직경방향의 설정을 행할 수 있다. 이 경우, 적층체를 형성하는 장치에 웨이퍼의 노치 또는 오리엔테이션 플랫을 검출하는 검출기구, 및, 노치 또는 오리엔테이션 플랫에 대한 회전각도 조정기구를 마련하고, 웨이퍼의 회전각도의 조절을 행하면, 높은 정밀도로 위치 조정이 가능하다.In other words, by adjusting the position (rotation direction) of the wafer when placing the wafer on the film and resin, the relative positional relationship between the measurement location (diameter direction) of the wafer and the MD direction or the TD direction of the long film can be determined. In the case of adopting the method of adjusting, as shown in Fig. 4, by rotating a predetermined angle relative to the center of the wafer with respect to the conventional wafer position (Fig. 4A) and placing the wafer on the film (Fig. In (B) of 4), the diameter direction of the thickness measurement of the coating can be set. In this case, if a device for forming a laminate is provided with a detector for detecting a notch or an orientation flat of the wafer, and a rotation angle adjustment mechanism for the notch or orientation flat, and the rotation angle of the wafer is adjusted, it is highly accurate. Position adjustment is possible.

측정 정밀도는, 측정하는 직경방향의 갯수를 늘림으로써, 보다 높일 수 있다. 특히, 웨이퍼 면내에 포함되는 영역을 균등하게 분할하는 복수의 직경방향에 대하여 측정을 행함으로써, 측정정밀도를 보다 향상시킬 수 있다. 웨이퍼 면내에 포함되는 영역을 균등하게 분할하는 복수의 직경방향이란, 환언하면, 이웃한 복수의 직경방향의 교차각도가 모두 같은 것을 의미한다.The measurement accuracy can be further improved by increasing the number of measured radially. In particular, measurement accuracy can be further improved by performing measurements in a plurality of radial directions equally dividing the area included in the wafer surface. A plurality of radial directions for equally dividing a region included in the wafer plane, in other words, means that all of the intersection angles of a plurality of adjacent radial directions are the same.

또한, 웨이퍼의 중심과 노치 또는 오리엔테이션 플랫의 중앙부를 통과하는 직경방향을 제1의 직경방향으로 하고, 상기 제1의 직경방향과 장척의 필름의 TD방향이 이루는 각도의 최소값을 θ(°)로 했을 때에, N이 홀수인 경우는 θ=45/N(°), N이 짝수인 경우는 θ=90/N(°)이 되도록, 장척의 필름과 웨이퍼의 위치관계를 설정하여 적층체를 형성하면, 두께 측정에서 얻어진 측정결과의 불균일이 매우 작아져, 보다 고정밀도의 측정을 행할 수 있다.In addition, the diameter direction passing through the center of the wafer and the center of the notch or orientation flat is the first radial direction, and the minimum value of the angle between the first radial direction and the TD direction of the long film is θ (°). When N is odd, the positional relationship between the long film and the wafer is set so that θ = 45/N (°) when N is an even number, and θ = 90/N (°) when N is an even number to form a laminate. If it does, the unevenness of the measurement result obtained by the thickness measurement becomes very small, and it is possible to perform more highly accurate measurement.

예를 들어, 도 4에 나타낸 예는, N=2로 한 경우이다. 필름 상에 웨이퍼를 얹을 때에, 웨이퍼를 중심둘레로 θ=90/2=45°회전시켜 설치함으로써, 제1의 직경방향과, 제1의 직경방향에 직교하는 제2의 직경방향에서 피복물의 두께를 측정했을 때에, 측정의 정밀도가 높아진다. 한편, 도 7의 설명과 마찬가지로, 도 4나, 이하에 서술하는 도 5 중, 「○」로 나타낸 측정방향은 측정값의 정밀도가 높은 방향, 「△」, 「×」의 순으로, 측정값의 정밀도가 낮아지는 방향을 나타낸다.For example, the example shown in FIG. 4 is a case where N=2. When placing the wafer on the film, the thickness of the coating in the first radial direction and the second radial direction orthogonal to the first radial direction by rotating the wafer θ=90/2=45° around the center When is measured, the accuracy of the measurement increases. On the other hand, as in the description of FIG. 7, in FIG. 4 or in FIG. 5 described below, the measurement direction indicated by "○" is the direction in which the precision of the measured value is high, in the order of "△" and "x", Indicates the direction in which the precision of is lowered.

도 5에는, N=4로 했을 때의 예를 나타낸다. 종래는, 도 5(A)에 나타내는 바와 같이, 제1의 직경방향과 장척필름의 TD방향이 일치하도록, 웨이퍼와 필름의 위치관계를 설정하고 있으므로, 두께의 측정을 행하는 4개의 직경방향 중 2개가 TD방향 및 MD방향과 일치한다.In FIG. 5, an example when N=4 is shown. Conventionally, as shown in Fig. 5A, since the positional relationship between the wafer and the film is set so that the first radial direction and the TD direction of the long film coincide, two of the four diameter directions for measuring thickness. The dog coincides with the TD and MD directions.

한편, 도 5(B)에 나타내는 바와 같이, 제1의 직경방향과 장척의 필름의 TD방향이 이루는 각도θ가 θ=90/4=22.5°(도 5의 예에서는, 시계방향으로 22.5°)가 되도록 설정하여 적층체를 형성해 피복물의 두께의 측정을 행하면, 4개의 직경방향 모두가 TD방향 및 MD방향과 상이한 방향이 된다.On the other hand, as shown in Fig. 5(B), the angle θ formed by the first radial direction and the TD direction of the long film is θ = 90/4 = 22.5° (in the example of Fig. 5, 22.5° clockwise) When the thickness of the coating is measured by forming a layered product by setting it to be, all four radial directions become different directions from the TD direction and the MD direction.

그러나, 도 5(C)에 나타내는 바와 같이, 제1의 직경방향과 장척의 필름의 TD방향이 이루는 각도θ가 θ=45°(도 5의 예에서는, 시계방향으로 45°)가 되도록 설정하여 적층체를 형성해 피복물의 두께의 측정을 행하면, 4개의 직경방향 중 2개가 TD방향 및 MD방향과 일치하게 되므로, 도 5(A)의 경우와 마찬가지로, 피복물의 측정 정밀도는 저하된다.However, as shown in Fig. 5(C), the angle θ formed by the first radial direction and the TD direction of the long film is set to be θ = 45° (in the example of Fig. 5, 45° clockwise). When a laminate is formed and the thickness of the coating is measured, two of the four radial directions coincide with the TD direction and the MD direction, and thus the measurement accuracy of the coating decreases as in the case of Fig. 5A.

이에, 상기 서술한 바와 같이, 웨이퍼의 중심과 노치 또는 오리엔테이션 플랫의 중앙부를 통과하는 직경방향을 제1의 직경방향으로 하고, 상기 제1의 직경방향과 장척의 필름의 TD방향이 이루는 각도의 최소값을 θ(°)로 했을 때에, N이 홀수인 경우는 θ=45/N(°), N이 짝수인 경우는 θ=90/N(°)이 되도록, 장척의 필름과 웨이퍼의 위치관계를 설정하여 적층체를 형성하면, 두께 측정에서 얻어진 측정결과의 불균일이 매우 작아져, 보다 고정밀도의 측정을 행할 수 있다.Thus, as described above, the diameter direction passing through the center of the wafer and the center of the notch or orientation flat is the first radial direction, and the minimum value of the angle formed by the first radial direction and the TD direction of the long film When is θ (°), the positional relationship between the long film and the wafer is determined so that θ = 45/N (°) when N is an odd number and θ = 90/N (°) when N is an even number. When the laminate is formed by setting, the unevenness of the measurement result obtained in the thickness measurement becomes very small, and more highly accurate measurement can be performed.

한편, 측정을 행하는 직경방향의 개수인 N은, 많을수록 측정 정밀도가 향상되는데, 측정에 요하는 시간이 길어지므로, N은 10 이하로 하는 것이 바람직하다. N을 6 이하로 한다면, 측정에 걸리는 시간의 단축화와, 두께측정 정밀도의 향상을 양립할 수 있어, 바람직하다.On the other hand, the larger the number of N, which is the number in the radial direction to be measured, the higher the measurement accuracy, but since the time required for the measurement becomes longer, N is preferably 10 or less. If N is 6 or less, it is possible to achieve both reduction of the time required for measurement and improvement of the thickness measurement accuracy, which is preferable.

이렇게 하여 피복물의 두께를 측정한다면, 도 1의 S03에 나타내는 바와 같이, 측정결과를 이용하여, 웨이퍼의 연삭가공에 있어서의 종점값의 설정을 행한다. 구체적으로는, 「연삭의 종점값=측정한 피복물의 두께+웨이퍼의 마무리 두께(목표값)」로 한다. 이렇게 함으로써, 연삭 후의 웨이퍼의 두께의, 목표값으로부터의 어긋남(오차)을 줄일 수 있다.If the thickness of the coating is measured in this way, as shown in S03 of Fig. 1, the end point value in the grinding of the wafer is set using the measurement result. Specifically, it is set as "the end point value of grinding = thickness of the measured coating material + finish thickness of the wafer (target value)". By doing so, the deviation (error) of the thickness of the wafer after grinding from the target value can be reduced.

이 후, 도 1의 S04에 나타내는 바와 같이, 웨이퍼의 연삭을 행한다. 연삭가공은, 예를 들어 특허문헌 1에 기재되는 바와 같은 공지의 연삭방법을 채용할 수 있다.After that, as shown in S04 in Fig. 1, the wafer is ground. The grinding process can employ a known grinding method as described in Patent Document 1, for example.

실시예Example

이하, 실시예를 들어 본 발명에 대하여 상세하게 설명하나, 이는 본 발명을 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to examples, but this does not limit the present invention.

우선, 웨이퍼 상에, 수지와 필름을 포함하는 피복물을 형성하여 적층체를 얻기 위한 조건에 대하여 설명한다. 한편, 이하에 설명하는 비교예와 실시예 1, 2는, 피복물과 웨이퍼를 포함하는 적층체에 있어서 측정 지점은 미리 설정한 N=4개의 측정 지점(직경방향)에 고정하고, 필름과 수지의 위에 웨이퍼를 얹을 때의 웨이퍼의 위치(회전방향)를 조절하여, 웨이퍼의 측정 지점(직경방향)과, 장척의 필름의 MD방향 또는 TD방향과의 상대적인 위치관계를 조정하는 방법을 채용하였다.First, conditions for obtaining a laminate by forming a coating comprising a resin and a film on a wafer will be described. On the other hand, in Comparative Examples and Examples 1 and 2 described below, in a laminate comprising a coating and a wafer, the measurement points were fixed to preset N=4 measurement points (diameter direction), and the film and the resin were A method of adjusting the position (rotation direction) of the wafer when placing the wafer on top of the wafer, and adjusting the relative positional relationship between the measurement point (diameter direction) of the wafer and the MD direction or TD direction of the long film was adopted.

웨이퍼로서, 외주부에 노치를 갖는 직경 300mm의 P형 Si단결정 웨이퍼를 이용하였다. 피복물 중, 수지로는 UV경화성 수지, 장척의 필름으로는 PET필름을 이용하였다.As the wafer, a P-type Si single crystal wafer having a diameter of 300 mm having a notch in the outer peripheral portion was used. Among the coatings, a UV-curable resin was used as a resin, and a PET film was used as a long film.

우선, 평탄한 석정반(하정반) 상에 PET필름을 깔고, 그 PET필름 상에 UV경화성 수지를 10ml 적하하였다. 그 후, 웨이퍼를, 장척의 필름과 일체화했을 때에, 웨이퍼의 중심과 노치를 통과하는 직경방향(제1의 직경방향)이, 장척의 필름의 MD방향과 직교하는 방향(TD방향과 평행해지는 방향)이 되는 경우를 기준(0°)으로 하고, 하기에 나타내는 회전각도가 되도록, 웨이퍼를 중심둘레로 회전시켜 세라믹정반(상정반)에 흡착유지시켰다.First, a PET film was laid on a flat stone platen (lower platen), and 10 ml of a UV-curable resin was dripped on the PET film. After that, when the wafer is integrated with the long film, the radial direction passing through the center of the wafer and the notch (first radial direction) is a direction perpendicular to the MD direction of the long film (a direction parallel to the TD direction) ) Was taken as a reference (0°), and the wafer was rotated around the center so as to have a rotation angle shown below, and held by adsorption on a ceramic plate (top plate).

(비교예)(Comparative example)

웨이퍼의 제1의 직경방향이, 장척의 필름의 MD방향과 직교하는 방향(TD방향과 평행해지는 방향), 즉, 웨이퍼의 제1의 직경방향과 TD방향이 이루는 각도가 0°가 되도록, 세라믹 정반(상정반)에 흡착유지시켜, 적층체를 형성하였다.Ceramic so that the first radial direction of the wafer is orthogonal to the MD direction of the long film (a direction parallel to the TD direction), that is, the angle between the first radial direction of the wafer and the TD direction is 0°. It was adsorbed and held on a surface plate (upper surface plate) to form a laminate.

(실시예 1)(Example 1)

웨이퍼의 제1의 직경방향과, 장척의 필름의 TD방향이 이루는 각의 최소값이, 10.0°가 되도록 웨이퍼를 회전시켜 세라믹 정반(상정반)에 흡착유지시켜, 적층체를 형성하였다.The wafer was rotated so that the minimum value of the angle formed by the first radial direction of the wafer and the TD direction of the long film was 10.0°, and adsorbed and held on a ceramic platen (upper platen) to form a laminate.

(실시예 2)(Example 2)

웨이퍼의 제1의 직경방향과, 장척의 필름의 TD방향이 이루는 각의 최소값이, 22.5°가 되도록 웨이퍼를 회전시켜 세라믹 정반(상정반)에 흡착유지시켜, 적층체를 형성하였다.The wafer was rotated so that the minimum value of the angle formed by the first radial direction of the wafer and the TD direction of the long film was 22.5°, and adsorbed and held on the ceramic platen (upper platen) to form a laminate.

세라믹 정반(상정반)에 흡착유지시킨 웨이퍼를, 상기 수지의 적하점과 웨이퍼의 중심이 동일해지도록 눌러서(압압하여) 접착하였다. 압압의 제어는, 세라믹 정반을 유지하는 서보모터를 구동시켜 행하고, 압력이 2000N이 될 때까지 가압하였다. 그 후, 파장 365nm의 UV-LED를 이용하여 필름측으로부터 자외선을 조사하고, 수지를 경화시켜 적층체를 얻었다.The wafer held by adsorption on the ceramic platen (upper platen) was pressed (pressed) so that the dropping point of the resin and the center of the wafer were the same. The pressure control was performed by driving a servomotor holding a ceramic base, and the pressure was applied until the pressure reached 2000 N. Thereafter, using a UV-LED having a wavelength of 365 nm, ultraviolet rays were irradiated from the film side, and the resin was cured to obtain a laminate.

수지를 경화시킨 후, 적층체의 웨이퍼부를 유지하여, 피복물의 두께를 측정하는 측정기까지 반송하였다. 피복물의 두께측정용 광학센서는, Keyence사제의 SI-T80을 사용하였다. 센서를 고정하고, 피복물과 웨이퍼의 적층체를 직선상으로 주사함으로써, 두께프로파일을 계측하였다.After curing the resin, the wafer portion of the laminate was held and transferred to a measuring device for measuring the thickness of the coating. As the optical sensor for measuring the thickness of the coating, SI-T80 manufactured by Keyence Corporation was used. The sensor was fixed, and the thickness profile was measured by scanning the laminated body of the coating and the wafer in a straight line.

또한, 비교예, 실시예 1, 2의 측정은, 웨이퍼면내의 직경방향으로 4개의 측정라인에서, 1개의 측정라인에 대해 0.25mm 피치로 1160점의 측정을 행하였다. 4개의 측정라인은, 웨이퍼 면내를 균등한 영역으로 분할하도록 설정하였다. 즉, 중심과 노치를 통과하는 직경방향(제1의 직경방향)과, 이 제1의 직경방향으로부터 웨이퍼중심을 기준으로 45°씩 회전한 직경방향(제2~4의 직경방향)을 측정라인으로 하였다. 이렇게 하여 측정해 얻은 피복물 두께 프로파일의 평균값을 피복물 두께로 하였다.In addition, in the measurement of Comparative Examples and Examples 1 and 2, 1160 points were measured at a pitch of 0.25 mm per measurement line in four measurement lines in the radial direction of the wafer surface. The four measurement lines were set so as to divide the wafer surface into even regions. In other words, the measurement line measures the radial direction passing through the center and the notch (first radial direction) and the radial direction rotated by 45° from the first radial direction to the center of the wafer (the second to fourth radial directions). I did it. The average value of the coating thickness profile obtained by measuring in this way was taken as the coating thickness.

피복물의 두께를 측정한 후의 적층체는, 연삭가공장치에 반송하고, 연삭가공을 행하였다. 연삭가공장치는, 디스코사제의 DFG8360을 사용하였다. 연삭휠은, 다이아 지립(砥粒)이 결합된 것을 이용하였다. 피복물측을 진공흡착하고, 「측정한 피복물의 두께+목표 마무리 두께」를 연삭의 종점값으로 하여 연삭가공을 행하였다. 여기서의 목표 마무리 두께는 820μm로 하였다.After measuring the thickness of the coating, the laminate was conveyed to a grinding machine and subjected to grinding. For the grinding mill, DFG8360 manufactured by Disco Corporation was used. As the grinding wheel, a diamond abrasive grain bonded one was used. The coating side was vacuum-adsorbed, and grinding was performed using "measured coating thickness + target finish thickness" as the end point value of grinding. The target finish thickness here was set to 820 μm.

연삭가공을 행한 후, 웨이퍼의 두께를 측정하였다. 측정에는, 코벨코 과연사제의 SBW-330을 사용하였다. 웨이퍼의 두께의 측정개소는, 웨이퍼 면내의 직경방향으로 4개의 측정라인에서, 1개의 측정라인에 대해 1mm 피치로 290점의 측정을 행하였다. 4개의 측정라인은, 피복물두께의 측정개소와 동일한 라인으로 하였다. 얻어진 측정값의 평균값을 연삭 후의 웨이퍼두께로 하였다.After grinding, the thickness of the wafer was measured. For the measurement, SBW-330 manufactured by Kobelco Overtwisted Company was used. The measurement points of the thickness of the wafer were measured at 290 points at a 1 mm pitch per measurement line in four measurement lines in the radial direction in the wafer plane. The four measurement lines were made into the same line as the measurement location of the coating thickness. The average value of the obtained measured values was taken as the wafer thickness after grinding.

연삭 후의 웨이퍼에 대하여 평가한 결과의 비교를 도 6에 나타낸다. 도 6의 종축(세로축)은, 연삭 후의 웨이퍼의 목표두께와, 실제의 연삭 후의 웨이퍼의 두께의 차를 나타낸다. 도 6에 나타내는 바와 같이, 비교예에서는, 종래와 같이, 제1의 직경방향이, 필름의 MD방향과 직교하는 관계가 되도록 상정반에 흡착시켜 적층체를 형성하고 있으므로, 피복물의 두께를 측정하는 4개의 직경방향 중 2개가, 장척필름의 TD방향 및 MD방향과 일치하는 방향으로 되어 있다. 그러므로, 피복물의 두께의 측정의 정밀도가 낮아, 불균일이 커지고, 이 측정결과를 이용하여 연삭가공 종점을 설정한 경우에, 목표로 한 목표 두께로부터의 오차가 커졌다.A comparison of the evaluation results of the wafer after grinding is shown in FIG. 6. The vertical axis (vertical axis) in Fig. 6 represents the difference between the target thickness of the wafer after grinding and the actual thickness of the wafer after grinding. As shown in Fig. 6, in the comparative example, as in the prior art, the first radial direction is adsorbed on the upper plate so that the relationship is orthogonal to the MD direction of the film to form a laminate, so that the thickness of the coating is measured. Two of the four radial directions correspond to the TD and MD directions of the long film. Therefore, the accuracy of the measurement of the thickness of the coating material is low, the non-uniformity becomes large, and when the end point for grinding is set using this measurement result, the error from the target thickness becomes large.

한편, 실시예 1, 2에서는, 피복물의 두께를 측정하는 4개의 직경방향 모두가, 장척필름의 TD방향 및 MD방향과 일치하고 있지 않으므로, 비교예보다, 목표두께에 가까운 것을 얻을 수 있었다. 특히, 실시예 2에서는, 웨이퍼의 중심과 노치를 통과하는 직경방향인 제1의 직경방향과, 장척의 필름의 TD방향이 이루는 각도의 최소값θ(°)을, θ=90/4=22.5(°)로 하고 있어, 더욱 목표값에 가까운 웨이퍼를 얻을 수 있었다.On the other hand, in Examples 1 and 2, all of the four radial directions for measuring the thickness of the coating did not coincide with the TD direction and the MD direction of the long film, so that the one closer to the target thickness was obtained than the comparative example. In particular, in Example 2, the minimum value θ (°) of the angle formed by the first radial direction, which is the radial direction passing through the center of the wafer and the notch, and the TD direction of the long film, is θ = 90/4 = 22.5 ( °), it was possible to obtain a wafer closer to the target value.

한편, 본 발명은, 상기 실시형태로 한정되는 것은 아니다. 상기 실시형태는 예시이며, 본 발명의 특허청구의 범위에 기재된 기술적 사상과 실질적으로 동일한 구성을 가지며, 마찬가지의 작용효과를 나타내는 것은, 어떠한 것이어도 본 발명의 기술적 범위에 포함된다.In addition, this invention is not limited to the said embodiment. The above-described embodiment is an example, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same operation and effect is included in the technical scope of the present invention.

1: 정반(하정반)
2: 필름
3: 수지
4: 웨이퍼
5: 정반(상정반)
6: UV광
7: 광학센서
10: 적층체
1: platen (lower platen)
2: film
3: resin
4: wafer
5: plate (top plate)
6: UV light
7: optical sensor
10: laminate

Claims (3)

장척의 필름과 수지와 웨이퍼를 이 순으로 적층하고, 상기 필름과 평탄한 면을 갖는 정반이 접하도록 눌러서 상기 수지를 경화시킴으로써, 상기 필름과 상기 수지를 포함하며 표면이 평탄한 피복물과 상기 웨이퍼가 적층된 적층체를 형성하고, 상기 웨이퍼 상의 적어도 1개의 직경방향에 있어서, 복수의 측정개소에서 상기 피복물의 두께를 광학센서에 의해 측정하는 방법으로서,
상기 웨이퍼에 있어서의, 상기 피복물의 두께를 측정하는 상기 적어도 1개의 직경방향이, 상기 장척의 필름의 MD방향 및 TD방향과는 상이한 방향이 되도록 하여, 상기 피복물의 두께를 측정하는 것을 특징으로 하는 피복물의 두께측정방법.
A long film, a resin, and a wafer are stacked in this order, and the resin is cured by pressing the film and a surface plate having a flat surface to contact the resin, whereby a coating material containing the film and the resin and having a flat surface is stacked. A method of forming a laminate and measuring the thickness of the coating material at a plurality of measurement points in at least one radial direction on the wafer with an optical sensor,
In the wafer, the at least one diameter direction for measuring the thickness of the coating is in a direction different from the MD direction and the TD direction of the long film, and the thickness of the coating is measured. How to measure the thickness of the coating.
제1항에 있어서,
상기 웨이퍼로서 노치 또는 오리엔테이션 플랫을 갖는 웨이퍼를 이용하고,
상기 피복물의 두께의 측정을, 상기 웨이퍼 면내에 포함되는 영역을 균등하게 분할하는 N개(단, N은 1 이상의 정수)의 직경방향에 대하여 행하기로 하고,
상기 N개의 직경방향 중, 상기 웨이퍼의 중심과 상기 노치 또는 상기 오리엔테이션 플랫의 중앙부를 통과하는 직경방향을 제1의 직경방향으로 하고, 상기 제1의 직경방향과 상기 장척의 필름의 TD방향이 이루는 각도의 최소값을 θ(°)로 했을 때에,
상기 N이 홀수인 경우는 θ=45/N(°), 상기 N이 짝수인 경우는 θ=90/N(°)이 되도록, 상기 장척의 필름과 상기 웨이퍼의 위치관계를 설정하여 상기 적층체를 형성하는 것을 특징으로 하는 피복물의 두께측정방법.
The method of claim 1,
As the wafer, a wafer having a notch or an orientation flat is used,
The measurement of the thickness of the coating is performed in the radial directions of N (wherein N is an integer greater than or equal to 1) equally dividing the area included in the wafer surface,
Among the N radial directions, a diameter direction passing through the center of the wafer and the center of the notch or the orientation flat is a first radial direction, and the first radial direction and the TD direction of the long film are formed. When the minimum value of the angle is θ (°),
When N is an odd number, θ = 45/N (°), and when N is an even number, set the positional relationship between the long film and the wafer so that θ = 90/N (°). Method for measuring the thickness of the coating, characterized in that to form a.
상기 피복물의 표면의 평탄면을 기준면으로 하여 상기 웨이퍼를 연삭하는 방법으로서,
제1항 또는 제2항에 기재된 피복물의 두께측정방법에 의해 상기 피복물의 두께를 측정하고,
상기 측정한 피복물의 두께와 상기 웨이퍼의 마무리 두께의 합계를 연삭의 종점값으로 하여 연삭을 행하는 것을 특징으로 하는 연삭방법.
A method of grinding the wafer using a flat surface of the coating material as a reference surface,
Measuring the thickness of the coating by the method for measuring the thickness of the coating according to claim 1 or 2,
A grinding method, characterized in that grinding is carried out by using a sum of the measured thickness of the coating material and the finished thickness of the wafer as an end point value of grinding.
KR1020200057100A 2019-05-14 2020-05-13 Thickness measuring method of covering materials and grinding method KR20200131763A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019091683A JP7088125B2 (en) 2019-05-14 2019-05-14 Coating thickness measurement method and grinding method
JPJP-P-2019-091683 2019-05-14

Publications (1)

Publication Number Publication Date
KR20200131763A true KR20200131763A (en) 2020-11-24

Family

ID=73222881

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200057100A KR20200131763A (en) 2019-05-14 2020-05-13 Thickness measuring method of covering materials and grinding method

Country Status (4)

Country Link
JP (1) JP7088125B2 (en)
KR (1) KR20200131763A (en)
CN (1) CN111941266A (en)
TW (1) TW202108975A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3664984B2 (en) * 2001-02-15 2005-06-29 独立行政法人科学技術振興機構 Electric vehicle suspension mechanism

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148866A (en) 2007-12-21 2009-07-09 Disco Abrasive Syst Ltd Resin coating method and device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249621A (en) * 1993-02-24 1994-09-09 Sumitomo Heavy Ind Ltd Instrument for measuring film thickness distribution
JP2004226340A (en) * 2003-01-27 2004-08-12 Toray Ind Inc Film thickness measuring method and film manufacturing method
JP3841306B2 (en) * 2004-08-05 2006-11-01 日東電工株式会社 Method for producing retardation film
JP4728023B2 (en) * 2005-03-24 2011-07-20 株式会社ディスコ Wafer manufacturing method
US8111406B2 (en) * 2007-11-14 2012-02-07 Nikon Corporation Surface position detecting apparatus, surface position detecting method, exposure apparatus, and device manufacturing method
JP5320058B2 (en) * 2008-12-26 2013-10-23 株式会社ディスコ Resin coating method and resin coating apparatus
JP2011245610A (en) * 2010-05-31 2011-12-08 Mitsubishi Electric Corp Method of manufacturing semiconductor device
JP6036732B2 (en) * 2014-03-18 2016-11-30 信越半導体株式会社 Manufacturing method of bonded wafer
JP6500796B2 (en) * 2016-02-03 2019-04-17 株式会社Sumco Wafer manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009148866A (en) 2007-12-21 2009-07-09 Disco Abrasive Syst Ltd Resin coating method and device

Also Published As

Publication number Publication date
CN111941266A (en) 2020-11-17
JP2020188130A (en) 2020-11-19
JP7088125B2 (en) 2022-06-21
TW202108975A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
KR102588457B1 (en) Rectangular substrate for imprint lithography and making method
JP7087056B2 (en) Imprinting equipment, imprinting method and manufacturing method of goods
US11460768B2 (en) Pattern formation method, lithography apparatus, lithography system, and article manufacturing method
KR101045434B1 (en) Alignment meth0d, imprint meth0d, alignment apparatus, and p0siti0n measurement meth0d
US7573073B2 (en) Arrays of light emitting articles and method of manufacturing same
US20070116423A1 (en) Arrays of optical elements and method of manufacturing same
KR101777905B1 (en) Imprint apparatus, and method of manufacturing article
CN101051183A (en) Pattern forming method and mold
TWI658497B (en) Imprint apparatus, and method of manufacturing article
KR20130061065A (en) Imprint apparatus, imprint method, and article manufacturing method
JP6606567B2 (en) Imprint apparatus and article manufacturing method
JP6512840B2 (en) Imprint apparatus and method, and method of manufacturing article
KR20200131763A (en) Thickness measuring method of covering materials and grinding method
US9021983B2 (en) Stage apparatus and process apparatus
JP7194238B2 (en) Imprint apparatus and article manufacturing method
JP7278828B2 (en) Molding method, molding apparatus, imprinting method, and article manufacturing method
JP5858623B2 (en) Mold substrate
US20220066316A1 (en) Molding apparatus, molding method, and template
JP2006064455A (en) Reference grid manufacturing method and reference grid manufacture device
JP7337682B2 (en) IMPRINT APPARATUS, IMPRINT METHOD, AND PRODUCT MANUFACTURING METHOD
JP7358192B2 (en) Imprint equipment, imprint method, and article manufacturing method
JP7267783B2 (en) Flattening apparatus, flattening method and article manufacturing method
US20210364274A1 (en) Processing apparatus, measurement method, and article manufacturing method
JP7194068B2 (en) Mold making method and article manufacturing method
JP7134844B2 (en) Molding apparatus and article manufacturing method