JP2020176931A - Measuring method, measuring device, program, and computer-readable storage medium - Google Patents

Measuring method, measuring device, program, and computer-readable storage medium Download PDF

Info

Publication number
JP2020176931A
JP2020176931A JP2019079745A JP2019079745A JP2020176931A JP 2020176931 A JP2020176931 A JP 2020176931A JP 2019079745 A JP2019079745 A JP 2019079745A JP 2019079745 A JP2019079745 A JP 2019079745A JP 2020176931 A JP2020176931 A JP 2020176931A
Authority
JP
Japan
Prior art keywords
water
hydrogen
dissolved
unit
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019079745A
Other languages
Japanese (ja)
Other versions
JP7349675B2 (en
Inventor
陽吉 小川
Yokichi Ogawa
陽吉 小川
正憲 有冨
Masanori Aritomi
正憲 有冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2019079745A priority Critical patent/JP7349675B2/en
Publication of JP2020176931A publication Critical patent/JP2020176931A/en
Application granted granted Critical
Publication of JP7349675B2 publication Critical patent/JP7349675B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

To provide a measuring method, a measuring device, a program, and a computer readable storage medium capable of measuring the dissolved amount of hydrogen in water.SOLUTION: Disclosed is a measuring device 1 for measuring a dissolved amount of hydrogen dissolved in hydrogen water. This device includes: a constant voltage supply part 20 which applies a constant voltage to energize predetermined electrodes 23,24 immersed in hydrogen water in which hydrogen is dissolved; a measuring part 30 for measuring a current value A of a current flowing into electrodes 23,24 in the constant voltage supply part 20; and an arithmetic part 45 for calculating the dissolved amount of hydrogen based on the current value A.SELECTED DRAWING: Figure 1

Description

本発明は、測定方法、測定装置、プログラム、およびコンピュータ読み取り可能な記憶媒体に関し、特に水中に溶存する水素の溶存量を測定する測定方法、測定装置、プログラム、およびコンピュータ読み取り可能な記憶媒体に関する。 The present invention relates to a measuring method, a measuring device, a program, and a computer-readable storage medium, and more particularly to a measuring method, a measuring device, a program, and a computer-readable storage medium for measuring the dissolved amount of hydrogen dissolved in water.

昨今の健康志向から水素水が広く一般に利用されている。水素水は、電気分解や水素を水にバブリングする方法等により製造されることが知られているが、水素水の品質を確認する観点からも水素水中の溶存水素量を測定することが重要となっている。このため、特許文献1に開示されるような水中の溶存水素量を測定する技術が提案されている。 Hydrogen water is widely used due to the recent health consciousness. It is known that hydrogen water is produced by electrolysis or bubbling hydrogen into water, but it is important to measure the amount of dissolved hydrogen in hydrogen water from the viewpoint of confirming the quality of hydrogen water. It has become. Therefore, a technique for measuring the amount of dissolved hydrogen in water as disclosed in Patent Document 1 has been proposed.

特開2018−179830号公報JP-A-2018-179830

近年は、水中の溶存水素量を更に別の方法により測定する技術の提案が望まれていた。 In recent years, it has been desired to propose a technique for measuring the amount of dissolved hydrogen in water by another method.

本発明は、このような事情に鑑みてなされたものであり、水中の溶存水素量を測定することができる測定方法、測定装置、プログラム、コンピュータ読み取り可能な記憶媒体を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a measuring method, a measuring device, a program, and a computer-readable storage medium capable of measuring the amount of dissolved hydrogen in water. ..

上記目的を達成するため、本発明者は、鋭意研究した結果、水素が溶存する水に通電したときの電極を流れる電流値と水中に溶存する水素の溶存量との間に相関関係があることを見出し、発明を完成するに至った。 In order to achieve the above object, as a result of diligent research, the present inventor has found that there is a correlation between the value of the current flowing through the electrode when energizing the dissolved water and the dissolved amount of the dissolved hydrogen in the water. Was found, and the invention was completed.

すなわち、本発明に係る測定方法は、水中に溶存する水素の溶存量を測定する測定方法であって、前記水素が溶存する水中に所定の電極を浸漬しつつ電圧を印加して通電する電圧供給ステップと、前記電圧供給ステップにおける前記電極を流れる電流の電流値を測定する測定ステップと、前記電流値に基づいて前記水素の溶存量を演算する演算ステップと、を含むことを特徴とする。 That is, the measuring method according to the present invention is a measuring method for measuring the dissolved amount of hydrogen dissolved in water, and is a voltage supply that applies a voltage while immersing a predetermined electrode in the water in which the hydrogen is dissolved to energize. It is characterized by including a step, a measurement step of measuring a current value of a current flowing through the electrode in the voltage supply step, and a calculation step of calculating the dissolved amount of the hydrogen based on the current value.

本発明によれば、上記ステップにより、水中の溶存水素量を測定することができる。 According to the present invention, the amount of dissolved hydrogen in water can be measured by the above steps.

上記目的を達成するため、本発明に係る測定装置は、水中に溶存する水素の溶存量を測定する測定装置であって、前記水素が溶存する水中に所定の電極を浸漬しつつ電圧を印加して通電する電圧供給部と、前記電圧供給部における前記電極を流れる電流の電流値を測定する測定部と、前記電流値に基づいて前記水素の溶存量を演算する演算部と、を含むことを特徴とする。 In order to achieve the above object, the measuring device according to the present invention is a measuring device that measures the dissolved amount of hydrogen dissolved in water, and applies a voltage while immersing a predetermined electrode in the water in which the hydrogen is dissolved. It includes a voltage supply unit that energizes the voltage supply unit, a measurement unit that measures the current value of the current flowing through the electrode in the voltage supply unit, and a calculation unit that calculates the dissolved amount of hydrogen based on the current value. It is a feature.

本発明によれば、上記構成により、水中の溶存水素量を測定することができる。 According to the present invention, the amount of dissolved hydrogen in water can be measured by the above configuration.

ここで、予め定められた前記水中に溶存する水素の溶存量と前記所定の電極を流れる電流の電流値との相関関係を記憶する記憶部を含み、前記演算部は、前記予め定められた前記水中に溶存する水素の溶存量と前記所定の電極を流れる電流の電流値との相関関係と、前記測定部において測定された電流値と、に基づいて前記水中に溶存する水素の溶存量の演算を行うことができる。 Here, the calculation unit includes the storage unit that stores the correlation between the dissolved amount of hydrogen dissolved in the water and the current value of the current flowing through the predetermined electrode, and the calculation unit is the predetermined storage unit. Calculation of the dissolved amount of hydrogen dissolved in water based on the correlation between the dissolved amount of hydrogen dissolved in water and the current value of the current flowing through the predetermined electrode and the current value measured by the measuring unit. It can be performed.

前記電流値を積算する積算部を含み、前記演算部は、前記積算された電流値に基づいて前記溶存量の演算を行うことができる。 The calculation unit can calculate the dissolved amount based on the integrated current value, including an integration unit that integrates the current value.

前記積算部は、前記測定部において、前記測定された電流値が所定の電流閾値以下となるまで前記積算を行うことができる。 The integrating unit can perform the integration until the measured current value becomes equal to or less than a predetermined current threshold value in the measuring unit.

すなわち、前記電流閾値は、純水における前記所定の電極を流れる電流の電流値とすることができる。 That is, the current threshold value can be the current value of the current flowing through the predetermined electrode in pure water.

前記電圧は、前記水の電気分解が起こらない電圧とすることにより、測定された電流値における水の電気分解の影響を少なくすることができる。 By setting the voltage to a voltage at which the electrolysis of water does not occur, the influence of the electrolysis of water on the measured current value can be reduced.

前記水の電気分解が起こらない電圧は、前記水の電気分解が起こる最小の電圧よりも小さい電圧とすることができる。 The voltage at which the water electrolysis does not occur can be a voltage smaller than the minimum voltage at which the water electrolysis occurs.

水素が溶存する水を精製する精製部を含み、前記電圧供給部は、前記精製部により精製された水に電圧を供給して通電することにより、水中の不純物を除去して通電を行うことができる。これにより、測定された電流値における不純物の影響を少なくすることができる。 The voltage supply unit includes a purification unit that purifies water in which hydrogen is dissolved, and the voltage supply unit can remove impurities in water and energize by supplying a voltage to the water purified by the purification unit to energize the water. it can. As a result, the influence of impurities on the measured current value can be reduced.

前記精製部は、所定の膜を用いて前記水を精製することができ、前記所定の膜は、逆浸透膜(RO膜)とすることができる。逆浸透膜を用いて水を精製することにより、水素を溶存した状態を維持しつつ水中の不純物を除去することが可能となる。 The purification unit can purify the water using a predetermined membrane, and the predetermined membrane can be a reverse osmosis membrane (RO membrane). By purifying water using a reverse osmosis membrane, it becomes possible to remove impurities in water while maintaining a state in which hydrogen is dissolved.

前記電極は、陽極および陰極を含み、前記陽極は、イオン化傾向が水よりも低い材料とすることにより、また、前記陽極は、セラミックス系の材料とすることにより、電極の溶出を少なくすることができ、電流値を正確に測定することが可能となる。 The electrode includes an anode and a cathode, and the anode can be made of a material having a lower ionization tendency than water, and the anode can be made of a ceramic-based material to reduce the elution of the electrode. It is possible to measure the current value accurately.

前記セラミックス系の材料は、更に多孔質系の材料とすることができる。 The ceramic-based material can be further made into a porous-based material.

前記電圧供給部は、電圧供給槽を含み、前記電圧供給槽を密閉して通電を行うことにより、空気中の酸素により電極が酸化し溶出することを少なくすることができる。 The voltage supply unit includes a voltage supply tank, and by sealing the voltage supply tank and energizing the voltage supply tank, it is possible to reduce the oxidation and elution of the electrodes by oxygen in the air.

前記電圧供給部は、電圧供給槽を含み、前記電圧供給槽に水を気密に充填させて通電することにより、電極の酸化を更に少なくすることができる。 The voltage supply unit includes a voltage supply tank, and by energizing the voltage supply tank by airtightly filling it with water, oxidation of the electrodes can be further reduced.

上記目的を達成するため、本発明に係るプログラムは、水中に溶存する水素の溶存量を測定する測定装置におけるコンピュータを、前記水素が溶存する水中に所定の電極を浸漬しつつ電圧を印加して通電する電圧供給部における前記電極を流れる電流の電流値に基づいて前記水素の溶存量を演算する演算部として機能させることを特徴とする。 In order to achieve the above object, the program according to the present invention applies a voltage to a computer in a measuring device for measuring the dissolved amount of hydrogen dissolved in water while immersing a predetermined electrode in the water in which hydrogen is dissolved. It is characterized in that it functions as a calculation unit that calculates the dissolved amount of hydrogen based on the current value of the current flowing through the electrode in the energized voltage supply unit.

上記目的を達成するため、本発明に係るコンピュータ読み取り可能な記憶媒体は、前記プログラムを記憶することを特徴とする。 In order to achieve the above object, the computer-readable storage medium according to the present invention is characterized in that the program is stored.

本発明によれば、水中の溶存水素量を測定することができる。 According to the present invention, the amount of dissolved hydrogen in water can be measured.

本発明の実施形態に係る測定装置の概要を示す概念図である。It is a conceptual diagram which shows the outline of the measuring apparatus which concerns on embodiment of this invention. 同測定装置における電圧供給部の構成を示す図である。It is a figure which shows the structure of the voltage supply part in the measuring apparatus. 同測定装置における各機能部を示すブロック図である。It is a block diagram which shows each functional part in the measuring apparatus. 同測定装置における測定部および積算部における電流値の測定方法および積算方法を示す図である。It is a figure which shows the measuring method and integration method of the current value in the measuring part and the integrating part in the measuring apparatus. 同測定装置による測定方法を説明するためのフローチャートである。It is a flowchart for demonstrating the measurement method by this measuring apparatus. 本発明の応用例を説明するための図である。It is a figure for demonstrating the application example of this invention.

以下、本発明の実施形態について図面を参照して詳細に説明する。図1は、本発明の実施形態に係る測定装置の概要を示す概念図、図2は、同測定装置における電圧供給部の構成を示す図、図3は、同測定装置における各機能部を示すブロック図、図4は、同測定装置における測定部および積算部における電流値の測定方法および積算方法を示す図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a conceptual diagram showing an outline of a measuring device according to an embodiment of the present invention, FIG. 2 is a diagram showing a configuration of a voltage supply unit in the measuring device, and FIG. 3 shows each functional unit in the measuring device. The block diagram and FIG. 4 are diagrams showing a method of measuring a current value and a method of integrating the current value in the measuring unit and the integrating unit in the measuring device.

図1を参照して本発明の測定装置1の概要を説明すると、測定装置1は、水素水中に溶存する水素の溶存量を測定する測定装置1であって、精製部10と、電圧供給部20より詳しくは定電圧供給部20と、測定部30と、処理部40と、を有している。 Explaining the outline of the measuring device 1 of the present invention with reference to FIG. 1, the measuring device 1 is a measuring device 1 for measuring the dissolved amount of hydrogen dissolved in hydrogen water, and is a purification unit 10 and a voltage supply unit. More specifically, it has a constant voltage supply unit 20, a measurement unit 30, and a processing unit 40.

すなわち、本発明の測定装置1においては、精製部10により精製された水素水22に定電圧供給部20により定電圧(一定の電圧)を供給して通電し、この定電圧供給で電極23に流れた電流値を測定部30が測定するとともに、処理部40が測定された電流値Aに基づいて水素の溶存量Bを演算する構成となっている。 That is, in the measuring device 1 of the present invention, the hydrogen water 22 purified by the purification unit 10 is supplied with a constant voltage (constant voltage) by the constant voltage supply unit 20 to be energized, and the constant voltage supply is applied to the electrode 23. The measuring unit 30 measures the flowing current value, and the processing unit 40 calculates the dissolved amount of hydrogen B based on the measured current value A.

精製部10は、水素が溶存する水より詳しくは水素水22を精製する機能を有しており、所定の膜を用いて水素水22を精製することができる。所定の膜は、逆浸透膜(RO膜)とすることができ、逆浸透膜を用いて水素水22を精製することにより、水素が溶存した状態を維持しつつ水素水22中の不純物を除去することが可能となる。 The purification unit 10 has a function of purifying hydrogen water 22 in more detail than water in which hydrogen is dissolved, and can purify hydrogen water 22 using a predetermined membrane. The predetermined film can be a reverse osmosis film (RO film), and by purifying the hydrogen water 22 using the reverse osmosis film, impurities in the hydrogen water 22 are removed while maintaining the state in which hydrogen is dissolved. It becomes possible to do.

定電圧供給部20は、精製部10により精製された水素水22に定電圧を供給して通電を行う機能を有している。すなわち、定電圧供給部20は、図2に示すように、定電圧供給槽21に精製された水素水22を満たした状態とし、水素水22中に所定の電極23を浸漬しつつ定電圧を印加して通電することができる。定電圧供給槽21は、箱型で上面21aが開口して開放された構成となっている。 The constant voltage supply unit 20 has a function of supplying a constant voltage to the hydrogen water 22 purified by the purification unit 10 to energize the hydrogen water 22. That is, as shown in FIG. 2, the constant voltage supply unit 20 is in a state where the constant voltage supply tank 21 is filled with purified hydrogen water 22, and the constant voltage is applied while immersing the predetermined electrode 23 in the hydrogen water 22. It can be applied and energized. The constant voltage supply tank 21 is box-shaped and has a structure in which the upper surface 21a is opened and opened.

ここで、電極23は、陽極23aおよび陰極23bを含み、電極23に印加する電圧は、水より詳しくは純水の電気分解が起こらない電圧とする。水(純水)の電気分解が起こらない電圧は、水(純水)の電気分解が起こる最小の電圧よりも小さい電圧とすることができる。このような観点から電極23の印加電圧は1.20V以下とすることが好ましく、1.10V以下とすることが更に好ましい(電極23には、1.20V以下、若しくは1.10V以下の定電圧が印加される)。 Here, the electrode 23 includes an anode 23a and a cathode 23b, and the voltage applied to the electrode 23 is a voltage that does not cause electrolysis of pure water in more detail than water. The voltage at which water (pure water) does not electrolyze can be smaller than the minimum voltage at which water (pure water) electrolyzes. From this point of view, the applied voltage of the electrode 23 is preferably 1.20 V or less, more preferably 1.10 V or less (the electrode 23 has a constant voltage of 1.20 V or less or 1.10 V or less). Is applied).

すなわち、水(純水)の電気分解が起こる1.20V以上の電圧を印加した場合、数1に示すように、陽極23aでは純水中の水酸化物イオン(OH)が酸化されて酸素(酸素ガス)が発生し、陰極23bでは水(HO)が還元されて水素(水素ガス)が発生する。このとき、陽極23aにおける酸化反応により生じた電子が陽極23aから陰極23bへ移動することにより電流が流れることとなる。 That is, when a voltage of 1.20 V or higher that causes electrolysis of water (pure water) is applied, as shown in Equation 1, the hydroxide ion (OH ) in the pure water is oxidized at the anode 23a to oxygen. (Oxygen gas) is generated, and water (H 2 O) is reduced at the cathode 23b to generate hydrogen (hydrogen gas). At this time, the electrons generated by the oxidation reaction at the anode 23a move from the anode 23a to the cathode 23b, so that a current flows.

[数1]
陽極:4OH→O+2HO+4e
陰極:2HO+2e→H+2OH
[Number 1]
Anode: 4OH → O 2 + 2H 2 O + 4e
Cathode: 2H 2 O + 2e → H 2 + 2OH

一方、水素水22においては、活性な水酸化物イオンH3O2 -(H2O・OH-)と水素イオン(H+)とが遊離しやすい状態にあると考えられる。そして、電極23の印加電圧を1.20V以下とした場合は、原則として水(純水)の電気分解は起こらないものの、数1と同様の反応が起こり、水素水22に起因する活性な水酸化物イオンH3O2 -(H2O・OH-)が酸化されて陽極23aから酸素(酸素ガス)が発生するとともに、水素水22に起因する水素イオン(H+)が還元されて陰極23bから水素(水素ガス)が発生すると考えられる。 On the other hand, in the hydrogen water 22, an active hydroxide ions H 3 O 2 - (H 2 O · OH -) and hydrogen ions (H +) is believed to be in the free state of easily. When the applied voltage of the electrode 23 is 1.20 V or less, in principle, electrolysis of water (pure water) does not occur, but the same reaction as in Equation 1 occurs, and active water caused by hydrogen water 22 occurs. oxide ion H 3 O 2 - (H 2 O · OH -) together with oxygen (oxygen gas) is generated from the oxidation anode 23a, a hydrogen ion due to hydrogen water 22 (H +) is reduced cathode It is considered that hydrogen (hydrogen gas) is generated from 23b.

つまり、電極23の印加電圧を1.20V以下とした場合においては、陽極23aから陰極23bに流れる電流値Aに応じて、水素水22に起因する活性な水酸化物イオンH3O2 -(H2O・OH-)に基づく酸素ガスが発生するとともに、活性な水素イオン(H+)に基づく水素ガスが発生することとなる。 That is, in the case where the voltage applied to the electrode 23 was less 1.20V, depending on the current value A that flows from the anode 23a to the cathode 23b, the active hydroxides resulting from the hydrogen water 22 ions H 3 O 2 - ( H 2 O · OH - together with oxygen gas is generated based on), so that the hydrogen gas based on the active hydrogen ions (H +) are generated.

ここで、陽極23aは、イオン化傾向が水(純水)よりも低い材料および/またはセラミックス系の材料とすることができる(陽極23aは、イオン化傾向が水(純水)よりも低い材料、セラミックス系の材料、若しくはこれらを組み合わせた材料とすることができる)。 Here, the anode 23a can be a material having a lower ionization tendency than water (pure water) and / or a ceramic-based material (the anode 23a is a material having a lower ionization tendency than water (pure water), ceramics. It can be a system material or a material that combines these).

すなわち、電極23の印加電圧を水(純水)の電気分解が起こらない電圧とし、陽極23aを水(純水)よりもイオン化傾向の高い材料(例えば銅)とした場合にあっては、陽極23aでは電極の溶出(酸化)が生じてしまい、電流値Aに基づく水素水22中の水素溶存量の演算に誤差を生じる恐れがある。 That is, when the applied voltage of the electrode 23 is a voltage at which electrolysis of water (pure water) does not occur and the anode 23a is a material having a higher ionization tendency than water (pure water) (for example, copper), the anode At 23a, the electrode is eluted (oxidized), which may cause an error in the calculation of the dissolved amount of hydrogen in the hydrogen water 22 based on the current value A.

そこで、本発明においては、陽極23aは、イオン化傾向が水(純水)よりも低い材料および/またはセラミックス系の材料とすることとして、陽極23aの溶出を少なくすることとしている。 Therefore, in the present invention, the anode 23a is made of a material having a lower ionization tendency than water (pure water) and / or a ceramic-based material, and the elution of the anode 23a is reduced.

ここで、陽極23aを構成するセラミックス系の材料は、多孔質系の材料とすることができる。 Here, the ceramic-based material constituting the anode 23a can be a porous material.

測定部30は、定電圧供給部20における電極23を流れる電流の電流値Aを測定する機能を有している。測定部30は、電極23を流れる電流の電流値Aをリアルタイムに測定することができる。測定部30は、出力インターフェースを介して電流値Aを示すデータを処理部40に送信する。 The measuring unit 30 has a function of measuring the current value A of the current flowing through the electrode 23 in the constant voltage supply unit 20. The measuring unit 30 can measure the current value A of the current flowing through the electrode 23 in real time. The measuring unit 30 transmits data indicating the current value A to the processing unit 40 via the output interface.

処理部40は、図3に示すように、入力部41、記憶部42、積算部43、判断部44、および演算部45を有している。処理部40は、コンピュータとしての一般的な構成を備えており、CPU、メモリ、ハードディスク、表示装置(ディスプレー)を有している。メモリ、ハードディスク(後述する記憶部42)は、コンピュータ読み取り可能な記憶媒体として機能する。 As shown in FIG. 3, the processing unit 40 includes an input unit 41, a storage unit 42, an integration unit 43, a determination unit 44, and a calculation unit 45. The processing unit 40 has a general configuration as a computer, and has a CPU, a memory, a hard disk, and a display device (display). The memory and the hard disk (storage unit 42 described later) function as a computer-readable storage medium.

入力部41は、測定部30により測定された電流値Aを示すデータを入力インターフェースを介して入力する機能を有している。 The input unit 41 has a function of inputting data indicating the current value A measured by the measuring unit 30 via the input interface.

記憶部42は、予め測定された水素水22中に溶存する水素の溶存量bと電極23を流れる電流の電流値aとの相関関係cを示すデータを記憶する機能を有している。 The storage unit 42 has a function of storing data showing the correlation c between the dissolved amount of hydrogen dissolved in the hydrogen water 22 measured in advance and the current value a of the current flowing through the electrode 23.

すなわち、本発明者は、純水に水素を溶存させた水素水を、水の電気分解の起こらない印加電圧(1.20V以下)の下で、陽極23aをイオン化傾向が水(純水)よりも低い材料および/またはセラミックス系の材料として定電圧を供給し通電したときの水素水22中に溶存する水素の溶存量bと電極23を流れる電流の電流値aとの相関関係cを予め測定により明らかとしている。 That is, the present inventor has a tendency to ionize the electrode 23a from water (pure water) under an applied voltage (1.20 V or less) at which hydrogen is dissolved in pure water without electrolysis of water. As a low material and / or ceramic material, the correlation c between the dissolved amount of hydrogen dissolved in hydrogen water 22 and the current value a of the current flowing through the electrode 23 when energized by supplying a constant voltage is measured in advance. It is clarified by.

そして、記憶部42は、予め測定された水素水22中に溶存する水素の溶存量bと電極23を流れる電流の電流値aとの相関関係cを所定のデータベースや数2の如く数式で記憶することとしている。
[数2]
c=f(a,b)
Then, the storage unit 42 stores the correlation c between the dissolved amount b of hydrogen dissolved in the hydrogen water 22 measured in advance and the current value a of the current flowing through the electrode 23 by a mathematical formula such as a predetermined database or equation 2. I'm supposed to do it.
[Number 2]
c = f (a, b)

積算部43は、測定された(入力された)電流値Aをリアルタイムに時間で積算し電流値Aの時間積算値ATを演算する機能を有している。積算部43は、図4に示すように、測定部30において、測定された電流値Aが所定の電流閾値X以下となるまで積算を行うことができる(電流値Aが電流閾値X以下となるまで積算した時間積算値をATXとする)。 The integrating unit 43 has a function of integrating the measured (input) current value A in real time and calculating the time integrated value AT of the current value A. As shown in FIG. 4, the integrating unit 43 can perform integration until the measured current value A becomes equal to or less than a predetermined current threshold value X in the measuring unit 30 (current value A becomes equal to or less than the current threshold value X). The time integrated value accumulated up to is referred to as ATX).

すなわち、電流閾値Xは、純水における電極23を流れる電流の電流値とすることができる。 That is, the current threshold value X can be the current value of the current flowing through the electrode 23 in pure water.

より詳しくは、電流閾値Xは、純水において、水の電気分解の起こらない印加電圧(1.20V以下)の下で、陽極23aをイオン化傾向が水(純水)よりも低い材料および/またはセラミックス系の材料として電気分解したときの電極23を流れる電流値であり、通常は0となるが、純水にごく僅かに不純物が含まれる場合等には、一定の電流値に設定されることがある。 More specifically, the current threshold X is a material and / or a material having a lower ionization tendency of the electrode 23a than water (pure water) in pure water under an applied voltage (1.20 V or less) at which electrolysis of water does not occur. It is the current value that flows through the electrode 23 when electrolyzed as a ceramic material, and is usually 0, but if the pure water contains a very small amount of impurities, it should be set to a constant current value. There is.

図4に示すように、測定部30により測定される電流値Aは、時間の経過とともに低下し、電流値Aが電流閾値Xに達したときに、積算部43による積算処理が終了する。 As shown in FIG. 4, the current value A measured by the measuring unit 30 decreases with the passage of time, and when the current value A reaches the current threshold value X, the integration process by the integrating unit 43 ends.

判断部44は、測定部30により測定された電流値Aが電流閾値Xに達したか否かを判断する機能を有している。 The determination unit 44 has a function of determining whether or not the current value A measured by the measurement unit 30 has reached the current threshold value X.

演算部45は、電流値Aが電流閾値Xに達したときの積算された電流値Aの時間積算値ATに基づいて水素の溶存量BTを演算する機能を有している。 The calculation unit 45 has a function of calculating the dissolved hydrogen amount BT based on the time integration value AT of the integrated current value A when the current value A reaches the current threshold value X.

より詳しくは、演算部45は、予め測定された水素水22中に溶存する水素の溶存量bと電極23を流れる電流の電流値aとの相関関係cを示すデータと、測定部30において測定された電流値Aと、に基づいて演算を行うことができる。 More specifically, the calculation unit 45 measures the data showing the correlation c between the dissolved amount b of hydrogen dissolved in the hydrogen water 22 measured in advance and the current value a of the current flowing through the electrode 23, and the measurement unit 30. The calculation can be performed based on the calculated current value A.

更に詳しくは、演算部45は、数3に示すように、積算された電流値Aの時間積算値ATXに数2で得られた相関関係cを乗じて積算された溶存量BTの演算を行うことができる。 More specifically, as shown in Equation 3, the calculation unit 45 calculates the dissolved amount BT integrated by multiplying the time integration value ATX of the integrated current value A by the correlation c obtained in Equation 2. be able to.

[数3]
BT=ATX×c
[Number 3]
BT = ATX x c

なお、本発明においては、測定装置1より詳しくは処理部40におけるコンピュータを、入力部41、記憶部42、積算部43、判断部44、および演算部45として機能させるプログラムが記憶部42に記憶されており、同プログラムを実行することにより、各機能部41,42,43,44,45を機能させることができる。 In the present invention, more specifically, a program that causes the computer in the processing unit 40 to function as an input unit 41, a storage unit 42, an integration unit 43, a determination unit 44, and a calculation unit 45 is stored in the storage unit 42. By executing the same program, each functional unit 41, 42, 43, 44, 45 can be made to function.

次に、測定装置1による測定方法を図5に示すフローチャートに基づいて詳細に説明する。 Next, the measuring method by the measuring device 1 will be described in detail based on the flowchart shown in FIG.

すなわち、まずステップ10においては、精製部10が、水素が溶存する水素水22を精製する。この精製は逆浸透膜を用いて行う(精製ステップ)。 That is, first, in step 10, the purification unit 10 purifies the hydrogen water 22 in which hydrogen is dissolved. This purification is performed using a reverse osmosis membrane (purification step).

次いで、ステップS20において、定電圧供給部20が、ステップS10で精製された水素水22に定電圧を供給し通電を行う。この定電圧供給は、水素水22中に電極23を浸漬しつつ定電圧を印加して行う。電圧は純水の電気分解が起こらない電圧とし、1.20V以下とする(定電圧供給ステップ)。 Next, in step S20, the constant voltage supply unit 20 supplies a constant voltage to the hydrogen water 22 purified in step S10 to energize the hydrogen water 22. This constant voltage supply is performed by applying a constant voltage while immersing the electrode 23 in hydrogen water 22. The voltage shall be a voltage at which electrolysis of pure water does not occur, and shall be 1.20 V or less (constant voltage supply step).

続いて、ステップS30において、測定部30が、定電圧供給により電極23を流れる電流の電流値Aを測定する(測定ステップ)。 Subsequently, in step S30, the measuring unit 30 measures the current value A of the current flowing through the electrode 23 by supplying a constant voltage (measurement step).

次に、ステップS40において、入力部41が、ステップS30で測定された電流値Aを入力する(入力ステップ)。 Next, in step S40, the input unit 41 inputs the current value A measured in step S30 (input step).

次いで、ステップS50において、積算部43が入力された電流値Aをリアルタイムに積算し、電流値Aの時間積算値ATXを演算する(積算ステップ)。この時間積算値ATXの演算は、ステップS60において、判断部44が、電流値Aが電流閾値X以下と判断したときに終了する(判断ステップ)。 Next, in step S50, the current value A input by the integration unit 43 is integrated in real time, and the time integration value ATX of the current value A is calculated (integration step). The calculation of the time integrated value ATX ends when the determination unit 44 determines in step S60 that the current value A is equal to or less than the current threshold value X (determination step).

続いて、ステップS70において、演算部45が、ステップS60で積算された電流値Aの時間積算値ATに基づいて数4により水素の溶存量Bより詳しくは積算された水素の溶存量BTを演算する(演算ステップ)。 Subsequently, in step S70, the calculation unit 45 calculates the hydrogen dissolution amount BT integrated in more detail than the hydrogen dissolution amount B by Equation 4 based on the time integration value AT of the current value A integrated in step S60. (Calculation step).

以上説明したように、本発明の測定方法および測定装置1によれば、水素水22中に電極23を浸漬しつつ定電圧を印加して通電する定電圧供給部20(定電圧供給ステップ)と、定電圧供給部20における電極23を流れる電流の電流値Aを測定する測定部30(測定ステップ)と、電流値Aに基づいて水素の溶存量Bを演算する演算部45(演算ステップ)と、を含むこととしたので、水素水22中の溶存水素量を測定することができる。 As described above, according to the measuring method and measuring device 1 of the present invention, the constant voltage supply unit 20 (constant voltage supply step) energizes by applying a constant voltage while immersing the electrode 23 in hydrogen water 22. , A measuring unit 30 (measurement step) for measuring the current value A of the current flowing through the electrode 23 in the constant voltage supply unit 20, and a calculation unit 45 (calculation step) for calculating the dissolved amount B of hydrogen based on the current value A. , Is included, so that the amount of dissolved hydrogen in the hydrogen water 22 can be measured.

また、水素が溶存する水素水22を精製する精製部10を含み、定電圧供給部20は、精製部10により精製された水素水22に定電圧を供給して通電を行うこととしたので、水素水22中の不純物を除去して通電を行うことができる。これにより、測定された電流値Aにおける不純物の影響を少なくすることができる。 Further, since the purification unit 10 for purifying the hydrogen water 22 in which hydrogen is dissolved is included, and the constant voltage supply unit 20 supplies the hydrogen water 22 purified by the purification unit 10 with a constant voltage to energize the hydrogen water 22. The energization can be performed by removing impurities in the hydrogen water 22. As a result, the influence of impurities on the measured current value A can be reduced.

なお、本発明は、上述した実施形態に限定されることなく種々の変形実施、応用実施が可能であることは勿論である。 Needless to say, the present invention is not limited to the above-described embodiment, and various modifications and applications can be implemented.

例えば、図6に示すように、定電圧供給部20は、定電圧供給槽21の開放された上面21aを板状体21b等により密閉するように閉塞し通電を行うことにより、空気中の酸素により電極23が酸化し溶出することを少なくすることができる。また、図6からも明らかなように、定電圧供給部20は、定電圧供給槽21に水素水22を気密に充填させて通電を行うことにより、電極23の酸化を更に少なくすることができる。なお、図6に示す電圧供給槽21においては、通電により生じた水素ガスや酸素ガスを所定に抜気する構成を有している。 For example, as shown in FIG. 6, the constant voltage supply unit 20 closes the open upper surface 21a of the constant voltage supply tank 21 so as to be sealed by a plate-shaped body 21b or the like and energizes the oxygen in the air. Therefore, it is possible to reduce the oxidation and elution of the electrode 23. Further, as is clear from FIG. 6, the constant voltage supply unit 20 can further reduce the oxidation of the electrode 23 by energizing the constant voltage supply tank 21 by airtightly filling the constant voltage supply tank 21 with hydrogen water 22. .. The voltage supply tank 21 shown in FIG. 6 has a configuration in which hydrogen gas and oxygen gas generated by energization are predeterminedly degassed.

A:電流値
a:電流値
B:水素の溶存量
b:水素の溶存量
c:相関関係
1:測定装置
10:精製部
20:定電圧供給部
21:定電圧供給槽
21a:上面
22:水素水
23:電極
23a:陽極
23b:陰極
30:測定部
40:処理部
41:入力部
42:記憶部
43:積算部
44:判断部
45:演算部
A: Current value a: Current value B: Dissolved amount of hydrogen b: Dissolved amount of hydrogen c: Correlation 1: Measuring device 10: Purification unit 20: Constant voltage supply unit 21: Constant voltage supply tank 21a: Top surface 22: Hydrogen Water 23: Electrode 23a: Anode 23b: Cathode 30: Measuring unit 40: Processing unit 41: Input unit 42: Storage unit 43: Integration unit 44: Judgment unit 45: Calculation unit

Claims (18)

水中に溶存する水素の溶存量を測定する測定方法であって、
前記水素が溶存する水中に所定の電極を浸漬しつつ電圧を印加して通電する電圧供給ステップと、
前記電圧供給ステップにおける前記電極を流れる電流の電流値を測定する測定ステップと、
前記電流値に基づいて前記水素の溶存量を演算する演算ステップと、
を含むことを特徴とする測定方法。
It is a measuring method for measuring the dissolved amount of hydrogen dissolved in water.
A voltage supply step in which a predetermined electrode is immersed in water in which hydrogen is dissolved and a voltage is applied to energize the electrode.
A measurement step for measuring the current value of the current flowing through the electrode in the voltage supply step, and a measurement step.
A calculation step for calculating the dissolved amount of hydrogen based on the current value, and
A measurement method comprising.
水中に溶存する水素の溶存量を測定する測定装置であって、
前記水素が溶存する水中に所定の電極を浸漬しつつ電圧を印加して通電する電圧供給部と、
前記電圧供給部における前記電極を流れる電流の電流値を測定する測定部と、
前記電流値に基づいて前記水素の溶存量を演算する演算部と、
を含むことを特徴とする測定装置。
It is a measuring device that measures the dissolved amount of hydrogen dissolved in water.
A voltage supply unit that applies a voltage while immersing a predetermined electrode in the water in which hydrogen is dissolved to energize.
A measuring unit that measures the current value of the current flowing through the electrode in the voltage supply unit, and a measuring unit.
An arithmetic unit that calculates the dissolved amount of hydrogen based on the current value,
A measuring device characterized by including.
予め定められた前記水中に溶存する水素の溶存量と前記所定の電極を流れる電流の電流値との相関関係を示すデータを記憶する記憶部を含み、前記演算部は、前記予め定められた前記水中に溶存する水素の溶存量と前記所定の電極を流れる電流の電流値との相関関係を示すデータと、前記測定部において測定された電流値と、に基づいて前記水中に溶存する水素の溶存量の演算を行うことを特徴とする請求項2に記載の測定装置。 The calculation unit includes a storage unit that stores data indicating a correlation between a predetermined amount of dissolved hydrogen dissolved in water and a current value of a current flowing through the predetermined electrode, and the calculation unit is the predetermined value. Dissolution of hydrogen dissolved in water based on data showing the correlation between the dissolved amount of hydrogen dissolved in water and the current value of the current flowing through the predetermined electrode and the current value measured by the measuring unit. The measuring device according to claim 2, wherein the amount is calculated. 前記電流値を積算する積算部を含み、前記演算部は、前記積算された電流値に基づいて前記溶存量の演算を行うことを特徴とする請求項3または請求項3に記載の測定装置。 The measuring device according to claim 3 or 3, wherein the calculation unit includes an integration unit that integrates the current value, and the calculation unit calculates the dissolved amount based on the integrated current value. 前記積算部は、前記測定部において、前記測定された電流値が所定の電流閾値以下となるまで前記積算を行うことを特徴とする請求項4に記載の測定装置。 The measuring device according to claim 4, wherein the integrating unit performs the integration until the measured current value becomes equal to or less than a predetermined current threshold value in the measuring unit. 前記電流閾値は、純水における前記所定の電極を流れる電流の電流値とすることを特徴とする請求項5に記載の測定装置。 The measuring device according to claim 5, wherein the current threshold value is a current value of a current flowing through the predetermined electrode in pure water. 前記電圧は、前記水の電気分解が起こらない電圧とすることを特徴とする請求項1乃至請求項5のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 5, wherein the voltage is a voltage at which electrolysis of water does not occur. 前記水の電気分解が起こらない電圧は、前記水の電気分解が起こる最小の電圧よりも小さい電圧とすることを特徴とする請求項7に記載の測定装置。 The measuring device according to claim 7, wherein the voltage at which the electrolysis of water does not occur is a voltage smaller than the minimum voltage at which the electrolysis of water occurs. 前記水素が溶存する水を精製する精製部を含み、
前記電圧供給部は、前記精製部により精製された水を用いて通電を行うことを特徴とする請求項1乃至請求項8のいずれか一項に記載の測定装置。
It contains a purification unit that purifies the water in which hydrogen is dissolved.
The measuring device according to any one of claims 1 to 8, wherein the voltage supply unit is energized using water purified by the purification unit.
前記精製部は、所定の膜を用いて前記水を精製することを特徴とする請求項9に記載の測定装置。 The measuring device according to claim 9, wherein the purification unit purifies the water using a predetermined membrane. 前記所定の膜は、逆浸透膜(RO膜)とすることを特徴とする請求項10に記載の測定装置。 The measuring device according to claim 10, wherein the predetermined membrane is a reverse osmosis membrane (RO membrane). 前記電極は、陰極および陽極を含み、前記陽極は、イオン化傾向が水よりも低い材料とすることを特徴とする請求項1乃至請求項11のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 11, wherein the electrode includes a cathode and an anode, and the anode is made of a material having a lower ionization tendency than water. 前記電極は、陽極および陰極を含み、前記陽極は、セラミックス系の材料とすることを特徴とする請求項1乃至請求項11のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 11, wherein the electrode includes an anode and a cathode, and the anode is made of a ceramic-based material. 前記セラミックス系の材料は、更に多孔質系の材料とすることを特徴とする請求項13に記載の測定装置。 The measuring device according to claim 13, wherein the ceramic-based material is further made into a porous-based material. 前記電圧供給部は、電圧供給槽を含み、前記電圧供給槽を密閉して通電を行うことを特徴とする請求項1乃至請求項14のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 14, wherein the voltage supply unit includes a voltage supply tank and energizes the voltage supply tank by sealing the voltage supply tank. 前記電圧供給部は、電圧供給槽を含み、前記電圧供給槽に水を気密に充填させて通電を行うことを特徴とする請求項1乃至請求項14のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 14, wherein the voltage supply unit includes a voltage supply tank, and the voltage supply tank is airtightly filled with water to energize the voltage supply tank. 水中に溶存する水素の溶存量を測定する測定装置におけるコンピュータを、
前記水素が溶存する水中に所定の電極を浸漬しつつ電圧を印加して通電する電圧供給部における前記電極を流れる電流の電流値に基づいて前記水素の溶存量を演算する演算部として機能させることを特徴とするプログラム。
A computer in a measuring device that measures the dissolved amount of hydrogen dissolved in water,
To function as a calculation unit that calculates the dissolved amount of hydrogen based on the current value of the current flowing through the electrode in the voltage supply unit that applies a voltage to energize while immersing a predetermined electrode in water in which hydrogen is dissolved. A program featuring.
請求項17に記載のプログラムを記憶することを特徴とするコンピュータ読み取り可能な記憶媒体。
A computer-readable storage medium for storing the program of claim 17.
JP2019079745A 2019-04-19 2019-04-19 Measuring method, measuring device, program, and computer-readable storage medium Active JP7349675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019079745A JP7349675B2 (en) 2019-04-19 2019-04-19 Measuring method, measuring device, program, and computer-readable storage medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019079745A JP7349675B2 (en) 2019-04-19 2019-04-19 Measuring method, measuring device, program, and computer-readable storage medium

Publications (2)

Publication Number Publication Date
JP2020176931A true JP2020176931A (en) 2020-10-29
JP7349675B2 JP7349675B2 (en) 2023-09-25

Family

ID=72935774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019079745A Active JP7349675B2 (en) 2019-04-19 2019-04-19 Measuring method, measuring device, program, and computer-readable storage medium

Country Status (1)

Country Link
JP (1) JP7349675B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197590A (en) * 1988-11-14 1990-08-06 Ebonex Technol Inc Redox reaction method and electrolytic bath for it
JP2008190969A (en) * 2007-02-02 2008-08-21 Dkk Toa Corp Measuring device and data table setting method
JP2010018840A (en) * 2008-07-10 2010-01-28 Teijin Pharma Ltd Method for removing water in electrolyte, device therefor and water content measurement apparatus
JP2010094622A (en) * 2008-10-17 2010-04-30 Spring:Kk Apparatus and method for producing dissolved hydrogen drinking water
JP2014157104A (en) * 2013-02-18 2014-08-28 Nippon Telegr & Teleph Corp <Ntt> Hydrogen amount measuring method
JP2015087221A (en) * 2013-10-30 2015-05-07 株式会社日本トリム Dissolved hydrogen concentration measuring method and electrolytic solution generation device
JP2017020823A (en) * 2015-07-08 2017-01-26 東西化学産業株式会社 Dissolved hydrogen concentration measurement device and measuring method
JP2018179830A (en) * 2017-04-17 2018-11-15 株式会社みらくるセンター Underwater hydrogen dissolved quantity measuring method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197590A (en) * 1988-11-14 1990-08-06 Ebonex Technol Inc Redox reaction method and electrolytic bath for it
JP2008190969A (en) * 2007-02-02 2008-08-21 Dkk Toa Corp Measuring device and data table setting method
JP2010018840A (en) * 2008-07-10 2010-01-28 Teijin Pharma Ltd Method for removing water in electrolyte, device therefor and water content measurement apparatus
JP2010094622A (en) * 2008-10-17 2010-04-30 Spring:Kk Apparatus and method for producing dissolved hydrogen drinking water
JP2014157104A (en) * 2013-02-18 2014-08-28 Nippon Telegr & Teleph Corp <Ntt> Hydrogen amount measuring method
JP2015087221A (en) * 2013-10-30 2015-05-07 株式会社日本トリム Dissolved hydrogen concentration measuring method and electrolytic solution generation device
JP2017020823A (en) * 2015-07-08 2017-01-26 東西化学産業株式会社 Dissolved hydrogen concentration measurement device and measuring method
JP2018179830A (en) * 2017-04-17 2018-11-15 株式会社みらくるセンター Underwater hydrogen dissolved quantity measuring method

Also Published As

Publication number Publication date
JP7349675B2 (en) 2023-09-25

Similar Documents

Publication Publication Date Title
JP6196528B2 (en) Dissolved hydrogen concentration measuring method and electrolyzed water generator
JP2906986B2 (en) Wet treatment apparatus, electrolytic activated water generation method, and wet treatment method
JP2011220717A (en) Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device
EP3243800A1 (en) Electrolyzed water-generating apparatus and electrolyzed water
JP2020176931A (en) Measuring method, measuring device, program, and computer-readable storage medium
US20190011399A1 (en) Amperometric chlorine dioxide sensor
US20200361795A1 (en) Electrolytic Water Production Device and a Method of Producing Electrolytic Water
US10974976B2 (en) pH control method for UpA cell
KR20170131574A (en) Manufacturing method of diluted hydrofluoric acid
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
JP2005127928A (en) Controlled potential electrolysis type gas measuring instrument
US11713260B2 (en) Electrolyzed water generating device and electrolyzed water generating method
JP3477333B2 (en) Cleaning method of redox potential sensor
JP2008058025A (en) Residual chlorine concentration meter
JP2007307476A (en) Decreasing mechanism of hypohalous acid and decreasing method
WO2014185114A1 (en) Functional water production apparatus
Kishimoto et al. Effect of Intermittent Electrolysis on Electrolytic Removal of an Organic Pollutant
JP2012240026A (en) Electrolyzed water producing device
US11975992B2 (en) Method of producing rinsing liquid
JP2024043371A (en) Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method
JP3562153B2 (en) Alkaline ion water purifier
JP2000202446A (en) Electrolytic ionized water manufacturing device
EP3882618A1 (en) Analysis device
WO2023243535A1 (en) Device for measuring hypochlorite concentration, and device for generating hypochlorite
JP2022071345A (en) Electrolytic apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230407

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7349675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150