JP2014224685A - Flow rate measuring device - Google Patents
Flow rate measuring device Download PDFInfo
- Publication number
- JP2014224685A JP2014224685A JP2013102733A JP2013102733A JP2014224685A JP 2014224685 A JP2014224685 A JP 2014224685A JP 2013102733 A JP2013102733 A JP 2013102733A JP 2013102733 A JP2013102733 A JP 2013102733A JP 2014224685 A JP2014224685 A JP 2014224685A
- Authority
- JP
- Japan
- Prior art keywords
- time
- measurement
- signal
- reception
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Measuring Volume Flow (AREA)
Abstract
Description
本発明は、超音波信号の伝搬時間を計測することにより流速を検出し、気体の流量を計測する流量計測装置に関するものである。 The present invention relates to a flow rate measuring apparatus that detects a flow rate by measuring a propagation time of an ultrasonic signal and measures a gas flow rate.
従来この種の流量計測装置は、図4に示すようなものが一般的であった。図4において、流路41の途中に超音波を送信する第1振動子42と受信する第2振動子43が流れ方向に角度θで対向するように配置されている。
Conventionally, this type of flow rate measuring apparatus is generally as shown in FIG. In FIG. 4, a
また、第1振動子42、第2振動子43の送受信を切り換える切換手段44、第1振動子2へ駆動信号を出力する送信手段45、受信側の振動子で受信した信号を一定振幅となるよう増幅率を調整する増幅手段46、増幅手段46の出力と予め定められた基準電圧とを比較する基準比較手段47、基準比較手段47に基準電圧を出力する電圧設定手段48、受信信号が基準電圧を超えた後の最初のゼロクロス点で信号を出力する判定手段49で主要部が構成されている。
Further, switching means 44 for switching transmission / reception of the
図5は、送信信号の出力から受信信号の検出までの一連の動作を説明するタイムチャートで、図で示す様に、送信手段45の駆動信号出力により送信側に設定された振動子から送信された超音波信号が、受信側に設定された振動子で受信されて増幅手段46で増幅されて受信信号Aとして出力され、基準比較手段47は、受信信号Aが基準電圧Vrを超えた時に信号Cを出力し、判定手段49は、信号Cの出力後の最初のゼロクロス点aで信号Dを出力する。このように、送信手段45の駆動信号出力から判定手段49の信号Dの出力までが1回の超音波信号の送受信の流れである。
FIG. 5 is a time chart for explaining a series of operations from the output of the transmission signal to the detection of the reception signal. As shown in the figure, the signal is transmitted from the transducer set on the transmission side by the drive signal output of the transmission means 45. The received ultrasonic signal is received by the vibrator set on the receiving side, amplified by the amplifying means 46 and output as the received signal A, and the reference comparing means 47 outputs a signal when the received signal A exceeds the reference voltage Vr. C is output, and the
更に、判定手段49の信号Dの出力回数をカウントする繰り返し手段50とそれを制御する制御手段51を備えており、制御手段51は信号Dを受けると送信手段45に超音波駆動信号を出力するように指令し、これにより超音波信号の送受信が再開される。そして、繰り返し手段50は予め定められた回数の信号Dのカウントが終わるまで同様の動作を繰り返す。
Further, it includes a
また、繰り返し手段50により繰り返される複数回の超音波送受信の所要時間を計時する計時手段52と、計時手段52の計時した時間に応じて流路の大きさや流れの状態を考慮して流量を算出する流量演算手段53とを備えている。
In addition, the time measuring means 52 that measures the time required for a plurality of times of ultrasonic transmission / reception repeated by the repeating
以上のように構成された流量計測装置では、まず、送信手段45から出力される駆動信号により第1振動子42より超音波信号が送信される。第1振動子42より送信された超音波信号を第2振動子43が受信し、その受信信号が増幅手段46で増幅された後、基準比較手段47および判定手段49に出力され、判定手段49から出力される信号Dを以って1回の送受信が完了する。
In the flow rate measuring apparatus configured as described above, first, an ultrasonic signal is transmitted from the
そして、繰り返し手段50により予め定められた送受信の回数N回が完了するとここまでの所要時間を計時手段52が計時する。このように流れの上流側に配置された第1振動子42から下流側に配置された第2振動子43へ向けての超音波伝搬時間計測を以降、順方向の伝搬時間計測と呼ぶ。
When the predetermined number of transmissions / receptions N is completed by the repeating
順方向の伝搬時間計測が完了すると、制御手段51は切換手段44を駆動し、第1振動子42と増幅手段46、第2振動子43を送信手段45に接続することにより超音波伝搬
の方向を切換えて先と同様の方法で定められたN回の繰り返し計測を行い、その所要時間を計時手段52が計時する。以降、これを流れの逆方向の伝搬時間計測と呼ぶ。
When the propagation time measurement in the forward direction is completed, the control means 51 drives the switching means 44 and connects the
以上のように流れの順方向の伝搬時間の計時結果と流れの逆方向の伝搬時間の計時結果から得られた1回当りの順方向の伝搬時間Tu、逆方向の伝搬時間Tdを用いて、流量演算手段53では以下の算出式を用いて流量Qを求めている。 As described above, using the forward propagation time Tu and the backward propagation time Td per time obtained from the measurement result of the forward propagation time of the flow and the measurement result of the reverse propagation time of the flow, The flow rate calculation means 53 obtains the flow rate Q using the following calculation formula.
Q=S×L/2cosθ(1/Tu−1/Td)・・・(式1)
なお、(式1)においてLは第1振動子42と第2振動子43の中心部を結ぶ直線距離、θは両振動子を結ぶ直線と流れの方向とがなす角度、Sは流路断面積である。
Q = S × L / 2 cos θ (1 / Tu−1 / Td) (Formula 1)
In (Expression 1), L is a linear distance connecting the central portions of the
実際の計測において真の伝搬時間は図5で示す受信波形の立ち上がり点bであるためTu、Tdは真の伝搬時間に対して遅れ時間を含んだ数値となっている。しかし、超音波の受信波形の周波数が予めわかっていれば、この遅れ時間を補正することにより真の伝搬時間を計測することが可能であり、実際の数式ではTu、Tdを直接使わずに、この遅れ時間を補正した値を用いている。 In actual measurement, since the true propagation time is the rising point b of the received waveform shown in FIG. 5, Tu and Td are numerical values including a delay time with respect to the true propagation time. However, if the frequency of the received waveform of the ultrasonic wave is known in advance, it is possible to measure the true propagation time by correcting this delay time. In the actual formula, Tu and Td are not used directly, A value obtained by correcting this delay time is used.
このような計測方式において、遅れ時間による補正が計測精度を担保する上で重要な要素となる。そのため判定手段49が常に受信波形の同じ位置で信号Dを検出する必要がある。仮に、順方向と逆方向の計測において信号Dの出力タイミングが1周期ずれたと仮定すると大きな計測誤差を生じる。 In such a measurement method, correction based on the delay time is an important factor for ensuring measurement accuracy. Therefore, it is necessary for the determination means 49 to always detect the signal D at the same position of the received waveform. If it is assumed that the output timing of the signal D is shifted by one period in the measurement in the forward direction and the reverse direction, a large measurement error occurs.
そこで、常に同一のゼロクロス点を検出するため、制御手段51は増幅手段46の増幅率を調整して受信波形の最適化を行っている。例えば、繰り返し手段50による計測を開始する前、もしくは終了した後に、増幅手段46により波形振幅が常に同じ電圧レベルになるように増幅率を調整している。
Therefore, in order to always detect the same zero cross point, the control means 51 adjusts the amplification factor of the amplification means 46 to optimize the received waveform. For example, the amplification factor is adjusted by the amplifying unit 46 so that the waveform amplitude is always at the same voltage level before or after the measurement by the repeating
すなわち、図5で示す様な増幅後の受信波の最大電圧(5波目のピーク電圧)に一定の制限範囲位を定め、受信波の最大電圧がこの範囲内に入るように増幅率を変化させる。具体的にはコンパレータ(図示せず)の基準電圧として、制限範囲の上限値と下限値を設定し、基準電圧と受信波の比較結果を見ながら増幅率を変化させる方法、或いは、ピークホールド回路を設けて、AD変換回路でピークホールド回路で保持された電圧を読み取り、この値が制限範囲内に入るように増幅率を変化させる方法などが考えられる。 That is, as shown in FIG. 5, a fixed limit range is set for the maximum voltage (the peak voltage of the fifth wave) of the received wave after amplification, and the amplification factor is changed so that the maximum voltage of the received wave falls within this range. Let Specifically, as a reference voltage of a comparator (not shown), an upper limit value and a lower limit value of a limit range are set, and the amplification factor is changed while looking at the comparison result between the reference voltage and the received wave, or a peak hold circuit And a method of reading the voltage held by the peak hold circuit in the AD converter circuit and changing the amplification factor so that this value falls within the limit range.
このように増幅手段46に適正な増幅率を設定すれば、受信波形の最大電圧(5波目のピーク電圧)は常にほぼ一定に保たれるばかりか、1波目から4波目のピーク電圧もほぼ一定に保たれる。 Thus, if an appropriate amplification factor is set in the amplification means 46, the maximum voltage of the received waveform (the peak voltage of the fifth wave) is not only kept constant, but also the peak voltage of the first to fourth waves. Is also kept almost constant.
実際には、温度、流量などによって受信波形は微妙に異なるが、予め受信波形を観測しておき、これら条件の違いを考慮に入れた上で、なおかつ、隣合うピーク電圧の差分の比較的大きな位置に基準電圧を定める。図5においては、2波目と3波目のピーク電圧差が大きいので、ふたつの電圧の間の任意の点に基準電圧Vrを定める。5波目のピーク電圧が大きくずれることさえなければ、判定手段49は常に3波目の立下りゼロクロスで信号Dを出力できる。 Actually, the received waveform varies slightly depending on temperature, flow rate, etc., but the received waveform is observed in advance, taking into account the difference in these conditions, and the difference between adjacent peak voltages is relatively large. Set the reference voltage at the position. In FIG. 5, since the peak voltage difference between the second wave and the third wave is large, the reference voltage Vr is determined at an arbitrary point between the two voltages. As long as the peak voltage of the fifth wave does not deviate significantly, the determination means 49 can always output the signal D at the falling zero cross of the third wave.
また、別の方法として、工場出荷時に、基準電圧を最小値から最大値に向けて徐々に変化させながら、計時手段52で信号Cと信号Dの出力タイミングの時間差Δtを計測し、基準電圧対時間差ΔTの関係から1波目から5波目のまでの各ピーク電圧を推定し、その結果を基に2波目のピーク電圧と3波目のピーク電圧に相当する電圧の中間点に基準電圧を設定する方法も提案されている。 As another method, at the time of shipment from the factory, the time difference Δt between the output timings of the signals C and D is measured by the time measuring means 52 while gradually changing the reference voltage from the minimum value to the maximum value. Each peak voltage from the first wave to the fifth wave is estimated from the relationship of the time difference ΔT, and based on the result, the reference voltage is set at the midpoint of the voltage corresponding to the peak voltage of the second wave and the peak voltage of the third wave. A method of setting is also proposed.
これは、基準電圧が上昇するにしたがって、ΔTが小さくなり、各波のピークに達すると極小値を取る性質を利用している。この性質を用いれば、ΔTが最初の極小値に達する電圧が1波目のピーク電圧となり、以降、2波目から5波目までの各ピーク電圧が特定できる。そのため、先に説明した固定電圧を基準電圧として使用する場合と違って、個体間のばらつきをも吸収できるので、より計測の信頼性を高めることが可能である。 This utilizes the property that ΔT decreases as the reference voltage increases and takes a minimum value when the peak of each wave is reached. By using this property, the voltage at which ΔT reaches the first minimum value becomes the peak voltage of the first wave, and thereafter, the peak voltages from the second wave to the fifth wave can be specified. Therefore, unlike the case where the fixed voltage described above is used as the reference voltage, it is possible to absorb variations between individuals, and it is possible to further improve the measurement reliability.
しかしながら、前記従来の構成では、本来の受信波形にノイズ成分が重畳することで波形歪を生じゼロクロス点において出力される信号Dの出力タイミングが1周期分ずれる場合がある。 However, in the conventional configuration, there is a case where the output timing of the signal D output at the zero cross point is shifted by one cycle due to waveform distortion caused by the noise component superimposed on the original received waveform.
例えば、ノイズにより2波目のピーク電圧が理想の波形より大きくなって、2波目のピーク電圧が基準電圧Vrを超えた時には、2波目のゼロクロス点で信号Dが出力されることになり結果として1周期分の計測誤差が発生する。 For example, when the peak voltage of the second wave becomes larger than the ideal waveform due to noise and the peak voltage of the second wave exceeds the reference voltage Vr, the signal D is output at the zero cross point of the second wave. As a result, a measurement error for one cycle occurs.
このような場合、繰り返し計測がすべて終わった後に流量値を求めているので、繰り返しの途中で発生したノイズを判別することは難しい。 In such a case, since the flow rate value is obtained after all the repeated measurements are completed, it is difficult to determine the noise generated during the repetition.
本来はこのようなノイズが発生しない様に、バンドパスフィルターなどを使うのが常道であるが、特に問題となるのが、超音波の受信信号と同一周波数のノイズである。この種のノイズとしては、振動子そのものの振動が固体である筐体(例えば、振動子が配置されている流路)を直接伝わって受信側の振動子に到達する伝搬波(以降、筐体伝搬波と言う)、或いは、受信側の振動子を増幅手段に電気接続する際にこの振動子の両極間に加えられるわずかな電位差によって振動子が振動することで発生する電気振動ノイズなどが挙げられる。 Originally, it is usual to use a bandpass filter or the like so that such noise does not occur, but noise of the same frequency as the ultrasonic reception signal is particularly problematic. As this type of noise, a propagation wave (hereinafter referred to as a housing) that reaches the receiving-side transducer by directly transmitting the vibration of the transducer itself through a solid housing (for example, a flow path in which the transducer is disposed). A propagation wave), or electrical vibration noise generated when the vibrator vibrates due to a slight potential difference applied between the two poles of the vibrator when the vibrator on the receiving side is electrically connected to the amplification means. It is done.
これらのノイズは受信信号と同一周波数であるため電気的フィルターで除去することは不可能であり、本来の受信波形の到達タイミングまでノイズが残存し、本来の理想的な受信波形をゆがめてしまうことがある。そのため1波目から5波目までの各ピーク電圧の相対位置関係が崩れてしまい、信号Dの出力タイミングが1周期分前もしくは後ろに移動することにより、測定誤差の要因となっていた。 Since these noises have the same frequency as the received signal, it is impossible to remove them with an electrical filter. The noise remains until the arrival timing of the original received waveform, and the original ideal received waveform is distorted. There is. For this reason, the relative positional relationship between the peak voltages from the first wave to the fifth wave is lost, and the output timing of the signal D is moved forward or backward by one cycle, causing a measurement error.
本発明は前記従来の課題を解決するもので、波形歪が発生した場合でも正確な伝搬時間の算出を可能とすることを目的としたものである。 An object of the present invention is to solve the above-described conventional problems and to enable accurate calculation of propagation time even when waveform distortion occurs.
前記従来の課題を解決するために、本発明の流量計測装置は、変化量演算手段で求めた前回の単位計測工程の計時値と、今回の単位計測工程の計時値の変化量が増幅手段で増幅された受信信号の周期と等しければ、誤計測判定手段が誤計測と判定し、選択手段が計時手段で求めた複数の計時値の値から有効なデータのみを選択し、選択された計時値を用いて伝搬時間演算手段が伝搬時間を求めている。これによって、振動ノイズなどの影響で受信波形に歪が生じゼロクロスタイミングを誤って計時した場合であっても、データを修正して伝搬時間を求めているので、正確な伝搬時間を求めることが可能となる。 In order to solve the above-described conventional problems, the flow measurement device of the present invention uses the amplification unit to calculate the time value of the previous unit measurement process obtained by the change amount calculation unit and the amount of change of the time measurement value of the current unit measurement process. If it is equal to the period of the amplified received signal, the erroneous measurement determination means determines that the measurement is incorrect, the selection means selects only valid data from the multiple time values obtained by the time measurement means, and the selected time measurement value is selected. The propagation time calculation means obtains the propagation time using. As a result, even when the received waveform is distorted due to the effects of vibration noise and the zero cross timing is measured incorrectly, the propagation time is obtained by correcting the data, so the accurate propagation time can be obtained. It becomes.
本発明の流量計測装置は、筐体伝搬波や電気振動ノイズ等の影響で受信波形に歪が生じた場合であっても、データを修正して伝搬時間を求めているので、正確な伝搬時間の計測が可能となる。 The flow measuring device of the present invention corrects the data to determine the propagation time even when the received waveform is distorted due to the influence of the case propagation wave, electrical vibration noise, etc. Can be measured.
第1の発明は、流路に設けられ超音波信号を送受信する第1振動子及び第2振動子と、前記第1、第2振動子の送受信を切り替える切換手段と、前記第1、第2振動子に駆動信号を出力する送信手段と、前記第1、第2振動子の受信信号を増幅する増幅手段と、前記増幅手段から出力される受信信号が予め定められた基準電圧を超えた時点で受信検知信号を出力する受信検知手段と、前記受信検知手段の信号出力後、受信信号のゼロクロスタイミング毎にゼロクロス検知信号を出力するゼロクロス検知手段と、前記送信手段の送信開始から計時を開始し、前記ゼロクロス検知手段から出力される複数のゼロクロス検知信号までの経過時間をそれぞれ計時する計時手段と、前記計時手段の計時結果を基に超音波信号の伝搬時間を算出する伝搬時間演算手段と、前記伝搬時間演算手段の算出結果を基に流量を算出する流量演算手段と、前記第1、第2振動子の送受信方向を切り換えて前記計時手段による順方向と逆方向の計時を実行し、その順・逆方向の一対の計時を単位計測工程とし、前記単位計測工程の実行毎に前記計時手段の出力を記憶する記憶手段と、前記記憶手段に記憶された前回の単位計測工程の計時値と今回の前記計時手段の計時値との差分を算出する変化量演算手段と、前記変化量演算手段で算出された差分が前記受信信号の周期と等しければ誤計測と判定する誤計測判定手段と、前記誤計測判定手段が誤計測と判定した計時値を除き有効な計時値を選択する選択手段と、を備え、前記伝搬時間演算手段は、前記選択手段で選択された計時値を用いて伝搬時間を求める構成としたことにより、振動ノイズなどの影響で受信波形に歪が生じゼロクロス検知時間を誤って計時した場合であっても、その結果を修正して正確な伝搬時間を求めることができる。 According to a first aspect of the present invention, there are provided a first transducer and a second transducer that are provided in a flow path and transmit / receive an ultrasonic signal, a switching unit that switches transmission / reception of the first and second transducers, and the first and second transducers. Transmitting means for outputting a driving signal to the vibrator, amplifying means for amplifying the received signals of the first and second vibrators, and a time when the received signal output from the amplifying means exceeds a predetermined reference voltage A reception detection means for outputting a reception detection signal, a zero-cross detection means for outputting a zero-cross detection signal at every zero-cross timing of the reception signal after outputting the signal of the reception detection means, and timing from the transmission start of the transmission means. , Time measuring means for measuring the elapsed time until a plurality of zero cross detection signals output from the zero cross detection means, and a propagation time for calculating the propagation time of the ultrasonic signal based on the time measurement result of the time measuring means The calculation means, the flow rate calculation means for calculating the flow rate based on the calculation result of the propagation time calculation means, and the forward and reverse time measurement by the time measurement means by switching the transmission / reception direction of the first and second vibrators. A pair of time measurement in the forward / reverse direction as a unit measurement step, storage means for storing the output of the time measurement means for each execution of the unit measurement step, and the previous unit measurement step stored in the storage means A change amount calculating means for calculating a difference between the time value of the current time and the time measured value of the current time measuring means, and an erroneous measurement for determining an erroneous measurement if the difference calculated by the change amount calculating means is equal to the period of the received signal Determining means, and selecting means for selecting an effective time value excluding the time value determined as erroneous measurement by the erroneous measurement determination means, and the propagation time calculation means is configured to select the time value selected by the selection means. Use to find the propagation time By was formed, even if the strain is timed incorrectly cross detection time occurs in the received waveform by the influence such as vibration noise, it is possible to obtain an accurate travel time by correcting the results.
第2の発明は、特に第1の発明の誤計測判定手段が、単位計測工程で計時された順逆双方向の計時値の合計値同士を比較して誤計測判定を行う構成としているので、流量変動に伴う伝搬時間変化と波形歪による時間変化の選別ができるので、誤計測の判定が正確に行え、より信頼性の高い流量計測が可能となる。 The second invention is particularly configured so that the erroneous measurement determination means of the first invention performs erroneous measurement determination by comparing the total values of the forward and reverse bidirectional time values measured in the unit measurement process. Since it is possible to select a change in propagation time due to fluctuations and a time change due to waveform distortion, determination of erroneous measurement can be performed accurately, and flow measurement with higher reliability can be achieved.
(実施の形態1)
図1は、本発明の第1の実施の形態における流量計測装置のブロック図である。図1において、流路1の途中に、超音波信号を発信する第1振動子2と超音波信号を受信する第2振動子3が流れ方向に対向して配置されている。第1振動子2と第2振動子3の送受信の役割を切換える切換手段4を介して、第1振動子2と駆動信号を出力する送信手段5とが接続され、第2振動子3は受信信号を増幅する増幅手段6と接続されている。
(Embodiment 1)
FIG. 1 is a block diagram of a flow rate measuring apparatus according to the first embodiment of the present invention. In FIG. 1, a first vibrator 2 that transmits an ultrasonic signal and a second vibrator 3 that receives an ultrasonic signal are disposed in the flow path 1 so as to face each other in the flow direction. The first vibrator 2 and the transmission means 5 for outputting a drive signal are connected via the switching means 4 for switching the transmission / reception roles of the first vibrator 2 and the second vibrator 3, and the second vibrator 3 receives the signal. Amplifying means 6 for amplifying the signal is connected.
増幅手段6で増幅された受信信号は受信検知手段7で電圧設定手段8から出力される基準電圧と比較処理され、受信信号の方が大きくなるとゼロクロス検知手段9に受信検知信号を出力する。 The reception signal amplified by the amplification means 6 is compared with the reference voltage output from the voltage setting means 8 by the reception detection means 7, and when the reception signal becomes larger, the reception detection signal is output to the zero cross detection means 9.
ゼロクロス検知手段9は、受信検知信号が出力された後の受信信号のゼロクロスタイミ
ング毎にゼロクロス検知信号を予め決められた回数だけ出力する。本実施の形態ではこの回数を4回として説明する。
The zero cross detection means 9 outputs the zero cross detection signal a predetermined number of times for each zero cross timing of the reception signal after the reception detection signal is output. In the present embodiment, this number is described as four times.
計時手段10は、送信手段5の駆動信号出力タイミングから計時を開始し、ゼロクロス検知手段からゼロクロス検知信号が出力される毎にそれらの経過時間を計時する。すなわち、1回の送受信に付き、4つの計時値が出力されることになる。 The time measuring means 10 starts time measurement from the drive signal output timing of the transmission means 5 and measures the elapsed time each time the zero cross detection signal is output from the zero cross detection means. That is, four time values are output per transmission / reception.
そして、この4つの計時値は最新の計時値として記憶手段11へ出力されると共に、有効な計時値を選択する選択手段12へも出力され、選択手段12ではこれら4つの計時値のうち、有効なデータのみを選択し、伝搬時間演算手段13へ出力する。 These four time values are output to the storage means 11 as the latest time values, and are also output to the selection means 12 for selecting an effective time value. Only the correct data is selected and output to the propagation time calculation means 13.
以上で述べてきた第1振動子2を送信側、第2振動子3を受信側とする計測方法を順方向の計測と呼ぶ。 The above-described measurement method in which the first vibrator 2 is the transmission side and the second vibrator 3 is the reception side is called forward measurement.
次に、順方向の計測が完了すると制御手段14がふたつの振動子の送受信の役割を切換えるように切換手段4に切換信号を出力し、これによって、第1振動子2が増幅手段6、第2振動子3が送信手段5に接続される。そして、両振動子の送受信の役割を反転させた後、先に述べた方法と同様の計時処理を行う。これを逆方向の計測と呼ぶ。
Next, when the measurement in the forward direction is completed, the
以上、順方向、逆方向それぞれ1回ずつの計測を単位計測工程と呼び、この単位計測工程が決められた回数(本実施の形態では32回とする。)だけ実行されると、伝搬時間演算手段13がトータル32回の単位計測工程毎の計測結果をまとめて順逆双方向のそれぞれの平均伝搬時間を算出し、更にその結果を用いて流量演算手段15で流量を算出する。 As described above, the measurement in the forward direction and the backward direction once is referred to as a unit measurement step, and when this unit measurement step is executed a predetermined number of times (32 times in the present embodiment), a propagation time calculation is performed. The means 13 calculates the average propagation times in both forward and reverse directions by summing up the measurement results for every 32 unit measurement steps, and further calculates the flow rate by the flow rate calculation means 15 using the result.
また、変化量演算手段16は、単位計測工程が終わる毎に、記憶手段11に記憶されている前回の単位計測工程の計時値と今回の単位計測工程の計時値の差分を順逆双方向についてそれぞれ算出し、その算出結果を基に誤計測判定手段17で誤計測判定が後述する方法で実行される。誤計測判定手段17で誤計測判定がなされると、選択手段12で有効なデータが選択される。
In addition, each time the unit measurement process ends, the change
また、制御手段14は先に説明した切換手段4のみならず、増幅手段6に設定する増幅率、電圧設定手段8が出力する基準電圧の制御など、この流量計測装置全般の制御を行うように構成されている。 In addition, the control means 14 controls not only the switching means 4 described above but also the overall flow rate measuring device such as the gain set in the amplifying means 6 and the control of the reference voltage output from the voltage setting means 8. It is configured.
図2は、流量計測装置の動作を説明するタイムチャートである。図2において、送信手段5の出力信号21、増幅手段6により増幅された受信信号22、電圧設定手段8の出力信号である基準電圧23、受信検知手段7の出力信号24(H/Lの2値信号)、ゼロクロス検知手段9に出力されるイネーブル信号25(H/Lの2値信号)、ゼロクロス検知手段9の出力信号26(H/Lの2値信号)の電圧レベルの時系列変化を示している。
FIG. 2 is a time chart for explaining the operation of the flow rate measuring apparatus. In FIG. 2, the
横軸は送信手段5の出力信号21の送信開始タイミングを原点とする時間軸、縦軸は互いに原点の異なる電圧軸である。ただし、増幅手段6の出力信号である受信信号22と電圧設定手段8の出力信号である基準電圧23は同一原点の信号である。また、増幅手段6の出力はバイアス電圧Vbに超音波受信信号の増幅信号波形が重畳された電圧信号波形となっている。また、基準電圧23は理想の受信波形の3波目のピーク電圧と4波目のピーク電圧の中点付近に設定されているものとする。
The horizontal axis is the time axis with the transmission start timing of the
以上のように構成された流量計測装置について、以下その動作、作用を説明する。 The operation and action of the flow rate measuring apparatus configured as described above will be described below.
送信手段5から図2に示すような矩形上の出力信号21が第1振動子2に印加される。
本実施の形態において出力信号21は周波数500kHzの3周期分の波形とする。
A
In the present embodiment, the
そして、出力信号21により第1振動子2から超音波信号が出力され、やがて第2振動子3で受信される。第2振動子3が受信した受信信号は増幅手段6からの出力振幅が一定になるように制御手段14が定めた増幅率によって増幅されている。増幅手段6の増幅率の決定方法は背景技術で述べた方法と同様であるため説明は省略する。増幅手段6により増幅された受信信号22は受信検知手段7とゼロクロス検知手段9に出力される。
Then, an ultrasonic signal is output from the first vibrator 2 by the
受信検知手段7は、例えばコンパレータとラッチ回路(共に図示せず)により構成されている。まず、コンパレータによって基準電圧23と受信信号22の比較処理が実行され、受信信号22の方が小さい場合には、コンパレータ出力はH、受信信号22の方が大きい場合には、コンパレータ出力はLとなる。
The reception detection means 7 is composed of, for example, a comparator and a latch circuit (both not shown). First, a comparison process of the
そのため、受信信号22が第2振動子3に到達する以前にはコンパレータ出力はHとなっている。その後、受信信号22が基準電圧23を超えた時点、すなわち受信信号22と基準電圧23が最初にクロスする点r(時間軸上のTr)にてコンパレータの出力はLに反転する。この反転タイミングが受信検知信号に相当する。更に、ラッチ回路の作用により以降の出力信号24はLレベルを維持する。
Therefore, the comparator output is H before the
ゼロクロス検知手段9はイネーブル信号25がHの期間のみ受信信号22とバイアス電圧Vbの比較処理を行うコンパレータとなっており、イネーブル信号25がLの期間はゼロクロス検知手段9の出力はLとなる。時間Trにおいて受信検知手段7の出力信号24がLに変化すると同時にイネーブル信号25はLからHに反転する。この時点でゼロクロス検知手段9の出力信号26はLであるが受信信号22とバイアス電圧Vbがクロスする点、すなわちゼロクロス点aでLからHに反転する。
The zero-cross detection means 9 is a comparator that compares the received
以後、受信信号22のゼロクロス点b〜dにおいてゼロクロス検知手段9の出力信号26は反転を繰り返す。これら出力信号26の反転タイミングがそれぞれゼロクロス検知信号に相当する。そして、予め定められた4点のゼロクロス検知信号の取り込みが完了すると、イネーブル信号25はLとなり、以後、ゼロクロス検知手段9の出力信号26はLを維持する。
Thereafter, the
計時手段10は、タイマーカウンターで構成されていて時間原点にて計時を開始する。そして、ゼロクロス検知手段9で検出される4つのゼロクロス検知信号が発生する毎にその時点での計時値であるTa、Tb、Tc、Tdを一旦、記憶手段11に記憶する。 The time measuring means 10 is composed of a timer counter and starts measuring time at the time origin. Each time four zero-cross detection signals detected by the zero-cross detection means 9 are generated, the timekeeping values Ta, Tb, Tc, and Td at that time are temporarily stored in the storage means 11.
以上が流れの順方向の計測であり、順方向の計時が完了すると、制御手段14から、切換手段4に対して送受信の切換えタイミング信号が出力される。このタイミング信号を受けて切換手段4は第1振動子2を増幅手段6に、第2振動子3を送信手段5に接続し、逆方向の計時が開始される。 The above is the measurement of the forward direction of the flow. When the forward time measurement is completed, a transmission / reception switching timing signal is output from the control means 14 to the switching means 4. In response to this timing signal, the switching means 4 connects the first vibrator 2 to the amplifying means 6 and the second vibrator 3 to the transmitting means 5 and starts counting in the reverse direction.
逆方向でのゼロクロスの判定方法および各ゼロクロス点の計時方法、更には計時値の記憶方法は先に説明した順方向の計時と同様であるので説明は省略する。 Since the method for determining the zero cross in the reverse direction, the method for measuring each zero cross point, and the method for storing the time value are the same as those for the time measurement in the forward direction described above, the description thereof will be omitted.
以上説明した、順方向と逆方向を一対とする計測が単位計測工程であり、最初の単位計測工程を第1計測工程とし、以降、第2、第3と続き、最終の第32計測工程が終了するまで同様の処理が繰り返される。 The above-described measurement in which the forward direction and the reverse direction are paired is the unit measurement process, the first unit measurement process is the first measurement process, and the second and third measurement processes are followed by the final 32nd measurement process. The same process is repeated until the process is completed.
続いて、第2計測工程以降の動作に関して、第1計測工程と異なる部分について説明する。第1計測工程が終わった時点で、記憶手段11には第1計測工程において計時手段1
0で計時された順方向の計測における計時値4点と逆方向の計測における計時値4点が記憶されている。
Subsequently, with respect to operations after the second measurement step, portions different from the first measurement step will be described. When the first measurement process is finished, the storage means 11 stores the time measurement means 1 in the first measurement process.
Four time-measured values in the forward measurement timed at 0 and four time-measured values in the reverse direction are stored.
ここで、図2の第1ゼロクロス点aに対応する順方向の計時値をTau1、第2ゼロクロス点bに対する順方向の計時値をTbu1、以下、第3ゼロクロスの計時値をTcu1、第4ゼロクロスの計時値をTdu1とする。同様に、逆方向の計時結果を第1ゼロクロスから順に、Tad1、Tbd1、Tcd1、Tdd1とする。以上が記憶手段11に記憶されている値となる。 Here, the forward time value corresponding to the first zero cross point a in FIG. 2 is Tau1, the forward time value with respect to the second zero cross point b is Tbu1, hereinafter, the third zero cross time value is Tcu1, and the fourth zero cross. Let Tdu1 be the time measured value. Similarly, the timing results in the reverse direction are Tad1, Tbd1, Tcd1, and Tdd1, in order from the first zero cross. The above is the value stored in the storage unit 11.
同様に、第2計測工程の順方向の計測で、計時手段10で計時されたゼロクロス点a、b、c、dに対する計時値をそれぞれ順にTau2、Tbu2、Tcu2、Tdu2とする。第1計測工程と異なり第2計測工程以降では、これらの計時値は記憶手段11や選択手段12に出力される前に必要な前処理が施される。 Similarly, the measured values for the zero cross points a, b, c, and d measured by the time measuring means 10 in the forward measurement of the second measuring step are set as Tau2, Tbu2, Tcu2, and Tdu2, respectively. Unlike the first measurement process, after the second measurement process, these time-measured values are subjected to necessary preprocessing before being output to the storage means 11 and the selection means 12.
まず、変化量演算手段16では、Tau1とTau2、Tbu1とTbu2、Tcu1とTcu2、Tdu1とTdu2の差分、すなわち第2計測工程の計時値から第1計測工程の計時値を引いた値を求める。そして、求めた差分がいずれもほぼ等しく、かつその値が振動子の受信波形の1周期に相当する値であるか否かを判定する。 First, the change amount calculating means 16 obtains the difference between Tau1 and Tau2, Tbu1 and Tbu2, Tcu1 and Tcu2, and Tdu1 and Tdu2, that is, the value obtained by subtracting the time measurement value of the first measurement process from the time measurement value of the second measurement process. Then, it is determined whether or not the obtained differences are almost equal and the value is a value corresponding to one period of the reception waveform of the vibrator.
本実施の形態では周波数を500kHzとしているので、判定値を2±0.1もしくは−2±0.1μsとする。変化量演算手段16で求めた4つの変化量がすべて判定値の範囲内にある場合には、誤計測と判断し、結果を選択手段12に伝達する。なお、ここで用いた2±0.1μsという判定値は、受信波形に大きなノイズ信号が重畳され、歪を発生した場合を想定した値である。 In this embodiment, since the frequency is 500 kHz, the determination value is 2 ± 0.1 or −2 ± 0.1 μs. When the four change amounts obtained by the change amount calculation means 16 are all within the range of the determination value, it is determined that the measurement is incorrect, and the result is transmitted to the selection means 12. The determination value of 2 ± 0.1 μs used here is a value that assumes a case where a large noise signal is superimposed on the received waveform and distortion is generated.
図3は、誤計測判定が行われる場合の波形の一例を示すタイムチャートである。図3は、送信手段5の出力信号31、増幅手段6により増幅された受信信号32、電圧設定手段8の基準電圧33、受信検知手段7の出力信号(H/Lの2値信号)34、ゼロクロス検知手段9に出力されるイネーブル信号35(H/Lの2値信号)、ゼロクロス検知手段9の出力信号36(H/Lの2値信号)の電圧レベルの時系列変化を示している。
FIG. 3 is a time chart illustrating an example of a waveform when an erroneous measurement determination is performed. 3 shows an
横軸は送信手段5の出力信号31の送信開始タイミングを原点とする時間軸、縦軸は互いに原点の異なる電圧軸である。ただし、増幅手段6の出力である受信信号32と電圧設定手段8の出力信号である基準電圧33は同一原点の信号である。また、増幅手段6の出力はバイアス電圧Vbに超音波受信信号の増幅信号波形が重畳された電圧信号となっている。
The horizontal axis is the time axis with the transmission start timing of the
図2と図3を比較すると、送信手段5の出力信号21と出力信号31、電圧設定手段8の出力信号である基準電圧23と基準電圧33は同一電圧である。一方、増幅手段6の受信信号22と受信信号32は異なる波形であり、それに対応して、受信検知手段7の出力信号24と出力信号34、ゼロクロス検知手段9に出力されるイネーブル信号25とイネーブル信号35、ゼロクロス検知手段9の出力信号26と出力信号36は異なる波形となっている。
2 and 3 are compared, the
図3の受信信号32は図2の受信信号22に500kHzの振動ノイズが重畳し、特に受信波の3波目ピークや4波目ピークの電圧が図2の受信信号22よりも大きくなっている。そのため、受信信号32が電圧設定手段8の基準電圧33を超えるタイミングが図2に比べて早くなっている。
The
それに伴って、出力信号34、イネーブル信号35、出力信号36の出力が変化するタ
イミングも、図2の出力信号24、イネーブル信号25、出力信号26に比べて早くなっている。そのため、第1ゼロクロス点aも図3の方が、図2に比べて受信信号の1周期分早くなっており、以後の第2、第3、第4ゼロクロスであるゼロクロス点b〜dも同様である。
Accordingly, the timings at which the outputs of the
その結果、変化量演算手段16の求める4つの変化量(Tau1とTau2、Tbu1とTbu2、Tcu1とTcu2、Tdu1とTdu2のそれぞれの差分)はいずれも−2μs近傍の値となり、誤計測判定手段17の定める判定値を満足するので、計時手段10で求めた計時値を選択手段12で必要な後処理が実行される。
As a result, the four change amounts (the differences between Tau1 and Tau2, Tbu1 and Tbu2, Tcu1 and Tcu2, and Tdu1 and Tdu2) obtained by the change amount calculation means 16 are all in the vicinity of −2 μs, and the erroneous measurement determination means 17 Therefore, the time value obtained by the time measuring means 10 is subjected to necessary post-processing by the selecting
基準電圧23の設定値は比較的ノイズマージンを大きく取れる受信波形の波に合わせて設定するのが一般的ではあり、本実施の形態では、4波目に合わせて設定しているが、温度、流量などの環境に応じて受信波形は若干異なることがあるため、その過渡期においてはノイズマージンが小さくなってしまう場合がある。そのような状況に振動ノイズが重なれば、ゼロクロスタイミングのずれが起こりやすくなる。
The set value of the
そこで、選択手段12は、誤計測判定手段17が誤計測と判定した際の変化量演算手段16の演算結果に応じて、計時手段10で求められた4つの計時値の中から、有効なデータを選択する。
Therefore, the
図3に示すように、第2計測工程で検出されたゼロクロス点a、b、c、dが図2に示す第1計測工程よりも1周期前にずれた場合には、変化量演算手段16の演算結果はおおよそ−2μsとなる。 As shown in FIG. 3, when the zero cross points a, b, c, d detected in the second measurement step are shifted one cycle before the first measurement step shown in FIG. The result of the calculation is approximately −2 μs.
これは、ゼロクロスの検出ポイントが1周期分前にずれたことを示しているので、ずれた分のデータ、すなわち、図3のゼロクロス点aとゼロクロス点bを無効データとし、残りのゼロクロス点cとゼロクロス点dを有効データとし、伝搬時間演算手段13へデータを伝達する。伝搬時間演算手段13では、選択手段12の出力結果に基づいて伝搬時間の算出方法を変更する。 This indicates that the detection point of the zero cross is shifted by one period, so that the data of the shift, that is, the zero cross point a and the zero cross point b in FIG. And zero cross point d as effective data, and the data is transmitted to the propagation time calculation means 13. The propagation time calculation means 13 changes the propagation time calculation method based on the output result of the selection means 12.
まず、データが有効の場合の伝搬時間の算出式は(式2)で求められる。 First, the equation for calculating the propagation time when the data is valid is obtained by (Equation 2).
Tx=(Ta+Tb+Tc+Td)/4−4.25T・・・(式2)
なお、ここで、Tは受信波形の周期を表している。
Tx = (Ta + Tb + Tc + Td) /4-4.25T (Formula 2)
Here, T represents the period of the received waveform.
この数式の前半の項の物理的な意味は4つのゼロクロス点の計時値の平均値すなわち、第2ゼロクロス点bと第3ゼロクロス点cの中点、すなわち5波目のピークの時間を求めていることに等しい。5波目のピークは、波形の立ち上がり点wから4.25周期分遅れた位置にあるので、式後半では受信波形の4.25周期分の値を引いている。 The physical meaning of the first half of this equation is to calculate the average value of the time measured values of the four zero cross points, that is, the midpoint of the second zero cross point b and the third zero cross point c, that is, the peak time of the fifth wave. Is equal to Since the peak of the fifth wave is at a position delayed by 4.25 cycles from the rising point w of the waveform, the value for 4.25 cycles of the received waveform is subtracted in the latter half of the equation.
続いて、図3に示す様に、ゼロクロス検出タイミングが1周期前にずれた場合の算出式は、(式3)の通りとなる。 Subsequently, as shown in FIG. 3, the calculation formula when the zero-cross detection timing is shifted by one cycle is as shown in (Formula 3).
Tw=(Tc+Td)/2−3.75T・・・(式3)
この数式の前半の項の物理的な意味は2つのゼロクロス点うち有効な計時値の平均値すなわち、第3ゼロクロス点cと第4ゼロクロス点dの中点、すなわち4波目の負のピークの時間を求めていることに等しい。4波目の負のピークは、波形の立ち上がり点wから3.75周期分遅れた位置にあるので、式後半では受信波形の3.75周期分の値を引いている。
Tw = (Tc + Td) /2-3.75T (Formula 3)
The physical meaning of the first half of this equation is the average of the valid time values of the two zero cross points, that is, the midpoint of the third zero cross point c and the fourth zero cross point d, that is, the negative peak of the fourth wave. Equivalent to seeking time. Since the negative peak of the fourth wave is at a position delayed by 3.75 cycles from the waveform rising point w, the value for 3.75 cycles of the received waveform is subtracted in the latter half of the equation.
また、逆に、ゼロクロス検出ポイントが1周期分、後ろにずれた場合には、同様の考え方で、(式4)の算出式で求めることができる。 Conversely, when the zero-cross detection point is shifted backward by one cycle, it can be obtained by the calculation formula (Formula 4) based on the same concept.
Tx=(Ta+Tb)/2−4.75T・・・(式4)
この数式の、前半の項の物理的な意味は2つのゼロクロス点うち有効な計時値の平均値すなわち、第1ゼロクロス点aと第2ゼロクロス点bの中点、すなわち5波目の負のピークの時間を求めていることに等しい。5波目の負のピークは、波形の立ち上がり点wから4.75周期分遅れた位置にあるので、式後半では受信波形の4.75周期分の値を引いている。
Tx = (Ta + Tb) /2−4.75T (Formula 4)
The physical meaning of the first half of this equation is the average value of the valid time values of the two zero cross points, that is, the midpoint of the first zero cross point a and the second zero cross point b, that is, the negative peak of the fifth wave. Equivalent to seeking time. Since the negative peak of the fifth wave is at a position delayed by 4.75 cycles from the rising point w of the waveform, the value for 4.75 cycles of the received waveform is subtracted in the latter half of the equation.
以上のように変化量演算手段16で求めた変化量に応じて、各々異なった数式を用いることによって、正確な伝搬時間の算出が可能となる。 As described above, the propagation time can be accurately calculated by using different mathematical expressions according to the amount of change obtained by the amount-of-change calculating means 16.
また、誤計測判定手段17は、流量変動時における誤計測判定の信頼性を高める為、順逆双方向の計時値の合計値を基に誤計測の有無を判断する方法を用いている。 In addition, the erroneous measurement determination means 17 uses a method of determining the presence or absence of erroneous measurement based on the total value of the forward and reverse bidirectional measured values in order to increase the reliability of erroneous measurement determination when the flow rate fluctuates.
例えば、第1計測工程と第2計測工程の計時値を比較する場合、第1ゼロクロスの計時値を比較判定するためには、(式5)を用いる。 For example, when comparing the time measurement values of the first measurement process and the second measurement process, (Formula 5) is used to compare and determine the time measurement value of the first zero cross.
ΔT=(Tau2+Tad2)−(Tau1+Tad1)・・・(式5)
これは、同一環境下において流量の値にかかわらず、順逆両方の伝搬時間の合計値が一定になる性質を利用して誤判定を行うことを意図したものであり、ΔTが0であれば誤計測ではないと判断できるもので、以下その原理を説明する。
ΔT = (Tau2 + Tad2) − (Tau1 + Tad1) (Formula 5)
This is intended to make an erroneous determination using the property that the total value of both forward and reverse propagation times is constant regardless of the flow rate value in the same environment. It can be determined that it is not a measurement, and the principle will be described below.
まず、順方向の伝搬時間をTu、逆方向の伝搬時間をTd、音速をC、流速をV、第1振動子と第2振動子の中心部を結ぶ直線距離をL、両振動子を結ぶ直線と流れの方向とがなす角度をθとした場合、それぞれ以下の式で表せる。 First, the forward propagation time is Tu, the reverse propagation time is Td, the sound velocity is C, the flow velocity is V, the linear distance connecting the center portion of the first vibrator and the second vibrator is L, and both vibrators are connected. When the angle formed by the straight line and the flow direction is θ, it can be expressed by the following equations.
Tu=L/(C+Vcosθ)・・・・(式6)
Td=L/(C−Vcosθ)・・・・(式7)
ここで、C>>V、即ち、流速Vに対して音速Cが十分に大きい場合、(式6)は(式8)の如く近似できる。
Tu = L / (C + V cos θ) (Expression 6)
Td = L / (C−Vcos θ) (Expression 7)
Here, when C >> V, that is, when the sound velocity C is sufficiently larger than the flow velocity V, (Equation 6) can be approximated as (Equation 8).
Tu=L/C・(1+V/Ccosθ)
≒L/C・(1−V/Ccosθ)・・・(式8)
同様に(式7)は(式9)の如く近似できる。
Tu = L / C · (1 + V / C cos θ)
≒ L / C · (1-V / Ccosθ) (Equation 8)
Similarly, (Equation 7) can be approximated as (Equation 9).
Td≒L/C・(1+V/Ccosθ)・・・(式9)
よって、TuとTdの合計値は(式10)で表せる。
Td≈L / C · (1 + V / Ccos θ) (Equation 9)
Therefore, the total value of Tu and Td can be expressed by (Equation 10).
Tu+Td=2L/C・・・(式10)
この(式10)は流速Vすなわち流量に依存しない値となるのが分かる。そして、この性質を用いれば、流量変化による伝搬時間の変動に影響を受けずに誤計測の判断ができる。
Tu + Td = 2L / C (Equation 10)
It can be seen that (Equation 10) is a value independent of the flow velocity V, that is, the flow rate. If this property is used, it is possible to determine erroneous measurement without being affected by fluctuations in propagation time due to flow rate changes.
即ち、(式10)のように順逆双方向の計時値の合計値が一定になるという原理に基づくと、誤計測が発生していない場合には、(式5)で演算されるΔTの値はほぼ0となることから、流量変化に伴う伝搬時間の変動を誤計測と判断することを防止できるのである。 That is, based on the principle that the total value of the forward and backward bidirectional time values becomes constant as in (Equation 10), if no erroneous measurement has occurred, the value of ΔT calculated in (Equation 5) Is substantially 0, so that it is possible to prevent a change in propagation time accompanying a change in flow rate from being determined as an erroneous measurement.
例えば、実際に流速が変化して、その変化に相当する伝搬時間の変化が誤計測判範囲の
1.9μsであったと仮定する。この場合、順方向の伝搬時間変化が−1.9μsとすれば、逆方向の伝搬時間変化は+1.9μsとなる。従って、順方向、逆方向で個別に誤計測かどうかを判断すれば、いずれの方向でも誤計測と判断されることになるが、この方法によると、(式5)で求められるΔTの値は0となるので、誤計測ではないと判断できるのである。
For example, it is assumed that the flow velocity actually changes and the change in propagation time corresponding to the change is 1.9 μs in the erroneous measurement range. In this case, if the forward propagation time change is −1.9 μs, the reverse propagation time change is +1.9 μs. Therefore, if it is determined whether or not erroneous measurement is made separately in the forward direction and the reverse direction, it will be determined as erroneous measurement in any direction. According to this method, the value of ΔT obtained by (Equation 5) is Since it is 0, it can be determined that it is not an erroneous measurement.
以上述べてきた方法により予め定められた32回の計測工程がすべて終了した時点で伝搬時間演算手段13で順方向、逆方向それぞれの32回分の平均伝搬時間を求めて、それぞれの値をTu、Tdとする。 When all of the 32 predetermined measurement steps are completed by the method described above, the propagation time calculation means 13 obtains the average propagation time for 32 times in the forward direction and the backward direction, and sets each value as Tu, Let Td.
伝搬時間演算手段13で順逆双方向の伝搬時間TuおよびTdが求まれば(式1)を用いて流量演算手段15が流体流量を求める。 When the propagation time calculation means 13 obtains forward and reverse bidirectional propagation times Tu and Td, the flow rate calculation means 15 obtains the fluid flow rate using (Equation 1).
このようにトータル32回の計測工程が実行される毎に流量演算手段15が流量を算出することになる。この一連の流れを単位流量算出工程とする。制御手段14は決められた時間(例えば2秒)毎に単位流量算出工程を実行するように流量計測装置全体の時間管理を行っている。 In this way, the flow rate calculation means 15 calculates the flow rate every time the measurement process is performed a total of 32 times. This series of flows is defined as a unit flow rate calculation step. The control means 14 performs time management of the entire flow rate measuring device so as to execute the unit flow rate calculation step every predetermined time (for example, 2 seconds).
以上のように、本発明にかかる流量計測装置は、ゼロクロス検出タイミングのずれを適宜修正可能であり、長期間にわたって、正確な流量計測が可能となるので、家庭用から業務用に至る大型のガスメータまで幅広い用途に適用できる。また、水道メータなどの液体用流量計への適用も可能である。 As described above, the flow rate measuring device according to the present invention can appropriately correct the deviation of the zero-cross detection timing, and can accurately measure the flow rate over a long period of time. Applicable to a wide range of applications. Further, it can be applied to a liquid flow meter such as a water meter.
1 流路
2 第1振動子
3 第2振動子
4 切換手段
5 送信手段
6 増幅手段
7 受信検知手段
8 電圧設定手段
9 ゼロクロス検知手段
10 計時手段
11 記憶手段
12 選択手段
13 伝搬時間演算手段
15 流量演算手段
16 変化量演算手段
17 誤計測判定手段
DESCRIPTION OF SYMBOLS 1 Flow path 2 1st vibrator 3
Claims (2)
前記第1、第2振動子の送受信を切り替える切換手段と、
前記第1、第2振動子に駆動信号を出力する送信手段と、
前記第1、第2振動子の受信信号を増幅する増幅手段と、
前記増幅手段から出力される受信信号が予め定められた基準電圧を超えた時点で受信検知信号を出力する受信検知手段と、
前記受信検知手段の信号出力後、受信信号のゼロクロスタイミング毎にゼロクロス検知信号を出力するゼロクロス検知手段と、
前記送信手段の送信開始から計時を開始し、前記ゼロクロス検知手段から出力される複数のゼロクロス検知信号までの経過時間をそれぞれ計時する計時手段と、
前記計時手段の計時結果を基に超音波信号の伝搬時間を算出する伝搬時間演算手段と、
前記伝搬時間演算手段の算出結果を基に流量を算出する流量演算手段と、
前記第1、第2振動子の送受信方向を切り換えて前記計時手段による順方向と逆方向の計時を実行し、その順・逆方向の一対の計時を単位計測工程とし、前記単位計測工程の実行毎に前記計時手段の出力を記憶する記憶手段と、
前記記憶手段に記憶された前回の単位計測工程の計時値と今回の前記計時手段の計時値との差分を算出する変化量演算手段と、
前記変化量演算手段で算出された差分が前記受信信号の周期と等しければ誤計測と判定する誤計測判定手段と、
前記誤計測判定手段が誤計測と判定した計時値を除き有効な計時値を選択する選択手段と、を備え、
前記伝搬時間演算手段は、前記選択手段で選択された計時値を用いて伝搬時間を求める流量計測装置。 A first vibrator and a second vibrator which are provided in the flow path and transmit and receive ultrasonic signals;
Switching means for switching between transmission and reception of the first and second vibrators;
Transmitting means for outputting a drive signal to the first and second vibrators;
Amplifying means for amplifying the received signals of the first and second vibrators;
A reception detection means for outputting a reception detection signal when the reception signal output from the amplification means exceeds a predetermined reference voltage;
After the signal output of the reception detection means, zero cross detection means for outputting a zero cross detection signal for each zero cross timing of the reception signal;
Timekeeping means for starting time measurement from the transmission start of the transmission means, and for measuring elapsed times until a plurality of zero cross detection signals output from the zero cross detection means,
Propagation time calculation means for calculating the propagation time of the ultrasonic signal based on the time measurement result of the time measuring means;
Flow rate calculation means for calculating a flow rate based on the calculation result of the propagation time calculation means;
The transmission / reception direction of the first and second vibrators is switched to perform time measurement in the forward direction and in the reverse direction by the time measuring means, and the time measurement in the forward / reverse direction is set as a unit measurement step, and the unit measurement step is executed. Storage means for storing the output of the timing means every time;
Change amount calculating means for calculating a difference between the time value of the previous unit measurement step stored in the storage means and the time value of the current time measuring means;
Erroneous measurement determination means for determining erroneous measurement if the difference calculated by the change amount calculation means is equal to the period of the received signal;
Selecting means for selecting an effective time value excluding the time value determined by the erroneous measurement determination means as an erroneous measurement,
The propagation time calculation means is a flow rate measuring device that obtains propagation time using the time value selected by the selection means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013102733A JP6111423B2 (en) | 2013-05-15 | 2013-05-15 | Flow measuring device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013102733A JP6111423B2 (en) | 2013-05-15 | 2013-05-15 | Flow measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014224685A true JP2014224685A (en) | 2014-12-04 |
JP6111423B2 JP6111423B2 (en) | 2017-04-12 |
Family
ID=52123468
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013102733A Active JP6111423B2 (en) | 2013-05-15 | 2013-05-15 | Flow measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6111423B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019049423A (en) * | 2017-09-08 | 2019-03-28 | ローム株式会社 | Ultrasonic flowmeter |
JP2020034367A (en) * | 2018-08-29 | 2020-03-05 | アズビル株式会社 | Zero cross detection circuit, ultrasonic flowmeter, and zero cross detection method |
JP2020038144A (en) * | 2018-09-05 | 2020-03-12 | アズビル株式会社 | Supersonic flowmeter and method for determining zero-cross time in supersonic flowmeter |
JP2020063974A (en) * | 2018-10-17 | 2020-04-23 | アズビル株式会社 | Ultrasonic flowmeter, flow rate measuring method, and flow rate calculation device |
JP2021060343A (en) * | 2019-10-09 | 2021-04-15 | アズビル株式会社 | Ultrasonic flowmeter and flow rate measurement method |
JP2021060344A (en) * | 2019-10-09 | 2021-04-15 | アズビル株式会社 | Ultrasonic flowmeter and flow rate measuring method |
JP2021067572A (en) * | 2019-10-24 | 2021-04-30 | アズビル株式会社 | Ultrasonic flowmeter and method for measuring flow rate |
JP7175365B1 (en) | 2021-10-04 | 2022-11-18 | 桓達科技股▲フン▼有限公司 | Determination Method of Characteristic Time Reference Wave of Acoustic Signal of Ultrasonic Flowmeter |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09236463A (en) * | 1996-02-29 | 1997-09-09 | Aichi Tokei Denki Co Ltd | Ultrasonic wave flowmeter |
JP2006242658A (en) * | 2005-03-01 | 2006-09-14 | Yazaki Corp | Electronic gas meter |
JP2012088256A (en) * | 2010-10-22 | 2012-05-10 | Panasonic Corp | Flow rate measuring device |
-
2013
- 2013-05-15 JP JP2013102733A patent/JP6111423B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09236463A (en) * | 1996-02-29 | 1997-09-09 | Aichi Tokei Denki Co Ltd | Ultrasonic wave flowmeter |
JP2006242658A (en) * | 2005-03-01 | 2006-09-14 | Yazaki Corp | Electronic gas meter |
JP2012088256A (en) * | 2010-10-22 | 2012-05-10 | Panasonic Corp | Flow rate measuring device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019049423A (en) * | 2017-09-08 | 2019-03-28 | ローム株式会社 | Ultrasonic flowmeter |
JP7098482B2 (en) | 2018-08-29 | 2022-07-11 | アズビル株式会社 | Zero-cross detection circuit, ultrasonic flowmeter, and zero-cross detection method |
JP2020034367A (en) * | 2018-08-29 | 2020-03-05 | アズビル株式会社 | Zero cross detection circuit, ultrasonic flowmeter, and zero cross detection method |
JP2020038144A (en) * | 2018-09-05 | 2020-03-12 | アズビル株式会社 | Supersonic flowmeter and method for determining zero-cross time in supersonic flowmeter |
JP7174574B2 (en) | 2018-09-05 | 2022-11-17 | アズビル株式会社 | Ultrasonic flowmeter and determination method of zero-crossing time in ultrasonic flowmeter |
JP2020063974A (en) * | 2018-10-17 | 2020-04-23 | アズビル株式会社 | Ultrasonic flowmeter, flow rate measuring method, and flow rate calculation device |
JP7134830B2 (en) | 2018-10-17 | 2022-09-12 | アズビル株式会社 | Ultrasonic flow meter, flow measurement method, and flow calculation device |
JP2021060344A (en) * | 2019-10-09 | 2021-04-15 | アズビル株式会社 | Ultrasonic flowmeter and flow rate measuring method |
JP2021060343A (en) * | 2019-10-09 | 2021-04-15 | アズビル株式会社 | Ultrasonic flowmeter and flow rate measurement method |
JP7343350B2 (en) | 2019-10-09 | 2023-09-12 | アズビル株式会社 | Ultrasonic flow meter and flow measurement method |
JP7343351B2 (en) | 2019-10-09 | 2023-09-12 | アズビル株式会社 | Ultrasonic flow meter and flow measurement method |
JP2021067572A (en) * | 2019-10-24 | 2021-04-30 | アズビル株式会社 | Ultrasonic flowmeter and method for measuring flow rate |
JP7343356B2 (en) | 2019-10-24 | 2023-09-12 | アズビル株式会社 | Ultrasonic flow meter and flow measurement method |
JP7175365B1 (en) | 2021-10-04 | 2022-11-18 | 桓達科技股▲フン▼有限公司 | Determination Method of Characteristic Time Reference Wave of Acoustic Signal of Ultrasonic Flowmeter |
JP2023054661A (en) * | 2021-10-04 | 2023-04-14 | 桓達科技股▲フン▼有限公司 | Ultrasonic flow rate acoustic signal characteristic time reference wave determination method |
Also Published As
Publication number | Publication date |
---|---|
JP6111423B2 (en) | 2017-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6111423B2 (en) | Flow measuring device | |
JP6111422B2 (en) | Flow measuring device | |
JP5906388B2 (en) | Flow measuring device | |
WO2014068952A1 (en) | Flow rate measuring device and flow rate calculation method | |
JP2011158470A (en) | Ultrasonic flowmeter | |
JP2012127663A (en) | Flow rate measuring device | |
JP2007187506A (en) | Ultrasonic flowmeter | |
KR101454827B1 (en) | High resolution distance measuring method by phase shifted value of ultrasonic signal | |
JP4835068B2 (en) | Fluid flow measuring device | |
JP4760115B2 (en) | Fluid flow measuring device | |
JP2006343292A (en) | Ultrasonic flowmeter | |
JP5895148B2 (en) | Flow measuring device | |
JP2018136276A (en) | Ultrasonic flowmeter | |
JP2004069524A (en) | Flow rate measuring apparatus | |
JP2008014800A (en) | Flow measuring instrument | |
JP2008185441A (en) | Ultrasonic flowmeter | |
JP5034510B2 (en) | Flow velocity or flow rate measuring device and its program | |
JP5229349B2 (en) | Fluid flow measuring device | |
JP2008180566A (en) | Flow velocity or flow rate measuring device, and program therefor | |
JP5135806B2 (en) | Fluid flow measuring device | |
JP5135807B2 (en) | Fluid flow measuring device | |
JP5286326B2 (en) | Ultrasonic flow meter | |
JP2003028956A (en) | Distance-measuring apparatus and position-measuring apparatus using ultrasonic waves, and program for them | |
JP2023010248A (en) | Ultrasonic flowmeter and flow rate computation method | |
JP5092413B2 (en) | Flow velocity or flow rate measuring device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20141021 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160308 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20160421 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20160518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20161222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20170131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20170213 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6111423 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |