JP2020180814A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2020180814A
JP2020180814A JP2019082375A JP2019082375A JP2020180814A JP 2020180814 A JP2020180814 A JP 2020180814A JP 2019082375 A JP2019082375 A JP 2019082375A JP 2019082375 A JP2019082375 A JP 2019082375A JP 2020180814 A JP2020180814 A JP 2020180814A
Authority
JP
Japan
Prior art keywords
delay time
reception delay
ultrasonic
reception
propagation time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019082375A
Other languages
Japanese (ja)
Other versions
JP7320776B2 (en
Inventor
木場 康雄
Yasuo Koba
康雄 木場
憲司 安田
Kenji Yasuda
憲司 安田
弘 中井
Hiroshi Nakai
弘 中井
政則 中村
Masanori Nakamura
政則 中村
健一 賀門
Kenichi Kamon
健一 賀門
藤井 裕史
Yasushi Fujii
裕史 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019082375A priority Critical patent/JP7320776B2/en
Publication of JP2020180814A publication Critical patent/JP2020180814A/en
Application granted granted Critical
Publication of JP7320776B2 publication Critical patent/JP7320776B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an ultrasonic flowmeter capable of achieving high-precision measurement using the received wave twice without limiting the installation environment by reducing the effects of noise and temperature.SOLUTION: N reception delay time TRs measured by the reception delay time measuring means 10 is saved and reception delay time storage means 12 saves N pieces average values as the reception delay time correction value TRC. A control unit 4 calculates the flow rate by correcting the propagation time with the reception delay time correction value TRC saved in the reception delay time storage means 12.SELECTED DRAWING: Figure 1

Description

本発明は、一対の送受信可能な超音波振動子を用いて超音波の伝搬時間を測定し、被測定流体の流量を計測する超音波流量計に関するものである。 The present invention relates to an ultrasonic flow meter that measures the flow rate of a fluid to be measured by measuring the propagation time of ultrasonic waves using a pair of ultrasonic transducers capable of transmitting and receiving.

従来の超音波流量計に用いられている超音波伝搬時間の測定方法は、一対の送受信可能な超音波振動子を対向して配置し、一方の超音波振動子をバースト信号で駆動し、超音波を送信し、他方の超音波振動子で受信して測定していた。図4は、伝搬時間の測定方法を説明する為の受信波形のイメージ図で、横軸に時間を、縦軸に電圧を示す。図中の起点T0は駆動波16の開始時点を、終点T1は駆動開始後、第m(図ではm=3)波終了時点を示す。起点R0は受信開始時点を、終点R1は受信開始後、第m波終了時点を示す。このように、駆動波16の第m波目のゼロクロス点を終点T1とし、受信側の超音波送受信器で受信した受信波の第m波目を終点R1として、終点T1と終点R1との間の時間を超音波の伝搬時間TP1として測定し、この伝搬時間TP1を用いて流体の流速を計測し、流量を演算していた(例えば、特許文献1参照)。 In the method of measuring the ultrasonic propagation time used in the conventional ultrasonic flowmeter, a pair of transmit and receive ultrasonic vibrators are arranged facing each other, and one ultrasonic vibrator is driven by a burst signal. Sound waves were transmitted and received by the other ultrasonic transducer for measurement. FIG. 4 is an image diagram of a received waveform for explaining a method of measuring the propagation time, with time on the horizontal axis and voltage on the vertical axis. In the figure, the starting point T0 indicates the start time of the drive wave 16, and the end point T1 indicates the end time of the m (m = 3 in the figure) wave after the start of the drive. The starting point R0 indicates the reception start time point, and the end point R1 indicates the m-wave end time point after the reception start. In this way, between the end point T1 and the end point R1 with the zero crossing point of the mth wave of the drive wave 16 as the end point T1 and the mth wave of the received wave received by the ultrasonic transmitter / receiver on the receiving side as the end point R1. Was measured as the propagation time TP1 of ultrasonic waves, the flow velocity of the fluid was measured using this propagation time TP1, and the flow rate was calculated (see, for example, Patent Document 1).

図5は、特許文献2に記載された超音波流量計の構成を示すものである。この超音波流量計100は流体の流れる測定流路101に設置した超音波振動子102と、超音波振動子102を駆動する駆動回路103と、駆動回路103にスタート信号を出力する制御部104と、超音波の伝搬時間を測定する伝搬時間測定部105と、超音波振動子102から送信した超音波を受ける超音波振動子107と、超音波振動子107の出力を増幅するアンプ106と、アンプ106の出力と検知基準電圧18とを比較し大小関係が反転したときに伝搬時間測定部105を停止させる受信検知回路108から構成されている。 FIG. 5 shows the configuration of the ultrasonic flowmeter described in Patent Document 2. The ultrasonic flow meter 100 includes an ultrasonic vibrator 102 installed in a measurement flow path 101 through which fluid flows, a drive circuit 103 for driving the ultrasonic vibrator 102, and a control unit 104 for outputting a start signal to the drive circuit 103. , A propagation time measuring unit 105 that measures the propagation time of ultrasonic waves, an ultrasonic vibrator 107 that receives ultrasonic waves transmitted from the ultrasonic vibrator 102, an amplifier 106 that amplifies the output of the ultrasonic vibrator 107, and an amplifier. It is composed of a reception detection circuit 108 that compares the output of 106 with the detection reference voltage 18 and stops the propagation time measuring unit 105 when the magnitude relationship is reversed.

また、音速に対する温度の影響を無視できるように伝搬時間逆数差法を用いるために、測定流路101の上流側から下流側への超音波の伝搬時間と下流側から上流側への伝搬時間が測定できるように、切り替えスイッチ109を備えている。 Further, in order to use the propagation time reciprocal difference method so that the influence of temperature on the speed of sound can be ignored, the propagation time of ultrasonic waves from the upstream side to the downstream side and the propagation time from the downstream side to the upstream side of the measurement flow path 101 are used. A changeover switch 109 is provided so that measurement can be performed.

さらに、超音波振動子のバラツキや温度変化等によって超音波振動子内の遅れ時間や受信波の変化による受信遅れ時間が変化した場合でも、超音波の伝搬時間が正確に測定できるように、送信側の超音波振動子から超音波を送信して1回目の受信波(第1受信波)の第m波目を受信検知回路108で受信するまでの伝搬時間TPと、受信側の超音波振動子と送信側の超音波振動子に1回づつ反射して受信側の超音波振動子に達した2回目の受信波(第2受信波)の第m波目を受信検知回路108で受信するまでの第2伝搬時間TP2を測定し、伝搬時間TPと第2伝搬時間TP2の差の2分の1より超音波振動子間の真の伝搬時間TP0と真の受信遅れ時間TRを求める受信遅れ時間測定手段110を備えている。 Furthermore, even if the delay time in the ultrasonic vibrator or the reception delay time due to a change in the received wave changes due to variations in the ultrasonic vibrator or temperature changes, the ultrasonic propagation time can be accurately measured. Propagation time TP until the mth wave of the first received wave (first received wave) is received by the reception detection circuit 108 after transmitting ultrasonic waves from the ultrasonic vibrator on the side, and ultrasonic vibration on the receiving side. The reception detection circuit 108 receives the mth wave of the second received wave (second received wave) that is reflected once by the child and the ultrasonic vibrator on the transmitting side and reaches the ultrasonic vibrator on the receiving side. The second propagation time TP2 up to is measured, and the true propagation time TP0 and the true reception delay time TR between the ultrasonic transducers are obtained from the half of the difference between the propagation time TP and the second propagation time TP2. The time measuring means 110 is provided.

図6に第1受信波と第2受信波のイメージ図を示す。図に示すように、送信側の超音波振動子は、駆動波16で駆動されて超音波信号を送信し、受信側の超音波振動子は第1受信波17として受信する。同時に、反射波が発生して送信側の超音波振動子に波形21として到達して反射される。そして、この反射波を受信側の超音波振動子が第2受信波22として受信する。ここで、TRが測定した伝搬時間の遅れ時間である(例えば、特許文献2参照)。 FIG. 6 shows an image diagram of the first received wave and the second received wave. As shown in the figure, the ultrasonic transducer on the transmitting side is driven by the drive wave 16 to transmit an ultrasonic signal, and the ultrasonic transducer on the receiving side receives the ultrasonic signal as the first received wave 17. At the same time, a reflected wave is generated, reaches the ultrasonic transducer on the transmitting side as a waveform 21, and is reflected. Then, the ultrasonic transducer on the receiving side receives this reflected wave as the second received wave 22. Here, it is the delay time of the propagation time measured by TR (see, for example, Patent Document 2).

特開平9−33308号公報Japanese Unexamined Patent Publication No. 9-33308 特開2005−172556号公報Japanese Unexamined Patent Publication No. 2005-172556

しかしながら、特許文献2に記載された超音波流量計によると受信遅れ時間の測定が可能となり高精度の流量計測が行えるが、第2受信波は被計測流体が気体の場合、伝搬中の減衰が大きく受信信号が非常に小さいため、ノイズや温度の影響を受けやすく、要求される精度での計測を実現するためには超音波流量計の使用環境を電気的、温度的に限定する必要があるという課題があった。 However, according to the ultrasonic flow meter described in Patent Document 2, the reception delay time can be measured and the flow rate can be measured with high accuracy. However, when the fluid to be measured is a gas, the second received wave is attenuated during propagation. Since it is large and the received signal is very small, it is easily affected by noise and temperature, and it is necessary to limit the usage environment of the ultrasonic flowmeter electrically and temperature in order to realize measurement with the required accuracy. There was a problem.

本発明は、前記従来の課題を解決するもので、ノイズや温度の影響を軽減することによって、設置環境が限定されずに高精度な計測を実現できる超音波流量計を提供することを目的とする。 An object of the present invention is to solve the above-mentioned conventional problems, and to provide an ultrasonic flowmeter capable of realizing highly accurate measurement without limiting the installation environment by reducing the influence of noise and temperature. To do.

前記従来の課題を解決するために、本発明の超音波流量計は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を測定する伝搬時間測定部と、受信側の前記超音波振動子が受信した受信波の第m波目を検知する受信検知回路と、送信側の超音波振動子から超音波を送信して1回目の受信波の第m波目を前記受信検知回路で検知するまでの第1伝搬時間TPと、受信側の超音波振動子と送信側の超音波振動子で1回づつ反射して受信側の超音波振動子に達した2回目の受信波の第m波目を前記受信検知回路で検知するまでの第2伝搬時間TP2を測定し、前記第1伝搬時間TPと第2伝搬時間TP2の差の2分の1より前記超音波振動子間の真で伝搬時間TP0を求め、この真の伝搬時間TP0と前記第1伝搬時間TPの差より受信側の前記超音波振動子に超音波が到達して受信検知回路で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを算出する受信遅れ時間測定手段と、前記受信遅れ時間測定手段による前記受信遅れ時間TRの測定を所定のタイミングで行って所定回数分の受信遅れ時間TRを保存する受信遅れ時間保存手段と、前記所定回数分の受信遅れ時間TRが保存された時点で保存された受信遅れ時間の平均値を受信遅れ時間補正値TRCとして保存し更新する受信遅れ時間補正値更新手段と、前記受信遅れ時間補正値TRCを用いて前記伝搬時間測定部で測定した前記第1伝搬時間TPから前記受信遅れ時間補正値TRCを引いて補正伝搬時間TPCを求める伝搬時間補正手段と、前記補正伝搬時間TPCまたは前記真の伝搬時間TP0から演算によって前記超音波振動子間を満たす流体の流量をもとめる制御部と、を備えたことによって、受信遅れ時間へのノイズや温度の影響を軽減させることができ、高精度な超音波流量計が実現できる。 In order to solve the above-mentioned conventional problems, the ultrasonic flowmeter of the present invention has a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals, and a pair of ultrasonic transducers transmitted from one of the ultrasonic transducers and propagated in a fluid. The propagation time measuring unit that measures the propagation time of the ultrasonic wave until the other ultrasonic vibrator receives the sound wave signal, and the mth wave of the received wave received by the ultrasonic vibrator on the receiving side are detected. The reception detection circuit, the first propagation time TP from transmitting ultrasonic waves from the transmitting side ultrasonic transducer to detecting the mth wave of the first received wave by the reception detection circuit, and the receiving side super The second until the reception detection circuit detects the mth wave of the second received wave that has been reflected once by the sound oscillator and the ultrasonic oscillator on the transmitting side and reached the ultrasonic oscillator on the receiving side. The propagation time TP2 is measured, and the true propagation time TP0 between the ultrasonic transducers is obtained from half of the difference between the first propagation time TP and the second propagation time TP2, and the true propagation time TP0 and the said Reception delay from the start of reception to the detection that the mth wave of the received wave of the ultrasonic wave is received by the reception detection circuit when the ultrasonic wave reaches the ultrasonic vibrator on the receiving side due to the difference in the first propagation time TP. A reception delay time measuring means for calculating the time TR, and a reception delay time saving means for storing the reception delay time TR for a predetermined number of times by measuring the reception delay time TR by the reception delay time measuring means at a predetermined timing. The reception delay time correction value updating means for saving and updating the average value of the reception delay times saved at the time when the reception delay time TR for the predetermined number of times is saved as the reception delay time correction value TRC, and the reception delay time. The propagation time correction means for obtaining the correction propagation time TPC by subtracting the reception delay time correction value TRC from the first propagation time TP measured by the propagation time measurement unit using the correction value TRC, and the correction propagation time TPC or the said By providing a control unit that calculates the flow rate of the fluid that fills the space between the ultrasonic transducers by calculation from the true propagation time TP0, it is possible to reduce the influence of noise and temperature on the reception delay time, and it is highly accurate. An ultrasonic flow meter can be realized.

本発明の超音波流量計は、ノイズや温度変化の影響を受けずに流量計算に使用する受信遅れ時間が設定できるため、使用環境が限定されずに高精度な流量計測を維持できる超音波流量計の実現が可能になる。 Since the ultrasonic flow meter of the present invention can set the reception delay time used for flow rate calculation without being affected by noise or temperature change, the ultrasonic flow rate can maintain highly accurate flow rate measurement without limiting the usage environment. It becomes possible to realize the total.

本発明の実施の形態1における超音波流量計の構成図Configuration diagram of the ultrasonic flowmeter according to the first embodiment of the present invention 本発明の実施の形態2における超音波流量計の構成図Configuration diagram of the ultrasonic flowmeter according to the second embodiment of the present invention 本発明の実施の形態3における超音波流量計の構成図Configuration diagram of the ultrasonic flowmeter according to the third embodiment of the present invention 超音波の伝搬時間の測定方法を説明する為の超音波の受信波形のイメージ図Image of ultrasonic wave reception waveform to explain how to measure ultrasonic wave propagation time 従来例の超音波流量計の構成図Configuration diagram of the conventional ultrasonic flowmeter 第1受信波、第2受信波を含む受信波形のイメージ図Image of received waveform including first received wave and second received wave

第1の発明は、超音波信号を送受信可能な一対の超音波振動子と、一方の前記超音波振動子から送信され、流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を測定する伝搬時間測定部と、受信側の前記超音波振動子が受信した受信波の第m波目を検知する受信検知回路と、送信側の超音波振動子から超音波を送信して1回目の受信波の第m波目を前記受信検知回路で検知するまでの第1伝搬時間TPと、受信側の超音波振動子と送信側の超音波振動子で1回づつ反射して受信側の超音波振動子に達した2回目の受信波の第m波目を前記受信検知回路で検知するまでの第2伝搬時間TP2を測定し、前記第1伝搬時間TPと第2伝搬時間TP2の差の2分の1より前記超音波振動子間の真で伝搬時間TP0を求め、この真の伝搬時間TP0と前記第1伝搬時間TPの差より受信側の前記超音波振動子に超音波が到達して受信検知回路で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを算出する受信遅れ時間測定手段と、前記受信遅れ時間測定手段による前記受信遅れ時間TRの測定を所定のタイミングで行って所定回数分の受信遅れ時間TRを保存する受信遅れ時間保存手段と、前記所定回数分の受信遅れ時間TRが保存された時点で保存された受信遅れ時間の平均値を受信遅れ時間補正値TRCとして保存し更新する受信遅れ時間補正値更新手段と、前記受信遅れ時間補正値TRCを用いて前記伝搬時間測定部で測定した前記第1伝搬時間TPから前記受信遅れ時間補正値TRCを引いて補正伝搬時間TPCを求める伝搬時間補正手段と、前記補正伝搬時間TPCまたは前記真の伝搬時間TP0から演算によって前記超音波振動子間を満たす流体の流量をもとめる制御部と、を備えたことによって、流量計算に使用する受信遅れ時間へのノイズや温度の影響を軽減させることができ、高精度な超音波流量計が実現できる。 In the first invention, a pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals and an ultrasonic signal transmitted from one of the ultrasonic transducers and propagated in a fluid are received by the other ultrasonic transducer. From the propagation time measuring unit that measures the propagation time of the ultrasonic waves up to, the reception detection circuit that detects the mth wave of the received wave received by the ultrasonic vibrator on the receiving side, and the ultrasonic vibrator on the transmitting side. The first propagation time TP until the mth wave of the first received wave is detected by the reception detection circuit after transmitting the ultrasonic wave, and the ultrasonic vibrator on the receiving side and the ultrasonic vibrator on the transmitting side 1 The second propagation time TP2 until the mth wave of the second received wave that is reflected each time and reaches the ultrasonic transducer on the receiving side is detected by the reception detection circuit is measured, and the first propagation time TP is measured. The true propagation time TP0 between the ultrasonic transducers is obtained from half of the difference between the second propagation time TP2 and the second propagation time TP2, and the difference between the true propagation time TP0 and the first propagation time TP is the difference between the receiving side. The reception delay time measuring means for calculating the reception delay time TR from the start of reception to the detection that the mth wave of the received wave of the ultrasonic wave is received by the reception detection circuit when the ultrasonic wave reaches the sound oscillator, and the above-mentioned reception delay time measuring means. The reception delay time saving means for measuring the reception delay time TR by the reception delay time measuring means at a predetermined timing and saving the reception delay time TR for a predetermined number of times and the reception delay time TR for the predetermined number of times are saved. Measured by the propagation time measuring unit using the reception delay time correction value updating means for saving and updating the average value of the reception delay time saved at that time as the reception delay time correction value TRC and the reception delay time correction value TRC. The propagation time correction means for obtaining the corrected propagation time TPC by subtracting the reception delay time correction value TRC from the first propagation time TP, and the ultrasonic vibrator by calculation from the corrected propagation time TPC or the true propagation time TP0. By providing a control unit that determines the flow rate of the fluid that fills the gap, it is possible to reduce the influence of noise and temperature on the reception delay time used for flow rate calculation, and a highly accurate ultrasonic flow meter can be realized. ..

第2の発明は、第1の発明の構成に加えて、被測定流体の温度を測定するための温度センサを備え、前記受信遅れ時間保存手段は、前記温度センサで測定した流体の温度と、前記第1伝搬時間TPと、超音波の受信信号を所定の振幅に増幅する増幅率のいずれかが第1の所定の値以上に変化したタイミングで受信遅れ時間TRの保存を開始し、以後、前記流体の温度と、前記第1伝搬時間TPと、前記増幅率のいずれかの変化量が第2の所定の値以下の場合のみ前記受信遅れ時間測定手段により測定された受信遅れ時間TRを追加で保存することによって、温度や被測定気体の変化の影響を受けることなく、受信遅れ時間を正確に測定でき、高精度な超音波流量計が実現できる。 In the second invention, in addition to the configuration of the first invention, a temperature sensor for measuring the temperature of the fluid to be measured is provided, and the reception delay time storage means includes the temperature of the fluid measured by the temperature sensor and the temperature of the fluid measured by the temperature sensor. The storage of the reception delay time TR is started at the timing when either the first propagation time TP or the amplification factor that amplifies the ultrasonic reception signal to a predetermined amplitude changes to the first predetermined value or more. The reception delay time TR measured by the reception delay time measuring means is added only when the change amount of any of the fluid temperature, the first propagation time TP, and the amplification factor is equal to or less than the second predetermined value. By storing in, the reception delay time can be measured accurately without being affected by changes in temperature and the gas to be measured, and a highly accurate ultrasonic flowmeter can be realized.

第3の発明は、第2の発明の構成に加えて、前記受信遅れ時間測定手段の測定動作の前後において、前記温度センサで測定した流体の温度と、前記第1伝搬時間TPと、超音波の受信信号を所定の振幅に増幅する増幅率のいずれか、或いは、すべての値が所定の変化量以内であるか否かを判定する受信遅れ時間測定条件判定手段を備え、前記受信遅れ時間保存手段は、前記受信遅れ時間測定条件判定手段で所定の変化量以内でないと判定された場合は、前記受信遅れ時間測定手段により測定された受信遅れ時間TRを保存しないことによって、第1伝搬時間TPと第2伝搬時間TP2を測定している間に温度変化や気体の変化があった場合の影響を受けた受信遅れ時間補正値TRCを補正することがなくなるため、より高精度な超音波流量計を実現できる。 In the third invention, in addition to the configuration of the second invention, the temperature of the fluid measured by the temperature sensor, the first propagation time TP, and the ultrasonic wave before and after the measurement operation of the reception delay time measuring means. The reception delay time measurement condition determining means for determining whether or not any one of the amplification factors for amplifying the received signal of the above or all the values is within the predetermined change amount is provided, and the reception delay time is stored. When the means is determined by the reception delay time measurement condition determining means that the change is not within a predetermined change amount, the means does not save the reception delay time TR measured by the reception delay time measuring means, so that the first propagation time TP And the second propagation time TP2 is being measured, and if there is a temperature change or gas change, the reception delay time correction value TRC affected by the change is no longer corrected, so a more accurate ultrasonic flowmeter Can be realized.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は、本発明の実施の形態1における超音波流量計の構成図を示すものである。
(Embodiment 1)
FIG. 1 shows a configuration diagram of an ultrasonic flow meter according to the first embodiment of the present invention.

本実施の形態の超音波流量計20の基本的な構成は、測定流路1の上流と下流に設置し
た一対の超音波振動子2、7と、一対の超音波振動子2、7の送受信の設定切り替えを行う切り替えスイッチ9と、送信側に設定された超音波振動子を駆動する駆動回路3と、駆動回路3にスタート信号を出力する制御部4と、超音波の伝搬時間を測定する伝搬時間測定部5と、受信側に設定された超音波振動子で受信した超音波信号を所定の振幅に増幅するアンプ6と、アンプ6の出力と検知基準電圧18とを比較し大小関係が反転したときに伝搬時間測定部5を停止させる受信検知回路8から構成されている。
The basic configuration of the ultrasonic flowmeter 20 of the present embodiment is the transmission and reception of a pair of ultrasonic vibrators 2 and 7 installed upstream and downstream of the measurement flow path 1 and a pair of ultrasonic vibrators 2 and 7. The changeover switch 9 for switching the setting of, the drive circuit 3 for driving the ultrasonic transducer set on the transmission side, the control unit 4 for outputting the start signal to the drive circuit 3, and the propagation time of the ultrasonic wave are measured. The propagation time measuring unit 5 and the amplifier 6 that amplifies the ultrasonic signal received by the ultrasonic vibrator set on the receiving side to a predetermined amplitude, and the output of the amplifier 6 and the detection reference voltage 18 are compared and the magnitude relationship is large. It is composed of a reception detection circuit 8 that stops the propagation time measuring unit 5 when it is inverted.

さらに、超音波振動子のバラツキや温度変化等によって超音波振動子内の遅れ時間や受信波形の変化による受信遅れ時間が変化した場合でも、超音波の伝搬時間が正確に測定できるように、送信側の超音波振動子から超音波を送信して1回目の受信波(第1受信波)の第m波目を受信検知回路8で受信するまでの伝搬時間TPと、受信側の超音波振動子と送信側の超音波振動子に1回づつ反射して受信側の超音波振動子に達した2回目の受信波(第2受信波)の第m波目を受信検知回路で受信するまでの伝搬時間TP2を測定し、前記2つの伝搬時間の差の2分の1より超音波振動子間の真の伝搬時間TP0と真の受信遅れ時間TRを求める受信遅れ時間測定手段10を備えている。 Furthermore, even if the delay time in the ultrasonic vibrator or the reception delay time due to a change in the reception waveform changes due to variations in the ultrasonic vibrator or temperature changes, the ultrasonic propagation time can be accurately measured. Propagation time TP from transmitting ultrasonic waves from the ultrasonic vibrator on the side to receiving the mth wave of the first received wave (first received wave) by the reception detection circuit 8 and ultrasonic vibration on the receiving side. Until the mth wave of the second received wave (second received wave) that has been reflected once by the child and the ultrasonic oscillator on the transmitting side and reached the ultrasonic oscillator on the receiving side is received by the reception detection circuit. The reception delay time measuring means 10 is provided for measuring the propagation time TP2 of the above two and obtaining the true propagation time TP0 and the true reception delay time TR between the ultrasonic transducers from one half of the difference between the two propagation times. There is.

また、制御部4は、流量計算に使用する受信遅れ時間TRが超音波流量計の設置環境による電気的、温度的な影響を受けることを軽減させるために、受信遅れ時間保存手段12と受信遅れ時間補正値更新手段13を備えている。 Further, the control unit 4 has the reception delay time storage means 12 and the reception delay in order to reduce the influence of the reception delay time TR used for the flow rate calculation on the electrical and temperature due to the installation environment of the ultrasonic flow meter. The time correction value updating means 13 is provided.

受信遅れ時間保存手段12は、受信遅れ時間測定手段10で測定された受信遅れ時間TRを予め設定された所定回数分(N個とする)保存する。そして、受信遅れ時間補正値更新手段13は、受信遅れ時間保存手段12に保存されたN個の受信遅れ時間TRを平均し、平均した結果に基づき流量計算に使用する受信遅れ時間補正値TRCとして更新する。 The reception delay time storage means 12 stores the reception delay time TR measured by the reception delay time measuring means 10 for a predetermined number of times (N). Then, the reception delay time correction value updating means 13 averages the N reception delay time TRs stored in the reception delay time storage means 12, and uses the reception delay time correction value TRC used for the flow rate calculation based on the averaged result. Update.

伝搬時間補正手段11は、伝搬時間測定部5で測定された第1受信波の伝搬時間TPから受信遅れ時間補正値更新手段13で更新された受信遅れ時間補正値TRCを引いて補正伝搬時間TPCを求める。 The propagation time correction means 11 subtracts the reception delay time correction value TRC updated by the reception delay time correction value update means 13 from the propagation time TP of the first received wave measured by the propagation time measurement unit 5, and corrects the propagation time TPC. Ask for.

そして、制御部4は、伝搬時間補正手段11で補正された補正伝搬時間TPCを用いることで流量を演算することができる。なお、第2受信波を計測する場合は、真の伝搬時間TP0を用いて流体の流量を演算することもできる。 Then, the control unit 4 can calculate the flow rate by using the corrected propagation time TPC corrected by the propagation time correction means 11. When measuring the second received wave, the flow rate of the fluid can be calculated using the true propagation time TP0.

なお、受信遅れ時間補正値更新手段13による受信遅れ時間保存手段12に保存された受信遅れ時間補正値TRCの更新方法としては、受信遅れ時間測定手段10で新たな受信遅れ時間TRを測定する毎に今回測定した新たな受信遅れ時間TRに前回までに計測したN-1個の受信遅れ時間TRを加えたN個の平均による移動平均を求めて更新する方法や、受信遅れ時間測定手段10で受信遅れ時間TRをN個測定する毎に平均を求めて書き換える方法を採用できる。 As a method of updating the reception delay time correction value TRC stored in the reception delay time storage means 12 by the reception delay time correction value update means 13, every time a new reception delay time TR is measured by the reception delay time measurement means 10. In addition to the new reception delay time TR measured this time, the N-1 reception delay time TR measured up to the previous time is added to the method of finding and updating the moving average by the average of N pieces, or by the reception delay time measuring means 10. A method of finding and rewriting the average every time N reception delay time TRs are measured can be adopted.

本実施の形態によると、受信遅れ時間測定手段10による受信遅れ時間TRの測定結果を平均化することによって、ノイズや温度変化の影響を軽減でき、設置環境を限定されずに高精度な流量計測を実現できる。 According to this embodiment, by averaging the measurement results of the reception delay time TR by the reception delay time measuring means 10, the influence of noise and temperature change can be reduced, and the flow rate can be measured with high accuracy without limiting the installation environment. Can be realized.

(実施の形態2)
図2は、本発明の実施の形態2における超音波流量計の構成図を示すものである。本実施の形態の超音波流量計30の基本的な構成、動作は実施の形態1と同じである。実施の形態1との差異は、測定流路1内に温度センサ14を備え、被測定気体の温度を測定可能にしたことと、受信遅れ時間保存手段12に受信遅れ時間TRを保存するための条件を追加したことである。
(Embodiment 2)
FIG. 2 shows a block diagram of the ultrasonic flowmeter according to the second embodiment of the present invention. The basic configuration and operation of the ultrasonic flow meter 30 of the present embodiment are the same as those of the first embodiment. The difference from the first embodiment is that the temperature sensor 14 is provided in the measurement flow path 1 so that the temperature of the gas to be measured can be measured, and the reception delay time TR is stored in the reception delay time storage means 12. The condition was added.

本実施の形態の受信遅れ時間保存手段12は、前回、受信遅れ時間補正値更新手段13で受信遅れ時間補正値TRCが更新されてから温度センサ14で測定された被測定気体の温度と第1伝搬時間TPとアンプの増幅率のいずれかが、それぞれの値に対して設定された第1の所定の値以上変化した場合に受信遅れ時間測定手段10で測定された受信遅れ時間TRの保存を開始する。 The reception delay time storage means 12 of the present embodiment has the temperature of the gas to be measured measured by the temperature sensor 14 since the reception delay time correction value TRC was updated by the reception delay time correction value update means 13 last time, and the first first. When either the propagation time TP or the amplification factor of the amplifier changes by more than the first predetermined value set for each value, the reception delay time TR measured by the reception delay time measuring means 10 is stored. Start.

更に、受信遅れ時間保存手段12は、受信遅れ時間保存手段12で受信遅れ時間TRの保存を開始した時点の被測定気体の温度と第1伝搬時間TPと増幅率の3つの値に対するそれぞれの変化を監視し、3つの値のいずれか、あるいはすべて値の変化幅がそれぞれの値に対して設定された第2の所定の値以下の場合のみ受信遅れ時間TRを追加で保存する。 Further, the reception delay time storage means 12 changes the temperature of the gas to be measured, the first propagation time TP, and the amplification factor at the time when the reception delay time storage means 12 starts storage of the reception delay time TR, respectively. Is monitored, and the reception delay time TR is additionally saved only when the change width of any or all of the three values is equal to or less than the second predetermined value set for each value.

そして、受信遅れ時間補正値更新手段13は、受信遅れ時間保存手段12に所定回数分(N個とする)の受信遅れ時間TRが保存されたタイミングでN個の受信遅れ時間TRを平均して受信遅れ時間補正値TRCを更新する。ただし、受信遅れ時間TRの保存の開始から所定の時間以内にN個の受信遅れ時間TRが保存できなかった場合は、受信遅れ時間保存手段12に保存できた個数の受信遅れ時間TRを平均して受信遅れ時間補正値TRCを更新する方法や、受信遅れ時間保存手段12に保存されている受信遅れ時間TRを消去し、次にN個の受信遅れ時間TRが保存されるまで受信遅れ時間補正値TRCの更新を延期する方法を採用する。 Then, the reception delay time correction value updating means 13 averages the N reception delay time TRs at the timing when the reception delay time TRs for a predetermined number of times (N) are stored in the reception delay time storage means 12. The reception delay time correction value TRC is updated. However, if N reception delay time TRs cannot be saved within a predetermined time from the start of saving the reception delay time TR, the number of reception delay time TRs that can be saved in the reception delay time storage means 12 is averaged. The reception delay time correction value TRC is updated, or the reception delay time TR stored in the reception delay time storage means 12 is deleted, and then the reception delay time correction is performed until N reception delay time TRs are saved. Adopt a method of deferring the update of the value TRC.

本実施の形態によると、温度変化や被測定気体の種類が変化した場合の影響によって、誤った受信遅れ時間補正値TRCを採用することがなくなるため、超音波流量計の周囲環境の変化の影響を受けることなく、高精度な計測性能を実現できる。 According to the present embodiment, the erroneous reception delay time correction value TRC is not adopted due to the influence when the temperature changes or the type of the gas to be measured changes, so that the influence of the change in the surrounding environment of the ultrasonic flowmeter Highly accurate measurement performance can be realized without receiving.

(実施の形態3)
図3は、本発明の実施の形態3における超音波流量計の構成図を示すものである。本実施の形態の超音波流量計40の基本的な構成、動作は実施の形態2と同じである。実施の形態2との差異は、制御部4に受信遅れ時間測定条件判定手段15を設けたことである。
(Embodiment 3)
FIG. 3 shows a block diagram of the ultrasonic flowmeter according to the third embodiment of the present invention. The basic configuration and operation of the ultrasonic flow meter 40 of the present embodiment are the same as those of the second embodiment. The difference from the second embodiment is that the control unit 4 is provided with the reception delay time measurement condition determination means 15.

受信遅れ時間測定条件判定手段15は、受信遅れ時間測定手段10で受信遅れ時間TRを測定する前後において、温度センサ14で測定した流体の温度と、第1伝搬時間TPと、アンプ6の増幅率のいずれか、或いは、すべての値がそれぞれの値に対して設定された所定の変化量以内であるか否かを確認する。そして、受信遅れ時間保存手段12は、受信遅れ時間測定条件判定手段15で、所定の変化量以内でないと判定された場合は測定された受信遅れ時間TRを保存しないようにする。 The reception delay time measurement condition determination means 15 determines the temperature of the fluid measured by the temperature sensor 14, the first propagation time TP, and the amplification factor of the amplifier 6 before and after the reception delay time measurement means 10 measures the reception delay time TR. It is confirmed whether any or all of the values are within the predetermined change amount set for each value. Then, the reception delay time storage means 12 does not store the measured reception delay time TR when it is determined by the reception delay time measurement condition determination means 15 that the change amount is not within a predetermined change amount.

本実施の形態によると、第1伝搬時間TPと第2伝搬時間TP2を測定している間に温度変化や気体の変化があった場合の影響を受けた受信遅れ時間TRを採用しなくなるので、より高精度な超音波流量計を実現できる。 According to the present embodiment, the reception delay time TR affected when there is a temperature change or a gas change while measuring the first propagation time TP and the second propagation time TP2 is not adopted. A more accurate ultrasonic flowmeter can be realized.

なお、本実施の形態では、超音波の伝搬経路が測定流路1の流れ方向に一致するように上流と下流に一対の超音波振動子2,7を対向して配置した構成で説明したが、一対の超音波振動子2,7と超音波の伝搬経路はこれに限らず、(1)超音波の伝搬経路が測定流路1の流れ方向に対して斜めに横切るように上流と下流に一対の超音波振動子2,7を対向して配置したもの、(2)測定流路1の上流と下流の同一面に一対の超音波振動子2,7を配置し、超音波の伝搬経路が測定流路1の対向する面に1回反射するようにしたもの、(3)測定流路1の上流と下流の同一面に一対の超音波振動子2,7を配置し、超音波の伝搬経路が測定流路1の対向する面に2回反射するようにしたものなど、種々の形態を
採用できる。
In the present embodiment, a pair of ultrasonic vibrators 2 and 7 are arranged to face each other upstream and downstream so that the propagation path of ultrasonic waves coincides with the flow direction of the measurement flow path 1. , The pair of ultrasonic transducers 2 and 7 and the ultrasonic propagation path are not limited to this, and (1) upstream and downstream so that the ultrasonic propagation path crosses diagonally with respect to the flow direction of the measurement flow path 1. A pair of ultrasonic transducers 2 and 7 arranged opposite to each other, (2) A pair of ultrasonic transducers 2 and 7 are arranged on the same surface upstream and downstream of the measurement flow path 1, and the ultrasonic propagation path. (3) A pair of ultrasonic transducers 2 and 7 are arranged on the same surface upstream and downstream of the measurement flow path 1 so that the ultrasonic waves are reflected once on the opposite surfaces of the measurement flow path 1. Various forms can be adopted, such as one in which the propagation path is reflected twice on the opposite surfaces of the measurement flow path 1.

以上のように、本発明にかかる超音波流量計は、受信遅れ時間へのノイズや温度変化の影響を軽減できるため、ノイズや温度変化が想定される設置環境においても高精度な超音波流量計を実現することが可能となり、ガスメータ等の用途にも適用できる。 As described above, the ultrasonic flowmeter according to the present invention can reduce the influence of noise and temperature change on the reception delay time, so that the ultrasonic flowmeter is highly accurate even in an installation environment where noise and temperature change are expected. It is possible to realize the above, and it can be applied to applications such as gas meters.

1 測定流路
2、7 超音波振動子
3 駆動回路
4 制御部
5 伝搬時間測定部
6 アンプ
8 受信検知回路
9 切り替えスイッチ
10 受信遅れ時間測定手段
11 伝搬時間補正手段
12 受信遅れ時間保存手段
13 受信遅れ時間補正値更新手段
14 温度センサ
15 受信遅れ時間測定条件判定手段
20、30、40 超音波流量計
1 Measurement flow path 2, 7 Ultrasonic oscillator 3 Drive circuit 4 Control unit 5 Propagation time measurement unit 6 Amplifier 8 Reception detection circuit 9 Changeover switch 10 Reception delay time measurement means 11 Propagation time correction means 12 Reception delay time storage means 13 Reception Delay time correction value update means 14 Temperature sensor 15 Reception delay time Measurement condition judgment means 20, 30, 40 Ultrasonic flowmeter

Claims (3)

超音波信号を送受信可能な一対の超音波振動子と、
一方の前記超音波振動子から送信され、流体を伝搬した超音波信号を他方の前記超音波振動子が受信するまでの超音波の伝搬時間を測定する伝搬時間測定部と、
受信側の前記超音波振動子が受信した受信波の第m波目を検知する受信検知回路と、
送信側の超音波振動子から超音波を送信して1回目の受信波の第m波目を前記受信検知回路で検知するまでの第1伝搬時間TPと、受信側の超音波振動子と送信側の超音波振動子で1回づつ反射して受信側の超音波振動子に達した2回目の受信波の第m波目を前記受信検知回路で検知するまでの第2伝搬時間TP2を測定し、前記第1伝搬時間TPと第2伝搬時間TP2の差の2分の1より前記超音波振動子間の真で伝搬時間TP0を求め、この真の伝搬時間TP0と前記第1伝搬時間TPの差より受信側の前記超音波振動子に超音波が到達して受信検知回路で受信開始から超音波の受信波の第m波目を受信したと検知するまでの受信遅れ時間TRを算出する受信遅れ時間測定手段と、
前記受信遅れ時間測定手段による前記受信遅れ時間TRの測定を所定のタイミングで行って所定回数分の受信遅れ時間TRを保存する受信遅れ時間保存手段と、
前記所定回数分の受信遅れ時間TRが保存された時点で保存された受信遅れ時間の平均値を受信遅れ時間補正値TRCとして保存し更新する受信遅れ時間補正値更新手段と、
前記受信遅れ時間補正値TRCを用いて前記伝搬時間測定部で測定した前記第1伝搬時間TPから前記受信遅れ時間補正値TRCを引いて補正伝搬時間TPCを求める伝搬時間補正手段と、
前記補正伝搬時間TPCまたは前記真の伝搬時間TP0から演算によって前記超音波振動子間を満たす流体の流量をもとめる制御部と、を備えた超音波流量計。
A pair of ultrasonic transducers capable of transmitting and receiving ultrasonic signals,
A propagation time measuring unit that measures the propagation time of ultrasonic waves until the ultrasonic signal transmitted from one of the ultrasonic transducers and propagated through the fluid is received by the other ultrasonic transducer.
A reception detection circuit that detects the mth wave of the received wave received by the ultrasonic transducer on the receiving side,
The first propagation time TP until the mth wave of the first received wave is detected by the reception detection circuit after transmitting ultrasonic waves from the ultrasonic vibrator on the transmitting side, and the ultrasonic vibrator and transmission on the receiving side. Measure the second propagation time TP2 until the m-th wave of the second received wave that is reflected once by the ultrasonic transducer on the side and reaches the ultrasonic transducer on the receiving side is detected by the reception detection circuit. Then, the true propagation time TP0 between the ultrasonic transducers is obtained from half of the difference between the first propagation time TP and the second propagation time TP2, and the true propagation time TP0 and the first propagation time TP are obtained. From the difference between the above, the reception delay time TR from the start of reception to the detection that the mth wave of the ultrasonic reception wave is received by the reception detection circuit when the ultrasonic wave reaches the ultrasonic vibrator on the receiving side is calculated. Reception delay time measuring means and
A reception delay time saving means that measures the reception delay time TR by the reception delay time measuring means at a predetermined timing and saves the reception delay time TR for a predetermined number of times.
A reception delay time correction value updating means for storing and updating the average value of the reception delay times saved at the time when the reception delay time TR for the predetermined number of times is saved as the reception delay time correction value TRC, and
Propagation time correction means for obtaining the correction propagation time TPC by subtracting the reception delay time correction value TRC from the first propagation time TP measured by the propagation time measuring unit using the reception delay time correction value TRC.
An ultrasonic flow meter including a control unit for obtaining a flow rate of a fluid satisfying between the ultrasonic transducers by calculation from the corrected propagation time TPC or the true propagation time TP0.
被測定流体の温度を測定するための温度センサを備え、
前記受信遅れ時間保存手段は、前記温度センサで測定した流体の温度と、前記第1伝搬時間TPと、超音波の受信信号を所定の振幅に増幅する増幅率のいずれかが第1の所定の値以上に変化したタイミングで受信遅れ時間TRの保存を開始し、以後、前記流体の温度と、前記第1伝搬時間TPと、前記増幅率のいずれかの変化量が第2の所定の値以下の場合のみ前記受信遅れ時間測定手段により測定された受信遅れ時間TRを追加で保存する請求項1に記載の超音波流量計。
Equipped with a temperature sensor for measuring the temperature of the fluid under test
The reception delay time storage means has a first predetermined value of any one of the temperature of the fluid measured by the temperature sensor, the first propagation time TP, and the amplification factor for amplifying the received signal of ultrasonic waves to a predetermined amplitude. The storage of the reception delay time TR is started at the timing when the value changes above the value, and thereafter, the amount of change in any of the fluid temperature, the first propagation time TP, and the amplification factor is equal to or less than the second predetermined value. The ultrasonic fluid meter according to claim 1, wherein the reception delay time TR measured by the reception delay time measuring means is additionally stored only in the case of.
前記受信遅れ時間測定手段の測定動作の前後において、前記温度センサで測定した流体の温度と、前記第1伝搬時間TPと、超音波の受信信号を所定の振幅に増幅する増幅率のいずれか、或いは、すべての値が所定の変化量以内であるか否かを判定する受信遅れ時間測定条件判定手段を備え、
前記受信遅れ時間保存手段は、前記受信遅れ時間測定条件判定手段で所定の変化量以内でないと判定された場合は、前記受信遅れ時間測定手段により測定された受信遅れ時間TRを保存しない請求項2に記載の超音波流量計。
Before or after the measurement operation of the reception delay time measuring means, any one of the temperature of the fluid measured by the temperature sensor, the first propagation time TP, and the amplification factor for amplifying the ultrasonic reception signal to a predetermined amplitude. Alternatively, a reception delay time measurement condition determining means for determining whether or not all the values are within a predetermined change amount is provided.
2. The reception delay time saving means does not save the reception delay time TR measured by the reception delay time measuring means when the reception delay time measuring condition determining means determines that the change amount is not within a predetermined change amount. The ultrasonic flow meter described in.
JP2019082375A 2019-04-24 2019-04-24 ultrasonic flow meter Active JP7320776B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019082375A JP7320776B2 (en) 2019-04-24 2019-04-24 ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019082375A JP7320776B2 (en) 2019-04-24 2019-04-24 ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP2020180814A true JP2020180814A (en) 2020-11-05
JP7320776B2 JP7320776B2 (en) 2023-08-04

Family

ID=73023916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019082375A Active JP7320776B2 (en) 2019-04-24 2019-04-24 ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP7320776B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933308A (en) * 1995-07-21 1997-02-07 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2005172556A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2008164465A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound flowmeter
JP2011158470A (en) * 2010-01-07 2011-08-18 Panasonic Corp Ultrasonic flowmeter
JP2014092467A (en) * 2012-11-05 2014-05-19 Panasonic Corp Flow rate measurement device
US20140236533A1 (en) * 2011-10-13 2014-08-21 Jens Drachmann Ultrasonic Flow Meter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0933308A (en) * 1995-07-21 1997-02-07 Aichi Tokei Denki Co Ltd Ultrasonic flow meter
JP2005172556A (en) * 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Ultrasonic flowmeter
JP2008164465A (en) * 2006-12-28 2008-07-17 Ricoh Elemex Corp Ultrasound flowmeter
JP2011158470A (en) * 2010-01-07 2011-08-18 Panasonic Corp Ultrasonic flowmeter
US20140236533A1 (en) * 2011-10-13 2014-08-21 Jens Drachmann Ultrasonic Flow Meter
JP2014092467A (en) * 2012-11-05 2014-05-19 Panasonic Corp Flow rate measurement device

Also Published As

Publication number Publication date
JP7320776B2 (en) 2023-08-04

Similar Documents

Publication Publication Date Title
WO2011083766A1 (en) Ultrasonic flowmeter
JP3716274B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
WO2014068952A1 (en) Flow rate measuring device and flow rate calculation method
JP2014224685A (en) Flow rate measuring device
JP2014224684A (en) Flow rate measuring device
JP2007187506A (en) Ultrasonic flowmeter
JP4561088B2 (en) Ultrasonic flow meter
JP4822731B2 (en) Ultrasonic flow meter
JP4792653B2 (en) Flowmeter
JP5141613B2 (en) Ultrasonic flow meter
JP5965292B2 (en) Ultrasonic flow meter
JP7320776B2 (en) ultrasonic flow meter
JP3427762B2 (en) Ultrasonic flow meter
JP7246021B2 (en) ultrasonic flow meter
JP7203353B2 (en) ultrasonic flow meter
JPH11304559A (en) Flow rate measuring apparatus
JP7203352B2 (en) ultrasonic flow meter
JP3624743B2 (en) Ultrasonic flow meter
JP5034510B2 (en) Flow velocity or flow rate measuring device and its program
JP5990770B2 (en) Ultrasonic measuring device
JP2007064988A (en) Flowmeter
JP2007064988A5 (en)
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP5092414B2 (en) Flow velocity or flow rate measuring device
JP6767628B2 (en) Flow measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220712

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20220714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230714

R151 Written notification of patent or utility model registration

Ref document number: 7320776

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151