JP2024043371A - Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method - Google Patents

Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method Download PDF

Info

Publication number
JP2024043371A
JP2024043371A JP2022148533A JP2022148533A JP2024043371A JP 2024043371 A JP2024043371 A JP 2024043371A JP 2022148533 A JP2022148533 A JP 2022148533A JP 2022148533 A JP2022148533 A JP 2022148533A JP 2024043371 A JP2024043371 A JP 2024043371A
Authority
JP
Japan
Prior art keywords
hypochlorous acid
measurement
conductivity
electrodes
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022148533A
Other languages
Japanese (ja)
Inventor
祥文 渡部
弘士 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2022148533A priority Critical patent/JP2024043371A/en
Publication of JP2024043371A publication Critical patent/JP2024043371A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】電解に用いられる電極を利用して次亜塩素酸の濃度を測定する。【解決手段】電解槽210と、一対の電極220に直流電圧を印加し、塩素を含んだ水を電気分解して次亜塩素酸水を発生させる電解装置230と、次亜塩素酸水の電導度を示す電導度情報を測定する測定手段110と、測定手段110を制御する測定制御装置120と、電極220と電解装置230との接続と電極220と測定手段110との接続とを切り替える切替手段140と、を備え、測定手段110は、一対の電極220の間に交流電圧を印加する印加測定装置112を備え、測定制御装置120は、測定手段110から電導度情報を取得する測定情報取得部121と、次亜塩素酸濃度と電導度情報との関係を示す換算情報を取得する換算情報取得部122と、電導度情報、および換算情報に基づき次亜塩素酸濃度を算出する濃度算出部123と、を備える次亜塩素酸水発生装置。【選択図】図1[Problem] The concentration of hypochlorous acid is measured using electrodes used for electrolysis. [Solution] A hypochlorous acid water generator comprising an electrolytic cell 210, an electrolytic device 230 that applies a DC voltage to a pair of electrodes 220 to electrolyze chlorine-containing water to generate hypochlorous acid water, a measuring means 110 that measures conductivity information indicating the conductivity of the hypochlorous acid water, a measurement control device 120 that controls the measuring means 110, and a switching means 140 that switches between the connection between the electrodes 220 and the electrolytic device 230 and the connection between the electrodes 220 and the measuring means 110, the measuring means 110 comprising an application measuring device 112 that applies an AC voltage between the pair of electrodes 220, and the measurement control device 120 comprising a measurement information acquisition unit 121 that acquires the conductivity information from the measuring means 110, a conversion information acquisition unit 122 that acquires conversion information indicating the relationship between the hypochlorous acid concentration and the conductivity information, and a concentration calculation unit 123 that calculates the hypochlorous acid concentration based on the conductivity information and the conversion information. [Selected Figure] Figure 1

Description

本発明は、次亜塩素酸水発生装置、空間除菌装置、および次亜塩素酸濃度測定方法に関する。 The present invention relates to a hypochlorous acid water generating device, a space sterilization device, and a method for measuring hypochlorous acid concentration.

特許文献1には、次亜塩素酸の電気化学的な還元電流に基づき次亜塩素酸水の濃度を測定するいわゆるポーラロ式の測定技術が記載されている。 Patent Document 1 describes a so-called Polaro measurement technique that measures the concentration of hypochlorous acid water based on the electrochemical reduction current of hypochlorous acid.

特開2011-7508号公報Japanese Patent Application Publication No. 2011-7508

従来、次亜塩素酸水発生装置には電気分解用の一対の電極が存在する。この電極を用いて次亜塩素酸の濃度を測定することが考えられるが、測定に用いられる電極の汚染により次亜塩素酸水の濃度の測定値が変動するポーラロ式の測定技術を採用することは困難である。また、ポーラロ式の測定技術を採用すると、測定する前に電極の清掃作業が必要になるなど取り扱いが煩雑になり、電極の材料が貴金属を用いる必要があるなどコスト的に問題が有る。 Conventionally, hypochlorous acid water generators have a pair of electrodes for electrolysis. It is possible to measure the concentration of hypochlorous acid using these electrodes, but it is difficult to adopt polarographic measurement technology, which causes fluctuations in the measured value of the concentration of hypochlorous acid water due to contamination of the electrodes used for measurement. In addition, adopting polarographic measurement technology makes handling complicated, such as requiring cleaning of the electrodes before measurement, and there are cost issues, such as the need to use precious metals as the material for the electrodes.

発明者は、前記課題に基づき鋭意研究と実験の結果、安定的に測定できる次亜塩素酸水の電導度が次亜塩素酸水の濃度を比較的正確に示す指標となることを見出すに至った。さらに、次亜塩素酸水を発生させる電極を用いて次亜塩素酸の濃度を正確に測定できることを見出した。本発明は、発明者の知見に基づきなされたものであり、簡単な構成で次亜塩素酸水の濃度を測定することができる次亜塩素酸水発生装置、空間除菌装置、および次亜塩素酸濃度測定方法の提供を目的とする。 As a result of intensive research and experiments based on the above-mentioned problem, the inventor discovered that the electrical conductivity of hypochlorous acid water, which can be stably measured, is a relatively accurate indicator of the concentration of hypochlorous acid water. Ta. Furthermore, they discovered that the concentration of hypochlorous acid can be accurately measured using an electrode that generates hypochlorous acid water. The present invention was made based on the inventor's knowledge, and provides a hypochlorous acid water generator, a space sterilization device, and a hypochlorous acid water generator that can measure the concentration of hypochlorous acid water with a simple configuration. The purpose is to provide a method for measuring acid concentration.

上記目的を達成するために、本発明の一態様に係る次亜塩素酸水発生装置は、塩素を含んだ水を貯留する電解槽と、前記電解槽中に挿入状態で配置される一対の電極と、一対の前記電極に直流電圧を印加し、塩素を含んだ前記水を電気分解して次亜塩素酸水を発生させる電解装置と、前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段と、前記測定手段を制御する測定制御装置と、一対の前記電極と前記電解装置との接続と一対の前記電極と前記測定手段との接続とを切り替える切替手段と、を備え、前記測定手段は、一対の前記電極の間に交流電圧を印加する印加測定装置を備え、前記測定制御装置は、前記測定手段から電導度情報を取得する測定情報取得部と、次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する換算情報取得部と、測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する濃度算出部と、を備える。 In order to achieve the above object, a hypochlorous acid water generator according to one aspect of the present invention includes an electrolytic cell that stores water containing chlorine, and a pair of electrodes that are inserted into the electrolytic cell. an electrolytic device that applies a DC voltage to the pair of electrodes to electrolyze the water containing chlorine to generate hypochlorous acid water; a measuring means for measuring conductivity information indicating conductivity, a measurement control device for controlling the measuring means, a connection between a pair of the electrodes and the electrolytic device, and a connection between a pair of the electrodes and the measuring means. a switching device, the measuring device includes an application measuring device that applies an alternating current voltage between the pair of electrodes, and the measurement control device includes a measurement information acquisition unit that acquires conductivity information from the measuring device. and a conversion information acquisition unit that acquires conversion information indicating the relationship between hypochlorous acid concentration and the conductivity information, and a concentration that calculates the hypochlorous acid concentration based on the measured conductivity information and the conversion information. A calculation section.

また、本発明の一態様に係る空間除菌装置は、塩素を含んだ水を貯留する電解槽と、前記電解槽中に挿入状態で配置される一対の電極と、一対の前記電極に直流電圧を印加し、塩素を含んだ前記水を電気分解して次亜塩素酸水を発生させる電解装置と、前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段と、前記測定手段を制御する測定制御装置と、一対の前記電極と前記電解装置との接続と一対の前記電極と前記測定手段との接続とを切り替える切替手段と、発生させた次亜塩素酸水を大気中に拡散する拡散手段と、を備え、前記測定手段は、一対の前記電極の間に交流電圧を印加する印加測定装置を備え、前記測定制御装置は、前記測定手段から電導度情報を取得する測定情報取得部と、次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する換算情報取得部と、測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する濃度算出部と、を備える。 Further, the space sterilization device according to one aspect of the present invention includes an electrolytic cell that stores water containing chlorine, a pair of electrodes inserted into the electrolytic cell, and a DC voltage applied to the pair of electrodes. an electrolytic device that applies chlorine and electrolyzes the water containing chlorine to generate hypochlorous acid water, and measures conductivity information indicating the conductivity of the hypochlorous acid water stored in the electrolytic cell. a measuring means, a measurement control device for controlling the measuring means, a switching means for switching between the connection between the pair of the electrodes and the electrolytic device and the connection between the pair of the electrodes and the measuring means; diffusion means for diffusing chloric acid water into the atmosphere; the measurement means includes an application measurement device that applies an alternating current voltage between the pair of electrodes; and the measurement control device a measurement information acquisition unit that acquires conductivity information; a conversion information acquisition unit that acquires conversion information indicating the relationship between the hypochlorous acid concentration and the conductivity information; A concentration calculation unit that calculates a hypochlorous acid concentration.

また、本発明の一態様に係る次亜塩素酸濃度測定方法は、電解槽に貯留される塩素を含んだ水を電圧が印加された一対の電極により電気分解して発生させた次亜塩素酸の濃度を測定する次亜塩素酸濃度測定方法であって、電気分解を実行していない際に測定指示部が切替手段を用いて前記電極と測定手段との接続に切り替えて前記測定手段に電導度情報の測定を実行させ、前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定した前記測定手段から電導度情報を測定情報取得部が取得し、次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を換算情報取得部が取得し、取得された前記電導度情報、および前記換算情報に基づき次亜塩素酸濃度を濃度算出部が算出する。 Further, the method for measuring hypochlorous acid concentration according to one aspect of the present invention includes hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic tank using a pair of electrodes to which a voltage is applied. A hypochlorous acid concentration measuring method for measuring the concentration of hypochlorous acid, wherein when electrolysis is not being performed, the measurement instruction section uses a switching means to switch the connection between the electrode and the measuring means to conduct electricity to the measuring means. The measurement information acquisition unit acquires the conductivity information from the measuring means that measured the conductivity information indicating the conductivity of the hypochlorous acid water stored in the electrolytic cell. A conversion information acquisition unit acquires conversion information indicating a relationship between the acid concentration and the conductivity information, and a concentration calculation unit calculates the hypochlorous acid concentration based on the acquired conductivity information and the conversion information.

なお、上記次亜塩素酸濃度測定方法をコンピュータに実行させるためのプログラムとして実現することができる。あるいは、当該プログラムを格納したコンピュータ読み取り可能な記録媒体として実現することもできる。 The above-mentioned hypochlorous acid concentration measurement method can be realized as a program for causing a computer to execute the method. Alternatively, the method can be realized as a computer-readable recording medium storing the program.

本発明によれば、発生させた次亜塩素酸水の次亜塩素酸濃度を簡単な装置構成で測定することができる。 According to the present invention, the hypochlorous acid concentration of generated hypochlorous acid water can be measured with a simple device configuration.

本実施の形態に係る空間除菌装置を簡易的に側方から示す図である。FIG. 1 is a diagram simply showing the space sterilization device according to the present embodiment from the side. 測定制御装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a measurement control device. 次亜塩素酸濃度と次亜塩素酸水の電導度との関係を示すグラフである。It is a graph showing the relationship between the hypochlorous acid concentration and the conductivity of hypochlorous acid water. 電導度の差分の累積と次亜塩素酸濃度との関係を示すグラフである。It is a graph showing the relationship between the accumulation of differences in conductivity and hypochlorous acid concentration. 測定手段が備える液抵抗値測定用回路のブロック図である。FIG. 4 is a block diagram of a liquid resistance measurement circuit provided in the measurement means. 空間除菌装置動作の流れを示すフローチャートである。It is a flowchart which shows the flow of space sterilization device operation. 切替手段の別例を示す図である。FIG. 13 is a diagram showing another example of the switching means.

以下、本発明に係る次亜塩素酸水発生装置、空間除菌装置、および次亜塩素酸濃度測定方法の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、本発明を説明するために一例を挙示するものであり、本発明を限定する主旨ではない。例えば、以下の実施の形態において示される形状、構造、材料、構成要素、相対的位置関係、接続状態、数値、数式、方法における各段階の内容、各段階の順序などは、一例であり、以下に記載されていない内容を含む場合がある。また、平行、直交などの幾何学的な表現を用いる場合があるが、これらの表現は、数学的な厳密さを示すものではなく、実質的に許容される誤差、ずれなどが含まれる。また、同時、同一などの表現も、実質的に許容される範囲を含んでいる。 DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a hypochlorous acid water generating device, a space sterilization device, and a hypochlorous acid concentration measuring method according to the present invention will be described with reference to the drawings. Note that the following embodiments are provided as an example to explain the present invention, and are not intended to limit the present invention. For example, the shapes, structures, materials, components, relative positional relationships, connection states, numerical values, formulas, contents of each step in the method, order of each step, etc. shown in the following embodiments are merely examples. It may contain content not listed. Furthermore, although geometric expressions such as parallel and perpendicular are sometimes used, these expressions do not indicate mathematical rigor and include substantially permissible errors, deviations, and the like. Furthermore, expressions such as "simultaneously" and "identical" also include a substantially permissible range.

また、図面は、本発明を説明するために適宜強調、省略、または比率の調整を行った模式的な図となっており、実際の形状、位置関係、および比率とは異なる。また、図中に示す場合があるX軸、Y軸、Z軸は、図の説明のために任意に設定した直交座標を示している。つまりZ軸は、鉛直方向に沿う軸とは限らず、X軸、Y軸は、水平面内に存在するとは限らない。 The drawings are schematic diagrams in which emphasis, omission, or adjustment of proportions has been appropriately made in order to explain the present invention, and differ from the actual shapes, positional relationships, and proportions. The X-axis, Y-axis, and Z-axis that may be shown in the drawings indicate orthogonal coordinates that have been arbitrarily set in order to explain the drawings. In other words, the Z-axis is not necessarily an axis along the vertical direction, and the X-axis and Y-axis are not necessarily on a horizontal plane.

また、以下では複数の発明を一つの実施の形態として包括的に説明する場合がある。また、以下に記載する内容の一部は、本発明に関する任意の構成要素として説明している。 Furthermore, hereinafter, multiple inventions may be comprehensively described as one embodiment. Further, some of the contents described below are explained as optional components related to the present invention.

また、フローチャートは、一例であり、処理の順序が異なる、複数の処理が統合される、一つの処理が分離されるなど、処理の流れが異なっても本発明の実施の形態に含まれる。 Furthermore, the flowchart is just an example, and even if the process flow is different, such as in a different order of processing, in which a plurality of processes are integrated, or in which one process is separated, it is included in the embodiment of the present invention.

図1は、本実施の形態に係る空間除菌装置200を簡易的に側方から示す図である。空間除菌装置200は、次亜塩素酸水を空間内に放出する。また、空間除菌装置200は、空間内の大気を次亜塩素酸水中に導入する。空間は、建物の屋内空間などの閉じられた空間を対象としている。具体的に空間としては、一般家庭の居住空間、または、病院若しくは介護施設の室内空間などを例示することができる。なお、空間は、完全に閉じた空間でなくてもよく、屋外と繋がっていてもよい。また、空間は、建物内の空間だけでなく、電車または自動車などの移動体内の空間であってもよい。 FIG. 1 is a diagram schematically showing a space sterilization device 200 according to the present embodiment from the side. The space sterilization device 200 releases hypochlorous acid water into the space. Moreover, the space sterilization device 200 introduces the atmosphere in the space into the hypochlorous acid water. The target space is a closed space such as the indoor space of a building. Specifically, examples of the space include a living space in a general home, an indoor space in a hospital or a nursing care facility, and the like. Note that the space does not need to be a completely closed space and may be connected to the outdoors. Moreover, the space may be not only a space inside a building but also a space inside a moving body such as a train or a car.

次亜塩素酸水は、除菌、および脱臭効果を有する。具体的には、次亜塩素酸水は、酸化作用を有し、空間の浮遊菌、物体に付着した付着菌、または、臭い物質を酸化により分解することで、除菌、および脱臭を行う。なお、「除菌」の文言は、本明細書、特許請求の範囲において便宜的に記載するものであり、「殺菌」などの意味を含む。また、「菌」は、ウイルス、カビなども含むものとして記載している。 Hypochlorous acid water has sterilizing and deodorizing effects. Specifically, hypochlorous acid water has an oxidizing effect, and sterilizes and deodorizes by decomposing floating bacteria in the space, bacteria adhering to objects, or odor substances through oxidation. Note that the term "sterilization" is used for convenience in the present specification and claims, and includes meanings such as "sterilization." In addition, "bacteria" is described as including viruses, molds, etc.

図1に示されるように、空間除菌装置200は、次亜塩素酸水発生装置100と、拡散手段240と、を備えている。次亜塩素酸水発生装置100は、電解槽210と、一対の電極220と、電解装置230と、測定手段110と、主制御装置250と、切替手段140と、を備えている。 As shown in FIG. 1, the space sterilization device 200 includes a hypochlorous acid water generating device 100 and a diffusion means 240. The hypochlorous acid water generator 100 includes an electrolytic cell 210, a pair of electrodes 220, an electrolytic device 230, a measuring means 110, a main controller 250, and a switching means 140.

電解槽210は、塩素を含んだ水を貯留する水槽であり、電解槽210内において塩素を含んだ水を電気分解することにより、次亜塩素酸水が生成される。塩素を含んだ水は、例えば塩を溶解した水などを例示することができる。 The electrolytic cell 210 is a water tank that stores water containing chlorine, and hypochlorous acid water is generated by electrolyzing the water containing chlorine in the electrolytic cell 210. Examples of water containing chlorine include water in which salt is dissolved.

電極220は、電解槽210に貯留される塩素を含んだ水内に挿入状態で配置される導電性の一対の部材である。電極220の形状は、特に限定されるものではないが、本実施の形態の場合、矩形の板状(帯状)である。電極220は、それぞれの主面(最も面積が大きい面)が対向するように配置されている。電極220の材質は、導電性を備える材質であれば特に限定されるものではない。例えば電極220としては、導電性基材の表面に触媒層が被覆された構成を挙示することができる。導電性基材は、例えば、チタン、鉄、銅、ニオブ、タンタルなどの金属単体あるいはそれらの合金などが挙げられる。製造時の加工しやすさ、あるいは製造コストを考慮すると導電性基材の材質は、チタンあるいはチタン合金が好ましい。触媒層は、白金やイリジウムなどを含有する触媒を例示することができる。その他の触媒層に含まれる混合物としては、金属、合金、金属酸化物等のいずれかの金属状態でもよく、例えば、鉛、金、ニッケル、銅、銀、鉄、パラジウム、ルテニウム、ロジウム、炭素などが挙げられる。 The electrodes 220 are a pair of conductive members inserted into the chlorine-containing water stored in the electrolytic cell 210. Although the shape of the electrode 220 is not particularly limited, in the case of this embodiment, it is a rectangular plate shape (band shape). The electrodes 220 are arranged so that their respective main surfaces (the surfaces with the largest area) face each other. The material of the electrode 220 is not particularly limited as long as it is conductive. For example, the electrode 220 may have a structure in which the surface of a conductive base material is coated with a catalyst layer. Examples of the conductive base material include simple metals such as titanium, iron, copper, niobium, and tantalum, or alloys thereof. In consideration of ease of processing during manufacturing or manufacturing cost, the material of the conductive base material is preferably titanium or a titanium alloy. The catalyst layer can be exemplified by a catalyst containing platinum, iridium, or the like. Other mixtures contained in the catalyst layer may be in any metal state such as metals, alloys, metal oxides, etc., such as lead, gold, nickel, copper, silver, iron, palladium, ruthenium, rhodium, carbon, etc. can be mentioned.

電解装置230は、一対の電極220の間に所定の直流電圧を印加する直流電源装置である。電解装置230は、主制御装置250の制御により、一対の電極220に電圧を印加するか否か、つまり一対の電極220への電圧印加のオン、オフが選択される。 The electrolysis device 230 is a DC power supply device that applies a predetermined DC voltage between a pair of electrodes 220. In the electrolytic device 230, whether or not to apply a voltage to the pair of electrodes 220, that is, whether to apply a voltage to the pair of electrodes 220 is selected on or off under the control of the main controller 250.

拡散手段240は、管軸(図1中の左右方向)周りに回転する円筒状の部材であり、電解槽210に貯留される次亜塩素酸水に拡散手段240の周縁の一部が周期的に浸漬し、毛細管現象などを利用して水を次亜塩素酸水の液面よりも上に持ち上げる。液面よりも上に持ち上げられた次亜塩素酸水の間に空気を通過させることで、次亜塩素酸水の微小な液滴を大気中に拡散する。大気中に存在する菌(ウイルス、カビなど含む)は、拡散手段240により持ち上げられた次亜塩素酸水と接触することで除菌(ウイルス、カビなどの不活性化を含む)される。また、大気中に拡散された次亜塩素酸水と接触することでも除菌される。 The diffusion means 240 is a cylindrical member that rotates around the tube axis (left and right direction in FIG. 1). Part of the periphery of the diffusion means 240 is periodically immersed in the hypochlorous acid water stored in the electrolytic cell 210, and the water is raised above the liquid level of the hypochlorous acid water by utilizing capillary action or the like. By passing air between the hypochlorous acid water raised above the liquid level, minute droplets of hypochlorous acid water are diffused into the atmosphere. Bacteria (including viruses, mold, etc.) present in the air are sterilized (including inactivation of viruses, mold, etc.) by contact with the hypochlorous acid water raised by the diffusion means 240. They are also sterilized by contact with the hypochlorous acid water diffused into the atmosphere.

主制御装置250は、プロセッサを備え、プロセッサにブログラムを実行させることにより、空間除菌装置200を制御する装置である。本実施の形態の場合、主制御装置250は、後述の次亜塩素酸水発生装置100から電解槽210中の次亜塩素酸濃度を取得し、次亜塩素酸濃度が一定になるように電解装置230を制御する。ここで、次亜塩素酸濃度とは、次亜塩素酸、および次亜塩素酸イオンの合計濃度を意味している。また、主制御装置250は、電解槽210に設けられている水位センサ260から水位を示す水位情報を取得し、電解槽210内の水位が所定の水位閾値に達していない場合は、電解装置230が動作しないように制御する。 The main control device 250 is a device that includes a processor and controls the space sterilization device 200 by causing the processor to execute a program. In the case of this embodiment, main controller 250 acquires the hypochlorous acid concentration in electrolytic cell 210 from hypochlorous acid water generator 100, which will be described later, and performs electrolysis so that the hypochlorous acid concentration is constant. Control device 230. Here, the hypochlorous acid concentration means the total concentration of hypochlorous acid and hypochlorite ions. The main controller 250 also acquires water level information indicating the water level from a water level sensor 260 provided in the electrolyzer 210, and if the water level in the electrolyzer 210 has not reached a predetermined water level threshold, the main controller 250 control so that it does not operate.

切替手段140は、一対の電極220と電解装置230との接続と一対の電極220と測定手段110との接続とを切り替える。本実施の形態の場合、切替手段140としては、一対の電極220と電解装置230との接続と一対の電極220と測定手段110との接続とを機械的な接点を用いて排他的に切り替えるリレーが採用されている。これにより、次亜塩素酸水を発生させる際の電流が測定手段110に流れ込み、測定手段110に不具合が発生することを防止できる。また、次亜塩素酸の濃度を測定する際には、電解装置230による影響を排除して正確な測定を実行することができる。 The switching means 140 switches between the connection between the pair of electrodes 220 and the electrolyzer 230 and the connection between the pair of electrodes 220 and the measurement means 110. In the case of this embodiment, the switching means 140 is a relay that exclusively switches the connection between the pair of electrodes 220 and the electrolyzer 230 and the connection between the pair of electrodes 220 and the measuring means 110 using mechanical contacts. has been adopted. Thereby, it is possible to prevent a problem from occurring in the measuring means 110 due to the current flowing into the measuring means 110 when generating hypochlorous acid water. Furthermore, when measuring the concentration of hypochlorous acid, it is possible to eliminate the influence of the electrolytic device 230 and perform accurate measurement.

次亜塩素酸水発生装置100は、電解槽210に貯留される塩素を含んだ水を電気分解して発生させた次亜塩素酸の濃度を電気分解に用いた電極220を利用して測定する装置であって、測定手段110と、測定制御装置120と、を備えている。 The hypochlorous acid water generator 100 is a device that measures the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic cell 210 using an electrode 220 used for electrolysis, and is equipped with a measuring means 110 and a measurement control device 120.

測定手段110は、電解槽210に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する装置であって、切替手段140を介して電極220と接続が可能であり、印加測定装置112を備えている。本実施の形態の場合、測定手段110は、電解槽210に貯留される水の温度を示す温度情報を測定する水温センサ113を備える。 The measuring means 110 is a device that measures conductivity information indicating the conductivity of the hypochlorous acid water stored in the electrolytic cell 210, can be connected to the electrode 220 via the switching means 140, and is equipped with an application measuring device 112. In this embodiment, the measuring means 110 is equipped with a water temperature sensor 113 that measures temperature information indicating the temperature of the water stored in the electrolytic cell 210.

印加測定装置112は、切替手段140を介して接続される一対の電極220の間に所定の交流電圧を印加する交流電源装置131(図5参照)を備える。また、印加測定装置112は、一対の電極220の間の液抵抗値を電導度情報として測定する液抵抗値測定装置132(図5参照)を備える。印加測定装置112は、測定制御装置120の制御により、電極220に交流電圧を印加するか否か、つまり一対の電極220への交流電圧印加のオン、オフが選択される。印加測定装置112が一対の電極220の間に印加する交流電圧の周波数は、1kHz以上、100kHz以下の範囲から選定されることが好ましい。当該比較的高周波の範囲の交流電圧を印加することにより、液抵抗値測定装置132は、交流インピーダンス法を用いて次亜塩素酸水の液抵抗値を算出する際に虚数項のない状態で液抵抗値を測定することができる。つまり、上記範囲の周波数にて交流インピーダンス法を用いることにより次亜塩素酸水の発生に用いた電極220の劣化度合いを無視することができ、安定して液抵抗値を測定できることを発明者は見いだしている。なお、印加測定装置112として交流電圧を印加する交流電源装置131を備える場合を例示したが、印加測定装置112は、交流電流を印加する交流電源装置131を備えてもよい。この場合、測定制御装置120は、交流電流の制御を行ってもかまわない。 The application and measurement device 112 includes an AC power supply device 131 (see FIG. 5) that applies a predetermined AC voltage between a pair of electrodes 220 connected via a switching means 140. Further, the application measuring device 112 includes a liquid resistance value measuring device 132 (see FIG. 5) that measures the liquid resistance value between the pair of electrodes 220 as conductivity information. The application and measurement device 112 selects whether or not to apply an AC voltage to the electrodes 220, that is, whether to apply an AC voltage to the pair of electrodes 220 or not, under the control of the measurement control device 120. It is preferable that the frequency of the AC voltage applied between the pair of electrodes 220 by the application and measurement device 112 is selected from a range of 1 kHz or more and 100 kHz or less. By applying the AC voltage in the relatively high frequency range, the liquid resistance value measuring device 132 measures the liquid resistance value without an imaginary term when calculating the liquid resistance value of hypochlorous acid water using the AC impedance method. Resistance value can be measured. In other words, the inventor found that by using the AC impedance method at a frequency in the above range, the degree of deterioration of the electrode 220 used to generate hypochlorous acid water can be ignored, and the liquid resistance value can be measured stably. I'm finding it. Although the application and measurement device 112 includes an AC power supply device 131 that applies an AC voltage, the application and measurement device 112 may also include an AC power supply device 131 that applies an AC current. In this case, the measurement control device 120 may control the alternating current.

図2は、測定制御装置120の機能構成を示すブロック図である。測定制御装置120は、プロセッサを備え、プロセッサにブログラムを実行させることにより、印加測定装置112が一対の切替手段140を介して接続される電極220に交流電圧を印加するタイミングを制御する。また、交流電圧を印加することにより得られる次亜塩素酸水の電導度を示す電導度情報を取得する。測定制御装置120は、処理部として測定情報取得部121と、換算情報取得部122と、濃度算出部123と、を備えている。本実施の形態の場合、測定制御装置120は、電気分解実行取得部125と、測定指示部124と、補正情報取得部126と、測定調整部127と、クリーニング部128と、を備える。 FIG. 2 is a block diagram showing the functional configuration of the measurement control device 120. The measurement control device 120 includes a processor, and controls the timing at which the application and measurement device 112 applies an AC voltage to the electrodes 220 connected via the pair of switching means 140 by causing the processor to execute a program. Furthermore, conductivity information indicating the conductivity of hypochlorous acid water obtained by applying an alternating current voltage is acquired. The measurement control device 120 includes a measurement information acquisition section 121, a conversion information acquisition section 122, and a concentration calculation section 123 as processing sections. In the case of this embodiment, the measurement control device 120 includes an electrolysis execution acquisition section 125, a measurement instruction section 124, a correction information acquisition section 126, a measurement adjustment section 127, and a cleaning section 128.

測定情報取得部121は、測定手段110から電導度情報を取得する。測定手段110から取得する電導度情報は、特に限定されるものではなく、次亜塩素酸水の電導度(電気電導度)、または演算により電導度を導き出すことができる情報であればよい。例えば、電導度情報は、次亜塩素酸水の液抵抗値でもかまわない。測定制御装置120が交流インピーダンス法により計測した液抵抗値を測定情報取得部121が取得し、取得した液抵抗値の逆数を算出することで電導度を導出してもかまわない。 The measurement information acquisition unit 121 acquires conductivity information from the measurement means 110. The electrical conductivity information acquired from the measuring means 110 is not particularly limited, and may be information such as the electrical conductivity of hypochlorous acid water (electrical conductivity) or information from which the electrical conductivity can be derived by calculation. For example, the conductivity information may be a liquid resistance value of hypochlorous acid water. The measurement information acquisition unit 121 may obtain the liquid resistance value measured by the measurement control device 120 using the AC impedance method, and derive the conductivity by calculating the reciprocal of the obtained liquid resistance value.

本実施の形態の場合、測定情報取得部121は、測定手段110が備える水温センサ113から温度情報も取得する。 In the case of this embodiment, the measurement information acquisition unit 121 also acquires temperature information from the water temperature sensor 113 included in the measurement means 110.

換算情報取得部122は、次亜塩素酸濃度と電導度情報との関係を示す換算情報を取得する。発明者は、電解槽210に塩素を含んだ水(以下、本段落内では水と記載する)を貯留し、所定時間、所定の電圧で水の電気分解を実施した。電気分解を全く実施していない(0回)際に、次亜塩素酸濃度の測定、および水の電導度の測定を行い、前記条件で水の電気分解を実施する度に次亜塩素酸濃度の測定、および水の電導度の測定を行った。以上の実験に基づき、発明者は、次亜塩素酸濃度と水の電導度とは、図3に示すように、反比例の関係にあることを見出すに至った。なお、図3に記載のmは、整数である。また、次亜塩素酸濃度、および電導度の具体的な数値の記載は省略している。 The conversion information acquisition unit 122 acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information. The inventor stored water containing chlorine (hereinafter referred to as water in this paragraph) in an electrolytic cell 210, and electrolyzed the water at a predetermined voltage for a predetermined time. When electrolysis is not performed at all (0 times), the hypochlorous acid concentration and the conductivity of water are measured, and each time water electrolysis is performed under the above conditions, the hypochlorous acid concentration is measured. and the conductivity of water. Based on the above experiments, the inventor has found that the hypochlorous acid concentration and the conductivity of water are in an inversely proportional relationship, as shown in FIG. 3. Note that m in FIG. 3 is an integer. Moreover, the description of specific numerical values of hypochlorous acid concentration and electrical conductivity is omitted.

以上から、発明者は、換算情報として図4のグラフに示すような、次亜塩素酸濃度と電導度との関係を示す換算情報を関数として作成した。本実施の形態の場合、換算情報取得部122は、測定制御装置120が備える記憶装置102に記憶された前記関数を換算情報として取得している。なお、図4に示すグラフの縦軸は、電導度の差分になっている。電導度の差分については後述する。 From the above, the inventor created conversion information as a function, which shows the relationship between hypochlorous acid concentration and electrical conductivity, as shown in the graph of FIG. 4. In the case of this embodiment, the conversion information acquisition unit 122 acquires the function stored in the storage device 102 included in the measurement control device 120 as conversion information. Note that the vertical axis of the graph shown in FIG. 4 is the difference in electrical conductivity. The difference in conductivity will be described later.

濃度算出部123は、測定手段110から取得した電導度情報、および換算情報取得部122が取得した換算情報に基づき次亜塩素酸濃度を算出する。濃度算出部123は、算出した次亜塩素酸濃度を主制御装置250に出力する。なお、濃度算出部123についての具体的な説明は後述する。 The concentration calculation unit 123 calculates the hypochlorous acid concentration based on the conductivity information acquired from the measuring means 110 and the conversion information acquired by the conversion information acquisition unit 122. The concentration calculation unit 123 outputs the calculated hypochlorous acid concentration to the main controller 250. Note that a specific description of the concentration calculation section 123 will be given later.

電気分解実行取得部125は、電解装置230、および電極220にて実行される電気分解の実行状態を示す実行情報を主制御装置250から取得する。これにより、電気分解実行取得部125は、電解槽210内において電気分解が実行されている状態か、実行されていない状態かを実行情報により把握することができる。 The electrolysis execution acquisition unit 125 acquires execution information indicating the execution state of electrolysis executed by the electrolysis device 230 and the electrodes 220 from the main control device 250. Thereby, the electrolysis execution acquisition unit 125 can grasp from the execution information whether electrolysis is being executed or not being executed in the electrolytic cell 210.

測定指示部124は、電気分解実行取得部125が取得した実行情報に基づき電気分解を実行していない際に切替手段140を電極220と測定手段110との接続に切り替え、電導度情報を測定するよう測定手段110を制御する。切替手段140は、通常状態において一対の電極220と電解装置230とが接続された状態で維持され、測定指示部124からの指示に基づき電極220と測定手段110との接続に切り替わる。これにより、電導度情報を測定する際に電解装置230との接続を遮断し、正確に電導度情報を測定することができ、部品点数を抑制して装置の小型化に寄与することができる。なお、切替手段140は、通常状態において一対の電極220と測定手段110とが接続されていても構わない。 The measurement instruction unit 124 controls the measurement unit 110 to switch the switching means 140 to the connection between the electrodes 220 and the measurement means 110 when electrolysis is not being performed based on the execution information acquired by the electrolysis execution acquisition unit 125, and to measure the electrical conductivity information. The switching means 140 maintains the pair of electrodes 220 and the electrolysis device 230 in a connected state in the normal state, and switches to the connection between the electrodes 220 and the measurement means 110 based on an instruction from the measurement instruction unit 124. This cuts off the connection with the electrolysis device 230 when measuring electrical conductivity information, making it possible to accurately measure electrical conductivity information, and contributing to miniaturization of the device by reducing the number of parts. Note that the switching means 140 may be in the normal state where the pair of electrodes 220 and the measurement means 110 are connected.

補正情報取得部126は、測定された電導度情報から次亜塩素酸濃度を算出する際の温度補正を示す補正情報を取得する。補正情報は、実験的に電解槽210中の水の温度を変化させて次亜塩素酸水の温度と濃度との関係を測定して作成してもよい。また、電導度の温度係数を補正情報としてもよい。 The correction information acquisition unit 126 acquires correction information indicating temperature correction when calculating the hypochlorous acid concentration from the measured conductivity information. The correction information may be created by experimentally changing the temperature of the water in the electrolytic cell 210 and measuring the relationship between the temperature and concentration of the hypochlorous acid water. Further, the temperature coefficient of conductivity may be used as correction information.

電導度の温度係数とは、下記式1で表される。 The temperature coefficient of conductivity is expressed by Equation 1 below.

Figure 2024043371000002
t:次亜塩素酸水の温度(温度情報)
K:電導度
α:温度係数
Figure 2024043371000002
t: Temperature of hypochlorous acid water (temperature information)
K: Conductivity α: Temperature coefficient

αは、水に溶解する溶質の種類によって異なる。次亜塩素酸濃度の温度補正を行う場合、NaCl水(希塩水)の温度係数(226*10^(-4))が適していると発明者は見出している。なお、*は乗算を示し、^はべき乗を示す。 α varies depending on the type of solute dissolved in water. The inventor has found that the temperature coefficient (226*10^(-4)) of NaCl water (dilute salt water) is suitable for temperature correction of hypochlorous acid concentration. Note that * indicates multiplication, and ^ indicates exponentiation.

濃度算出部123は、所定の時間、所定の電圧で実施された1回の電気分解の実行の前後において測定された2つの電導度情報を用いて次亜塩素酸濃度を算出する。これにより、塩素を含有させる水の硬度の換算情報に対する影響を除外することができる。具体的に例えば、塩素を含んだ水を作成する際に水道水を用いた場合、地域差によって水の硬度が異なるが、一回の電気分解の前後における電導度情報を用いることにより、どこの地域であって共通の換算情報を用いて次亜塩素酸濃度を算出することができる。 The concentration calculation unit 123 calculates the hypochlorous acid concentration using two pieces of conductivity information measured before and after one electrolysis run performed for a predetermined time and at a predetermined voltage. This makes it possible to exclude the influence of the hardness of water containing chlorine on the conversion information. Specifically, for example, when tap water is used to create water containing chlorine, the hardness of the water varies depending on regional differences, but by using conductivity information before and after a single electrolysis process, it is possible to determine where the water is. Hypochlorous acid concentration can be calculated using conversion information that is common across regions.

具体的な算出方法としては、電解槽210内の水を入れ替えた後、最初の電気分解の前の電導度情報の差分は、図4に示すように、ゼロとし、次亜塩素酸濃度もゼロとする。なお、実際に測定を実施し、電導度情報を取得してもかまわない。 As a specific calculation method, the difference in conductivity information after replacing the water in the electrolytic cell 210 and before the first electrolysis is set to zero, as shown in FIG. 4, and the hypochlorous acid concentration is also set to zero. shall be. Note that the conductivity information may be obtained by actually performing the measurement.

次に、1回の電気分解の実施後、測定指示部124は、印加測定装置を動作させて測定を実施させる。測定情報取得部121は、電導度情報(液抵抗値)を取得して電導度に換算する。得られた電導度は、測定情報取得部121が取得した温度情報と補正情報取得部126が取得した補正情報とに基づき温度に対応した補正済みの電導度を導出する。次に下記の式2に示すように、一つ前の回に導出した補正済みの電導度を減算する。減算により得られた差分を累積する。 Next, after performing one electrolysis, the measurement instruction unit 124 operates the application and measurement device to perform measurement. The measurement information acquisition unit 121 acquires conductivity information (liquid resistance value) and converts it into conductivity. For the obtained conductivity, a corrected conductivity corresponding to the temperature is derived based on the temperature information acquired by the measurement information acquisition section 121 and the correction information acquired by the correction information acquisition section 126. Next, as shown in Equation 2 below, the corrected conductivity derived in the previous round is subtracted. Accumulate the differences obtained by subtraction.

Figure 2024043371000003
nは、電気分解の回数を示す。
電導度(n)は、n回目の電気分解後の電導度を意味している。
Nは、電気分解の総回数を示す。
Figure 2024043371000003
n indicates the number of times of electrolysis.
The electrical conductivity (n) means the electrical conductivity after the n-th electrolysis.
N indicates the total number of electrolysis.

濃度算出部123は、図4に示す換算情報に基づき電導度の差分の累積から次亜塩素酸濃度を算出する。 The concentration calculation unit 123 calculates the hypochlorous acid concentration from the cumulative difference in conductivity based on the conversion information shown in FIG. 4.

測定調整部127は、測定手段110が測定する電導度情報が所定の範囲内に収まるように、印加測定装置112が備える交流電源装置131の出力電力のゲインを変更する(図5の(a)の段参照)、および液抵抗値測定装置132のゲインを変更するの少なくとも一方を実行する(図5の(b)の段参照)。これによれば高精度に電導度を測定することができる。ゲインの調整方法は、特に限定されるものではないが、小さいゲインから徐々にゲインを増加させ、出力である液抵抗値が飽和する手前のゲインに設定する方法を例示することができる。また、測定調整部127は、塩素を含む水で電解槽210を満水にした初期段階において少なくとも1回、ゲインの変更を実行すれば良い。 The measurement adjustment unit 127 changes the gain of the output power of the AC power supply device 131 included in the application measurement device 112 so that the conductivity information measured by the measurement means 110 falls within a predetermined range ((a) in FIG. 5). (see step (b) in FIG. 5), and at least one of changing the gain of the liquid resistance value measuring device 132 (see step (b) in FIG. 5). According to this, conductivity can be measured with high accuracy. The gain adjustment method is not particularly limited, but an example may be a method in which the gain is gradually increased from a small gain and set to a gain just before the liquid resistance value, which is the output, is saturated. Further, the measurement adjustment unit 127 may change the gain at least once in the initial stage of filling the electrolytic cell 210 with water containing chlorine.

クリーニング部128は、電解槽210に設けられた水位センサ260により測定された水位情報に基づき、電解槽210に貯留される塩素を含んだ水の中に一対の電極220の全体が浸漬されていることを確認後に切替手段140を電極220と印加測定装置112との接続に切り替える。そして印加測定装置112を動作させて一対の電極220をクリーニングする。クリーニングは、印加測定装置112に許容されている最大の出力で切替手段140を介して接続される電極220に交流電圧を印加することにより行う。これにより、切替手段140を介して接続される電極220の表面に析出した塩の結晶などの溶解を促進することができる。 In the cleaning section 128, the entire pair of electrodes 220 are immersed in chlorine-containing water stored in the electrolytic cell 210 based on water level information measured by a water level sensor 260 provided in the electrolytic cell 210. After confirming this, the switching means 140 is switched to connect the electrode 220 and the application/measurement device 112. Then, the application and measurement device 112 is operated to clean the pair of electrodes 220. Cleaning is performed by applying an alternating current voltage to the electrodes 220 connected via the switching means 140 at the maximum output allowed by the application and measurement device 112. Thereby, dissolution of salt crystals etc. deposited on the surface of the electrode 220 connected via the switching means 140 can be promoted.

次に、空間除菌装置200の動作を説明する。図6は、空間除菌装置200の動作の流れを示すフローチャートである。まず、主制御装置250は、電解槽210内が満水であることを確認する(S101)。主制御装置250から満水であることを示す情報を取得した測定制御装置120のクリーニング部128は、測定指示部124を介して電極220と測定手段110とが接続するように切替手段140を制御して接続を切り替え(S102)、電極220に所定の電力の交流電圧を印加するように印加測定装置112を制御して電極220のクリーニングを行う(S103)。その後、切替手段140の接続を電解装置230側に戻し、電解処理の開始信号が発生するまで待機する(S104)。 Next, the operation of the space sterilization device 200 will be explained. FIG. 6 is a flowchart showing the flow of operations of the space sterilization device 200. First, the main controller 250 confirms that the electrolytic cell 210 is full of water (S101). The cleaning unit 128 of the measurement control device 120 that has acquired the information indicating that the water is full from the main control device 250 controls the switching unit 140 via the measurement instruction unit 124 so that the electrode 220 and the measurement unit 110 are connected. The connection is switched (S102), and the application and measurement device 112 is controlled to apply an AC voltage of a predetermined power to the electrode 220, thereby cleaning the electrode 220 (S103). Thereafter, the connection of the switching means 140 is returned to the electrolysis device 230 side, and the process waits until an electrolytic treatment start signal is generated (S104).

電解処理の開始信号が発生すると、初回の電解処理の前に、測定指示部124は、切替手段140を印加測定装置112側に切り替え(S105)、印加測定装置112の交流電源装置131は、電極220に所定の交流電圧を印加する。液抵抗値測定装置132は、電解槽210内の水の液抵抗値を測定する。また、水温センサ113は水温の測定を実行する(S106)。測定制御装置120の測定情報取得部121は、電導度情報として液抵抗値を取得し、また温度情報を取得する。濃度算出部123は、液抵抗値を電導度に変換後、温度情報を用いて補正情報に基づき電導度を補正する。濃度算出部123は、補正後の電導度を算出回数とともに記憶する(S107)。なお、電解槽210を満水にした後の最初の測定については、省略してもかまわない。省略した場合、電導度は、所定量の塩を含んだ水道水相当の電導度を初期値として記憶してもよい。 When the electrolytic treatment start signal is generated, before the first electrolytic treatment, the measurement instruction unit 124 switches the switching means 140 to the application and measurement device 112 side (S105), and the AC power supply device 131 of the application and measurement device 112 switches the electrode A predetermined AC voltage is applied to 220. The liquid resistance value measuring device 132 measures the liquid resistance value of water in the electrolytic cell 210. Furthermore, the water temperature sensor 113 measures the water temperature (S106). The measurement information acquisition unit 121 of the measurement control device 120 acquires a liquid resistance value as conductivity information and also acquires temperature information. After converting the liquid resistance value into conductivity, the concentration calculation unit 123 corrects the conductivity based on correction information using temperature information. The concentration calculation unit 123 stores the corrected conductivity together with the number of calculations (S107). Note that the first measurement after filling the electrolytic cell 210 with water may be omitted. If omitted, the electrical conductivity may be stored as the initial value of electrical conductivity equivalent to tap water containing a predetermined amount of salt.

次に、切替手段140を電解装置230と電極220との接続に戻し(S108)、電解装置230は、電極220に所定の時間、所定の出力で直流電圧を電極220に印加し、電解槽210内の塩素を含む水の電気分解を実行する(S109)。これにより次亜塩素酸水が生成される。 Next, the switching means 140 is returned to the connection between the electrolysis device 230 and the electrode 220 (S108), and the electrolysis device 230 applies a DC voltage with a predetermined output to the electrode 220 for a predetermined time, thereby performing electrolysis of the chlorine-containing water in the electrolysis cell 210 (S109). This produces hypochlorous acid water.

電気分解実行取得部125が取得した実行情報に基づき電気分解が終了したと測定指示部124が判断すると、測定指示部124は、切替手段140を印加測定装置112と電極220との接続に切り替える(S110)。そして、測定指示部124は、液抵抗値を測定するように測定手段110を制御し、測定情報取得部121は、温度情報を取得する(S111)。濃度算出部123は、液抵抗値の逆数をとって電導度に変換し、補正情報に基づき電導度を算出する。濃度算出部123は、補正後の電導度を算出回数とともに記憶する(S112)そして、前回算出した電導度と今回算出した電導度の差分を算出する。また、得られた差分を式1に示すように累積する(S113)。濃度算出部123は、累積された差分を用い、換算情報を用いて次亜塩素酸濃度を算出し(S114)、算出した次亜塩素酸濃度を主制御装置250へ出力する(S115)。 When the measurement instruction unit 124 determines that the electrolysis has ended based on the execution information acquired by the electrolysis execution acquisition unit 125, the measurement instruction unit 124 switches the switching means 140 to connect the application measurement device 112 and the electrode 220 (S110). Then, the measurement instruction unit 124 controls the measurement means 110 to measure the liquid resistance value, and the measurement information acquisition unit 121 acquires the temperature information (S111). The concentration calculation unit 123 converts the liquid resistance value into an electric conductivity by taking the inverse number of times, and calculates the electric conductivity based on the correction information. The concentration calculation unit 123 stores the corrected electric conductivity together with the number of calculations (S112). Then, it calculates the difference between the electric conductivity calculated last time and the electric conductivity calculated this time. In addition, it accumulates the obtained difference as shown in Equation 1 (S113). The concentration calculation unit 123 uses the accumulated difference and the conversion information to calculate the hypochlorous acid concentration (S114), and outputs the calculated hypochlorous acid concentration to the main control unit 250 (S115).

上記の電気分解(S106)から次亜塩素酸濃度の出力(S111)までを、電解処理の終了信号が発生するまで繰り返す。例えば、次亜塩素酸濃度が所定の濃度閾値を超えたと主制御装置250が判断した場合、電解処理の終了信号を発生させてもよい。 The above steps from electrolysis (S106) to outputting the hypochlorous acid concentration (S111) are repeated until an electrolytic treatment end signal is generated. For example, when main controller 250 determines that the hypochlorous acid concentration exceeds a predetermined concentration threshold, it may generate an electrolytic treatment end signal.

以上のように、本実施の形態にかかる次亜塩素酸水発生装置100によれば、交流電圧を印加して液抵抗値を測定する交流インピーダンス法を採用することにより、電解に用いられる電極220を用いて次亜塩素酸水の濃度を測定することができ、装置構成を簡略化することができる。また、次亜塩素酸水発生装置100は、比較的構造が簡単で長期的に安定して次亜塩素酸水を発生させ、かつ長期的に安定して次亜塩素酸濃度を測定することができる。 As described above, according to the hypochlorous acid water generator 100 according to the present embodiment, by adopting the AC impedance method in which the liquid resistance value is measured by applying an AC voltage, the electrode 220 used for electrolysis The concentration of hypochlorous acid water can be measured using this method, and the device configuration can be simplified. Furthermore, the hypochlorous acid water generator 100 has a relatively simple structure, can generate hypochlorous acid water stably over a long period of time, and can measure hypochlorous acid concentration stably over a long period of time. can.

また、1回の電気分解の前後における電導度の差分を用いて次亜塩素酸濃度を算出することで、塩素を含む水が様々な硬度成分を含んでいる場合や硬度成分の含有比が異なる場合においても、電導度の差分を用いて硬度成分関連の情報を相殺することができる。したがって、地域差などにより水の硬度成分が異なる場合でも一つの換算情報を用いて次亜塩素酸濃度を安定して高精度に算出することができる。 In addition, by calculating the hypochlorous acid concentration using the difference in conductivity before and after one electrolysis, it is possible to calculate the hypochlorous acid concentration when water containing chlorine contains various hardness components or when the content ratio of hardness components is different. Even in this case, the difference in conductivity can be used to cancel out the information related to the hardness component. Therefore, even if the water hardness component differs due to regional differences, the hypochlorous acid concentration can be calculated stably and with high accuracy using one conversion information.

また、印加する交流電圧の周波数を1kHz以上、100kHz以下の範囲から選定することにより、安定して液抵抗値を測定することができる。 Furthermore, by selecting the frequency of the applied alternating current voltage from a range of 1 kHz or more and 100 kHz or less, the liquid resistance value can be stably measured.

また、電解槽210中の水温に基づき電導度に温度補正を加えることで、より正確で高精度な次亜塩素酸濃度を算出することができる。 Moreover, by adding temperature correction to the conductivity based on the water temperature in the electrolytic cell 210, it is possible to calculate the hypochlorous acid concentration with more accuracy and precision.

また、交流電源装置、および液抵抗値測定装置132の少なくとも一方のゲインを調整し、初期段階における出力が飽和しない程度の大きな出力にすることで、高精度な濃度測定が可能になる。 In addition, highly accurate concentration measurement is possible by adjusting the gain of at least one of the AC power supply device and the liquid resistance value measuring device 132 to provide a large output that does not saturate the output in the initial stage.

また、電極220に付着した塩の結晶の溶解をクリーニング処理により促進することで、次亜塩素酸水の発生効率を維持し、電極220の付着物による測定結果の変動を抑制して高精度な濃度測定が可能になる。 In addition, by promoting the dissolution of salt crystals attached to the electrode 220 through a cleaning process, the generation efficiency of hypochlorous acid water is maintained, and fluctuations in measurement results due to deposits on the electrode 220 are suppressed, resulting in high precision. Concentration measurement becomes possible.

なお、本発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。また、上記実施の形態に対して本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。 Note that the present invention is not limited to the above embodiments. For example, the embodiments of the present invention may be realized by arbitrarily combining the components described in this specification or by excluding some of the components. The present invention also includes modifications obtained by making various modifications to the above-described embodiments that a person skilled in the art can conceive without departing from the gist of the present invention, that is, the meaning of the words written in the claims. It will be done.

例えば、切替手段140は、図7に示すように、電子制御可能で高電圧に耐えるメカニカルスイッチ141と、交流電流を容易に遮断、接続することができる半導体スイッチ142を備えても構わない。メカニカルスイッチ141は、電解装置230と電極220との開閉を行い、半導体スイッチ142は、印加測定装置112と電極220との開閉を行う。この場合、電導度を測定する際は、メカニカルスイッチ141を開状態にし、半導体スイッチ142を導通状態にする。電解を実行する際は、メカニカルスイッチ141を導通状態にし、半導体スイッチ142を開状態にする。 For example, as shown in FIG. 7, the switching means 140 may include a mechanical switch 141 that can be electronically controlled and withstands high voltage, and a semiconductor switch 142 that can easily cut off and connect alternating current. The mechanical switch 141 opens and closes the electrolytic device 230 and the electrode 220, and the semiconductor switch 142 opens and closes the voltage and measurement device 112 and the electrode 220. In this case, when measuring the conductivity, the mechanical switch 141 is opened and the semiconductor switch 142 is turned on. When performing electrolysis, the mechanical switch 141 is turned on and the semiconductor switch 142 is opened.

また、半導体スイッチ142を介して電極220と印加測定装置112とを接続する場合、事前に切替手段140が備える半導体スイッチ142と同等の半導体スイッチを印加測定装置112に接続し、ON抵抗を測定して、ON抵抗が電導度の測定に与える影響を補正により除去しても構わない。 In addition, when connecting the electrode 220 and the voltage measurement device 112 via the semiconductor switch 142, a semiconductor switch equivalent to the semiconductor switch 142 included in the switching means 140 is connected to the voltage measurement device 112 in advance, and the ON resistance is measured. Therefore, the influence of ON resistance on conductivity measurement may be removed by correction.

また、上記実施の形態では、液抵抗値(電導度)の差分を用いて硬度成分の相違を相殺する場合を説明したが、差分を用いず液抵抗値(電導度)から次亜塩素酸濃度を算出してもかまわない。この場合、水の硬度の違いに対応した複数種類の換算情報を切り替えて適用してもかまわない。 In addition, in the above embodiment, the case where the difference in hardness components is canceled out using the difference in liquid resistance value (electrical conductivity) has been explained, but the hypochlorous acid concentration is calculated from the liquid resistance value (electrical conductivity) without using the difference. It is okay to calculate. In this case, multiple types of conversion information corresponding to differences in water hardness may be switched and applied.

また、液抵抗値(電導度)に対して温度補正を実行しなくてもかまわない。この場合、測定手段110は、水温センサ113を備えなくてもよく、補正情報を取得しなくても良い。 Furthermore, it is not necessary to perform temperature correction on the liquid resistance value (conductivity). In this case, the measuring means 110 does not need to include the water temperature sensor 113 and does not need to acquire correction information.

また、例えば予め出荷時などにおいてゲインを適切に設定する
ことで、測定制御装置120がゲインの調整を実施しなくても良い場合がある。
Further, by setting the gain appropriately in advance at the time of shipment, for example, the measurement control device 120 may not need to adjust the gain.

また、電極220を定期的に交換するなどにより、クリーニングをしなくても良い場合がある。 Further, cleaning may not be necessary if the electrode 220 is replaced periodically.

また、主制御装置250と測定制御装置120とを別体として説明したが、主制御装置250と測定制御装置120とが一体であっても良い。つまり一つのプロセッサにプログラムを実行させることにより主制御装置250と測定制御装置120とを実現してもかまわない。 In addition, although the main control device 250 and the measurement control device 120 have been described as separate entities, the main control device 250 and the measurement control device 120 may be integrated. In other words, the main control device 250 and the measurement control device 120 may be realized by having a single processor execute a program.

また、次亜塩素酸水発生装置100を空間除菌装置200に用いる場合を説明したが、次亜塩素酸水発生装置100は、次亜塩素酸水を空間中に散布しない場合にも利用できる。 In addition, although the case where the hypochlorous acid water generator 100 is used as the space sterilization device 200 has been described, the hypochlorous acid water generator 100 can also be used when hypochlorous acid water is not sprayed in the space. .

また、換算情報、補正情報は、測定制御装置120が有する記憶装置102に記憶されるのではなく、ネットワークなどの通信により取得してもかまわない。 Further, the conversion information and correction information may be acquired through communication such as a network instead of being stored in the storage device 102 included in the measurement control device 120.

100 次亜塩素酸水発生装置
102 記憶装置
110 測定手段
112 印加測定装置
113 水温センサ
120 測定制御装置
121 測定情報取得部
122 換算情報取得部
123 濃度算出部
124 測定指示部
125 電気分解実行取得部
126 補正情報取得部
127 測定調整部
128 クリーニング部
131 交流電源装置
132 液抵抗値測定装置
140 切替手段
141 メカニカルスイッチ
142 半導体スイッチ
200 空間除菌装置
210 電解槽
220 電極
230 電解装置
240 拡散手段
250 主制御装置
260 水位センサ
100 Hypochlorous acid water generator 102 Storage device 110 Measuring means 112 Application measuring device 113 Water temperature sensor 120 Measurement control device 121 Measurement information acquisition section 122 Conversion information acquisition section 123 Concentration calculation section 124 Measurement instruction section 125 Electrolysis execution acquisition section 126 Correction information acquisition section 127 Measurement adjustment section 128 Cleaning section 131 AC power supply device 132 Liquid resistance value measuring device 140 Switching means 141 Mechanical switch 142 Semiconductor switch 200 Space sterilization device 210 Electrolytic cell 220 Electrode 230 Electrolytic device 240 Diffusion means 250 Main control device 260 Water level sensor

Claims (7)

塩素を含んだ水を貯留する電解槽と、
前記電解槽中に挿入状態で配置される一対の電極と、
一対の前記電極に直流電圧を印加し、塩素を含んだ前記水を電気分解して次亜塩素酸水を発生させる電解装置と、
前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段と、
前記測定手段を制御する測定制御装置と、
一対の前記電極と前記電解装置との接続と一対の前記電極と前記測定手段との接続とを切り替える切替手段と、を備え、
前記測定手段は、
一対の前記電極の間に交流電圧を印加する印加測定装置を備え、
前記測定制御装置は、
前記測定手段から電導度情報を取得する測定情報取得部と、
次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する換算情報取得部と、
測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する濃度算出部と、
を備える次亜塩素酸水発生装置。
An electrolytic cell for storing chlorine-containing water;
A pair of electrodes inserted into the electrolytic cell;
An electrolysis device that applies a DC voltage to a pair of the electrodes to electrolyze the water containing chlorine to generate hypochlorous acid water;
A measuring means for measuring conductivity information indicating the conductivity of the hypochlorous acid water stored in the electrolytic cell;
A measurement control device for controlling the measuring means;
a switching means for switching between a connection between the pair of electrodes and the electrolysis device and a connection between the pair of electrodes and the measurement means,
The measuring means is
An application and measurement device is provided that applies an AC voltage between the pair of electrodes,
The measurement control device includes:
A measurement information acquisition unit that acquires electrical conductivity information from the measurement means;
A conversion information acquisition unit that acquires conversion information indicating a relationship between the hypochlorous acid concentration and the electrical conductivity information;
A concentration calculation unit that calculates a hypochlorous acid concentration based on the measured conductivity information and the conversion information;
A hypochlorous acid water generating device equipped with:
前記印加測定装置は、
1kHz以上、100kHz以下の範囲から選定される交流電圧を一対の前記電極の間に印加し、
前記測定手段は、
前記電極の間の液抵抗値を電導度情報として測定する液抵抗値測定装置と、を備え
前記濃度算出部は、
測定された液抵抗値に基づき次亜塩素酸濃度を算出する
請求項1に記載の次亜塩素酸水発生装置。
The application measurement device includes:
Applying an alternating current voltage selected from a range of 1 kHz or more and 100 kHz or less between the pair of electrodes,
The measuring means includes:
A liquid resistance value measuring device that measures a liquid resistance value between the electrodes as conductivity information, and the concentration calculation unit includes:
The hypochlorous acid water generator according to claim 1, wherein the hypochlorous acid concentration is calculated based on the measured liquid resistance value.
前記切替手段は、
一対の前記電極と前記電解装置との接続と一対の前記電極と前記測定手段との接続とを機械的な接点を用いて切り替えるリレーである
請求項1または2に記載の次亜塩素酸水発生装置。
The switching means is
Hypochlorous acid water generation according to claim 1 or 2, wherein the relay is a relay that uses mechanical contacts to switch the connection between the pair of electrodes and the electrolyzer and the connection between the pair of electrodes and the measuring means. Device.
前記測定制御装置は、
電気分解の実行を示す実行情報を取得する電気分解実行取得部と、
前記実行情報に基づき電気分解を実行していない際に前記切替手段を前記電極と前記測定手段との接続に切り替え、前記測定手段に電導度情報の測定を実行させる測定指示部と、を備え、
前記濃度算出部は、
電気分解の実行の前後において測定された電導度情報を用いて次亜塩素酸濃度の差分を算出する
請求項1に記載の次亜塩素酸水発生装置。
The measurement control device includes:
an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis;
a measurement instruction section that switches the switching means to connect the electrode and the measuring means when electrolysis is not being performed based on the execution information, and causes the measuring means to measure the conductivity information;
The concentration calculation unit includes:
The hypochlorous acid water generating device according to claim 1, wherein the difference in hypochlorous acid concentration is calculated using conductivity information measured before and after performing electrolysis.
前記測定制御装置は、
前記測定手段が測定する電導度情報が所定の範囲内に収まるように、前記印加測定装置の出力電力、および前記液抵抗値測定装置のゲインの少なくとも一方を調整する測定調整部を備える
請求項2に記載の次亜塩素酸水発生装置。
The measurement control device includes:
Claim 2, further comprising a measurement adjustment section that adjusts at least one of the output power of the application and measurement device and the gain of the liquid resistance value measurement device so that the conductivity information measured by the measurement means falls within a predetermined range. The hypochlorous acid water generator described in .
塩素を含んだ水を貯留する電解槽と、
前記電解槽中に挿入状態で配置される一対の電極と、
一対の前記電極に直流電圧を印加し、塩素を含んだ前記水を電気分解して次亜塩素酸水を発生させる電解装置と、
前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段と、
前記測定手段を制御する測定制御装置と、
一対の前記電極と前記電解装置との接続と一対の前記電極と前記測定手段との接続とを切り替える切替手段と、
発生させた次亜塩素酸水を大気中に拡散する拡散手段と、を備え、
前記測定手段は、
一対の前記電極の間に交流電圧を印加する印加測定装置を備え、
前記測定制御装置は、
前記測定手段から電導度情報を取得する測定情報取得部と、
次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する換算情報取得部と、
測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する濃度算出部と、
を備える空間除菌装置。
An electrolytic tank that stores water containing chlorine,
a pair of electrodes inserted into the electrolytic cell;
an electrolysis device that applies a DC voltage to the pair of electrodes and electrolyzes the water containing chlorine to generate hypochlorous acid water;
Measuring means for measuring conductivity information indicating the conductivity of the hypochlorous acid water stored in the electrolytic cell;
a measurement control device that controls the measurement means;
switching means for switching between a connection between a pair of the electrodes and the electrolyzer and a connection between the pair of electrodes and the measurement means;
A diffusion means for diffusing the generated hypochlorous acid water into the atmosphere,
The measuring means includes:
comprising an application measuring device that applies an alternating voltage between the pair of electrodes,
The measurement control device includes:
a measurement information acquisition unit that acquires conductivity information from the measurement means;
a conversion information acquisition unit that acquires conversion information indicating the relationship between hypochlorous acid concentration and the conductivity information;
a concentration calculation unit that calculates a hypochlorous acid concentration based on the measured conductivity information and the conversion information;
A space sterilization device equipped with.
電解槽に貯留される塩素を含んだ水を電圧が印加された一対の電極により電気分解して発生させた次亜塩素酸の濃度を測定する次亜塩素酸濃度測定方法であって、
電気分解を実行していない際に測定指示部が切替手段を用いて前記電極と測定手段との接続に切り替えて前記測定手段に電導度情報の測定を実行させ、
前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定した前記測定手段から電導度情報を測定情報取得部が取得し、
次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を換算情報取得部が取得し、
取得された前記電導度情報、および前記換算情報に基づき次亜塩素酸濃度を濃度算出部が算出する
次亜塩素酸濃度測定方法。
A hypochlorous acid concentration measuring method for measuring the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic tank using a pair of voltage-applied electrodes, the method comprising:
When electrolysis is not being performed, the measurement instruction unit uses a switching means to switch the connection between the electrode and the measuring means and causes the measuring means to measure the conductivity information;
A measurement information acquisition unit acquires conductivity information from the measuring means that measures conductivity information indicating the conductivity of hypochlorous acid water stored in the electrolytic cell,
A conversion information acquisition unit acquires conversion information indicating the relationship between the hypochlorous acid concentration and the conductivity information,
A hypochlorous acid concentration measuring method, wherein a concentration calculating section calculates a hypochlorous acid concentration based on the acquired conductivity information and the conversion information.
JP2022148533A 2022-09-16 2022-09-16 Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method Pending JP2024043371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022148533A JP2024043371A (en) 2022-09-16 2022-09-16 Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022148533A JP2024043371A (en) 2022-09-16 2022-09-16 Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method

Publications (1)

Publication Number Publication Date
JP2024043371A true JP2024043371A (en) 2024-03-29

Family

ID=90418202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022148533A Pending JP2024043371A (en) 2022-09-16 2022-09-16 Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method

Country Status (1)

Country Link
JP (1) JP2024043371A (en)

Similar Documents

Publication Publication Date Title
JP5841138B2 (en) System for electrochemical production of hypochlorite
US20110108438A1 (en) Electrochemical Liquid Treatment System Using Dose Control
JP6487217B2 (en) Method and apparatus for controlling free chlorine concentration, and sterilization method and sterilization apparatus using them
EP2663671B1 (en) Metal treatment
US8486252B2 (en) Copper chloride/copper bromide disinfector for swimming pools and control method thereof
JP2024043371A (en) Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method
JP5004173B2 (en) Humidifier
WO2023243535A1 (en) Device for measuring hypochlorite concentration, and device for generating hypochlorite
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
TWM562301U (en) Device for producing sterilized water
TW202411642A (en) Hypochlorous acid concentration measuring device and hypochlorous acid water generating device
Umimoto et al. Development of device producing electrolyzed water for home care
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
KR20130076174A (en) Electrolysis controlling method for disinfective water maker
JP2017119282A (en) Method for generating slightly acidic hypochlorous acid water, bipolar electrolytic tank and generation device
JP2008058025A (en) Residual chlorine concentration meter
JP6861416B2 (en) Chlorine dioxide gas concentration measuring instrument
JP2017056426A (en) Method of producing slightly acidic hypochlorous acid water
JP5181352B2 (en) Method and apparatus for measuring residual free chlorine concentration
JPH0933479A (en) Sensor cover and apparatus for generating electrolytic solution using it
JP2011050807A (en) Electrolytic water generator and electrolytic water spray device provided with the same
KR20160008683A (en) Small device for producing electro-analysised water
Clark et al. The effect of cathodic voltage-controlled electrical stimulation of titanium on the surrounding microenvironment pH: An experimental and computational study
JP2019037920A (en) Sanitary device and water heater provided with the same
JPH02296143A (en) Method for measuring dissolved chlorine dioxide