JP2020184703A - Acoustic wave device, filter, and multiplexer - Google Patents

Acoustic wave device, filter, and multiplexer Download PDF

Info

Publication number
JP2020184703A
JP2020184703A JP2019088631A JP2019088631A JP2020184703A JP 2020184703 A JP2020184703 A JP 2020184703A JP 2019088631 A JP2019088631 A JP 2019088631A JP 2019088631 A JP2019088631 A JP 2019088631A JP 2020184703 A JP2020184703 A JP 2020184703A
Authority
JP
Japan
Prior art keywords
substrate
linear expansion
coefficient
elastic wave
piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019088631A
Other languages
Japanese (ja)
Other versions
JP7373301B2 (en
Inventor
畑山 和重
Kazue Hatayama
和重 畑山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2019088631A priority Critical patent/JP7373301B2/en
Publication of JP2020184703A publication Critical patent/JP2020184703A/en
Application granted granted Critical
Publication of JP7373301B2 publication Critical patent/JP7373301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

To suppress thermal stress.SOLUTION: An acoustic wave device comprises: a first substrate having a first surface; a second substrate which is directly or indirectly bonded to a surface, of the first substrate, that is opposite to the first surface, and which has a linear expansion coefficient different from that of the first substrate; a third substrate which is provided above the first surface and has a second surface facing the first surface across a gap, and which has a linear expansion coefficient closer to that of the second substrate than that of the first substrate; a fourth substrate which is directly or indirectly bonded to a surface, of the third substrate, that is opposite to the second surface, and which has a linear expansion coefficient closer to that of the first substrate than that of the third substrate; an acoustic wave element which is provided on at least one of the first surface and the second surface; and a connection layer connecting the first surface to the second surface.SELECTED DRAWING: Figure 1

Description

本発明は、弾性波デバイス、フィルタおよびマルチプレクサに関し、例えば複数の基板が接合された弾性波デバイス、フィルタおよびマルチプレクサに関する。 The present invention relates to elastic wave devices, filters and multiplexers, for example, elastic wave devices, filters and multiplexers in which a plurality of substrates are bonded.

上面に弾性波素子が設けられた圧電基板が支持基板に接合された基板上に別の基板を搭載する弾性波デバイスが知られている(例えば特許文献1、2)。 There is known an elastic wave device in which another substrate is mounted on a substrate in which a piezoelectric substrate provided with an elastic wave element on the upper surface is bonded to a support substrate (for example, Patent Documents 1 and 2).

特開2017−204827号公報JP-A-2017-204827 特開2017−157922号公報JP-A-2017-157922

線膨張係数が異なる基板が接合された複合基板上にバンプ等の接続層を用い基板を搭載すると、複合基板の熱歪みにより接続層に熱応力が加わる。 When a substrate is mounted using a connecting layer such as a bump on a composite substrate to which substrates having different linear expansion coefficients are joined, thermal stress is applied to the connecting layer due to thermal strain of the composite substrate.

本発明は、上記課題に鑑みなされたものであり、熱応力を抑制することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to suppress thermal stress.

本発明は、第1面を有する第1基板と、前記第1基板の前記第1面とは反対の面に直接的または間接的に接合され、前記第1基板の線膨張係数と異なる線膨張係数を有する第2基板と、前記第1面上に設けられ、前記第1面と空隙を挟み対向する第2面を有し、前記第1基板の線膨張係数より前記第2基板の線膨張係数に近い線膨張係数を有する第3基板と、前記第3基板の前記第2面とは反対の面に直接的または間接的に接合され、前記第3基板の線膨張係数より前記第1基板の線膨張係数に近い線膨張係数を有する第4基板と、前記第1面と前記第2面の少なくとも一方に設けられた弾性波素子と、前記第1面と前記第2面とを接続する接続層と、を備える弾性波デバイスである。 In the present invention, a first substrate having a first surface is directly or indirectly joined to a surface of the first substrate opposite to the first surface, and linear expansion different from the coefficient of linear expansion of the first substrate. It has a second substrate having a coefficient and a second surface provided on the first surface and facing the first surface with a gap in between, and the linear expansion of the second substrate is based on the linear expansion coefficient of the first substrate. The third substrate having a coefficient of linear expansion close to the coefficient is directly or indirectly bonded to the surface of the third substrate opposite to the second surface, and the first substrate is based on the coefficient of linear expansion of the third substrate. A fourth substrate having a coefficient of linear expansion close to the coefficient of linear expansion of the above, an elastic wave element provided on at least one of the first surface and the second surface, and the first surface and the second surface are connected to each other. An elastic wave device comprising a connecting layer.

上記構成において、前記第1基板および前記第4基板は圧電基板であり、前記弾性波素子は前記第1面に設けられ、前記弾性波素子は複数の電極指を有する一対の櫛型電極を備え、前記第2基板の前記複数の電極指が配列される方向における線膨張係数は前記方向における前記第1基板の線膨張係数より小さく、前記方向における前記第3基板の線膨張係数は前記方向における前記第4基板の前記方向の線膨張係数より小さい構成とすることができる。 In the above configuration, the first substrate and the fourth substrate are piezoelectric substrates, the elastic wave element is provided on the first surface, and the elastic wave element includes a pair of comb-shaped electrodes having a plurality of electrode fingers. The linear expansion coefficient of the second substrate in the direction in which the plurality of electrode fingers are arranged is smaller than the linear expansion coefficient of the first substrate in the direction, and the linear expansion coefficient of the third substrate in the direction is in the direction. The configuration can be smaller than the linear expansion coefficient in the direction of the fourth substrate.

上記構成において、前記第1基板および前記第4基板はタンタル酸リチウム基板またはニオブ酸リチウム基板である構成とすることができる。 In the above configuration, the first substrate and the fourth substrate may be a lithium tantalate substrate or a lithium niobate substrate.

上記構成において、前記弾性波素子は、前記第2面に設けられた圧電薄膜共振器を含む構成とすることができる。 In the above configuration, the elastic wave element may include a piezoelectric thin film resonator provided on the second surface.

上記構成において、前記第1基板は前記第2基板より薄く、前記第4基板は前記第3基板より薄い構成とすることができる。 In the above configuration, the first substrate may be thinner than the second substrate, and the fourth substrate may be thinner than the third substrate.

上記構成において、前記第1基板と前記第4基板とは同じ材料を主成分とし、前記第2基板と前記第3基板とは同じ材料を主成分とする構成とすることができる。 In the above configuration, the first substrate and the fourth substrate may have the same material as the main component, and the second substrate and the third substrate may have the same material as the main component.

本発明は、第1面を有する第1圧電基板と、前記第1面に設けられ、複数の第1電極指を有する一対の櫛型電極を備える第1弾性波素子と、前記第1圧電基板の前記第1面とは反対の面に直接的または間接的に接合され、前記複数の第1電極指が配列される第1方向における線膨張係数が前記第1方向における前記第1圧電基板の線膨張係数より小さな第1基板と、前記第1基板の前記第1圧電基板側とは反対の面に直接的または間接的に接合され、前記第1方向における線膨張係数が前記第1方向における前記第1基板の線膨張係数より大きな第2基板と、前記第1面に搭載され、前記第1面と空隙を挟み対向する第2面を有する第2圧電基板と、前記第2面に設けられ、複数の第2電極指を有する一対の櫛型電極を備える第2弾性波素子と、前記第2圧電基板の前記第2面とは反対の面に直接的または間接的に接合され、前記複数の第2電極指が配列される第2方向における線膨張係数が前記第2方向における前記第2圧電基板の線膨張係数より小さな第3基板と、前記第3基板の前記第2圧電基板側とは反対の面に直接的または間接的に接合され、前記第2方向における線膨張係数が前記第2方向における前記第3基板の線膨張係数より大きな第4基板と、前記第1面と前記第2面とを接続する接続層と、を備える弾性波デバイスである。 The present invention comprises a first piezoelectric substrate having a first surface, a first elastic wave element provided on the first surface and having a pair of comb-shaped electrodes having a plurality of first electrode fingers, and the first piezoelectric substrate. The linear expansion coefficient in the first direction in which the plurality of first electrode fingers are arranged is directly or indirectly joined to the surface opposite to the first surface of the first piezoelectric substrate. The first substrate, which is smaller than the linear expansion coefficient, is directly or indirectly bonded to the surface of the first substrate opposite to the first piezoelectric substrate side, and the linear expansion coefficient in the first direction is in the first direction. A second substrate having a linear expansion coefficient larger than that of the first substrate, a second piezoelectric substrate mounted on the first surface and having a second surface facing the first surface with a gap interposed therebetween, and a second piezoelectric substrate provided on the second surface. A second elastic wave element having a pair of comb-shaped electrodes having a plurality of second electrode fingers is directly or indirectly bonded to a surface of the second piezoelectric substrate opposite to the second surface. A third substrate whose linear expansion coefficient in the second direction in which a plurality of second electrode fingers are arranged is smaller than the linear expansion coefficient of the second piezoelectric substrate in the second direction, and the second piezoelectric substrate side of the third substrate. A fourth substrate which is directly or indirectly joined to a surface opposite to the above surface and whose linear expansion coefficient in the second direction is larger than the linear expansion coefficient of the third substrate in the second direction, and the first surface and the above. An elastic wave device including a connection layer that connects the second surface.

上記構成において、前記第2基板および前記第4基板は圧電基板である構成とすることができる。 In the above configuration, the second substrate and the fourth substrate may be a piezoelectric substrate.

上記構成において、前記接続層はバンプである構成とすることができる。 In the above configuration, the connection layer may be a bump.

上記構成において、前記接続層は前記弾性波素子を囲み前記弾性波素子を前記空隙に封止する封止部である構成とすることができる。 In the above configuration, the connecting layer may be a sealing portion that surrounds the elastic wave element and seals the elastic wave element in the void.

本発明は、上記弾性波デバイスを含むフィルタである。 The present invention is a filter including the elastic wave device.

本発明は、上記フィルタを含むマルチプレクサである。 The present invention is a multiplexer including the above filter.

本発明によれば、熱応力を抑制することができる。 According to the present invention, thermal stress can be suppressed.

図1は、実施例1に係る弾性波デバイスの断面図である。FIG. 1 is a cross-sectional view of the elastic wave device according to the first embodiment. 図2(a)は、実施例1における弾性波素子12の平面図、図2(b)は弾性波素子22の断面図である。FIG. 2A is a plan view of the elastic wave element 12 in the first embodiment, and FIG. 2B is a cross-sectional view of the elastic wave element 22. 図3(a)から図3(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。3 (a) to 3 (c) are cross-sectional views (No. 1) showing a method of manufacturing an elastic wave device according to the first embodiment. 図4(a)から図4(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。4 (a) to 4 (c) are cross-sectional views (No. 2) showing a method of manufacturing an elastic wave device according to the first embodiment. 図5(a)および図5(b)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その3)である。5 (a) and 5 (b) are cross-sectional views (No. 3) showing a method of manufacturing an elastic wave device according to the first embodiment. 図6は、比較例1に係る弾性波デバイスの断面図である。FIG. 6 is a cross-sectional view of the elastic wave device according to Comparative Example 1. 図7は実施例1の変形例1に係る弾性波デバイスの断面図である。FIG. 7 is a cross-sectional view of the elastic wave device according to the first modification of the first embodiment. 図8(a)は,実施例1の変形例2に係る弾性波デバイスの断面図、図8(b)は、平面図である。8 (a) is a cross-sectional view of the elastic wave device according to the second modification of the first embodiment, and FIG. 8 (b) is a plan view. 図9は、実施例2に係る弾性波デバイスの断面図である。FIG. 9 is a cross-sectional view of the elastic wave device according to the second embodiment. 図10(a)は、実施例2に係るフィルタの回路図、図10(b)は、実施例2の変形例1に係るデュプレクサの回路図である。FIG. 10A is a circuit diagram of the filter according to the second embodiment, and FIG. 10B is a circuit diagram of the duplexer according to the first modification of the second embodiment.

以下、図面を参照し本発明の実施例について説明する。 Hereinafter, examples of the present invention will be described with reference to the drawings.

図1は、実施例1に係る弾性波デバイスの断面図である。基板10と20の積層方向をZ方向、弾性波素子12の弾性波の伝搬方向をX方向、X方向に直交する方向をY方向とする。 FIG. 1 is a cross-sectional view of the elastic wave device according to the first embodiment. The stacking direction of the substrates 10 and 20 is the Z direction, the propagation direction of the elastic wave of the elastic wave element 12 is the X direction, and the direction orthogonal to the X direction is the Y direction.

図1に示すように、基板10は支持基板10aと圧電基板10bとを有する。支持基板10aは、例えばサファイア基板、アルミナ基板、スピネル基板、石英基板、水晶基板またはシリコン基板である。圧電基板10bは、例えばタンタル酸リチウム基板またはニオブ酸リチウム基板である。圧電基板10bは支持基板10aの上面に接合されている。支持基板10aの線膨張係数α2は圧電基板10bの線膨張係数α1より小さい。支持基板10aおよび圧電基板10bの厚さはそれぞれT2およびT1である。圧電基板10bと支持基板10aとは直接的に接合されていてもよいし、酸化シリコンまたは窒化アルミニウム等の絶縁体層を介し間接的に接合されていてもよい。 As shown in FIG. 1, the substrate 10 has a support substrate 10a and a piezoelectric substrate 10b. The support substrate 10a is, for example, a sapphire substrate, an alumina substrate, a spinel substrate, a quartz substrate, a crystal substrate, or a silicon substrate. The piezoelectric substrate 10b is, for example, a lithium tantalate substrate or a lithium niobate substrate. The piezoelectric substrate 10b is joined to the upper surface of the support substrate 10a. The coefficient of linear expansion α2 of the support substrate 10a is smaller than the coefficient of linear expansion α1 of the piezoelectric substrate 10b. The thicknesses of the support substrate 10a and the piezoelectric substrate 10b are T2 and T1, respectively. The piezoelectric substrate 10b and the support substrate 10a may be directly bonded to each other, or may be indirectly bonded to each other via an insulator layer such as silicon oxide or aluminum nitride.

基板10の上面に弾性波素子12、配線14および環状金属層32が設けられている。環状金属層32は平面視において弾性波素子12および配線14を囲むように設けられている。基板10の下面に端子18が設けられている。端子18は、弾性波素子12および22を外部と接続するためのフットパッドである。基板10を貫通するビア配線16が設けられている。ビア配線16は端子18と配線14とを電気的に接続する。配線14、ビア配線16および端子18は、例えば銅層、アルミニウム層、白金層または金層等の金属層である。環状金属層32は例えばニッケル層である。 An elastic wave element 12, a wiring 14, and an annular metal layer 32 are provided on the upper surface of the substrate 10. The annular metal layer 32 is provided so as to surround the elastic wave element 12 and the wiring 14 in a plan view. A terminal 18 is provided on the lower surface of the substrate 10. The terminal 18 is a foot pad for connecting the elastic wave elements 12 and 22 to the outside. A via wiring 16 penetrating the substrate 10 is provided. The via wiring 16 electrically connects the terminal 18 and the wiring 14. The wiring 14, the via wiring 16, and the terminal 18 are metal layers such as a copper layer, an aluminum layer, a platinum layer, or a gold layer. The cyclic metal layer 32 is, for example, a nickel layer.

基板10上に基板20が搭載されている。基板20は、基板20aと基板20bとを有する。基板20aは、例えばサファイア基板、アルミナ基板、スピネル基板、石英基板、水晶基板またはシリコン基板である。基板20bは、例えばタンタル酸リチウム基板またはニオブ酸リチウム基板である。基板20bは基板20aの上面に接合されている。基板20bの線膨張係数α4は基板20aの線膨張係数α3より大きい。基板20aおよび基板20bの厚さはそれぞれT3およびT4である。 The substrate 20 is mounted on the substrate 10. The substrate 20 has a substrate 20a and a substrate 20b. The substrate 20a is, for example, a sapphire substrate, an alumina substrate, a spinel substrate, a quartz substrate, a crystal substrate, or a silicon substrate. The substrate 20b is, for example, a lithium tantalate substrate or a lithium niobate substrate. The substrate 20b is joined to the upper surface of the substrate 20a. The coefficient of linear expansion α4 of the substrate 20b is larger than the coefficient of linear expansion α3 of the substrate 20a. The thicknesses of the substrate 20a and the substrate 20b are T3 and T4, respectively.

基板20の下面に弾性波素子22および配線24が設けられている。配線24は例えば銅層、アルミニウム層、白金層または金層等の金属層である。基板20はバンプ28を介し基板10にフリップチップ実装(フェースダウン実装)されている。バンプ28は、例えば金バンプ、半田バンプまたは銅バンプである。バンプ28は、配線14および24と接合する。 An elastic wave element 22 and a wiring 24 are provided on the lower surface of the substrate 20. The wiring 24 is, for example, a metal layer such as a copper layer, an aluminum layer, a platinum layer, or a gold layer. The substrate 20 is flip-chip mounted (face-down mounted) on the substrate 10 via bumps 28. The bump 28 is, for example, a gold bump, a solder bump or a copper bump. The bump 28 joins the wires 14 and 24.

基板10上に基板20を囲むように封止部30が設けられている。封止部30は、例えば半田(錫銀、錫または錫銀銅)等の金属層または樹脂等の絶縁層である。封止部30は、環状金属層32に接合されている。基板20の上面および封止部30の上面に平板状のリッド36が設けられている。リッド36は例えばコバール板等の金属板または絶縁板である。リッド36および封止部30を覆うように保護膜38が設けられている。保護膜38はニッケル膜等の金属膜または絶縁膜である。 A sealing portion 30 is provided on the substrate 10 so as to surround the substrate 20. The sealing portion 30 is, for example, a metal layer such as solder (tin silver, tin or tin silver copper) or an insulating layer such as resin. The sealing portion 30 is joined to the annular metal layer 32. A flat plate-shaped lid 36 is provided on the upper surface of the substrate 20 and the upper surface of the sealing portion 30. The lid 36 is a metal plate such as a Kovar plate or an insulating plate. A protective film 38 is provided so as to cover the lid 36 and the sealing portion 30. The protective film 38 is a metal film such as a nickel film or an insulating film.

弾性波素子12は空隙26を介し基板20に対向している。弾性波素子22は空隙26を介し圧電基板10bに対向している。弾性波素子12および22は、封止部30、基板10、基板20およびリッド36により封止される。バンプ28は空隙26に囲まれている。端子18はビア配線16および配線14を介し弾性波素子12と電気的に接続され、さらに、バンプ28および配線24を介し弾性波素子22に電気的に接続されている。 The elastic wave element 12 faces the substrate 20 via the gap 26. The elastic wave element 22 faces the piezoelectric substrate 10b via the gap 26. The elastic wave elements 12 and 22 are sealed by the sealing portion 30, the substrate 10, the substrate 20 and the lid 36. The bump 28 is surrounded by the void 26. The terminal 18 is electrically connected to the elastic wave element 12 via the via wiring 16 and the wiring 14, and is further electrically connected to the elastic wave element 22 via the bump 28 and the wiring 24.

支持基板10aおよび基板20aの厚さT2およびT3は例えば50μmから300μmである。圧電基板10bおよび基板20bの厚さT1およびT4は例えば0.5μmから30μmであり、例えば弾性波の波長以下である。バンプ28の厚さは例えば10μmから20μmであり、径は例えば10μmから200μmである。バンプ28が接合する配線14および24の厚さは例えば0.1μmから5μmである。 The thicknesses T2 and T3 of the support substrate 10a and the substrate 20a are, for example, 50 μm to 300 μm. The thicknesses T1 and T4 of the piezoelectric substrate 10b and the substrate 20b are, for example, 0.5 μm to 30 μm, which are, for example, equal to or less than the wavelength of elastic waves. The thickness of the bump 28 is, for example, 10 μm to 20 μm, and the diameter is, for example, 10 μm to 200 μm. The thickness of the wirings 14 and 24 to which the bumps 28 are joined is, for example, 0.1 μm to 5 μm.

図2(a)は、実施例1における弾性波素子12の平面図、図2(b)は弾性波素子22の断面図である。図2(a)に示すように、弾性波素子12は弾性表面波共振器である。基板10の圧電基板10b上にIDT(Interdigital Transducer)40と反射器42が形成されている。IDT40は、互いに対向する1対の櫛型電極40aを有する。櫛型電極40aは、複数の電極指40bと複数の電極指40bを接続するバスバー40cとを有する。反射器42は、IDT40の両側に設けられている。 FIG. 2A is a plan view of the elastic wave element 12 in the first embodiment, and FIG. 2B is a cross-sectional view of the elastic wave element 22. As shown in FIG. 2A, the elastic wave element 12 is an elastic surface wave resonator. An IDT (Interdigital Transducer) 40 and a reflector 42 are formed on the piezoelectric substrate 10b of the substrate 10. The IDT 40 has a pair of comb-shaped electrodes 40a facing each other. The comb-shaped electrode 40a has a plurality of electrode fingers 40b and a bus bar 40c for connecting the plurality of electrode fingers 40b. Reflectors 42 are provided on both sides of the IDT 40.

IDT40が圧電基板10bに弾性表面波を励振する。弾性波の波長は一対の櫛型電極40aの一方の櫛型電極40aの電極指40bのピッチにほぼ等しい。すなわち、弾性波の波長は一対の櫛型電極40aの電極指40bのピッチの2倍にほぼ等しい。IDT40および反射器42は例えばアルミニウム膜、銅膜またはモリブデン膜により形成される。圧電基板10b上にIDT40および反射器42を覆うように保護膜または温度補償膜が設けられていてもよい。電極指40bの配列方向が弾性波の伝搬方向であるX方向となる。電極指40bの延伸方向がY方向となる。 IDT40 excites surface acoustic waves on the piezoelectric substrate 10b. The wavelength of the elastic wave is substantially equal to the pitch of the electrode fingers 40b of one comb-shaped electrode 40a of the pair of comb-shaped electrodes 40a. That is, the wavelength of the elastic wave is substantially equal to twice the pitch of the electrode fingers 40b of the pair of comb-shaped electrodes 40a. The IDT 40 and the reflector 42 are formed of, for example, an aluminum film, a copper film or a molybdenum film. A protective film or a temperature compensation film may be provided on the piezoelectric substrate 10b so as to cover the IDT 40 and the reflector 42. The arrangement direction of the electrode fingers 40b is the X direction, which is the propagation direction of elastic waves. The stretching direction of the electrode finger 40b is the Y direction.

図2(b)に示すように、弾性波素子22は圧電薄膜共振器である。基板20上に圧電膜46が設けられている。圧電膜46を挟むように下部電極44および上部電極48が設けられている。下部電極44と基板20との間に空隙45が形成されている。圧電膜46の少なくとも一部を挟み下部電極44と上部電極48とが対向する領域が共振領域47である。共振領域47において、下部電極44および上部電極48は圧電膜46内に、厚み縦振動モードの弾性波を励振する。基板20は、例えばサファイア基板、スピネル基板、アルミナ基板、ガラス基板、水晶基板またはシリコン基板である。下部電極44および上部電極48は例えばルテニウム膜等の金属膜である。圧電膜46は例えば窒化アルミニウム膜である。空隙45の代わりに弾性波を反射する音響反射膜が設けられていてもよい。 As shown in FIG. 2B, the elastic wave element 22 is a piezoelectric thin film resonator. A piezoelectric film 46 is provided on the substrate 20. The lower electrode 44 and the upper electrode 48 are provided so as to sandwich the piezoelectric film 46. A gap 45 is formed between the lower electrode 44 and the substrate 20. The region where the lower electrode 44 and the upper electrode 48 face each other with at least a part of the piezoelectric film 46 sandwiched is the resonance region 47. In the resonance region 47, the lower electrode 44 and the upper electrode 48 excite elastic waves in the thickness longitudinal vibration mode in the piezoelectric film 46. The substrate 20 is, for example, a sapphire substrate, a spinel substrate, an alumina substrate, a glass substrate, a crystal substrate, or a silicon substrate. The lower electrode 44 and the upper electrode 48 are metal films such as a ruthenium film. The piezoelectric film 46 is, for example, an aluminum nitride film. An acoustic reflection film that reflects elastic waves may be provided instead of the gap 45.

弾性波素子12および22は、弾性波を励振する電極を含む。このため、弾性波を制限しないように、弾性波素子12および22は空隙26に覆われている。 The elastic wave elements 12 and 22 include electrodes that excite elastic waves. Therefore, the elastic wave elements 12 and 22 are covered with the voids 26 so as not to limit the elastic waves.

[実施例1の製造方法]
図3(a)から図5(b)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。図3(a)に示すように、基板20b上に基板20aを例えば表面活性化法を用い常温接合する。基板20bがタンタル酸リチウム基板またはニオブ酸リチウム基板の場合、結晶内の分極方向を揃える分極処理は行わなくてもよい。
[Manufacturing method of Example 1]
3 (a) to 5 (b) are cross-sectional views showing a method of manufacturing an elastic wave device according to the first embodiment. As shown in FIG. 3A, the substrate 20a is bonded onto the substrate 20b at room temperature by using, for example, a surface activation method. When the substrate 20b is a lithium tantalate substrate or a lithium niobate substrate, it is not necessary to perform the polarization treatment for aligning the polarization directions in the crystal.

図3(b)に示すように、基板20a上に弾性波素子22および配線24を形成する。図3(c)に示すように、配線24上にバンプ28を形成する。基板20bを例えばCMP(Chemical Mechanical Polishing)法を用い所望の厚さにする。 As shown in FIG. 3B, the elastic wave element 22 and the wiring 24 are formed on the substrate 20a. As shown in FIG. 3C, bumps 28 are formed on the wiring 24. The substrate 20b is made to a desired thickness by using, for example, a CMP (Chemical Mechanical Polishing) method.

図4(a)に示すように、支持基板10a上に圧電基板10bを例えば表面活性化法を用い常温接合する。圧電基板10bがタンタル酸リチウム基板またはニオブ酸リチウム基板の場合、分極処理は行われている。圧電基板10bを例えばCMP法を用い所望の厚さにする。圧電基板10bおよび支持基板10aにビア配線16を形成する。ビア配線16は支持基板10aを貫通していなくてもよい。 As shown in FIG. 4A, the piezoelectric substrate 10b is bonded to the support substrate 10a at room temperature by using, for example, a surface activation method. When the piezoelectric substrate 10b is a lithium tantalate substrate or a lithium niobate substrate, the polarization treatment is performed. The piezoelectric substrate 10b is made to a desired thickness by using, for example, the CMP method. Via wiring 16 is formed on the piezoelectric substrate 10b and the support substrate 10a. The via wiring 16 does not have to penetrate the support substrate 10a.

図4(b)に示すように、圧電基板10b上に弾性波素子12および配線14を形成する。図4(c)に示すように、支持基板10aを例えばCMP法を用い所望の厚さにする。これにより、ビア配線16が支持基板10aの下面に露出する。支持基板10aの下面に端子18を形成する。 As shown in FIG. 4B, the elastic wave element 12 and the wiring 14 are formed on the piezoelectric substrate 10b. As shown in FIG. 4C, the support substrate 10a is made to a desired thickness by using, for example, the CMP method. As a result, the via wiring 16 is exposed on the lower surface of the support substrate 10a. The terminal 18 is formed on the lower surface of the support substrate 10a.

図5(a)に示すように、基板10上にバンプ28を介し基板20をフリップチップ実装する。基板10および20を例えば50℃から250℃に加熱し、基板20に超音波を印加しつつ、基板10と20とを互いに近づく方向に押圧する。これにより、バンプ28と配線14とが接合する。弾性波素子12と22とは空隙26を挟み対向する。 As shown in FIG. 5A, the substrate 20 is flip-chip mounted on the substrate 10 via bumps 28. The substrates 10 and 20 are heated to, for example, 50 ° C. to 250 ° C., and while applying ultrasonic waves to the substrate 20, the substrates 10 and 20 are pressed in a direction approaching each other. As a result, the bump 28 and the wiring 14 are joined. The elastic wave elements 12 and 22 face each other with a gap 26 interposed therebetween.

図5(b)に示すように、基板20を囲むように、封止部30を形成する。封止部30は環状金属層32と接合する。封止部30および基板20上にリッド36を設ける。リッド36は設けられてなくてもよい。封止部30の形成は、封止部30が半田または樹脂のとき、200℃から300℃に加熱する。その後、基板10を切断する。これにより、弾性波デバイスが個片化される。封止部30およびリッド36を囲む保護膜38を形成する。これにより、図1の弾性波デバイスが製造される。 As shown in FIG. 5B, the sealing portion 30 is formed so as to surround the substrate 20. The sealing portion 30 is joined to the annular metal layer 32. A lid 36 is provided on the sealing portion 30 and the substrate 20. The lid 36 may not be provided. The sealing portion 30 is formed by heating from 200 ° C. to 300 ° C. when the sealing portion 30 is solder or resin. After that, the substrate 10 is cut. As a result, the elastic wave device is fragmented. A protective film 38 surrounding the sealing portion 30 and the lid 36 is formed. As a result, the elastic wave device of FIG. 1 is manufactured.

[比較例1]
図6は、比較例1に係る弾性波デバイスの断面図である。図6に示すように、比較例1の弾性波デバイスでは、基板20に基板20bは設けられていない。その他の構成は実施例1と同じである。
[Comparative Example 1]
FIG. 6 is a cross-sectional view of the elastic wave device according to Comparative Example 1. As shown in FIG. 6, in the elastic wave device of Comparative Example 1, the substrate 20b is not provided on the substrate 20. Other configurations are the same as in the first embodiment.

支持基板10aおよび圧電基板10bとしてサファイア基板およびタンタル酸リチウム基板を用い、基板20としてシリコン基板を用いる。このとき、サファイア基板の線膨張係数は7ppm/℃であり、タンタル酸リチウム基板のX軸方位の線膨張係数は16ppm/℃である。シリコン基板の線膨張係数は2ppm/℃である。 A sapphire substrate and a lithium tantalate substrate are used as the support substrate 10a and the piezoelectric substrate 10b, and a silicon substrate is used as the substrate 20. At this time, the coefficient of linear expansion of the sapphire substrate is 7 ppm / ° C., and the coefficient of linear expansion of the lithium tantalate substrate in the X-axis direction is 16 ppm / ° C. The coefficient of linear expansion of the silicon substrate is 2 ppm / ° C.

図5(a)のバンプ28の接合工程および図5(b)の封止部30の形成工程において高温となると、基板10は破線60のように中央が周辺に比べ基板20の方に反る。一方、基板20は破線62のようにほとんど反らない。このとき、バンプ28には垂直方向(Z方向)に熱応力が加わる。その後常温に戻ると基板10の反りは小さくなり、バンプ28には垂直方向に高温のときと逆方向の熱応力が加わる。これにより、バンプ28の剥がれ等が生じる可能性がある。 When the temperature becomes high in the step of joining the bump 28 in FIG. 5A and the step of forming the sealing portion 30 in FIG. 5B, the center of the substrate 10 warps toward the substrate 20 as compared with the periphery as shown by the broken line 60. .. On the other hand, the substrate 20 hardly warps as shown by the broken line 62. At this time, thermal stress is applied to the bump 28 in the vertical direction (Z direction). After that, when the temperature returns to room temperature, the warp of the substrate 10 becomes small, and thermal stress is applied to the bump 28 in the direction opposite to that at the time of high temperature in the vertical direction. As a result, the bump 28 may be peeled off or the like.

実施例1によれば、支持基板10a(第2基板)は、圧電基板10b(第1基板)の下面(第1面の反対の面)に直接的または間接的に接合されている。基板20a(第3基板)は、圧電基板10bの上面(第1面)上に設けられ、圧電基板10bの上面と空隙26を挟み対向する下面(第2面)を有する。基板20b(第4基板)は、基板20aの上面(第2面と反対の面)に直接的または間接的に接合されている。弾性波素子12および22は、圧電基板10bの上面と基板20aの下面との少なくとも一方に設けられている。バンプ28(接続層)は圧電基板10bの上面と基板20aの下面とを接続する。 According to the first embodiment, the support substrate 10a (second substrate) is directly or indirectly bonded to the lower surface (opposite surface of the first surface) of the piezoelectric substrate 10b (first substrate). The substrate 20a (third substrate) is provided on the upper surface (first surface) of the piezoelectric substrate 10b, and has a lower surface (second surface) facing the upper surface of the piezoelectric substrate 10b with the gap 26 interposed therebetween. The substrate 20b (fourth substrate) is directly or indirectly joined to the upper surface (the surface opposite to the second surface) of the substrate 20a. The elastic wave elements 12 and 22 are provided on at least one of the upper surface of the piezoelectric substrate 10b and the lower surface of the substrate 20a. The bump 28 (connection layer) connects the upper surface of the piezoelectric substrate 10b and the lower surface of the substrate 20a.

このとき、圧電基板10bの線膨張係数α1と支持基板10aの線膨張係数α2とは異なり、基板20aの線膨張係数α3は圧電基板10bの線膨張係数α1より支持基板10aの線膨張係数α2に近く、基板20bの線膨張係数α4は基板20aの線膨張係数α3より圧電基板10bの線膨張係数α1に近い。すなわち、|α3−α1|>|α3−α2|かつ|α4−α2|>|α4−α1|である。 At this time, unlike the linear expansion coefficient α1 of the piezoelectric substrate 10b and the linear expansion coefficient α2 of the support substrate 10a, the linear expansion coefficient α3 of the substrate 20a is changed from the linear expansion coefficient α1 of the piezoelectric substrate 10b to the linear expansion coefficient α2 of the support substrate 10a. Nearly, the coefficient of linear expansion α4 of the substrate 20b is closer to the coefficient of linear expansion α1 of the piezoelectric substrate 10b than the coefficient of linear expansion α3 of the substrate 20a. That is, | α3-α1 |> | α3-α2 | and | α4-α2 |> | α4-α1 |.

これにより、図1の破線60および62のように、基板10の反りと基板20の反りの差は、比較例1の基板10の反りと基板20の反りの差より小さくなる。よって、バンプ28に加わる応力が小さくなり、バンプ28が剥がれ等の劣化を抑制できる。|α3−α1|/2>|α3−α2|が好ましく、|α3−α1|/5>|α3−α2|がより好ましく、α3とα1は略等しいことがさらに好ましい。|α4−α2|/2>|α4−α1|が好ましく、|α4−α2|/5>|α4−α1|がより好ましく、α4とα2は略等しいことがさらに好ましい As a result, as shown by the broken lines 60 and 62 in FIG. 1, the difference between the warp of the substrate 10 and the warp of the substrate 20 is smaller than the difference between the warp of the substrate 10 and the warp of the substrate 20 of Comparative Example 1. Therefore, the stress applied to the bump 28 is reduced, and deterioration such as peeling of the bump 28 can be suppressed. | Α3-α1 | / 2> | α3-α2 | is preferable, | α3-α1 | / 5> | α3-α2 | is more preferable, and α3 and α1 are even more preferable. | Α4-α2 | / 2> | α4-α1 | is preferable, | α4-α2 | / 5> | α4-α1 | is more preferable, and α4 and α2 are even more preferable.

第1基板が圧電基板10bであり、弾性波素子12が弾性表面波素子であるとき、支持基板10aのX方向における線膨張係数α2はX方向における圧電基板10bの線膨張係数より小さくする。これにより、弾性波素子12の周波数温度係数が小さくなる。しかし、比較例1のように、バンプ28に応力が加わる。そこで、基板20aのX方向における線膨張係数をX方向における基板20bの線膨張係数より小さくする。これにより、基板10の反りと基板20の反りとの差が小さくなり、バンプ28に加わる応力を抑制できる。 When the first substrate is the piezoelectric substrate 10b and the elastic wave element 12 is an elastic surface acoustic wave element, the coefficient of linear expansion α2 of the support substrate 10a in the X direction is made smaller than the coefficient of linear expansion of the piezoelectric substrate 10b in the X direction. As a result, the frequency temperature coefficient of the elastic wave element 12 becomes smaller. However, as in Comparative Example 1, stress is applied to the bump 28. Therefore, the coefficient of linear expansion of the substrate 20a in the X direction is made smaller than the coefficient of linear expansion of the substrate 20b in the X direction. As a result, the difference between the warp of the substrate 10 and the warp of the substrate 20 becomes small, and the stress applied to the bump 28 can be suppressed.

圧電基板10bは支持基板10aより薄く、基板20bは基板20aより薄い。これにより、基板10の反りと基板20の反りとの差が小さくなり、バンプ28に加わる応力を抑制できる。圧電基板10bの厚さT1は支持基板10aの厚さT2の1/2以下が好ましく、1/5以下がより好ましく、1/10以下がさらに好ましい。T1が小さすぎると基板10が反るという課題がない。よって、T1はT2の1/100以上が好ましく、1/20以上がより好ましい。T4はT3の1/2以下が好ましく,1/5以下がより好ましく、1/10以下がさらに好ましい。T4はT3の1/100以上が好ましく、1/20以上がより好ましい。 The piezoelectric substrate 10b is thinner than the support substrate 10a, and the substrate 20b is thinner than the substrate 20a. As a result, the difference between the warp of the substrate 10 and the warp of the substrate 20 becomes small, and the stress applied to the bump 28 can be suppressed. The thickness T1 of the piezoelectric substrate 10b is preferably 1/2 or less, more preferably 1/5 or less, still more preferably 1/10 or less of the thickness T2 of the support substrate 10a. If T1 is too small, there is no problem that the substrate 10 warps. Therefore, T1 is preferably 1/100 or more of T2, and more preferably 1/20 or more. T4 is preferably 1/2 or less of T3, more preferably 1/5 or less, and even more preferably 1/10 or less. T4 is preferably 1/100 or more of T3, and more preferably 1/20 or more.

T1/T2=R1、T4/T3=R2とすると、|R1−R2|/|R1+R|は1以下が好ましく、0.5以下がより好ましく0.1以下がさらに好ましい。 When T1 / T2 = R1 and T4 / T3 = R2, | R1-R2 | / | R1 + R | is preferably 1 or less, more preferably 0.5 or less, and further preferably 0.1 or less.

圧電基板10bと基板20bとは同じ材料を主成分とし、支持基板10aと基板20aとは同じ材料を主成分とすることが好ましい。これにより、α1とα4を略等しくし、α2とα3を略等しくできる。なお、基板の主成分とは、基板に主成分以外に意図的または意図せず含まれる不純物が含まれることを許容し、例えば主成分に含まれる1または複数の元素の濃度の合計が50原子%以上である。 It is preferable that the piezoelectric substrate 10b and the substrate 20b contain the same material as the main component, and the support substrate 10a and the substrate 20a contain the same material as the main component. As a result, α1 and α4 can be made substantially equal, and α2 and α3 can be made substantially equal. The main component of the substrate allows impurities other than the main component to be intentionally or unintentionally contained in the substrate. For example, the total concentration of one or more elements contained in the main component is 50 atoms. % Or more.

弾性波素子22が圧電薄膜共振器のとき、基板20aは絶縁基板または半導体基板から適宜選択できる。このため基板20aの線膨張係数を基板20bの線膨張係数より支持基板10aの線膨張係数に近づくように基板20aの材料を適宜選択できる。 When the elastic wave element 22 is a piezoelectric thin film resonator, the substrate 20a can be appropriately selected from an insulating substrate or a semiconductor substrate. Therefore, the material of the substrate 20a can be appropriately selected so that the linear expansion coefficient of the substrate 20a is closer to the linear expansion coefficient of the support substrate 10a than the linear expansion coefficient of the substrate 20b.

[実施例1の変形例1]
図7は実施例1の変形例1に係る弾性波デバイスの断面図である。図7に示すように、基板20上に基板10が搭載されている。基板20は基板20b上に基板20aが接合されている。基板20a上に弾性波素子22、配線24および環状金属層32が設けられている。基板20を貫通するビア配線16が設けられている。基板20の下面に端子18が設けられている。圧電基板10b上に支持基板10aが接合されている。圧電基板10bの下面に弾性波素子12および配線14が設けられている。バンプ28は配線14および24に接合する。基板10を囲むように封止部30が設けられている。その他の構成は実施例1と同じであり説明を省略する。
[Modification 1 of Example 1]
FIG. 7 is a cross-sectional view of the elastic wave device according to the first modification of the first embodiment. As shown in FIG. 7, the substrate 10 is mounted on the substrate 20. In the substrate 20, the substrate 20a is bonded onto the substrate 20b. An elastic wave element 22, a wiring 24, and an annular metal layer 32 are provided on the substrate 20a. A via wiring 16 penetrating the substrate 20 is provided. A terminal 18 is provided on the lower surface of the substrate 20. The support substrate 10a is bonded onto the piezoelectric substrate 10b. An elastic wave element 12 and a wiring 14 are provided on the lower surface of the piezoelectric substrate 10b. The bump 28 is joined to the wires 14 and 24. A sealing portion 30 is provided so as to surround the substrate 10. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted.

実施例1の変形例1のように、基板20上に基板10が搭載されていてもよい。破線60および62のように、基板10の反りと基板20の反りの差は、比較例1の基板10の反りと基板20の反りの差より小さくなる。よって、バンプ28に加わる応力を抑制できる。 The substrate 10 may be mounted on the substrate 20 as in the modification 1 of the first embodiment. As shown by the broken lines 60 and 62, the difference between the warp of the substrate 10 and the warp of the substrate 20 is smaller than the difference between the warp of the substrate 10 and the warp of the substrate 20 of Comparative Example 1. Therefore, the stress applied to the bump 28 can be suppressed.

[実施例1の変形例2]
図8(a)は,実施例1の変形例2に係る弾性波デバイスの断面図、図8(b)は、平面図である。図8(b)では、封止部30aを図示している。図8(a)および図8(b)に示すように、基板10と20の平面形状はほぼ同じである。基板10と20の周縁の基板10と20との間に封止部30aが設けられている。封止部30aは、例えば銅層等の金属層であり、弾性波素子12および22を空隙26に封止する。バンプ28と封止部30aが接続層として機能する。その他の構成は実施例1と同じであり、説明を省略する。実施例1の変形例2のように、バンプ28に加えまたは代わりに封止部30aが接続層として機能してもよい。実施例1の変形例2では、熱応力による封止部30aの剥がれ等の劣化を抑制できる。
[Modification 2 of Example 1]
8 (a) is a cross-sectional view of the elastic wave device according to the second modification of the first embodiment, and FIG. 8 (b) is a plan view. In FIG. 8B, the sealing portion 30a is shown. As shown in FIGS. 8 (a) and 8 (b), the planar shapes of the substrates 10 and 20 are substantially the same. A sealing portion 30a is provided between the substrates 10 and 20 on the periphery of the substrates 10 and 20. The sealing portion 30a is a metal layer such as a copper layer, and seals the elastic wave elements 12 and 22 in the gap 26. The bump 28 and the sealing portion 30a function as a connecting layer. Other configurations are the same as those in the first embodiment, and the description thereof will be omitted. As in the second modification of the first embodiment, the sealing portion 30a may function as a connecting layer in addition to or instead of the bump 28. In the second modification of the first embodiment, deterioration such as peeling of the sealing portion 30a due to thermal stress can be suppressed.

図9は、実施例2に係る弾性波デバイスの断面図である。図9に示すように、基板10では、圧電基板10c上に支持基板10aが接合され、支持基板10a上に圧電基板10bが接合されている。圧電基板10bの上面に弾性波素子12および配線14が設けられている。圧電基板10cの下面には端子18が設けられている。基板10を貫通するビア配線16は配線14と端子18とを電気的に接続する。 FIG. 9 is a cross-sectional view of the elastic wave device according to the second embodiment. As shown in FIG. 9, in the substrate 10, the support substrate 10a is bonded on the piezoelectric substrate 10c, and the piezoelectric substrate 10b is bonded on the support substrate 10a. An elastic wave element 12 and a wiring 14 are provided on the upper surface of the piezoelectric substrate 10b. A terminal 18 is provided on the lower surface of the piezoelectric substrate 10c. The via wiring 16 penetrating the substrate 10 electrically connects the wiring 14 and the terminal 18.

基板20は、圧電基板20b上に支持基板20aが接合され、支持基板20a上に圧電基板20cが接合されている。圧電基板20bの下面に弾性波素子22および配線24が設けられている。配線14と24とはバンプ28により電気的に接続されている。基板20を囲むように封止部30bが設けられている。封止部30bが弾性波素子12および22を空隙26に封止する。封止部30bは例えばエポキシ樹脂等の樹脂である。封止部30bは金属でもよい。その他の構成は実施例1およびその変形例と同じであり説明を省略する。 In the substrate 20, the support substrate 20a is bonded onto the piezoelectric substrate 20b, and the piezoelectric substrate 20c is bonded onto the support substrate 20a. An elastic wave element 22 and a wiring 24 are provided on the lower surface of the piezoelectric substrate 20b. The wirings 14 and 24 are electrically connected by bumps 28. A sealing portion 30b is provided so as to surround the substrate 20. The sealing portion 30b seals the elastic wave elements 12 and 22 in the gap 26. The sealing portion 30b is a resin such as an epoxy resin. The sealing portion 30b may be made of metal. Other configurations are the same as those of the first embodiment and its modifications, and the description thereof will be omitted.

実施例2によれば、弾性波素子12(第1弾性波素子)は、圧電基板10b(第1圧電基板)の上面(第1面)に設けられ、複数の電極指40b(第1電極指)を有する一対の櫛型電極40aを備える。支持基板10a(第1基板)は圧電基板10bの下面(第1面とは反対の面)に直接的または間接的に接合され、電極指40bが配列される方向(第1方向)における線膨張係数が第1方向における圧電基板10bの線膨張係数より小さい。圧電基板10c(第2基板)は、支持基板10aの圧電基板10b側とは反対の面に直接的または間接的に接合され、第1方向における線膨張係数が第1方向における支持基板10aの線膨張係数より大きい。 According to the second embodiment, the elastic wave element 12 (first elastic wave element) is provided on the upper surface (first surface) of the piezoelectric substrate 10b (first piezoelectric substrate), and a plurality of electrode fingers 40b (first electrode fingers) are provided. ) Is provided with a pair of comb-shaped electrodes 40a. The support substrate 10a (first substrate) is directly or indirectly joined to the lower surface (the surface opposite to the first surface) of the piezoelectric substrate 10b, and linear expansion in the direction in which the electrode fingers 40b are arranged (first direction). The coefficient is smaller than the linear expansion coefficient of the piezoelectric substrate 10b in the first direction. The piezoelectric substrate 10c (second substrate) is directly or indirectly joined to the surface of the support substrate 10a opposite to the piezoelectric substrate 10b side, and the coefficient of linear expansion in the first direction is the line of the support substrate 10a in the first direction. Greater than the coefficient of expansion.

圧電基板20b(第2圧電基板)は、圧電基板10bの上面に搭載され、圧電基板20bの下面(第2面)は圧電基板10bの上面と空隙26を挟み対向する。弾性波素子22(第2弾性波素子)は、圧電基板20bの下面に設けられ、複数の電極指40b(第2電極指)を有する一対の櫛型電極40aを備える。支持基板20aは圧電基板20bの下面とは反対の面に直接的または間接的に接合され、電極指40bが配列される第2方向における線膨張係数が第2方向における圧電基板20bの線膨張係数より小さい。圧電基板20cは、支持基板20aの圧電基板20b側とは反対の面に直接的または間接的に接合され、第2方向における線膨張係数が第2方向における支持基板20aの線膨張係数より大きい。 The piezoelectric substrate 20b (second piezoelectric substrate) is mounted on the upper surface of the piezoelectric substrate 10b, and the lower surface (second surface) of the piezoelectric substrate 20b faces the upper surface of the piezoelectric substrate 10b with the gap 26 interposed therebetween. The elastic wave element 22 (second elastic wave element) is provided on the lower surface of the piezoelectric substrate 20b, and includes a pair of comb-shaped electrodes 40a having a plurality of electrode fingers 40b (second electrode fingers). The support substrate 20a is directly or indirectly bonded to the surface opposite to the lower surface of the piezoelectric substrate 20b, and the coefficient of linear expansion in the second direction in which the electrode fingers 40b are arranged is the coefficient of linear expansion of the piezoelectric substrate 20b in the second direction. Smaller. The piezoelectric substrate 20c is directly or indirectly bonded to the surface of the support substrate 20a opposite to the piezoelectric substrate 20b side, and the coefficient of linear expansion in the second direction is larger than the coefficient of linear expansion of the support substrate 20a in the second direction.

これにより、支持基板10aと圧電基板10bとの線膨張係数の差に起因した基板10の反りを圧電基板10cが補償する。支持基板20aと圧電基板20bとの線膨張係数の差に起因した基板20の反りを圧電基板20cが補償する。よって、バンプ28(接続層)に加わる応力を抑制できる。 As a result, the piezoelectric substrate 10c compensates for the warp of the substrate 10 due to the difference in the coefficient of linear expansion between the support substrate 10a and the piezoelectric substrate 10b. The piezoelectric substrate 20c compensates for the warp of the substrate 20 due to the difference in the coefficient of linear expansion between the support substrate 20a and the piezoelectric substrate 20b. Therefore, the stress applied to the bump 28 (connecting layer) can be suppressed.

圧電基板10bと10cとの線膨張係数の差は、支持基板10aと圧電基板10bとの線膨張係数の差より小さいことが好ましい。圧電基板12bと12cとの線膨張係数の差は、支持基板12aと圧電基板12bとの線膨張係数の差より小さいことが好ましい。これにより、バンプ28に加わる応力を抑制できる。 The difference in the coefficient of linear expansion between the piezoelectric substrates 10b and 10c is preferably smaller than the difference in the coefficient of linear expansion between the support substrate 10a and the piezoelectric substrate 10b. The difference in the coefficient of linear expansion between the piezoelectric substrates 12b and 12c is preferably smaller than the difference in the coefficient of linear expansion between the support substrate 12a and the piezoelectric substrate 12b. As a result, the stress applied to the bump 28 can be suppressed.

支持基板20aと圧電基板10bとの線膨張係数の差、および支持基板20aと圧電基板10cとの線膨張係数の差はいずれも、支持基板20aと10aとの線膨張係数の差より小さいことが好ましい。圧電基板20bと10bとの線膨張係数の差、圧電基板20bと10cとの線膨張係数の差、圧電基板20cと10bとの線膨張係数の差、および圧電基板20cと10cとの線膨張係数の差は、いずれも、圧電基板20bと支持基板10aとの線膨張係数の差、および圧電基板20cと支持基板10aとの線膨張係数の差のいずれよりも小さいことが好ましい。これにより、バンプ28に加わる応力を抑制できる。 The difference in the coefficient of linear expansion between the support substrate 20a and the piezoelectric substrate 10b and the difference in the coefficient of linear expansion between the support substrate 20a and the piezoelectric substrate 10c may be smaller than the difference in the coefficient of linear expansion between the support substrates 20a and 10a. preferable. Difference in coefficient of linear expansion between piezoelectric substrates 20b and 10b, difference in coefficient of linear expansion between piezoelectric substrates 20b and 10c, difference in coefficient of linear expansion between piezoelectric substrates 20c and 10b, and coefficient of linear expansion between piezoelectric substrates 20c and 10c The difference is preferably smaller than either the difference in the coefficient of linear expansion between the piezoelectric substrate 20b and the support substrate 10a and the difference in the coefficient of linear expansion between the piezoelectric substrate 20c and the support substrate 10a. As a result, the stress applied to the bump 28 can be suppressed.

圧電基板10bと10cは互いに同じ材料を主成分とすることが好ましく、圧電基板20bと20cは互いに同じ材料を主成分とすることが好ましい。圧電基板10bの厚さと圧電基板10cの厚さとは略等しいことが好ましい。圧電基板20bの厚さと圧電基板20cの厚さとは略等しいことが好ましい。圧電基板10bおよび10cの厚さと圧電基板20bおよび20cの厚さとは略等しいことが好ましい。支持基板10aと20aとは互いに同じ材料を主成分とすることが好ましい。支持基板10aの厚さと支持基板20aの厚さとは互いに略等しいことが好ましい。これらにより、バンプ28に加わる応力を抑制できる。 The piezoelectric substrates 10b and 10c preferably contain the same material as the main component, and the piezoelectric substrates 20b and 20c preferably contain the same material as the main component. It is preferable that the thickness of the piezoelectric substrate 10b and the thickness of the piezoelectric substrate 10c are substantially equal to each other. It is preferable that the thickness of the piezoelectric substrate 20b and the thickness of the piezoelectric substrate 20c are substantially equal to each other. It is preferable that the thickness of the piezoelectric substrates 10b and 10c is substantially equal to the thickness of the piezoelectric substrates 20b and 20c. It is preferable that the support substrates 10a and 20a contain the same material as the main component. It is preferable that the thickness of the support substrate 10a and the thickness of the support substrate 20a are substantially equal to each other. As a result, the stress applied to the bump 28 can be suppressed.

圧電基板10bの厚さおよび圧電基板10cの厚さは各々支持基板10aより薄いことが好ましい。圧電基板20bの厚さおよび圧電基板20cの厚さは各々支持基板20aより薄いことが好ましい。これにより、基板10の反りと基板20の反りとの差が小さくなり、バンプ28に加わる応力を抑制できる。圧電基板10bおよび10cの厚さは各々支持基板10aの厚さの1/2以下が好ましく、1/5以下がより好ましく、1/10以下がさらに好ましい。圧電基板10bが薄すぎると基板10は反らない。よって、圧電基板10bおよび10cの厚さは各々支持基板10aの厚さの1/100以上が好ましく、1/20以上がより好ましい。同様に、圧電基板20bおよび20cの厚さは各々支持基板20aの厚さの1/2以下が好ましく、1/5以下がより好ましく、1/10以下がさらに好ましい。圧電基板20bおよび20cの厚さは各々支持基板20aの厚さの1/100以上が好ましく、1/20以上がより好ましい。 It is preferable that the thickness of the piezoelectric substrate 10b and the thickness of the piezoelectric substrate 10c are thinner than those of the support substrate 10a, respectively. It is preferable that the thickness of the piezoelectric substrate 20b and the thickness of the piezoelectric substrate 20c are thinner than those of the support substrate 20a, respectively. As a result, the difference between the warp of the substrate 10 and the warp of the substrate 20 becomes small, and the stress applied to the bump 28 can be suppressed. The thickness of the piezoelectric substrates 10b and 10c is preferably 1/2 or less, more preferably 1/5 or less, and even more preferably 1/10 or less of the thickness of the support substrate 10a, respectively. If the piezoelectric substrate 10b is too thin, the substrate 10 will not warp. Therefore, the thicknesses of the piezoelectric substrates 10b and 10c are preferably 1/100 or more, more preferably 1/20 or more of the thickness of the support substrate 10a, respectively. Similarly, the thicknesses of the piezoelectric substrates 20b and 20c are preferably 1/2 or less, more preferably 1/5 or less, and even more preferably 1/10 or less of the thickness of the support substrate 20a, respectively. The thickness of the piezoelectric substrates 20b and 20c is preferably 1/100 or more, more preferably 1/20 or more of the thickness of the support substrate 20a, respectively.

弾性波素子12の電極指40bの配列方向と弾性波素子22の電極指40bの配列方向は略平行であることが好ましい。これにより、基板10の反りと基板20との反りとの差を小さくできる。よって、バンプ28に加わる応力を小さくできる。弾性波素子12の電極指40bの配列方向と弾性波素子22の電極指40bの配列方向とのなす角度は45°以下が好ましく、30°以下がより好ましい。 It is preferable that the arrangement direction of the electrode fingers 40b of the elastic wave element 12 and the arrangement direction of the electrode fingers 40b of the elastic wave element 22 are substantially parallel. As a result, the difference between the warp of the substrate 10 and the warp of the substrate 20 can be reduced. Therefore, the stress applied to the bump 28 can be reduced. The angle formed by the arrangement direction of the electrode fingers 40b of the elastic wave element 12 and the arrangement direction of the electrode fingers 40b of the elastic wave element 22 is preferably 45 ° or less, more preferably 30 ° or less.

実施例1の変形例2のように基板10と20とは封止部30aにより接続されていてもよい。 The substrates 10 and 20 may be connected by a sealing portion 30a as in the second modification of the first embodiment.

実施例1、2およびその変形例では、弾性波素子22として圧電薄膜共振器の例を説明したが、弾性波素子22は弾性表面波共振器でもよい。基板20の下面に設けられる機能素子として弾性波素子22の例を説明したが、機能素子は、インダクタまたはキャパシタ等の受動素子、トランジスタを含む能動素子、またはMEMS(Micro Electro Mechanical Systems)素子でもよい。 In Examples 1 and 2 and modified examples thereof, an example of a piezoelectric thin film resonator is described as the elastic wave element 22, but the elastic wave element 22 may be an elastic surface wave resonator. Although the example of the elastic wave element 22 has been described as the functional element provided on the lower surface of the substrate 20, the functional element may be a passive element such as an inductor or a capacitor, an active element including a transistor, or a MEMS (Micro Electro Mechanical Systems) element. ..

実施例3は、フィルタおよびデュプレクサの例である。図10(a)は、実施例2に係るフィルタの回路図である。図10(a)に示すように、入力端子T1と出力端子T2との間に、1または複数の直列共振器S1からS4が直列に接続されている。入力端子T1と出力端子T2との間に、1または複数の並列共振器P1からP4が並列に接続されている。実施例2のフィルタを弾性波素子12および/または22で形成してもよい。直列共振器および並列共振器の個数等は適宜設定できる。フィルタとしてラダー型フィルタを例に説明したが、フィルタは多重モード型フィルタでもよい。 Example 3 is an example of a filter and a duplexer. FIG. 10A is a circuit diagram of the filter according to the second embodiment. As shown in FIG. 10A, one or more series resonators S1 to S4 are connected in series between the input terminal T1 and the output terminal T2. One or more parallel resonators P1 to P4 are connected in parallel between the input terminal T1 and the output terminal T2. The filter of Example 2 may be formed of elastic wave elements 12 and / or 22. The number of series resonators and parallel resonators can be set as appropriate. Although the ladder type filter has been described as an example of the filter, the filter may be a multiple mode type filter.

図10(b)は、実施例2の変形例1に係るデュプレクサの回路図である。図10(b)に示すように、共通端子Antと送信端子Txとの間に送信フィルタ50が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ52が接続されている。送信フィルタ50は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ52は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ50および受信フィルタ52の少なくとも一方を実施例2のフィルタとすることができる。また、送信フィルタ50を弾性波素子12で形成し、受信フィルタ52を弾性波素子22で形成してもよい。 FIG. 10B is a circuit diagram of the duplexer according to the first modification of the second embodiment. As shown in FIG. 10B, a transmission filter 50 is connected between the common terminal Ant and the transmission terminal Tx. A reception filter 52 is connected between the common terminal Ant and the reception terminal Rx. The transmission filter 50 passes a signal in the transmission band among the high-frequency signals input from the transmission terminal Tx to the common terminal Ant as a transmission signal, and suppresses signals of other frequencies. The reception filter 52 passes a signal in the reception band among the high frequency signals input from the common terminal Ant as a reception signal to the reception terminal Rx, and suppresses signals of other frequencies. At least one of the transmission filter 50 and the reception filter 52 can be the filter of the second embodiment. Further, the transmission filter 50 may be formed by the elastic wave element 12, and the reception filter 52 may be formed by the elastic wave element 22.

マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。 Although the duplexer has been described as an example as the multiplexer, a triplexer or a quadplexer may be used.

以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the examples of the present invention have been described in detail above, the present invention is not limited to such specific examples, and various modifications and modifications are made within the scope of the gist of the present invention described in the claims. It can be changed.

10a 支持基板
10b 圧電基板
12、22 弾性波素子
14、24 配線
16a、16b ビア配線
17a−17c 金属層
18 端子
20 基板
26 空隙
28a、28c バンプ
30 封止部
32 環状金属層
36 リッド
50 送信フィルタ
52 受信フィルタ
10a Support board 10b Piezoelectric board 12, 22 Elastic wave element 14, 24 Wiring 16a, 16b Via wiring 17a-17c Metal layer 18 terminals 20 Board 26 Void 28a, 28c Bump 30 Sealing part 32 Cyclic metal layer 36 lid 50 Transmission filter 52 Receive filter

Claims (12)

第1面を有する第1基板と、
前記第1基板の前記第1面とは反対の面に直接的または間接的に接合され、前記第1基板の線膨張係数と異なる線膨張係数を有する第2基板と、
前記第1面上に設けられ、前記第1面と空隙を挟み対向する第2面を有し、前記第1基板の線膨張係数より前記第2基板の線膨張係数に近い線膨張係数を有する第3基板と、
前記第3基板の前記第2面とは反対の面に直接的または間接的に接合され、前記第3基板の線膨張係数より前記第1基板の線膨張係数に近い線膨張係数を有する第4基板と、
前記第1面と前記第2面の少なくとも一方に設けられた弾性波素子と、
前記第1面と前記第2面とを接続する接続層と、
を備える弾性波デバイス。
A first substrate having a first surface and
A second substrate that is directly or indirectly bonded to a surface of the first substrate opposite to the first surface and has a coefficient of linear expansion different from the coefficient of linear expansion of the first substrate.
It is provided on the first surface, has a second surface facing the first surface with a gap in between, and has a linear expansion coefficient closer to the linear expansion coefficient of the second substrate than the linear expansion coefficient of the first substrate. With the third board
A fourth substrate that is directly or indirectly joined to a surface of the third substrate opposite to the second surface and has a linear expansion coefficient closer to the linear expansion coefficient of the first substrate than the linear expansion coefficient of the third substrate. With the board
An elastic wave element provided on at least one of the first surface and the second surface,
A connection layer connecting the first surface and the second surface,
An elastic wave device equipped with.
前記第1基板および前記第4基板は圧電基板であり、
前記弾性波素子は前記第1面に設けられ、
前記弾性波素子は複数の電極指を有する一対の櫛型電極を備え、
前記第2基板の前記複数の電極指が配列される方向における線膨張係数は前記方向における前記第1基板の線膨張係数より小さく、
前記方向における前記第3基板の線膨張係数は前記方向における前記第4基板の前記方向の線膨張係数より小さい請求項1に記載の弾性波デバイス。
The first substrate and the fourth substrate are piezoelectric substrates, and are
The elastic wave element is provided on the first surface.
The elastic wave element includes a pair of comb-shaped electrodes having a plurality of electrode fingers.
The coefficient of linear expansion in the direction in which the plurality of electrode fingers of the second substrate are arranged is smaller than the coefficient of linear expansion of the first substrate in the direction.
The elastic wave device according to claim 1, wherein the coefficient of linear expansion of the third substrate in the direction is smaller than the coefficient of linear expansion of the fourth substrate in the direction.
前記第1基板および前記第4基板はタンタル酸リチウム基板またはニオブ酸リチウム基板である請求項2に記載の弾性波デバイス。 The elastic wave device according to claim 2, wherein the first substrate and the fourth substrate are a lithium tantalate substrate or a lithium niobate substrate. 前記弾性波素子は、前記第2面に設けられた圧電薄膜共振器を含む請求項2または3に記載の弾性波デバイス。 The elastic wave device according to claim 2 or 3, wherein the elastic wave element includes a piezoelectric thin film resonator provided on the second surface. 前記第1基板は前記第2基板より薄く、
前記第4基板は前記第3基板より薄い請求項2から4のいずれか一項に記載の弾性波デバイス。
The first substrate is thinner than the second substrate,
The elastic wave device according to any one of claims 2 to 4, wherein the fourth substrate is thinner than the third substrate.
前記第1基板と前記第4基板とは同じ材料を主成分とし、
前記第2基板と前記第3基板とは同じ材料を主成分とする請求項1から5のいずれか一項に記載の弾性波デバイス。
The first substrate and the fourth substrate contain the same material as the main component.
The elastic wave device according to any one of claims 1 to 5, wherein the second substrate and the third substrate contain the same material as a main component.
第1面を有する第1圧電基板と、
前記第1面に設けられ、複数の第1電極指を有する一対の櫛型電極を備える第1弾性波素子と、
前記第1圧電基板の前記第1面とは反対の面に直接的または間接的に接合され、前記複数の第1電極指が配列される第1方向における線膨張係数が前記第1方向における前記第1圧電基板の線膨張係数より小さな第1基板と、
前記第1基板の前記第1圧電基板側とは反対の面に直接的または間接的に接合され、前記第1方向における線膨張係数が前記第1方向における前記第1基板の線膨張係数より大きな第2基板と、
前記第1面に搭載され、前記第1面と空隙を挟み対向する第2面を有する第2圧電基板と、
前記第2面に設けられ、複数の第2電極指を有する一対の櫛型電極を備える第2弾性波素子と、
前記第2圧電基板の前記第2面とは反対の面に直接的または間接的に接合され、前記複数の第2電極指が配列される第2方向における線膨張係数が前記第2方向における前記第2圧電基板の線膨張係数より小さな第3基板と、
前記第3基板の前記第2圧電基板側とは反対の面に直接的または間接的に接合され、前記第2方向における線膨張係数が前記第2方向における前記第3基板の線膨張係数より大きな第4基板と、
前記第1面と前記第2面とを接続する接続層と、
を備える弾性波デバイス。
A first piezoelectric substrate having a first surface and
A first elastic wave element provided on the first surface and having a pair of comb-shaped electrodes having a plurality of first electrode fingers.
The coefficient of linear expansion in the first direction, which is directly or indirectly bonded to the surface of the first piezoelectric substrate opposite to the first surface and in which the plurality of first electrode fingers are arranged, is the said in the first direction. The first substrate, which is smaller than the coefficient of linear expansion of the first piezoelectric substrate,
It is directly or indirectly bonded to the surface of the first substrate opposite to the first piezoelectric substrate side, and the coefficient of linear expansion in the first direction is larger than the coefficient of linear expansion of the first substrate in the first direction. With the second board
A second piezoelectric substrate mounted on the first surface and having a second surface facing the first surface with a gap interposed therebetween.
A second elastic wave element provided on the second surface and provided with a pair of comb-shaped electrodes having a plurality of second electrode fingers.
The coefficient of linear expansion in the second direction, which is directly or indirectly bonded to the surface of the second piezoelectric substrate opposite to the second surface and in which the plurality of second electrode fingers are arranged, is the said in the second direction. A third substrate that is smaller than the coefficient of linear expansion of the second piezoelectric substrate,
It is directly or indirectly bonded to the surface of the third substrate opposite to the second piezoelectric substrate side, and the coefficient of linear expansion in the second direction is larger than the coefficient of linear expansion of the third substrate in the second direction. 4th board and
A connection layer connecting the first surface and the second surface,
An elastic wave device equipped with.
前記第2基板および前記第4基板は圧電基板である請求項7に記載の弾性波デバイス。 The elastic wave device according to claim 7, wherein the second substrate and the fourth substrate are piezoelectric substrates. 前記接続層はバンプである請求項1から8のいずれか一項に記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 8, wherein the connecting layer is a bump. 前記接続層は前記空隙を封止する封止部である請求項1から9のいずれか一項に記載の弾性波デバイス。 The elastic wave device according to any one of claims 1 to 9, wherein the connecting layer is a sealing portion that seals the void. 請求項1から10のいずれか一項に記載の弾性波デバイスを含むフィルタ。 A filter comprising the elastic wave device according to any one of claims 1 to 10. 請求項11に記載のフィルタを含むマルチプレクサ。 A multiplexer containing the filter according to claim 11.
JP2019088631A 2019-05-08 2019-05-08 Acoustic wave devices, filters and multiplexers Active JP7373301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019088631A JP7373301B2 (en) 2019-05-08 2019-05-08 Acoustic wave devices, filters and multiplexers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019088631A JP7373301B2 (en) 2019-05-08 2019-05-08 Acoustic wave devices, filters and multiplexers

Publications (2)

Publication Number Publication Date
JP2020184703A true JP2020184703A (en) 2020-11-12
JP7373301B2 JP7373301B2 (en) 2023-11-02

Family

ID=73044224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019088631A Active JP7373301B2 (en) 2019-05-08 2019-05-08 Acoustic wave devices, filters and multiplexers

Country Status (1)

Country Link
JP (1) JP7373301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171108A1 (en) * 2022-03-09 2023-09-14 MicroInnovators Laboratory株式会社 Film structure and electronic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216194A (en) * 1993-01-12 1994-08-05 Sony Corp Structure for mounting semiconductor chip
JP2007060465A (en) * 2005-08-26 2007-03-08 Seiko Epson Corp Thin film surface acoustic wave device
JP2017169139A (en) * 2016-03-17 2017-09-21 太陽誘電株式会社 Acoustic wave device
JP2018125773A (en) * 2017-02-02 2018-08-09 太陽誘電株式会社 Acoustic wave device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216194A (en) * 1993-01-12 1994-08-05 Sony Corp Structure for mounting semiconductor chip
JP2007060465A (en) * 2005-08-26 2007-03-08 Seiko Epson Corp Thin film surface acoustic wave device
JP2017169139A (en) * 2016-03-17 2017-09-21 太陽誘電株式会社 Acoustic wave device
JP2018125773A (en) * 2017-02-02 2018-08-09 太陽誘電株式会社 Acoustic wave device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023171108A1 (en) * 2022-03-09 2023-09-14 MicroInnovators Laboratory株式会社 Film structure and electronic device

Also Published As

Publication number Publication date
JP7373301B2 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
JP6509147B2 (en) Electronic device
US10090825B2 (en) Acoustic wave device
US10250219B2 (en) Acoustic wave device
JP7370146B2 (en) Acoustic wave devices, filters and multiplexers
KR20180059353A (en) Electronic component and method of fabricating the same
JP7426196B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP7347955B2 (en) Acoustic wave devices and their manufacturing methods, filters and multiplexers
JP6744771B2 (en) Electronic device and manufacturing method thereof
JP7373301B2 (en) Acoustic wave devices, filters and multiplexers
JP7340344B2 (en) Acoustic wave devices, filters and multiplexers
JP6963448B2 (en) Electronic components
JP2020191597A (en) Elastic wave device and manufacturing method thereof
US20220416757A1 (en) Acoustic wave device, filter and multiplexer
JP7340348B2 (en) Acoustic wave devices, filters and multiplexers
JP7406341B2 (en) Electronic components, filters and multiplexers
JP7406331B2 (en) Electronic devices, modules and wafers
JP2021034746A (en) Electronic device and method of manufacturing the same, filter, and multiplexer
JP6653647B2 (en) Elastic wave device
JP2022137801A (en) Electronic component, filter and multiplexer
JP2020184652A (en) Electronic device, filter, and multiplexer
JP2024076836A (en) Electronic Components
JP2022118669A (en) Acoustic wave device
JP2022102100A (en) Electronic component
JP2022102099A (en) Electronic component
JP2024003642A (en) Electronic component and method for manufacturing the same, filter and multiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231023

R150 Certificate of patent or registration of utility model

Ref document number: 7373301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150