JP2020179029A - 医用画像処理装置、超音波診断装置及び学習済モデルの作成方法 - Google Patents

医用画像処理装置、超音波診断装置及び学習済モデルの作成方法 Download PDF

Info

Publication number
JP2020179029A
JP2020179029A JP2019085933A JP2019085933A JP2020179029A JP 2020179029 A JP2020179029 A JP 2020179029A JP 2019085933 A JP2019085933 A JP 2019085933A JP 2019085933 A JP2019085933 A JP 2019085933A JP 2020179029 A JP2020179029 A JP 2020179029A
Authority
JP
Japan
Prior art keywords
data set
image
scanning line
data
ultrasonic waves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019085933A
Other languages
English (en)
Other versions
JP7242409B2 (ja
Inventor
泰徳 本庄
Yasunori Honjo
泰徳 本庄
啓太 米森
Keita Yonemori
啓太 米森
正毅 渡辺
Masaki Watanabe
正毅 渡辺
優子 高田
Yuko Takada
優子 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2019085933A priority Critical patent/JP7242409B2/ja
Priority to US16/856,153 priority patent/US11568535B2/en
Publication of JP2020179029A publication Critical patent/JP2020179029A/ja
Application granted granted Critical
Publication of JP7242409B2 publication Critical patent/JP7242409B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0883Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • A61B8/14Echo-tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5246Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5269Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts
    • A61B8/5276Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving detection or reduction of artifacts due to motion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52038Details of receivers using analysis of echo signal for target characterisation involving non-linear properties of the propagation medium or of the reflective target
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/774Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Cardiology (AREA)
  • Software Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Data Mining & Analysis (AREA)
  • Computing Systems (AREA)
  • Databases & Information Systems (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Quality & Reliability (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Nonlinear Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

【課題】診断に有用な情報を効率的に得ること。【解決手段】実施形態に係る医用画像処理装置は、処理部を備える。処理部は、各走査線について第1の回数ずつ超音波を送受信して得られた第1のデータセットに基づいて、各走査線について第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセットを疑似的に表す出力データセットを生成する学習済モデルに対して、第1のデータセットを入力することで、出力データセットを生成する。【選択図】図1

Description

本発明の実施形態は、医用画像処理装置、超音波診断装置及び学習済モデルの作成方法に関する。
超音波診断装置において、位相、偏向角、周波数等の送信パラメータを変化させながら、走査線毎に超音波を複数回送受信し、得られた同一走査線に関する受信信号を合成することで、高画質な画像を得る技術がある。このような技術の例として、例えば、THI(Tissue Harmonic Imagin)や、Diff−THI(Differential tissue Harmonic Imaging)等の方法がある。
しかし、これら、一つの走査線あたり複数回超音波を送受信して高次高調波の信号を抽出する技術においては、一つの走査線あたり超音波を1回送受信する技術と比較して、一つのフレームの画像を得るために要する時間が大きくなる。この結果、フレームレートは低くなる。つまり、上記の例の場合、画質とフレームレートは、トレードオフの関係にある。
加えて、心臓など高速で動く部位においては、一つの走査線あたり超音波を複数回送受信した場合、次の超音波を送受信するまでに部位が動いてしまい、画質が劣化する。そのため、これらの部位においては、一つの走査線あたり超音波を複数回送受信して撮影するのが難しい場合がある。
米国特許出願公開第2015/0324957号明細書
本発明が解決しようとする課題は、診断に有用な情報を効率的に得ることである。
実施形態に係る医用画像処理装置は、処理部を備える。処理部は、各走査線について第1の回数ずつ超音波を送受信して得られた第1のデータセットに基づいて、各走査線について第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセットを疑似的に表す出力データセットを生成する学習済モデルに対して、第1のデータセットを入力することで、出力データセットを生成する。
図1は、実施形態に係る医用画像処理装置及び超音波診断装置を示す図である。 図2は、第1の実施形態に係る医用画像処理装置が行う学習の処理の流れについて説明したフローチャートである。 図3は、第1の実施形態に係る医用画像処理装置の行う処理について説明した図である。 図4は、第1の実施形態に係る医用画像処理装置の行う処理について説明した図である。 図5は、第1の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。 図6は、第1の実施形態の第1の変形例に係る医用画像処理装置の行う処理について説明した図である。 図7は、第1の実施形態の第3の変形例に係る医用画像処理装置の行う処理について説明した図である。 図8は、第1の実施形態の第3の変形例に係る医用画像処理装置の行う処理について説明した図である。 図9は、第2の実施形態に係る医用画像処理装置が行う学習の処理の流れについて説明したフローチャートである。 図10は、第2の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。 図11は、第4の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。 図12は、第4の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。
以下、本発明の実施形態について図面を参照しながら説明する。ここで、互いに同じ構成には共通の符号を付して、重複する説明は省略する。
(第1の実施形態)
まず、第1の実施形態に係る医用画像処理装置及び超音波診断装置の構成について説明する。図1は、第1の実施形態に係る医用画像処理装置及び超音波診断装置の構成例を示すブロック図である。図1に例示するように、第1の実施形態に係る超音波診断装置は、超音波プローブ5と、超音波診断装置本体10とを有する。超音波診断装置本体10は、送信回路9と、受信回路11と、医用画像処理装置100とを有する。
超音波プローブ5は、複数の圧電振動子を有し、これら複数の圧電振動子は、後述する超音波診断装置本体10が有する送信回路9から供給される駆動信号に基づき超音波を発生する。また、超音波プローブ5が有する複数の圧電振動子は、被検体Pからの反射波を受信して電気信号(反射波信号)に変換する。また、超音波プローブ5は、圧電振動子に設けられる整合層と、圧電振動子から後方への超音波の伝播を防止するバッキング材等を有する。なお、超音波プローブ5は、超音波診断装置本体10と着脱自在に接続される。
超音波プローブ5から被検体Pに超音波が送信されると、送信された超音波は、被検体Pの体内組織における音響インピーダンスの不連続面で次々と反射され、反射波として超音波プローブ5が有する複数の圧電振動子にて受信され、反射波信号に変換される。反射波信号の振幅は、超音波が反射される不連続面における音響インピーダンスの差に依存する。なお、送信された超音波パルスが、移動している血流や心臓壁等の表面で反射された場合、反射波信号は、ドプラ効果により、移動体の超音波送信方向に対する速度成分に依存して、周波数偏移を受ける。
なお、実施形態は、超音波プローブ5が、被検体Pを2次元で走査する1Dアレイプローブであっても、被検体Pを3次元で走査するメカニカル4Dプローブや2Dアレイプローブであっても適用可能である。
超音波診断装置本体10は、超音波プローブ5から受信した反射波信号に基づいて超音波画像データを生成する装置である。図1に示す超音波診断装置本体10は、2次元の反射波信号に基づいて2次元の超音波画像データを生成可能であり、3次元の反射波信号に基づいて3次元の超音波画像データを生成可能な装置である。ただし、実施形態は、超音波診断装置10が、2次元データ専用の装置である場合であっても適用可能である。
超音波診断装置10は、図1に例示するように、送信回路9と、受信回路11と、医用画像処理装置100とを備える。
送信回路9及び受信回路11は、後述する制御機能110yを有する処理回路110の指示に基づいて、超音波プローブ5が行なう超音波送受信を制御する。送信回路9は、パルス発生器、送信遅延部、パルサ等を有し、超音波プローブ5に駆動信号を供給する。パルス発生器は、所定のパルス繰り返し周波数(PRF:Pulse Repetition Frequency)で、送信超音波を形成するためのレートパルスを繰り返し発生する。また、送信遅延部は、超音波プローブ5から発生される超音波をビーム状に集束し、かつ送信指向性を決定するために必要な圧電振動子ごとの遅延時間を、パルス発生器が発生する各レートパルスに対し与える。また、パルサは、レートパルスに基づくタイミングで、超音波プローブ5に駆動信号(駆動パルス)を印加する。
すなわち、送信遅延部は、各レートパルスに対し与える遅延時間を変化させることで、圧電振動子面から送信される超音波の送信方向を任意に調整する。また、送信遅延部は、各レートパルスに対し与える遅延時間を変化させることで、超音波送信の深さ方向における集束点(送信フォーカス)の位置を制御する。
なお、送信回路9は、後述する処理回路110の指示に基づいて、所定のスキャンシーケンスを実行するために、送信周波数、送信駆動電圧等を瞬時に変更可能な機能を有している。特に、送信駆動電圧の変更は、瞬間にその値を切り替え可能なリニアアンプ型の発信回路、又は、複数の電源ユニットを電気的に切り替える機構によって実現される。
また、受信回路11は、アンプ回路、A/D(Analog/Digital)変換器、受信遅延回路、加算器、直交検波回路等を有し、超音波プローブ5から受信した反射波信号に対して各種処理を行って受信信号(反射波データ)を生成する。アンプ回路は、反射波信号をチャンネル毎に増幅してゲイン補正処理を行う。A/D変換器は、ゲイン補正された反射波信号をA/D変換する。受信遅延回路は、デジタルデータに受信指向性を決定するのに必要な受信遅延時間を与える。加算器は、受信遅延回路により受信遅延時間が与えられた反射波信号の加算処理を行う。加算器の加算処理により、反射波信号の受信指向性に応じた方向からの反射成分が強調される。そして、直交検波回路は、加算器の出力信号をベースバンド帯域の同相信号(I信号、I:In-phase)と直交信号(Q信号、Q:Quadrature-phase)とに変換する。そして、直交検波回路は、I信号及びQ信号(以下、IQ信号と記載する)を受信信号(反射波データ)として処理回路110に送信する。なお、直交検波回路は、加算器の出力信号を、RF(Radio Frequency)信号に変換した上で、処理回路110に送信しても良い。IQ信号及びRF信号は、位相情報を有する受信信号となる。
送信回路9は、被検体P内の2次元領域を走査する場合、超音波プローブ5から2次元領域を走査するための超音波ビームを送信させる。そして、受信回路11は、超音波プローブ5から受信した2次元の反射波信号から2次元の受信信号を生成する。また、送信回路9は、被検体P内の3次元領域を走査する場合、超音波プローブ5から3次元領域を走査するための超音波ビームを送信させる。そして、受信回路11は、超音波プローブ5から受信した3次元の反射波信号から3次元の受信信号を生成する。受信回路11は、反射波信号を基に、受信信号を生成し、生成した受信信号を、処理回路110に送信する。
送信回路9は、超音波プローブ5に、所定の送信位置(送信走査線)から、超音波ビームを送信させる。受信回路11は、超音波プローブ5から、所定の受信位置(受信走査線)において、送信回路9が送信した超音波ビームの反射波による信号を受信する。並列同時受信を行わない場合、送信走査線と受信走査線は同一の走査線になる。一方、並列同時受信を行う場合には、送信回路9が1回の超音波ビームを1つの送信走査線で超音波プローブ5に送信させると、受信回路11は、送信回路9が超音波プローブ1に送信させた超音波ビームに由来する反射波による信号を、複数本の受信ビームとして複数の所定の受信位置(受信走査線)で超音波プローブ5を通じて同時に受信する。
医用画像処理装置100は、送信回路9及び受信回路11に接続され、受信回路11から受信した信号の処理、送信回路9の制御とともに、学習済モデルの生成、学習済モデルの実行、及び様々な画像処理を実行する。医用画像処理装置100は、処理回路110と、メモリ132と、入力装置134と、ディスプレイ135とを備える。処理回路110は、Bモード処理機能110a、ドプラ処理機能110b、訓練データ作成機能110c、学習機能110d、インタフェース機能110x、制御機能110y及び生成機能110zとを備える。
実施形態では、Bモード処理機能110a、ドプラ処理機能110b、訓練データ作成機能110c、学習機能110d、インタフェース機能110x、制御機能110y、生成機能110zにて行われる各処理機能及び学習済モデルは、コンピュータによって実行可能なプログラムの形態でメモリ132へ記憶されている。処理回路110はプログラムをメモリ132から読み出し、実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読み出した状態の処理回路110は、図1の処理回路110内に示された各機能を有することになる。また、学習済モデルに対応するプログラムを読み出した状態の処理回路110は、当該学習済モデルに従った処理を行うことができる。なお、図1においては処理回路110の機能が単一の処理回路により実現されるものとして説明するが、複数の独立したプロセッサを組み合わせて処理回路110を構成し、各プロセッサがプログラムを実行することにより機能を実現するものとしても構わない。換言すると、上述のそれぞれの機能がプログラムとして構成され、1つの処理回路が各プログラムを実行する場合であってもよい。また、単一の処理回路により、処理回路110、の有する機能のうち2以上の機能が実現されてもよい。別の例として、特定の機能が専用の独立したプログラム実行回路に実装される場合であってもよい。
なお、図1において、処理回路110、Bモード処理機能110a、ドプラ処理機能110b、訓練データ作成機能110c、学習機能110d、インタフェース機能110x、制御機能110y、及び生成機能110zは、それぞれ処理部、Bモード処理部、ドプラ処理部、作成部、学習部、受付部、制御部、生成部の一例である。生成機能110zは、後述する合成部としての機能も更に備える。
上記説明において用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphical Processing Unit)或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。プロセッサはメモリ132に保存されたプログラムを読み出し実行することで機能を実現する。
また、メモリ132にプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むよう構成しても構わない。この場合、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。従って、例えばメモリ132に学習済モデルが保存される代わりに、プロセッサの回路内に学習済モデルに係るプログラムが直接組み込まれていてもよい。また、超音波診断装置本体10に内蔵される送信回路9、受信回路11等は、集積回路等のハードウェアで構成されることもあるが、ソフトウェア的にモジュール化されたプログラムである場合もある。
処理回路110は、受信回路11から受信した受信信号に対して、各種の信号処理を行なう処理部である。処理回路110は、Bモード処理機能110a、ドプラ処理機能110b、訓練データ作成機能110c、学習機能110d、インタフェース機能110x、制御機能110y及び生成機能110zを有する。
処理回路110は、Bモード処理機能110aにより、受信回路11からデータを受信し、対数増幅処理、包絡線検波処理、対数圧縮処理等を行なって、信号強度が輝度(Brightness)の明るさで表現されるデータ(Bモードデータ)を生成する。
また、処理回路110は、ドプラ処理機能110bにより、受信回路11から受信した受信信号(反射波データ)から速度情報を周波数解析し、ドプラ効果による速度、分散、パワー等の移動体情報を多点について抽出したデータ(ドプラデータ)を生成する。
なお、図1に例示するBモード処理機能110a及びドプラ処理機能110bにおいては、2次元の反射波データ及び3次元の反射波データの両方について処理可能である。
処理回路110は、インタフェース機能110xにより、受信回路11やメモリ132から、生成機能110zによる画像生成のためのデータや画像等を取得する。
処理回路110は、訓練データ生成機能110cにより、インタフェース機能110yにより取得されたデータや画像に基づいて、学習を行うための訓練データを生成する。訓練データ生成機能110ca及び学習機能110dの処理の詳細については後述する。
処理回路110は、学習機能110dにより、訓練データ作成機能110cにより生成された訓練データを用いて学習を行い、学習済モデルを生成する。
処理回路110は、制御機能110yにより、超音波診断装置の処理全体を制御する。具体的には、処理回路110は、制御機能110yにより、入力装置134を介して操作者から入力された各種設定要求や、メモリ132から読込んだ各種制御プログラム及び各種データに基づき、送信回路9、受信回路11、処理回路110の処理を制御する。また、処理回路110は、制御機能110yにより、メモリ132が記憶する表示用の超音波画像データをディスプレイ135にて表示するように制御する。
処理回路110は、生成機能110zにより、Bモード処理機能110a及びドプラ処理機能110bにより生成されたデータから超音波画像データを生成する。処理回路110は、生成機能110zにより、Bモード処理機能110aにより生成された2次元のBモードデータから反射波の強度を輝度で表した2次元Bモード画像データを生成する。また、処理回路110は、生成機能110zにより、ドプラ処理機能110bにより生成された2次元のドプラデータから移動体情報を表す2次元ドプラ画像データを生成する。2次元ドプラ画像データは、速度画像データ、分散画像データ、パワー画像データ、又は、これらを組み合わせた画像データである。
また、処理回路110は、生成機能110zにより、超音波走査の走査線信号列を、テレビ等に代表されるビデオフォーマットの走査線信号列に変換(スキャンコンバート)し、表示用の超音波画像データを生成する。また、処理回路110は、生成機能110zにより、スキャンコンバート以外に、種々の画像処理として、例えば、スキャンコンバート後の複数の画像フレームを用いて、輝度の平均値画像を再生成する画像処理(平滑化処理)や、画像内で微分フィルタを用いる画像処理(エッジ強調処理)等を行なう。また、処理回路110は、生成機能110zにより、ボリュームデータをディスプレイ135にて表示するための2次元画像データを生成するために、ボリュームデータに対して各種レンダリング処理を行なう。
また、処理回路110は、生成機能110zにより、訓練データ生成機能110c及び学習機能110dを用いて行われた処理の結果に基づいて画像を生成する。また、処理回路110は、生成機能110zにより、学習機能110dにより生成された学習済モデルを入力画像に対して適用し、学習済モデルの適用結果に基づいて画像を生成する。
メモリ132は、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子、ハードディスク、光ディスク等で構成される。メモリ132は、処理回路110が生成した表示用の画像データ、訓練用の画像データ等のデータを記憶するメモリである。また、メモリ132は、Bモード処理機能110aやドプラ処理機能110bにおいて生成されたデータを記憶することも可能である。メモリ132が記憶するBモードデータやドプラデータは、例えば、診断の後に操作者が呼び出すことが可能となっており、処理回路110を経由して表示用の超音波画像データとなる。また、メモリ132は、受信回路11が出力した受信信号(反射波データ)を記憶することも可能である。
加えて、メモリ132は、必要に応じて、超音波送受信、画像処理及び表示処理を行なうための制御プログラムや、診断情報(例えば、患者ID、医師の所見等)や、診断プロトコルや各種ボディーマーク等の各種データを記憶する。
入力装置134は、操作者からの各種指示や情報入力を受け付ける。入力装置134は、例えば、マウスやトラックボール等のポインティングデバイス、モード切替スイッチ等の選択デバイス、あるいはキーボード等の入力デバイスである。
ディスプレイ135は、制御機能110y等による制御の下、撮像条件の入力を受け付けるためのGUI(Graphical User Interface)や、生成機能110z等によって生成された画像等を表示する。ディスプレイ135は、例えば、液晶表示器等の表示デバイスである。ディスプレイ135は、表示部の一例である。ディスプレイ135は、マウス、キーボード、ボタン、パネルスイッチ、タッチコマンドスクリーン、フットスイッチ、トラックボール、ジョイスティック等を有する。
続いて、実施形態に係る背景について簡単に説明する。
超音波診断装置において、位相、偏向角、周波数等の送信パラメータを変化させながら、走査線毎に超音波を複数回送受信し、得られた同一走査線に関する受信信号を合成することで、高画質な画像を得る技術がある。変化させるパラメータが位相である例として、THI(Tissue Harmonic Imagin)や、Diff−THI(Differential tissue Harmonic Iamaging)の方法がある。
しかし、これら、一つの走査線あたり超音波を複数回送受信する技術においては、一つの走査線あたり超音波を1回送受信する技術と比較して、一つのフレームの画像を得るために要する時間が大きくなる。(フレームレートは低くなる)。つまり、上記の例の場合、画質とフレームレートは、トレードオフの関係にある。
加えて、心臓など高速で動く部位においては、一つの走査線あたり超音波を複数回送受信した場合、次の超音波を送受信するまでに部位が動いてしまい、画質が劣化する。そのため、これらの部位においては、一つの走査線あたり超音波を複数回送受信するのが難しい場合がある。
かかる背景に鑑みて、実施形態に係る医用画像処理装置100においては、処理回路110は、学習機能110dにより、各走査線について第1の回数ずつ超音波を送受信して得られた第1の画像ないし信号と、各走査線について前記第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2の画像ないし信号とをそれぞれ入力画像ないし信号、出力画像ないし信号として、学習を行い、学習済モデルを生成する。これにより、各走査線において第1の回数ずつ超音波送信をして得られた第1の画像ないし信号を基に、各走査線において第1の回数より大きい回数である第2の回数ずつ超音波送信をして得られた画像に相当する画像を得ることができる。
かかる構成について、図2〜図8を用いて説明する。本例では、関連する入出力データは、画像データを用いて説明するが、必ずしも画像データに限定せず、画像構成する前に取得される、RF信号データ群やIQデータ群を用いても良い。
はじめに、図2を用いて、処理回路110が訓練データ作成機能110c及び学習機能110dにより行う、学習済モデルの生成手順について説明する。図2は、第1の実施形態に係る医用画像処理装置が行う学習の処理の流れについて説明したフローチャートである。
はじめに、送信回路9は、超音波プローブ5に、各走査線について送信パラメータを変化させながら第1の回数より多い第2の回数ずつ超音波を送信させる。ここで、例えば第1の回数は1であり、第2の回数は2である。また、送信パラメータとは、例えば送信する超音波の位相である。上述の例では、送信回路9は、超音波プローブ5に、各走査線について送信する超音波の位相を変化させながら各走査線で2回ずつ超音波を送信させる。なお、送信する超音波の位相を変化させることは、この超音波に含まれる全ての周波数成分の位相を変化させるということに限定されず、少なくとも1つの周波数成分の位相を変化させることを含む。また、送信する超音波の位相を変化させることは、直接的に送信する超音波の位相を制御することに限定されず、送信する超音波の位相を結果的に変化させることを含む。一例として、圧電振動子に適用する駆動信号の形状(波形)を変えることは、送信する超音波の位相を結果的に変化させ得る。
続いて、受信回路9は、超音波プローブ5に、送信回路9が送信させた超音波に対応する受信信号を、第1の受信信号群を含む第2の受信信号群として受信させる。第2の受信信号群は、各走査線について第2の回数ずつ連続的に送受信された超音波に対応する受信信号群であり、後述の処理において、例えば非線形成分画像を生成するために使用される受信信号群である。同時に、受信回路9が超音波プローブ5に受信させた第2の受信信号群の中には、後述の処理において、例えば線形成分画像を生成するために使用される第1の受信信号群が含まれる。
例えば、図3に示されるように、送信回路9が、超音波プローブ5に各走査線について送信させる超音波の位相を、第1の超音波送信で初期位相を第1の位相、例えば0度で、第2の超音波送信で初期位相を第1の位相とは異なる第2の位相、例えば180度で、各走査線で2回ずつ超音波を送信させた場合を考える。この場合、受信回路9は、超音波プローブ5に、図3に示されるように、初期位相が0度の超音波送信に対応する第1の超音波送受信からなる第1の受信信号群20aと、初期位相が180度の超音波送信に対応する第3の受信信号群20bとを受信させる。ここで、第1の受信信号群20a及び第3の受信信号群20bは第2の受信信号群を構成し、THI(Tissue Harmonic Imaging)画像である第2の画像2を生成するために用いられる。また、第1の受信信号群20aは、基本波画像である第1の画像1を生成するために用いられる。なお、ここでいう基本波画像とは、高次高調波成分が0であることを必ずしも要求するものではなく、実施形態において、基本波画像の中に、少量の高次高調波成分が混じっていても良い。なお、以下、送信回路9が超音波プローブ5に送信させる超音波が、単一の周波数成分からなる場合について説明する。
図2に戻り、ステップS110において、処理回路110は、訓練データ作成機能110cにより、複数の第1走査線データセットである第1の受信信号群20aに基づいて、線形成分画像であり基本波画像である第1の画像1を、線形成分画像データセットである第1のデータセットとして生成する。第1の受信信号群20aは、各走査線において第1の回数ずつ超音波を送受信して得られたデータに対応する。従って、第1の画像は、各走査線について第1の回数ずつ超音波を送受信して得られた画像である。
なお、以下、「画像データセット」とは、画像に係るデータセットであって、当該データセットから、画像を直接的、間接的に構成することができるような様々な種類のデータセットのことを指す。従って、画像それ自身は画像データセットのとりうるデータ形態の一例であり、画像データセットの一例に含まれるが、画像データセットの有するデータ形態はそれに限られず、一見すると画像とは異なる形態のデータであっても、適切な処理のもと画像を構成することができるような種々のデータセットを含む。
また、ステップS110において処理回路110が訓練データ作成機能110cにより第1の画像1を生成する代わりに、処理回路110は、例えばインタフェース機能110xにより、メモリ132又は外部の記憶装置から、第1の受信信号群20aに基づく第1の線形成分画像又は非線形成分画像を第1の画像1として取得してもよい。
続いて、ステップS120において、処理回路110は、訓練データ作成機能110cにより、複数の第1走査線データセットである第1の受信信号群20aと、第1の受信信号群20aとは異なる複数の第3走査線データセットである第3の受信信号群20b等から構成され、第1の受信信号群20aを含む複数の第2走査線データセットである第2の受信信号群に基づいて、非線形成分画像でありTHI画像である第2の画像2を、非線形成分画像データセットである第2のデータセットとして生成する。第2の画像2は、各走査線について送信パラメータを変化させながら第1の回数より多い第2の回数ずつ超音波を送受信することで得られる画像である。非線形成分画像データセットである第2の画像2は、複数の第2走査線データセットである第2の受信信号群を走査線ごとに合成することで生成され、例えば第2の受信信号群を構成する各受信信号に含まれる2次以上の高周波成分、差音成分、及び和音成分のうち少なくとも1つに基づく画像データセットである。図3の例では、処理回路110は、訓練データ作成機能110cにより、第2の受信信号群を、走査線ごとに重み付け加算することで、第2の画像2を生成する。
第2の画像2は、第1の画像1と比較して、各走査線あたりのデータ量が多く、例えばより高次高調波の成分まで描出された画像となっており、より高画質な画像となっている。
なお、ステップS120において、処理回路110が訓練データ作成機能110cにより第2の画像2を第2のデータセットとして生成する代わりに、処理回路110は、例えばインタフェース機能110xにより、メモリ132又は外部の記憶装置から、第1の受信信号群を含む第2の受信信号群に基づく非線形成分画像(ステップS110において非線形成分画像を取得した場合には、当該非線形成分画像とは異なる非線形成分画像)を第2の画像2として取得してもよい。
続いて、ステップS130において、処理回路110は、学習機能110dにより、第1のデータセット及び第2のデータをそれぞれ入力データ、出力データの組として学習を実行して学習済モデルを生成する。具体的には、処理回路110は、学習機能110dにより、第1の画像1及び第2の画像2をそれぞれ入力データ、出力データの組として、例えばニューラルネット等を用いて学習を実行して学習済モデルを生成する。例えば、処理回路110は、学習機能110dにより、学習済モデルを、複数の第1走査線データセットである第1の受信信号群20aに基づく線形成分画像データセットである線形成分画像である第1の画像1を入力、第1の受信信号群20aを含み、各走査線について第2の回数ずつ連続的に送受信された超音波に対応する複数の第2走査線データセットである第2の受信信号群に基づく非線形成分画像データセットである非線形成分画像である第2の画像2を出力とした学習により作成する。すなわち、処理回路110は、学習機能110dにより、線形成分画像(又は非線形画像)を入力側の学習データと、非線形画像(入力側の学習データとして非線形画像を取得した場合には、当該非線形画像とは異なる非線形画像)を出力側の学習データとして使用し、学習済モデルを作成する。かかる学習済モデルは、各走査線について第1の回数ずつ超音波を送受信して得られた入力画像が第1のデータセットとして入力されることで、各走査線について第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセット(例えば画像)を疑似的に表す出力画像を出力データセットとして生成する。
例えば、図4に示されているように、処理回路110は、学習機能110dにより、第1のデータセットの一例である第1の画像1及び第2のデータセットの一例である第2の画像2をそれぞれニューラルネットワーク30に対する入力データ、出力データの組として学習を実行して、ニューラルネットワーク30の重みを調整することにより、学習済モデルを生成する。
このようにして生成された学習済モデルは、各走査線について第1の回数ずつ超音波を送受信して得られた第1のデータセットである第1の画像1に基づいて、各走査線について送信パラメータを変化させながら第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセットである第2の画像2を疑似的に表す出力データセットである画像を生成する学習済モデルになっている。ここで生成された学習済モデルは、学習済モデルの実行時、入力画像に基づいて処理回路110により処理が行われることにより、方位分解能及び距離分解能が入力画像よりも高い出力画像を生成する。
なお、処理回路110は、学習機能110dにより、ステップS130の学習済モデルの生成時、画像全体を用いて学習を行ってもよいし、第1の画像1及び第2の画像2のうちの一部分を抽出して、その部分に関してのみ学習を行ってもよい。処理回路110が学習機能110dにより、ステップS130における学習済モデルの生成時、画像のうち一部分を抽出する場合、ランダム抽出により当該一部分を生成してもよいし、またパターンマッチング等を用いて特定の部位を抽出してもよい。
例えば、処理回路110は、学習機能110dにより、例えばあらかじめ設定された解析窓を用いて、学習済モデルを生成してもよい。例えば、処理回路110は、学習機能110dにより、第1の画像1及び第2の画像2のそれぞれの画像のうち、設定された解析窓の中にあるデータのみを学習対象とし、設定された解析窓の外になるデータを学習の対象としない。処理回路110は、例えばインタフェース機能110xにより、かかる解析窓の設定に関する入力をユーザから受け付けても良い。
なお、特定の部位を抽出する場合において、学習時に用いられる画像の部位と、学習済モデルの実行時に用いられる画像の部位とは必ずしも同じである必要はなく、学習時に用いられる画像の部位と、学習済モデルの実行時に用いられる画像の部位とは異ならせることができる。
一例として、処理回路110は、学習機能110dにより、高速で動くため走査線毎に複数回の超音波送信を行うことが難しい部位以外の部位において学習を行う。例えば、第処理回路110は、学習機能110dにより、心臓以外の部位の画像を線形成分画像である第1の画像及び非線形成分画像である第2の画像として用いて学習を行う。続いて、学習済モデルの実行時、処理回路110は、生成機能110zにより、高速で動くため走査線毎に複数回の超音波送信を行うことが難しい部位の画像を学習済モデルに入力する。
例えば、学習済モデルの実行時、処理回路110は、生成機能110zにより、心臓を含む画像を、学習済モデルに入力画像として入力する。換言すると、学習済モデルの実行時において入力画像は心臓を含む一方で、学習に用いる線形成分画像である第1の画像1及び非線形成分画像である第2の画像2は、心臓を含まない。換言すると、学習済モデルの実行時における第1のデータセットは、心臓を含む領域に対する超音波の送受信により得られる一方で、学習に用いる線形成分画像である第1の画像1及び非線形成分画像である第2の画像2は、心臓を含まない。このことにより、処理回路110は、生成機能110zにより、高速で動くため走査線毎に複数回の超音波送信を行うことが難しい部位、例えば心臓の部位における、複数回の超音波送信により得られた画像に相当する画像を、出力画像として得ることができる。
また、処理回路110は、学習機能110dにより、第1の画像及び第2の画像を部位毎に分類し、異なる部位毎に別々に学習を行っても良い。また、ステップS130において、出力データセットのデータ形式は、画像に限られない。例えば、処理回路110は、学習機能110dにより、走査線について第1の回数だけ超音波を送受信して得られる第1の走査線データセットに基づいて、当該走査線について第1の回数より多い第2の回数だけ超音波を送受信して得られる第2の走査線データセットを疑似的に表す出力データセットを生成する学習済モデルに対して、第1走査線データセットを入力することで、出力データセットを生成し、生成機能110zにより、当該出力データセットに基づいて画像を生成してもよい。
ステップS130における学習方法の一例として、処理回路110は、学習機能110dにより、逆誤差伝播法を用いて学習を実行して学習済モデルを生成する。また、処理回路110は、学習機能110dにより、自己符号化を用いた深層学習を行って学習を実行して学習済モデルを生成してもよい。
続いて、処理回路110が学習機能110dに基づいて生成した学習済モデルの実行について説明する。図5は、第1の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。
はじめに、ステップS210において、処理回路110は、インタフェース機能110xにより、各走査線について第1の回数ずつ超音波を送受信して得られた入力画像を第1のデータセットとして取得する。一例として、処理回路110は、インタフェース機能110xにより、メモリ132に保存されている医用画像を取得することにより、入力画像を取得する。なお、入力画像は、医用画像の全体に限定されない。例えば関心領域に対応する医用画像の一部であっても良い。この場合、処理回路110への負荷を低減することができ、例えば出力画像の生成に関するリアルタイム性を向上させることができる。
続いて、ステップS220において、処理回路110は、生成機能110zにより、処理回路110が学習機能110dにより生成した学習済モデルに対して、処理回路110が生成機能110zによりステップS210で取得した第1のデータセットを入力することで、第2のデータセットを生成する。一例として、処理回路110は、生成機能110zにより、ステップS210で取得した入力画像と、処理回路110が学習機能110dにより生成した学習済モデルとに基づいて、出力画像を生成する。ここで処理回路110が画像生成機能110dにより生成した出力画像は、各走査線について送信パラメータを変化させながら第2の回数ずつ超音波を送信することで得られる第2のデータセットである第2の画像2を疑似的に表す。例えば、処理回路110が学習機能110dにより生成した学習済モデルは、ステップS210で取得した第1のデータセットである入力画像に基づいて、方位分解能及び距離分解能が第1のデータセットである入力画像より高い出力データセットである出力画像を生成する。
なお、処理回路110は、合成部としての生成機能110zにより、ステップS210で取得した第1のデータセットである入力画像と、ステップS220において生成された出力データセットである出力画像とを、距離方向の位置に応じた比率で合成して合成データセットである合成画像を更に得ても良い。
ここで、処理回路110が、生成機能110zにより、ステップS210で取得した入力画像と、ステップS220において生成された出力画像とを、距離方向の位置に応じた比率で合成する理由は以下の通りである。すなわち、例えば基本波成分画像と、2次高調波成分画像と、3次高調波成分画像とでは、距離方向の位置(深さ)に対する信号強度の減衰の大きさが異なる。例えば、高調波成分画像は、基本波成分画像と比較して、距離が深くなるにつれて信号強度が大きく減衰する。従って、処理回路110は、生成機能110zにより、例えば距離が浅いところで高調波成分画像の重みを大きくし、逆に距離が深いところで基本波成分画像の重みを大きくしながら画像を合成することで、全体としてSN比の大きな画像を得ることができる。また、類似の理由から、処理回路110が学習機能110dにより、周波数帯域が異なる非線形成分の画像を出力側の学習データとして学習した学習済モデルを生成している場合、各学習済モデル(例えば2次高調波画像を出力側の学習データとして学習した学習済モデルA、3次高調波画像を出力画像の学習データとして学習した学習済モデルB)に入力画像を入力して生成された各出力画像(学習済モデルAの出力画像、学習済モデルBの出力画像)を、距離方向の位置に応じた比率で合成して合成画像を得ても良い。なお、この処理で得られた合成画像に対して、更に入力画像を合成しても良い。
以上述べたように、第1の実施形態に係る医用画像処理装置によれば、高画質な画像を得ることができる。
(第1の実施形態の第1の変形例)
なお、実施形態は上述の例に限られない。
これまでの例では、処理回路110が、学習機能110dにより、第1の受信信号群20aに基づく線形成分画像である第1の画像1を入力、第2の受信信号群に基づく非線形成分画像である第2の画像2を出力とする学習により、学習済モデルを生成する場合について説明した。しかしながら、実施形態における第1の画像1及び第2の画像2の例はこれに限られず、処理回路110は、学習機能110dにより、さまざまな第1の画像1及び第2の画像2を使用して、学習済モデルを生成してもよい。
かかる場合について、図6を用いて説明する。図6は、第1の実施形態の第1の変形例に係る医用画像処理装置の行う処理について説明した図である。
図6(a)は、第1の実施形態で説明した場合における第1の画像1及び第2の画像2の生成に対応する図である。かかる場合、処理回路110が、訓練データ作成機能110cにより、第1の受信信号群20aに基づき線形成分画像であり基本波画像である第1の画像1を生成し、第1の受信信号群20aと、第3の受信信号群20b等で構成される第2の受信信号群に基づき非線形成分画像でありTHI画像である第2の画像2を生成する。すなわち、処理回路110は、学習機能110dにより、学習済モデルを、例えば、第1の位相で送信された超音波に対応する複数の第1走査線データセットである第1の受信信号群20aに基づく線形成分画像を入力、第2の受信信号群に基づく非線形成分画像を出力とした学習により作成する。しかしながら、実施形態はこれに限られない。
例えば、図6(b)に示されるように、処理回路110は、第2の受信信号群に含まれるが第1の受信信号群には含まれない第3の受信信号群20bに基づき線形成分画像であり基本波画像である第1の画像1を生成し、学習機能110dにより、生成された基本波画像1を入力画像として用いて学習済モデルを生成してもよい。すなわち、処理回路110は、学習機能110dにより、学習済モデルを、例えば、複数の第2走査線データセットである第2の受信信号群に含まれ、複数の第1走査線データセットである第1の受信信号群20aとは異なる、複数の第3走査線データセットである第3の受信信号群20bに基づく別の線形成分画像データセットである線形成分画像を入力、非線形画像データセットである非線形成分画像を出力とした学習により作成してもよい。ここで、複数の第3走査線データセットである第3の受信信号群20bは、第1の受信信号20aに係る送受信の位相である第1の位相とは異なる第2の位相で送信された超音波に対応する受信信号群である。
また、例えば図6(c)に示されているように、処理回路110は、学習機能110dにより、第1の受信信号群20aに基づく線形成分画像と、第3の受信信号群20bに基づく線形成分画像との両方を入力画像として学習を行ってもよい。これにより、入力側の学習データと出力側の学習データのペアをより多く確保することができ、より高性能な学習済モデルを生成することができる。
(第1の実施形態の第2の変形例)
図3では、第1の回数が1である場合について説明したが、実施形態は、第1の回数が1である場合に限られない。また、実施形態は、第1の画像1が線形成分画像である場合に限られない。一例として、処理回路110は、訓練データ作成機能110cにより、複数の第1走査線データセットである第1の受信信号群に周波数フィルタを適用することにより、基本波成分を除去し非線形成分を抽出し、複数の第1走査線データセットである第1の受信信号群に基づく第1の非線形成分画像を第1のデータセットである第1の非線形成分画像データセットとして生成する。一方で、処理回路110は、訓練データ作成機能110cにより、複数の第1走査線データセットである第1の受信信号群を含む複数の第2走査線データセットである第2の受信信号群を走査線毎に合成することで、第2の非線形成分画像を第2のデータセットである第2の非線形成分画像データセットとして生成する。一例として、第1の非線形成分画像は、2次高調波の画像であり、第2の非線形成分画像は、3次高調波の画像である。
かかるのち、処理回路110は、学習機能110dにより、複数の第1走査線データセットである第1の受信信号群に基づく第1の非線形成分画像データセットである第1の非線形成分画像を入力、複数の第1走査線データセットである第1の受信信号群を含む複数の第2走査線データセットである第2の受信信号群に基づく第2の非線形成分画像データセットである第2の非線形画像を出力とした学習により学習済モデルを生成してもよい。
ここで、第1の非線形成分画像も、第2の非線形成分画像も、非線形成分画像であることは、共通する。しかしながら、第1の非線形成分画像が、各走査線に対して第1の回数ずつ超音波を送受信して得られた画像を基にしているのに対して、第2の非線形成分画像は、各走査線に対して第1の回数より多い第2の回数ずつ超音波を送受信して得られた画像を基にしている。すなわち、この場合、複数の第2走査線データセットは、各走査線について第2の回数ずつ連続的に送受信された超音波に対応する。従って、処理回路110は、学習機能110dにより、送信回数が少ない画像を基に送信回数が多い画像を推定する学習を行い、比較的低画質な第1の非線形成分画像を基に、比較的高画質な第2の非線形成分画像を疑似的に表す画像を生成することで、高画質な画像を生成することができる。
なお、第1の実施形態と同様に、処理回路110は、学習機能110dにより、心臓以外の部位の画像を第1の非線形成分画像及び第2の非線形成分画像として用いて学習を行い、続いて、学習済モデルの実行時、処理回路110は、生成機能110zにより、心臓を含む画像を、学習済モデルに入力画像として入力してもよい。かかる場合、学習済モデルの実行時において入力画像は心臓を含む一方で、学習に用いる第1の非線形成分画像及び第2の非線形成分画像は、心臓を含まない。換言すると、学習済モデルの実行時における第1のデータセットは、心臓を含む領域に対する超音波の送受信により得られ、すなわち第1のデータセットに含まれる画像データセットが心臓を含む一方で、学習に用いる線形成分画像データセットである線形成分画像である第1の画像1及び非線形成分画像データセットである非線形成分画像である第2の画像2は、心臓を含まない。このことにより、処理回路110は、生成機能110zにより、高速で動くため走査線毎に複数回の超音波送信を行うことが難しい部位、例えば心臓の部位における、複数回の超音波送信により得られた画像に相当する画像を、出力画像として得ることができる。
(第1の実施形態の第3の変形例)
また、実施形態では、2レート送信すなわち2回の超音波送受信をひとかたまりの超音波送受信として処理を行う場合、かつ送受信される超音波が、単一周波数の場合について説明した。しかしながら、実施形態はこれに限られない。図7及び図8を用いて、かかる場合について説明する。図7及び図8は、第1の実施形態の第3の変形例に係る医用画像処理装置の行う処理について説明した図である。
まず、2レート送信の場合について説明する。
図7(a)に示されるように、送信回路9は、超音波プローブ5に、超音波送信を、第1の位相、例えば0度の初期位相で行わせ、第1の位相とは異なる第2の位相、例えば180度の初期位相で行わせる。これにより、受信回路11は、これら2回の超音波送信それぞれに対応する受信信号を、超音波プローブ5を通じて受信する。
図7(b)は、送信回路9が超音波プローブ5に送信させる超音波送信が、単一の周波数成分fの超音波送信である場合を示している。かかる場合、送信回路9は、超音波プローブ5に、単一の周波数成分fで初期位相が0度の超音波送信及び、単一の周波数成分fで初期位相が180度の超音波送信を送信させる。受信回路11は、超音波プローブ5を通じて、これら超音波送信に対応する受信信号を第1の受信信号群20a及び第3の受信信号群20bとして取得する。処理回路110は、生成機能110zにより、第1の受信信号群20a及び第3の受信信号群20bに対して所定の重み付け加算を行って倍音の周波数2fの周波数成分に対応する高次高調波成分の信号を抽出し、第2の画像2を生成する。例えば、処理回路110は、生成機能110zにより、受信した受信信号の和を取ることにより周波数2fの周波数成分に対応する高次高調波成分の信号を抽出し、非線形成分画像である第2の画像2を生成する。
しかしながら、実施形態は、送信回路9が超音波プローブ5に送信させる超音波送信が、単一の周波数成分fの超音波送信である場合に限られず、送信回路9が超音波プローブ5に送信させる超音波送信が、複数の周波数成分を持つ超音波送信であってもよい。
図7(c)は、送信回路9が超音波プローブ5に送信させる超音波送信が、複数の周波数成分を持つ超音波送信である場合を示している。図7(c)において、f及びfは、これら複数の周波数成分を示している。送信回路9は、超音波プローブ5に、第1の超音波送受信において、複数の周波数成分f、fで初期位相が0度の超音波送信を送信させ、第2の超音波送受信において、複数の周波数成分f、fで初期位相が180度の超音波送信を送信させる。
続いて受信回路11は、超音波プローブ5に、これらの超音波送受信のそれぞれに対応する受信信号を超音波プローブ5に受信させる。処理回路110は、画像成績機能120zにより、これらの受信信号に基づいて、例えばf−f、2fの周波数成分に対応する高次高調波成分の信号を抽出し、非線形成分画像である第2の画像2を生成する。
また、送信回路9が超音波プローブ5に送信させる超音波送信は、2つの周波数成分の超音波送信に限られず、例えば3つの周波数成分を持つ超音波送信を2レート送信で行って2回の超音波送信を行っても良い。かかる2回の超音波送受信に係る受信信号を加算又は減算することにより、処理回路110は、偶数次または奇数次の高調波成分を抽出することができる。なお、これに加えて、処理回路110は、基本波成分をフィルタで抽出することにより、基本波成分以外の奇数次の高調波成分を抽出してもよい。
また、実施形態は、送信回路9が超音波プローブ5に送信させる超音波送信が、2レート送信である場合に限られず、3レート以上の送信であってもよい。図8は、3レート以上の送信の場合の一例として、3レート送信の場合を示している。
そのような場合、図8(a)に示されるように、送信回路9は、例えば第1の超音波送信を0度の初期位相で、第2の超音波送信を、第1の超音波送信とは異なる初期位相、例えば120度の初期位相、第3の超音波送信を、例えば240度の初期位相で超音波プローブ5に送信させる。続いて受信回路11は、送信回路9が超音波プローブ5に送信させた3回の超音波送信それぞれに対応する受信信号を超音波プローブ5に受信させる。処理回路110は、生成機能110zにより、受信した受信信号群21a、21b、21cに対して所定の重み付け加算を行って、高次高調波の成分を抽出し、非線形成分画像である第2の画像2を生成する。
図8(b)は、送信回路9が超音波プローブ5に送信させる超音波送信が、単一の周波数成分fの超音波送信である場合を示している。かかる場合、送信回路9は、超音波プローブ5に、位相を変化させながら3回の超音波送信を送信させる。続いて受信回路111は、超音波プローブ5に、これらの超音波送信のそれぞれに対応する受信信号を超音波プローブ5に受信させる。処理回路110は、生成機能110zにより、受信信号群21a、21b、21cに所定の加算処理を行うことにより、周波数3fの周波数成分に対応する高次高調波成分の信号を抽出する。
また、別の例として、図8(c)は、送信回路9が超音波プローブ5に送信させる超音波送信が、複数の周波数成分の超音波送信である場合を示している。例えば、送信回路9は、超音波プローブ5に、3つの周波数成分f1,f2,f3を有する超音波を位相反転させながら2レートで送信させる。続いて受信回路11は、超音波プローブ5に、これらの超音波送信のそれぞれに対応する受信信号を超音波プローブ5に受信させる。処理回路110は、生成機能110zにより、受信した受信信号に対して加算処理や減算処理、フィルタ処理などを行って、例えばf−f, f−f,2f,f−f,3f,f+fの周波数成分に対応する高次高調波成分の信号を抽出する。
(第1の実施形態のその他の変形例)
実施形態では、図3のステップS110において処理回路110が、訓練データ生成機能110cにより、第1の画像1を第1のデータセットとして生成し、ステップS120において、第2の画像2を第2のデータセットとして生成し、それらを用いて学習を行う場合について説明した。しかしながら、実施形態はこれに限られず、例えば第1のデータセットは、画像である場合に限られず、例えばビームフォーミング実行前の受信信号群(ch信号)でもよく、またビームフォーミング実行後の受信信号群でもよい。同様に、第2のデータセットは、画像である場合に限られず、例えばビームフォーミング実行前の受信信号群でもよく、またビームフォーミング実行後の受信信号後でもよい。すなわち、第1のデータセット、第2のデータセット及び出力データセットは、それぞれ画像データセットを含む場合に限られない。例えば、第1のデータセット、第2のデータセット及び出力データセットは、それぞれ走査線データセットを生成するための複数のチャンネルデータセットを含んでもよい。例えば、実施形態において、学習済モデルは、複数の第1チャンネルデータセットを入力、複数の第1チャンネルデータセットと複数の第2チャンネルデータセットを、チャンネル毎に合成して得られる複数の第3チャンネルデータセットを出力とした学習により作成されてもよい。ここで、複数の第1チャンネルデータセット及び複数の第2チャンネルデータセットは、例えば、同じ走査線について第2の回数ずつ連続的に送受信された超音波に対応する。ここで、複数の第1チャンネルデータセット及び複数の第2チャンネルデータセットは、典型的には、心臓とは異なる部位に対する超音波送受信により得られるのに対して、複数の第3のチャンネルデータセットは、心臓に対する超音波送受信により得られる。
例えば、処理回路110は、訓練データ生成機能110cにより、ステップS110においてビームフォーミング実行前の受信信号群を第1のデータセットとして生成し、ステップS120において、ビームフォーミング実行前の受信信号群を第2のデータセットとして生成し、ステップS130において、第1のデータセット及び第2のデータセットをそれぞれ入力データ、出力データの組として学習を実行して学習済モデルを生成する。
また、別の例として、処理回路110は、訓練データ生成機能110cにより、ステップS110においてビームフォーミング実行後の受信信号群を第1のデータセットとして生成し、ステップS120において、ビームフォーミング実行後の受信信号群を第2のデータセットとして生成し、ステップS130において、第1のデータセット及び第2のデータセットをそれぞれ入力データ、出力データの組として学習を実行して学習済モデルを生成する。
なお、ビームフォーミング実行前の受信信号群や、ビームフォーミング実行後の受信信号群を、第1のデータセットや第2のデータセットとして用いる場合については、後述する第2の実施形態及び第3の実施形態で詳しく説明する。
また、実施形態において、学習済モデルに用いられる入力データ及び出力データ、すなわち第1のデータセット及び第2のデータセットは、同一の処理段階に係るデータセットに限られず、異なる処理段階に係るデータセットであってもよい。例えば、ビームフォーミング実行後の受信信号群が、学習済モデルの入力データ(第1のデータセット)として用いられ、画像が、学習済モデルの出力データ(第2のデータセット)として用いられてもよい。別の例として、例えば、ビームフォーミング実行前の受信信号群が、第1のデータセットとして用いられ、ビームフォーミング実行後の受信信号群が、第2のデータセットとして用いられても良い。
また、上述した学習済モデルにおいて入力されるデータセットである第1のデータセット及び、出力されるデータセットである第2のデータセットについて、上述のようにさまざまなデータの形態や形式が考えられることは、第2の実施形態以降についても同様である。以降の実施形態における第1のデータセット、第2のデータセット等についても、同様に、上述されているさまざまなデータの形態や形式に係る変形例を考えることができる。 また、送信回路9が各走査線で変化させる送信パラメータが、送信する超音波の位相である場合について説明したが、実施形態は、そのような例に限られない。例えば、実施形態は、空間コンパウンドの場合、すなわち、送信回路9が各走査線で変化させるパラメータが、ビームの向きであってもよい。すなわち、送信パラメータ送信回路9が非線形成分画像である第2の画像2を生成する際、ビームの向きを変化させながら、複数の超音波送受信を行う。
また、実施形態では、送信回路9が超音波プローブ5に、走査線毎に複数回の超音波送信を行い、それら複数回の超音波送信で得られたデータから、処理回路110が生成機能110zにより第1の画像1と第2の画像2との両方を生成する場合について説明した。しかしながら、実施形態はこれに限られない。第1の画像1は、第2の画像2を生成したスキャンのデータから生成されなくともよく、第1の画像1及び第2の画像2は、別々のスキャンに基づいて生成されてもよい。
また、処理回路110が学習済モデルを適用して生成した出力画像に対して、ユーザがフィードバックを与え、処理回路110が、学習機能110dにより、ユーザから与えられたフィードバックを基に、学習済モデルの内部アルゴリズムを更新してもよい。すなわち、処理回路110は、学習機能110dにより、ユーザからのフィードバックを基に学習済モデルを更新し続けることにより、自己学習を行っても良い。
(第2の実施形態)
第1の実施形態においては、処理回路110が、学習機能110dにより、第1の画像1及び第2の画像2をそれぞれ入力、出力として、学習を行い学習済モデルを生成する場合について説明した。しかしながら実施形態は、画像を用いて学習を行う場合に限られず、画像を生成する前の中間的なデータ、例えば、Delay−and−Sum後のRF信号や直行検波後のIQ信号を用いて、学習を行っても良い。
かかる構成について、図9及び図10を用いて説明する。図9は、第2の実施形態に係る医用画像処理装置が行う学習の処理の流れについて説明したフローチャートである。
まず、図9を用いて、学習済モデルの生成段階の処理の流れについて説明する。
はじめに、送信回路9は、超音波プローブ5に、各走査線について送信パラメータを変化させながら第1の回数より多い第2の回数ずつ超音波を送信させる。例えば、送信回路9は、超音波プローブ5に、各走査線について送信する超音波の位相を変化させながら各走査線で2回ずつ超音波を送信させる。
続いて、受信回路9は、超音波プローブ5に、送信回路9が送信させた超音波に対応する受信信号を、第1の受信信号群20aを含む第2の受信信号群として受信させる
ステップS300において、処理回路110は、訓練データ作成機能110cにより、第1の受信信号群20aに基づいて、Delay and Sum処理後のRF信号ないしIQ信号の信号データ群である第1のデータを、第1の受信信号としてインタフェース機能110x等により受信回路11から取得する。かかる第1のデータは、例えば、ビーム方向、深さ方向の2軸に対応するデータであり、第1の画像1を生成するための中間データである。なお、Delay and Sum処理は、例えばソフトウェア処理として処理回路110が実行する。あるいは、出力データ(受信信号群)を受信回路11に入力し、受信回路11が実行する。このように、第2の実施形態では、第1の受信信号は、ビームフォーミング実行後の受信信号である。
続いて、ステップS310において、処理回路110は、訓練データ作成機能110cにより、第2の受信信号群に基づいて、Delay and Sum処理後のRF信号ないしIQ信号の信号データである第2のデータを、第2の受信信号としてインタフェース機能110x等により受信回路11から取得する。かかる第2のデータは、例えば、ビーム方向、深さ方向の2軸に対応する2次元データであり、第2の受信信号群に含まれる受信信号群を対応する位置毎に合成して得られる。また、かかる第2のデータは、例えば、第2の画像2を生成するための中間データである。このように、第2の実施形態では、第2の受信信号は、ビームフォーミング実行後の受信信号である。
続いて、ステップS320において、処理回路110は、学習機能110dにより、第1のデータ及び第2のデータをそれぞれ入力データ、出力データの組として、例えばニューラルネット等を用いて学習を実行して学習済モデルを生成する。かかる学習済モデルは、走査線について第1の回数だけ超音波を送受信して得られる、Delay and Sum処理後の信号データ群である第1の受信信号に基づいて、当該走査線について第1の回数より多い第2の回数だけ超音波を送受信して得られる、Delay and Sum処理後の信号データ群である第2の受信信号を疑似的に表す出力信号を出力データセットとして生成する。
これらステップS300からステップS320の処理は、学習の対象が例えばチャネルごとの中間データであることを除いてはステップS110からステップS130と同様な処理であるが、第2の実施形態においては、第1の実施形態と比較して前段処理によって得られるデータ群を用いて学習を行っているので、より画質の向上が期待される。
続いて、図10を用いて、学習済モデルの実行段階の処理について説明する。図10は、第2の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。
ステップS400において、処理回路110は、インタフェース機能110xにより、各走査線について第1の回数ずつ超音波を送受信して得られた入力画像を生成する前の中間データであって、Delay and Sum処理が行われた後のRF信号ないしIQ信号の信号データ群である入力データを、第1の受信信号として受信回路11やメモリ132等から取得する。
続いて、ステップS410において、処理回路110は、生成機能110zにより、ステップS400で取得した入力データと、処理回路110が学習機能110dにより生成した学習済モデルとに基づいて、第2の受信信号を第2のデータに対応する出力データとして生成する。すなわち、処理回路110は、図示しない処理部により、ステップS320で生成された学習済モデルに対して、走査線について第1の回数だけ超音波を送受信して得られる入力受信信号を第1の受信信号として入力することで、出力信号を第2の受信信号として生成する。
続いて、ステップS420において、処理回路110は、生成機能110zにより、ステップS410において生成された出力データに基づいて、各走査線について第1の回数より多い第2の回数ずつ超音波を送信して得られる第2の画像を疑似的に表す出力画像を生成する。すなわち、処理回路110は、生成機能110zにより、ステップS410で生成された出力信号に基づいて画像を生成する。
なお、第1の実施形態と同様に、処理回路110は、生成機能110zにより、ステップS400で取得した入力データから得られる画像と、ステップS420において生成された画像とを、距離方向の位置に応じた比率で合成して合成画像を更に得ても良い。複数の学習済モデルを生成した場合の合成についても、第1の実施形態と同様である。また、実施形態は、Delay and Sum処理後の信号データ群を、入力及び出力に使用する場合に限られず、処理回路110は、学習機能110dにより、その他の種類の処理前後での信号データ群または受信直後の信号データを用いて学習を行っても良い。
以上のように、第2の実施形態では、処理回路110は、画像ではなく、信号データ群を用いて学習を行う。これにより、画質を更に向上することができる。
(第3の実施形態)
第2の実施形態においては、画像以外のデータ形式で学習が行われる例の一例として、処理回路110が、学習機能110dにより、ビームフォーミング後の信号群、例えばDelay−and−sum処理後のRF信号や直交検波後のIQ信号を第1のデータセット及び第2のデータセットとして用いて学習を行う場合について説明した。第3の実施形態においては、画像以外のデータ形式で学習が行われる例の別の一例として、更に前段の処理の信号群、例えばDelay−and−sum処理を行ってビームフォーミングを行う前のチャンネルごとのデータを第1のデータセット及び第2のデータセットとして用いて学習を行う場合について説明する。
第3の実施形態は、第2の実施形態と比較して、さらに前段の処理のデータを用いて学習が行われるので、より前段の処理で発生するノイズ等の効果を除去することができ、画質の向上が期待できる。
かかる構成について、図9及び図10を再び用いて説明する。なお、第3の実施形態は、第2の実施形態と、第1のデータセット及び第2のデータセットとして使用されるデータの種類が異なり、その他の処理については第2の実施形態と同様の処理が行われる。以下、第2の実施形態と同様の処理を行う部分については繰り返しての説明は割愛する。
まず、図9を用いて、学習済モデルの生成段階の処理の流れについて説明する。
第2の実施形態と同様に、はじめに、送信回路9は、超音波プローブ5に、各走査線について送信パラメータを変化させながら第1の回数より多い第2の回数ずつ超音波を送信させる。例えば、送信回路9は、超音波プローブ5に、各走査線について送信する超音波の位相を変化させながら各走査線で2回ずつ超音波を送信させる。
続いて、受信回路9は、超音波プローブ5に、送信回路9が送信させた超音波に対応する受信信号を、第1の受信信号群20aを含む第2の受信信号群として受信させる。
ステップS300において、処理回路110は、訓練データ作成機能110cにより、第1の受信信号群20aに基づいて、Delay and Sum処理が行われる前のチャネルごとのデータであって、第1の画像1を生成する前の中間データである第1のデータを、第1の受信信号として、インタフェース機能110z等により受信回路11から取得する。かかる第1のデータは、例えば、チャンネル方向、ビーム方向、深さ方向の3次元ボリュームデータである。このように、第3の実施形態では、第1の受信信号は、ビームフォーミング実行前の受信信号である。
続いて、ステップS310において、処理回路110は、訓練データ作成機能110cにより、第2の受信信号群に基づいて、Delay and Sum処理が行われる前のチャネルごとのデータであって、第2の画像2を生成する前の中間データである第2のデータを、第2の受信信号として、インタフェース機能110z等により受信回路11から取得する。このように、第3の実施形態では、第2の受信信号は、ビームフォーミング実行前の受信信号である。
続いて、ステップS320において、処理回路110は、学習機能110dにより、第1のデータ及び第2のデータをそれぞれ入力データ、出力データの組として、例えばニューラルネット等を用いて学習を実行して学習済モデルを生成する。かかる学習済モデルは、走査線について第1の回数だけ超音波を送受信して得られる、超音波画像生成に用いられるデータであって、Delay and Sum処理が行われる前のチャネルごとのデータである第1の受信信号に基づいて、当該走査線について第1の回数より多い第2の回数だけ超音波を送受信して得られる、超音波画像生成に用いられるデータであって、Delay and Sum処理が行われる前のチャネルごとのデータである第2の受信信号を疑似的に表す出力信号を出力データセットとして生成する。
続いて、図10を再び用いて、学習済モデルの実行段階の処理について説明する。
ステップS400において、処理回路110は、インタフェース機能110xにより、各走査線について第1の回数ずつ超音波を送受信して得られた入力画像を生成する前の中間データであって、Delay and Sum処理が行われる前のチャネルごとのデータである第1のデータを、第1の受信信号として、受信回路11やメモリ132等から取得する。
続いて、ステップS410において、処理回路110は、図示しない処理部により、ステップS320で生成された学習済モデルに対して第1の受信信号を入力することで、第2の受信信号を出力データとして生成する。
続いて、ステップS410の終了段階では生成されたデータは中間的なデータに過ぎないことから、これらを画像の形式に変換するために、例えばDelay and Sum処理を含む処理が行われる。ステップS420において、処理回路110は、生成機能110zにより、ステップS410において生成された出力データに基づいて、各走査線について第1の回数より多い第2の回数ずつ超音波を送信して得られる第2の画像を疑似的に表す出力画像を生成する。すなわち、処理回路110は、生成機能110zにより、ステップS410で生成された出力信号に基づいて画像を生成する。なお、Delta and Sum処理は、例えばソフトウェア処理として処理回路110が実行する。あるいは、ステップS410の終了段階で生成された出力データ(受信信号群)を受信回路11に入力し、受信回路11が実行する。
なお、第2の実施形態と同様に、処理回路110は、生成機能110zにより、ステップS400で取得した入力データから得られる画像と、ステップS420において生成された画像とを、距離方向の位置に応じた比率で合成して合成画像を更に得ても良い。
以上のように、第3の実施形態では、処理回路110は、第2の実施形態よりさらに前段におけるデータを用いて学習を行う。これにより、画質を更に向上することができる。
(第4の実施形態)
第1の実施形態では、処理回路110が、学習機能110dにより、線形成分画像を入力、非線形成分画像を出力として学習を行う場合について説明した。すなわち、上述の例では、処理回路110は、学習機能110dにより、比較的画質の低い画像を入力、画質の高い画像を出力として学習を行い、画質の低い画像を基に、画質の高い画像を算出する。しかしながら、実施形態はこれに限られない。第4の実施形態では、処理回路110は、学習機能110dにより、画質の高い画像と画質の低い画像との差分画像を出力として学習を行う。これにより、処理回路110は、画質が低下し、またはアーチファクトが生じている場所を特定することができる。
かかる構成について、図11及び図12を用いて説明する。図11は、第4の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。
まず、図11を用いて、学習済モデルの生成段階の処理の流れについて説明する。
はじめに、送信回路9は、超音波プローブ5に、各走査線について送信パラメータを変化させながら第1の回数より多い第2の回数ずつ超音波を送信させる。例えば、送信回路9は、超音波プローブ5に、各走査線について送信する超音波の位相を変化させながら各走査線で2回ずつ超音波を送信させる。
続いて、受信回路9は、超音波プローブ5に、送信回路9が送信させた超音波に対応する受信信号を、第1の受信信号群20aを含む第2の受信信号群として受信させる。
ステップS510において、処理回路110は、訓練データ作成機能110cにより、画像を用いて学習をする場合、各走査線について第1の回数ずつ超音波を送受信して得られたデータである第1の受信信号群20aに基づいて、第1の画像1を第1のデータセットとして生成する。また、別の例として、処理回路110は、訓練データ作成機能110cにより、Delay and Sum処理が行われる後のRF信号ないしIQ信号の信号データ群を、第1のデータセットとして生成する。
また、別の例として、チャネルごとのデータを用いて学習をする場合、処理回路110は、訓練データ作成機能110cにより、第1の受信信号群20aに基づいて、チャネルごとのデータである第1のデータを第1のデータセットとして生成する。
また、ステップS520において、処理回路110は、訓練データ作成機能110cにより、画像を用いて学習をする場合、各走査線について第1の回数より多い第2の回数ずつ超音波を送受信して得られたデータである第2の受信信号群に基づいて、第2の画像2を第2のデータセットとして生成する。
また、別の例として、処理回路110は、訓練データ作成機能110cにより、Delay and Sum処理が行われる後のRF信号ないしIQ信号の信号データ群を、第2のデータセットとして生成する。また、別の例として、チャネルごとのデータを用いて学習をする場合、処理回路110は、訓練データ作成機能110cにより、第2の受信信号群に基づいて、チャネルごとのデータである第2のデータを生成する。なお、ステップS510及びステップS520の処理は、ステップS110及びステップS120、あるいはステップS300及びステップS310と同様の処理である。
続いてステップS530において、処理回路110は、訓練データ作成機能110cにより、ステップS510で生成された第1の画像と第2の画像との差分画像を、第3のデータセットして生成する、または例えばチャネルごとのデータである第1のデータと第2のデータとの差分データを生成する。
続いてステップS540において、処理回路110は、学習機能110dにより、第1のデータセット及び第3のデータセットをそれぞれ入力データ、出力データの組として学習を実行して学習済モデルを生成する。例えば、処理回路110は、学習機能110dにより、第1の画像及び差分画像をそれぞれ入力データ、出力データの組として学習を実行して学習済モデルを生成する、または、第1のデータ及び差分データをそれぞれ入力データ、出力データの組として学習を実行して学習済モデルを生成する。かかる学習済モデルは、各走査線について第1の回数ずつ超音波を送受信して得られた第1のデータセットである第1の画像に基づいて、第1の画像と、各走査線について第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセットである第2の画像との差分画像を疑似的に表す、すなわち第2のデータセットと第1のデータセットとの違いを表す出力画像を出力データセットである第3のデータセットとして疑似的に生成する。
ここで、差分画像は、比較的低画質であると考えられる第1の画像と、比較的高画質であると考えられる第2の画像との差分であり、この差分画像の画素値が大きい場所は、例えばアーチファクトがあるなどして画質が劣化している領域であると考えられる。従って、処理回路110が、学習機能110dにより、差分画像を出力データとして学習を行うことで、アーチファクトがあるなどして画質が劣化していると考えられる領域を特定することができ、それを用いて画像処理を行うことができる。
続いて、図12を用いて、学習済モデルの実行段階の処理について説明する。図12は、第4の実施形態に係る医用画像処理装置が行う学習済モデルの実行の処理の流れについて説明したフローチャートである。
ステップS600において、処理回路110は、インタフェース機能110xにより、各走査線について第1の回数ずつ超音波を送受信して得られた入力画像(又はチャネルごとの入力データ)を、第1のデータセットとして受信回路11やメモリ132等から取得する。
続いて、ステップS610において、処理回路110は、生成機能110zにより、ステップS540において処理回路110が学習機能110dに生成した学習済モデルに対して、ステップS600で取得した、各走査線について第1の回数ずつ超音波を送受信して得られた入力画像(又はチャネルごとの入力データ)を入力することで、差分画像を疑似的に表す、すなわち第1のデータセットと第2のデータセットとの違いを表す出力画像を出力データセットである第3のデータとして生成する。
続いて、ステップS620において、処理回路110は、図示しない特定機能により、ステップ610で生成された出力画像に基づいて、低画質箇所を特定する。一例として、処理回路110は、特定機能により、ステップS610で生成された出力画像の値の絶対値が、基準値を上回る箇所を、低画質箇所と特定する。
続いて、ステップS630において、処理回路110は、生成機能110zにより、ステップS600で取得した入力画像(またはチャネルごとの入力データから構成された画像)におけるステップS620で特定された低画質箇所に対して、高画質化処理(ノイズ低減処理)を実行する。具体的には、処理回路110は、入力画像の低画質箇所の画素の画素値を、周辺の画素の平均値で置き換える等の処理を行う。
続いて、ステップS640において、処理回路110は、生成機能110zにより、ステップS630で高画質化処理が行われた入力画像を、第2の画像を疑似的に表す画像であり、第2のデータセットである疑似第2画像として生成する。
このように、第3の実施形態では、低画質箇所を学習により特定して高画質化処理を行うことで、画質の向上を行うことができる。
上述した各実施形態では、超音波診断装置本体10が医用画像処理装置100を備えており、医用画像処理装置100の処理回路110が、訓練データ作成機能110c、学習機能110d、及び生成機能110z等により学習済モデルの生成と適用の両方を行う場合について説明したが、本発明はこれに限定されない。
例えば、超音波診断装置本体10が備える医用画像処理装置100の処理回路110は、生成機能110zを実行できる一方で、訓練データ作成機能110c、学習機能110dを実行できなくても良い。逆に、例えば、超音波診断装置本体10が備える医用画像処理装置100の処理回路110は、訓練データ作成機能110c及び学習機能110dを実行できる一方で、生成機能110zを実行できる一方で、訓練データ作成機能110c及び学習機能110dを実行できなくても良い。
例えば、生成機能110zは、医用画像処理装置100とは別の第1の医用画像処理装置(図示しない)における処理回路(図示しない)で実行されても良い。
医用画像処理装置100の処理回路110で生成機能110zを実行し、リアルタイムに高画質な出力画像を得ることが理想的である。しかし、処理回路110の性能によっては、処理負荷の増大により、リアルタイムで出力画像を得られないこともある。生成機能110zを処理回路110の機能から分離することで、高いリアルタイム性が要求される超音波診断装置本体10では、制御機能110yによりリアルタイムで入力画像をディスプレイに表示させるとともに、高いリアルタイム性が要求されない解析時に高画質の出力画像を生成することができる。また、例えばフリーズ操作や保存操作を受け付けたタイミング、又はその前後の所定期間内に収集したデータセットに限定して、生成機能110zを適用しても良い。
例えば、訓練データ作成機能110cと学習機能100dによる学習、超音波診断装置本体10が備える医用画像処理装置100とは別の第1の医用画像処理装置(図示しない)における処理回路(図示しない)で実行されても良い。
以上少なくとも一つの実施形態に係る医用画像処理装置によれば、診断に有用な情報を効率的に得ることができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
110 処理回路
110c 訓練データ作成機能
110d 学習機能
110z 生成機能

Claims (23)

  1. 各走査線について第1の回数ずつ超音波を送受信して得られた第1のデータセットに基づいて、各走査線について前記第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセットを疑似的に表す出力データセットを生成する学習済モデルに対して、前記第1のデータセットを入力することで、前記出力データセットを生成する処理部を備えた医用画像処理装置。
  2. 前記第1のデータセット及び前記出力データセットは、それぞれ画像データセットを含む、請求項1に記載の医用画像処理装置。
  3. 前記第1のデータセット及び前記出力データセットは、それぞれ走査線データセットを生成するための複数のチャンネルデータセットを含む、請求項1に記載の医用画像処理装置。
  4. 前記出力データセットは、各走査線について送信パラメータを変化させながら前記第2の回数ずつ超音波を送信することで得られる前記第2のデータセットを疑似的に表す、請求項1乃至3のうちいずれか一つに記載の医用画像処理装置。
  5. 前記送信パラメータは、送信する超音波の位相を含む、請求項4に記載の医用画像処理装置。
  6. 前記学習済モデルは、複数の第1走査線データセットに基づく線形成分画像データセットを入力、前記複数の第1走査線データセットを含む複数の第2走査線データセット群に基づく非線形成分画像データセットを出力とした学習により作成され、
    前記複数の第2走査線データセットは、各走査線について前記第2の回数ずつ連続的に送受信された超音波に対応する、請求項2に記載の医用画像処理装置。
  7. 前記非線形成分画像データセットは、前記複数の第2走査線データセットを走査線ごとに合成することで生成される、請求項6に記載の医用画像処理装置。
  8. 前記学習済モデルは、前記複数の第2走査線データセットに含まれ、前記複数の第1走査線データセットとは異なる複数の第3走査線データセットに基づく別の線形成分画像データセットを入力、前記非線形成分画像データセットを出力とした学習により作成される、請求項7に記載の医用画像処理装置。
  9. 前記複数の第1走査線データセットは、第1の位相で送信された超音波に対応し、
    前記複数の第3走査線データセットは、前記第1の位相とは異なる第2の位相で送信された超音波に対応する、請求項8に記載の医用画像処理装置。
  10. 前記学習済モデルは、複数の第1チャンネルデータセットを入力、前記複数の第1チャンネルデータセットと複数の第2チャンネルデータセットを、チャンネル毎に合成して得られる複数の第3チャンネルデータセットを出力とした学習により作成され、
    前記複数の第1チャンネルデータセット及び前記複数の第2チャンネルデータセットは、同じ走査線について前記第2の回数ずつ連続的に送受信された超音波に対応する、請求項3に記載の医用画像処理装置。
  11. 前記非線形成分画像データセットは、前記複数の第2走査線データセットそれぞれに含まれる2次以上の高周波成分、差音成分、及び和音成分のうち少なくとも1つに基づく画像データセットである、請求項7に記載の医用画像処理装置。
  12. 前記学習済モデルは、複数の第1走査線データセットに基づく第1の非線形成分画像データセットを入力、前記複数の第1走査線データセットを含む複数の第2走査線データセットに基づく第2の非線形成分画像データセットを出力とした学習により生成され、
    前記複数の第2走査線データセットは、各走査線について第2の回数ずつ連続的に送受信された超音波に対応する、請求項2に記載の医用画像処理装置。
  13. 前記第1の非線形成分画像データセットは、前記複数の第1走査線データセットに周波数フィルタを適用することで生成され、
    前記第2の非線形成分画像データセットは、前記複数の第2走査線データセットを走査線毎に合成することで生成される、請求項12に記載の医用画像処理装置。
  14. 前記第1の回数は1であり、前記第2の回数は2である、請求項1に記載の医用画像処理装置。
  15. 前記学習済モデルは、前記第1のデータセットに基づいて、方位分解能及び距離分解能が前記第1のデータセットよりも高い前記出力データセットを生成する、請求項1に記載の医用画像処理装置。
  16. 前記画像データセットは、心臓を含み、
    前記線形成分画像データセット及び前記非線形成分画像データセットは、心臓を含まない、
    請求項6に記載の医用画像処理装置。
  17. 前記複数の第3チャンネルデータセットは、心臓に対する超音波送受信により得られ、
    前記複数の第1チャンネルデータセット及び前記複数の第2チャンネルデータセットは、心臓とは異なる部位に対する超音波送受信により得られる、
    請求項10に記載の医用画像処理装置。
  18. 前記第1のデータセットと前記出力データセットを、距離方向の位置に応じた比率で合成して合成データセットを生成する合成部を備えた、請求項1に記載の医用画像処理装置。
  19. 走査線について第1の回数だけ超音波を送受信して得られる第1走査線データセットに基づいて、前記走査線について前記第1の回数より多い第2の回数だけ超音波を送受信して得られる第2走査線データセットを疑似的に表す出力データセットを生成する学習済モデルに対して、前記第1走査線データセットを入力することで、前記出力データセットを生成する処理部と、
    前記出力データセットに基づいて画像を生成する画像生成部と、
    を備える、医用画像処理装置。
  20. 各走査線について第1の回数ずつ超音波を送受信して得られた第1のデータセットに基づいて、各走査線について前記第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2のデータセットと、前記第1のデータセットとの違いを表す出力データセット
    を生成する学習済モデルに対して、前記第1のデータセットを入力することで、前記出力データセットを生成する処理部を備えた医用画像処理装置。
  21. 請求項1乃至20のいずれか一つに記載の前記医用画像処理装置を含む、超音波診断装置。
  22. 複数の第1走査線データセットに基づく線形成分画像データセット又は第1の非線形成分画像データセットと、前記複数の第1走査線データセットを含む複数の第2走査線データセットに基づく第2の非線形成分画像データセットとを取得するステップと、
    前記線形成分画像データセット又は前記第1の非線形成分画像データセットを入力側の学習用データセットと、前記第2の非線形成分画像データセットを出力側の学習用データセットとして使用し、学習済モデルを作成するステップと、
    を含む、学習済モデルの作成方法。
  23. 前記学習済モデルは、各走査線について第1の回数ずつ超音波を送受信して得られた第1の画像データセットが入力されることで、各走査線について前記第1の回数より多い第2の回数ずつ超音波を送受信して得られる第2の画像データセットを疑似的に表す出力画像データセットを生成する、請求項22に記載の学習済モデルの作成方法。
JP2019085933A 2019-04-26 2019-04-26 医用画像処理装置、超音波診断装置及び学習済モデルの作成方法 Active JP7242409B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019085933A JP7242409B2 (ja) 2019-04-26 2019-04-26 医用画像処理装置、超音波診断装置及び学習済モデルの作成方法
US16/856,153 US11568535B2 (en) 2019-04-26 2020-04-23 Medical image processing apparatus, ultrasound diagnosis apparatus, and trained model generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019085933A JP7242409B2 (ja) 2019-04-26 2019-04-26 医用画像処理装置、超音波診断装置及び学習済モデルの作成方法

Publications (2)

Publication Number Publication Date
JP2020179029A true JP2020179029A (ja) 2020-11-05
JP7242409B2 JP7242409B2 (ja) 2023-03-20

Family

ID=72916775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019085933A Active JP7242409B2 (ja) 2019-04-26 2019-04-26 医用画像処理装置、超音波診断装置及び学習済モデルの作成方法

Country Status (2)

Country Link
US (1) US11568535B2 (ja)
JP (1) JP7242409B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115211A (ja) * 2020-01-24 2021-08-10 キヤノン株式会社 超音波診断装置、画像処理方法、学習装置及びプログラム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022068043A (ja) * 2020-10-21 2022-05-09 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108191A (ja) * 2012-11-30 2014-06-12 Toshiba Corp 超音波診断装置及び制御プログラム
JP2018134448A (ja) * 2012-07-31 2018-08-30 キヤノンメディカルシステムズ株式会社 超音波診断装置及び制御方法
US20180330518A1 (en) * 2017-05-11 2018-11-15 Verathon Inc. Probability map-based ultrasound scanning

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866631B2 (en) 2001-05-31 2005-03-15 Zonare Medical Systems, Inc. System for phase inversion ultrasonic imaging
US9335605B2 (en) 2010-01-25 2016-05-10 Washington University Iteration of optical time reversal by ultrasonic encoding in biological tissue
JP6342212B2 (ja) 2014-05-12 2018-06-13 キヤノンメディカルシステムズ株式会社 超音波診断装置
US20210015456A1 (en) * 2016-11-16 2021-01-21 Teratech Corporation Devices and Methods for Ultrasound Monitoring
US20190336101A1 (en) * 2016-11-16 2019-11-07 Teratech Corporation Portable ultrasound system
WO2019039050A1 (ja) * 2017-08-25 2019-02-28 富士フイルム株式会社 音響波診断装置および音響波診断装置の制御方法
DE102017126158A1 (de) * 2017-11-08 2019-05-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Ultraschall-Bilderzeugungssystem
US11207055B2 (en) * 2018-10-08 2021-12-28 General Electric Company Ultrasound Cardiac Doppler study automation
US20200245967A1 (en) * 2019-02-04 2020-08-06 General Electric Company Localization of bleeding
WO2020167938A1 (en) * 2019-02-13 2020-08-20 Butterfly Network, Inc. Methods and apparatuses for collecting ultrasound images depicting needles
WO2020206173A1 (en) * 2019-04-03 2020-10-08 Butterfly Network, Inc. Methods and apparatuses for collection and visualization of ultrasound data
US11617565B2 (en) * 2019-06-14 2023-04-04 Bfly Operations, Inc. Methods and apparatuses for collection of ultrasound data along different elevational steering angles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018134448A (ja) * 2012-07-31 2018-08-30 キヤノンメディカルシステムズ株式会社 超音波診断装置及び制御方法
JP2014108191A (ja) * 2012-11-30 2014-06-12 Toshiba Corp 超音波診断装置及び制御プログラム
US20180330518A1 (en) * 2017-05-11 2018-11-15 Verathon Inc. Probability map-based ultrasound scanning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GASSE,MAXIME ET AL.: "High-Quality Plane Wave Compounding Using Convolutional Neural Networks", IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, vol. 64, no. 10, JPN6022046201, 6 October 2017 (2017-10-06), US, pages 1637 - 1639, XP011661912, ISSN: 0004909546, DOI: 10.1109/TUFFC.2017.2736890 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021115211A (ja) * 2020-01-24 2021-08-10 キヤノン株式会社 超音波診断装置、画像処理方法、学習装置及びプログラム
JP7395367B2 (ja) 2020-01-24 2023-12-11 キヤノン株式会社 超音波診断装置、画像処理方法、学習装置及びプログラム

Also Published As

Publication number Publication date
US20200342593A1 (en) 2020-10-29
US11568535B2 (en) 2023-01-31
JP7242409B2 (ja) 2023-03-20

Similar Documents

Publication Publication Date Title
WO2014021402A1 (ja) 超音波診断装置及び制御方法
US20150320398A1 (en) Ultrasonic diagnostic apparatus and control method
JP5508829B2 (ja) 医用画像表示装置
JP2015013077A (ja) 超音波診断装置及び超音波イメージングプログラム
JP7370903B2 (ja) 超音波診断装置、学習装置、画像処理方法およびプログラム
JP7242409B2 (ja) 医用画像処理装置、超音波診断装置及び学習済モデルの作成方法
KR102249528B1 (ko) 미리 저장된 그라데이션 데이터 및 영상을 이용하여 초음파 영상의 밝기를 조정하는 방법, 장치 및 시스템.
US20230248336A1 (en) Ultrasound diagnosis apparatus
CN110575198B (zh) 解析装置及解析方法
CN104644210B (zh) 超声波诊断装置、图像处理装置以及图像处理方法
JP6567122B2 (ja) 超音波診断装置、制御方法、装置及びプログラム
US20220367039A1 (en) Adaptive ultrasound deep convolution neural network denoising using noise characteristic information
US11564659B2 (en) Ultrasonic diagnostic and image processing apparatus for tissue harmonic imaging by extracting nonlinear components from three signals via addition after phase rotation
JP2023006198A (ja) 超音波診断装置及びプログラム
JP6288998B2 (ja) 超音波診断装置及び超音波イメージングプログラム
CN110462427B (zh) 用于控制超声系统中的图像外观特征的方法、控制用户接口和系统
JP7345374B2 (ja) 超音波診断装置
JP7455696B2 (ja) 超音波診断装置、学習装置、画像処理方法およびプログラム
JP7280713B2 (ja) 超音波診断装置
US20230225710A1 (en) Ultrasonic diagnostic apparatus and image processing apparatus
EP4109132A1 (en) Ultrasound diagnostic apparatus and extraction method
US20220361843A1 (en) Ultrasound diagnosis apparatus
JP7066487B2 (ja) 超音波診断装置、医用画像処理装置及び医用画像処理プログラム
JP2024068538A (ja) 超音波受信装置、及び超音波受信方法
JP2020185122A (ja) 解析装置及び超音波診断装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230308

R150 Certificate of patent or registration of utility model

Ref document number: 7242409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150