WO2023243535A1 - Device for measuring hypochlorite concentration, and device for generating hypochlorite - Google Patents

Device for measuring hypochlorite concentration, and device for generating hypochlorite Download PDF

Info

Publication number
WO2023243535A1
WO2023243535A1 PCT/JP2023/021386 JP2023021386W WO2023243535A1 WO 2023243535 A1 WO2023243535 A1 WO 2023243535A1 JP 2023021386 W JP2023021386 W JP 2023021386W WO 2023243535 A1 WO2023243535 A1 WO 2023243535A1
Authority
WO
WIPO (PCT)
Prior art keywords
hypochlorous acid
information
concentration
measurement
electrolysis
Prior art date
Application number
PCT/JP2023/021386
Other languages
French (fr)
Japanese (ja)
Inventor
弘士 小原
祥文 渡部
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023243535A1 publication Critical patent/WO2023243535A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Definitions

  • the present invention relates to a hypochlorous acid concentration measuring device and a hypochlorous acid water generating device equipped with the hypochlorous acid concentration measuring device.
  • Patent Document 1 describes a so-called ultraviolet absorption measurement technique that measures the concentration of hypochlorous acid water based on the absorption attenuation caused by the absorption of ultraviolet rays by hypochlorite ions.
  • Patent Document 2 describes a so-called Polaro measurement technique that measures the concentration of hypochlorous acid water based on the electrochemical reduction current of hypochlorous acid.
  • the light source that emits ultraviolet light for measurement deteriorates in a relatively short period of time, and the measured value of the concentration of hypochlorous acid water fluctuates. Therefore, handling becomes complicated, as correction work is required to stabilize the measured values. Furthermore, the ultraviolet components are expensive, which poses a cost problem.
  • the measured value of the concentration of hypochlorous acid water fluctuates due to contamination of the electrodes used for measurement. For this reason, handling becomes complicated, such as cleaning of the electrodes, etc., in order to stabilize the measured values. Since the material of the electrode is a noble metal, the measuring device itself is expensive and there is a cost problem.
  • the inventor discovered that the electrical conductivity of hypochlorous acid water, which can be stably measured, is a relatively accurate indicator of the concentration of hypochlorous acid water.
  • Ta The present invention was made based on the knowledge of the inventor, and provides a hypochlorous acid concentration measuring device, a space sterilization device, and a hypochlorous acid concentration measuring device that can measure the concentration of hypochlorous acid water with a simple configuration. The purpose is to provide a method for measuring acid concentration.
  • a hypochlorous acid concentration measuring device measures the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic cell.
  • a hypochlorous acid concentration measuring device for measuring comprising a measuring means for measuring conductivity information indicating the conductivity of hypochlorous acid water stored in the electrolytic cell, and a measurement control device for controlling the measuring means.
  • the measuring means is configured to apply an AC voltage or an AC voltage with a predetermined AC cycle between a pair of measuring electrodes that are arranged in a separated state in the hypochlorous acid water stored in the electrolytic tank, and a pair of the measuring electrodes.
  • an application measurement device that applies an alternating current; a conversion information acquisition unit that acquires conversion information indicating a relationship between the acid concentration and the conductivity information; and a conversion information acquisition unit that calculates the hypochlorous acid concentration based on the conductivity information corresponding to a plurality of alternating current cycles and the conversion information. and a concentration calculation unit that calculates the concentration.
  • the hypochlorous acid water generating device includes an electrolytic cell that stores water containing chlorine, an electrolytic electrode that is inserted into the electrolytic cell, and a voltage applied to the electrolytic electrode.
  • an electrolysis device that applies chlorine and electrolyzes the water containing chlorine to generate hypochlorous acid water, the above-mentioned hypochlorous acid concentration measuring device, and a main control device that controls the electrolysis device.
  • the measurement control device includes: an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis; and an electrolysis execution acquisition unit configured to cause the measuring means to measure conductivity information when electrolysis is not being executed based on the execution information.
  • an electrolysis control section that outputs electrolysis information such that the concentration of hypochlorous acid in the electrolytic cell becomes a target concentration to the electrolysis device, based on information on the hypochlorous acid concentration calculated by the concentration calculation section.
  • hypochlorous acid concentration can be efficiently measured.
  • FIG. 2 is a block diagram showing the functional configuration of a measurement control device. It is a graph showing the relationship between the hypochlorous acid concentration and the conductivity of hypochlorous acid water during the generation period. It is a graph showing the relationship between the accumulation of differences in electrical conductivity during the generation period and the hypochlorous acid concentration.
  • FIG. 2 is a block diagram of a liquid resistance value measuring circuit included in the measuring means. It is a flowchart showing the flow of the space sterilization device operation during the generation period of hypochlorous acid. It is a flow chart showing the flow of operation of the space sterilization device during the decay period of hypochlorous acid.
  • FIG. 2 is a block diagram showing the functional configuration of a main controller. It is a graph showing temporal changes in hypochlorous acid concentration during the production period and the decay period. It is a graph which shows the relationship between the AC waveform on the output side detected by the liquid resistance value measuring device and the acquisition period.
  • FIG. 3 is a diagram for explaining an update mode of an acquisition cycle. 2 is a graph showing temporal changes in hypochlorous acid concentration during a generation period for stabilizing the hypochlorous acid concentration and a decay period.
  • hypochlorous acid concentration measuring device a hypochlorous acid water generating device, a space sterilization device, and a hypochlorous acid concentration measuring method according to the present invention
  • the shapes, structures, materials, components, relative positional relationships, connection states, numerical values, formulas, contents of each step in the method, order of each step, etc. shown in the following embodiments are merely examples. It may contain content not listed.
  • geometric expressions such as parallel and perpendicular are sometimes used, these expressions do not indicate mathematical rigor and include substantially permissible errors, deviations, and the like.
  • expressions such as "simultaneously” and “identical” also include a substantially permissible range.
  • the drawings are schematic diagrams with emphasis, omission, or ratio adjustment as appropriate to explain the present invention, and the actual shapes, positional relationships, and ratios differ from the drawings.
  • the X-axis, Y-axis, and Z-axis that may be shown in the drawings indicate orthogonal coordinates arbitrarily set for the purpose of explaining the drawings.
  • the Z-axis is not necessarily an axis along the vertical direction, and the X-axis and Y-axis are not necessarily in a horizontal plane.
  • the flowchart is an example, and even if the process flow is different, such as a different order of processing, multiple processes being integrated, or one process being separated, it is included in the embodiment of the present invention.
  • FIG. 1 is a diagram simply showing the space sterilization device 200 from the side.
  • the space sterilization device 200 releases at least hypochlorous acid in the hypochlorous acid water into the space. Moreover, the space sterilization device 200 introduces the atmosphere in the space into the hypochlorous acid water.
  • the target space is a closed space such as an indoor space of a building. Specifically, examples of the space include a living space in a general home, an indoor space in a hospital or a nursing care facility, and the like. Note that the space does not need to be a completely closed space, and may be connected to the outdoors. Further, the space may be not only a space inside a building but also a space inside a moving body such as a train or a car.
  • hypochlorous acid water has sterilization and deodorizing effects. Specifically, hypochlorous acid water has an oxidizing effect, and sterilizes and deodorizes by decomposing floating bacteria in the space, bacteria adhering to objects, or odor substances through oxidation.
  • sterilization is used for convenience in the present specification and claims, and includes meanings such as “sterilization.”
  • bacteria is described as including viruses, molds, etc.
  • the space sterilization device 200 includes an electrolytic cell 210, an electrolytic electrode 220, an electrolytic device 230, a hypochlorous acid concentration measuring device 100, a diffusion means 240, and a main controller 250. , is equipped with.
  • the electrolytic cell 210 is a water tank that stores water containing chlorine, and hypochlorous acid water is generated by electrolyzing the water containing chlorine in the electrolytic cell 210.
  • water containing chlorine include water in which salt is dissolved.
  • the electrolytic electrodes 220 are a pair of conductive members inserted into the chlorine-containing water stored in the electrolytic tank 210.
  • the shape of the electrolytic electrode 220 is not particularly limited, in the case of this embodiment, it is a rectangular plate shape (band shape).
  • the pair of electrolytic electrodes 220 are arranged so that their respective main surfaces (the surfaces with the largest area) face each other.
  • the material of the electrolytic electrode 220 is not particularly limited as long as it is conductive.
  • the electrolytic electrode 220 may have a structure in which the surface of a conductive base material is coated with a catalyst layer. Examples of the conductive base material include simple metals such as titanium, iron, copper, niobium, and tantalum, or alloys thereof.
  • the material of the conductive base material is preferably titanium or a titanium alloy.
  • the catalyst layer can be exemplified by a catalyst containing platinum, iridium, or the like. Other mixtures contained in the catalyst layer may be in any metal state such as metals, alloys, metal oxides, etc., such as lead, gold, nickel, copper, silver, iron, palladium, ruthenium, rhodium, carbon, etc. can be mentioned.
  • the electrolysis device 230 is a DC power supply device that applies a predetermined DC voltage between a pair of electrolysis electrodes 220. In the electrolytic device 230, whether or not to apply a voltage to the pair of electrolytic electrodes 220, that is, whether to apply voltage to the pair of electrolytic electrodes 220, is selected on or off under the control of the main controller 250.
  • the diffusion means 240 is a cylindrical member that rotates around the tube axis (in the left-right direction in FIG. The water is immersed in the hypochlorous acid solution, and the water is lifted above the level of the hypochlorous acid solution using capillary action. By passing air between the hypochlorous acid water lifted above the liquid level, at least the hypochlorous acid in the hypochlorous acid water is diffused into the atmosphere. Bacteria (including viruses, mold, etc.) existing in the atmosphere are sterilized (including inactivation of viruses, mold, etc.) by contacting with the hypochlorous acid water lifted up by the diffusion means 240. Bacteria can also be sterilized by contact with at least the hypochlorous acid in the hypochlorous acid solution diffused into the atmosphere.
  • the diffusion means 240 is a device that atomizes the hypochlorous acid water in the electrolytic device 230 by centrifugal crushing or the like and releases it into the space, and diffuses at least the hypochlorous acid in the hypochlorous acid water into the space. It doesn't matter.
  • the main control device 250 is a device that includes a processor and controls the space sterilization device 200 by causing the processor to execute a program.
  • the main controller 250 acquires the hypochlorous acid concentration in the electrolytic cell 210 from the hypochlorous acid concentration measuring device 100, which will be described later, and performs electrolysis so that the hypochlorous acid concentration is constant.
  • Control device 230 Note that the technique for keeping the hypochlorous acid concentration constant will be described later.
  • the hypochlorous acid concentration means the total concentration of hypochlorous acid and hypochlorite ions.
  • the main controller 250 also acquires water level information indicating the water level from a water level sensor 260 provided in the electrolyzer 210, and if the water level in the electrolyzer 210 has not reached a predetermined water level threshold, the main controller 250 control so that it does not operate.
  • the hypochlorous acid concentration measuring device 100 is a device that measures the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic cell 210, and includes a measuring means 110, a measuring means 110, A control device 120 is provided.
  • the measuring means 110 is a device for measuring conductivity information indicating the conductivity of hypochlorous acid water stored in the electrolytic cell 210, and includes a pair of measuring electrodes 111 and an application measuring device 112. .
  • the measuring means 110 includes a water temperature sensor 113 that measures temperature information indicating the temperature of water stored in the electrolytic cell 210.
  • the measuring means 110 acquires conductivity information with a predetermined time resolution.
  • the time resolution of the measurement means 110 is, for example, on the order of nanoseconds.
  • the measurement electrodes 111 are a pair of conductive members that are placed apart from each other in the hypochlorous acid water stored in the electrolytic tank 210.
  • the shape of the measurement electrode 111 is not particularly limited, in the case of this embodiment, it is a rectangular plate shape (band shape) and is smaller than the electrolytic electrode 220.
  • the pair of measurement electrodes 111 are arranged so that their respective main surfaces face each other.
  • the material of the measurement electrode 111 is not particularly limited as long as it is conductive. Note that the material of the measurement electrode 111 is not particularly limited, but a conductive material with corrosion resistance is preferable.
  • examples of the material of the measurement electrode 111 include titanium, titanium alloy, stainless steel, and the like. These materials can be easily processed into the measurement electrode 111 and can reduce manufacturing costs.
  • the application and measurement device 112 includes an AC power supply device 131 (see FIG. 5) that applies a predetermined AC voltage between the pair of measurement electrodes 111. Further, the application measuring device 112 includes a liquid resistance value measuring device 132 (see FIG. 5) that measures the liquid resistance value between the pair of measurement electrodes 111 as conductivity information. For example, the liquid resistance value measuring device 132 measures the liquid resistance value using electrochemical impedance spectroscopy. The liquid resistance value is determined by detecting the output side AC current (AC voltage) generated between the pair of measurement electrodes 111 due to the input side AC voltage (AC current) applied by the AC power supply 131, and calculating the input waveform and output waveform.
  • AC voltage output side AC current
  • AC current AC current
  • Electrochemical impedance spectroscopy is a method of measuring the impedance of a solution and analyzing its state. It measures the real and imaginary parts of the impedance and uses Nyquist diagrams etc. to calculate the liquid resistance of the solution. can be measured.
  • the application and measurement device 112 selects whether or not to apply an AC voltage to the pair of measurement electrodes 111, that is, whether to apply an AC voltage to the pair of measurement electrodes 111, under the control of the measurement control device 120.
  • the frequency of the AC voltage applied between the pair of measurement electrodes 111 by the application and measurement device 112 is not limited.
  • the frequency of the alternating current voltage is preferably selected from a range of 1 kHz or more and 100 kHz or less.
  • the application and measurement device 112 may be one that can arbitrarily adjust the applied frequency. By applying the AC voltage in the relatively high frequency range, the liquid resistance value measurement device calculates the liquid resistance value without an imaginary term when calculating the liquid resistance value of hypochlorous acid water using the AC impedance method. value can be measured.
  • the application and measurement device 112 includes an AC power supply device 131 that applies an AC voltage
  • the application and measurement device 112 may also include an AC power supply device 131 that applies an AC current. In this case, the measurement control device 120 may control the alternating current.
  • FIG. 2 is a block diagram showing the functional configuration of the measurement control device 120.
  • the measurement control device 120 includes a processor, and controls the timing at which the application and measurement device 112 applies an AC voltage to the pair of measurement electrodes 111 by causing the processor to execute a program. Furthermore, conductivity information indicating the conductivity of hypochlorous acid water obtained by applying an alternating current voltage is acquired.
  • the measurement control device 120 includes a measurement information acquisition section 121, a conversion information acquisition section 122, and a concentration calculation section 123 as processing sections.
  • the measurement control device 120 includes an electrolysis execution acquisition section 125, a measurement instruction section 124, a correction information acquisition section 126, a measurement adjustment section 127, and a cleaning section 128.
  • the measurement information acquisition unit 121 acquires conductivity information from the measurement means 110.
  • the electrical conductivity information acquired from the measuring means 110 is not particularly limited, and may be information such as the electrical conductivity (electrical conductivity) of hypochlorous acid water or information from which the electrical conductivity can be derived by calculation.
  • the conductivity information may be a liquid resistance value of hypochlorous acid water.
  • the measurement information acquisition unit 121 may obtain the liquid resistance value measured by the measurement control device 120 using the AC impedance method, and derive the conductivity by calculating the reciprocal of the obtained liquid resistance value. In the case of this embodiment, the measurement information acquisition unit 121 acquires conductivity information at an acquisition period 302 (see FIG. 12) that is slower than the time resolution of the measurement means 110.
  • the acquisition cycle 302 of the measurement information acquisition unit 121 is a microsec order. Conductivity information is sampled while being thinned out at a relatively slow cycle, and conductivity information including phase information is simply acquired. Thereby, even if the measurement control device 120 operates at a low operating speed, the conductivity can be derived, and cost reduction can be realized.
  • the acquisition period 302 is coprime to the division time, which is a time corresponding to one of the predetermined divisions of the AC cycle of the AC voltage (AC current) applied by the application and measurement device 112, and the division number. A product of an integer of 3 or more is preferable. Specifically, for example, as shown in FIG.
  • the AC cycle 300 applied by the voltage application and measurement device 112 is 10 ⁇ s (100 kHz), the number of divisions is 10, and the division time 301 corresponding to one of the 10 equal divisions is 1 ⁇ s.
  • the acquisition period 302 becomes 3 ⁇ s, which is the product of 10, which is the number of divisions, and 3, which is one of the integers that are mutually prime and greater than or equal to 3. Therefore, the measurement information acquisition unit 121 acquires conductivity information in the phase indicated by the arrow in FIG. 12.
  • the measurement information acquisition unit 121 also acquires temperature information from the water temperature sensor 113 included in the measurement means 110.
  • the conversion information acquisition unit 122 acquires conversion information indicating the relationship between the hypochlorous acid concentration and the conductivity information.
  • the inventor stored water containing chlorine (hereinafter referred to as water in this paragraph) in an electrolytic cell 210, and electrolyzed the water at a predetermined voltage for a predetermined time. When electrolysis is not performed at all (0 times), the hypochlorous acid concentration and the conductivity of water are measured, and each time water electrolysis is performed under the above conditions, the hypochlorous acid concentration is and the conductivity of water. Based on the above experiments, the inventors have found that the hypochlorous acid concentration and the conductivity of water are in an inversely proportional relationship, as shown in FIG. 3. Note that n in FIG. 3 is an integer. Moreover, description of specific numerical values of hypochlorous acid concentration and electrical conductivity is omitted.
  • the inventor created conversion information as a function, which shows the relationship between hypochlorous acid concentration and electrical conductivity, as shown in the graph of FIG. 4.
  • the conversion information acquisition unit 122 acquires the function stored in the storage device 102 included in the measurement control device 120 as conversion information.
  • FIG. 4 shows production period conversion information that is conversion information used in the production period of hypochlorous acid.
  • the vertical axis of the graph shown in FIG. 4 is the difference in electrical conductivity. The difference in conductivity will be described later.
  • the concentration calculation unit 123 calculates the hypochlorous acid concentration based on the conductivity information acquired from the measuring means 110 and the conversion information acquired by the conversion information acquisition unit 122.
  • the concentration calculation unit 123 outputs the calculated hypochlorous acid concentration to the main controller 250. Note that a specific description of the concentration calculation section 123 will be given later.
  • the hypochlorous acid concentration calculated by the concentration calculation unit 123 does not have to be an accurate (absolute) concentration of hypochlorous acid in the aqueous solution. For example, relative concentrations such as lower than the reference concentration and higher than the reference concentration are also included in the hypochlorous acid concentration, using a preset reference concentration or a previously calculated concentration as the reference concentration. Furthermore, even if the difference (numerical difference) from the standard concentration is not clear, it is included in the hypochlorous acid concentration.
  • the electrolysis execution acquisition unit 125 acquires execution information indicating the execution state of electrolysis executed by the electrolysis device 230 and the electrolysis electrode 220 from the main controller 250. Thereby, the electrolysis execution acquisition unit 125 can grasp from the execution information whether electrolysis is being executed or not being executed in the electrolytic cell 210.
  • the measurement instruction unit 124 controls the measuring means 110 to measure conductivity information when electrolysis is not being performed based on the execution information acquired by the electrolysis execution acquisition unit 125. Thereby, conductivity information can be accurately measured without strongly insulating the electrolytic device 230 and the measurement control device 120, and the number of parts can be reduced, contributing to miniaturization of the device.
  • the correction information acquisition unit 126 acquires correction information indicating temperature correction when calculating the hypochlorous acid concentration from the measured conductivity information.
  • the correction information may be created by experimentally changing the temperature of the water in the electrolytic cell 210 and measuring the relationship between the temperature and concentration of the hypochlorous acid water. Further, the temperature coefficient of conductivity may be used as correction information.
  • the temperature coefficient of conductivity is expressed by the following formula 1.
  • varies depending on the type of solute dissolved in water.
  • the inventor has found that the temperature coefficient (226*10 ⁇ (-4)) of NaCl water (dilute salt water) is suitable for temperature correction of hypochlorous acid concentration. Note that *, and * indicate multiplication, and ⁇ indicates exponentiation.
  • the concentration calculation unit 123 calculates the hypochlorous acid concentration using two pieces of conductivity information measured before and after one electrolysis run performed for a predetermined time and at a predetermined voltage. This makes it possible to exclude the influence of the hardness of water containing chlorine on the conversion information. Specifically, for example, when tap water is used to create water containing chlorine, the hardness of the water varies depending on regional differences, but by using conductivity information before and after a single electrolysis process, it is possible to determine where the water is. Hypochlorous acid concentration can be calculated using common conversion information even in different regions.
  • the difference in conductivity information after replacing the water in the electrolytic cell 210 and before the first electrolysis is set to zero, as shown in FIG. 4, and the hypochlorous acid concentration is also set to zero. shall be.
  • the conductivity information may be obtained by actually performing the measurement.
  • the measurement instruction unit 124 operates the application measurement device to perform measurement.
  • the measurement information acquisition unit 121 acquires conductivity information (liquid resistance value) and converts it into conductivity. For the obtained conductivity, a corrected conductivity corresponding to the temperature is derived based on the temperature information acquired by the measurement information acquisition section 121 and the correction information acquired by the correction information acquisition section 126.
  • the measurement information acquisition unit 121 acquires the conductivity information at an acquisition period 302 that is slower than the time resolution of the measurement means 110, the measurement information acquisition unit 121 acquires the conductivity information for a plurality of alternating current cycles applied by the application measurement device 112.
  • the conductivity is derived based on the Specifically, for example, one cycle of the AC current (output side) generated between the measurement electrodes 111 by the AC voltage (input side) applied by the AC power supply device 131 is generated from conductivity information for a plurality of AC cycles. The electrical conductivity is thereby derived. Alternatively, the maximum value and the minimum value may be specified from the conductivity information for a plurality of alternating current cycles, and the conductivity may be derived from these values. According to this, the process of generating a waveform from scattered information becomes unnecessary, and the load on the measurement control device 120 can be suppressed. Next, as shown in Equation 2 below, the corrected conductivity derived in the previous round is subtracted. Accumulate the differences obtained by subtraction.
  • n indicates the number of times of electrolysis during the production period.
  • the electrical conductivity (n) means the electrical conductivity after the n-th electrolysis.
  • N indicates the total number of electrolysis during the production period.
  • the concentration calculation unit 123 calculates the hypochlorous acid concentration from the cumulative difference in conductivity based on the conversion information shown in FIG. 4.
  • the measurement adjustment unit 127 changes the gain of the output power of the AC power supply device 131 included in the application measurement device 112 so that the conductivity information measured by the measurement means 110 falls within a predetermined range ((a) in FIG. 5). (see step (b) in FIG. 5), and changing the gain of the liquid resistance value measuring device 132 (see step (b) in FIG. 5). According to this, conductivity can be measured with high accuracy.
  • the gain adjustment method is not particularly limited, but an example may be a method in which the gain is gradually increased from a small gain and set to a gain just before the liquid resistance value, which is the output, is saturated. Further, the measurement adjustment unit 127 may change the gain at least once in the initial stage of filling the electrolytic cell 210 with water containing chlorine.
  • the cleaning unit 128 determines that the entire measuring electrode 111 is immersed in chlorine-containing water stored in the electrolytic cell 210 based on water level information measured by a water level sensor 260 provided in the electrolytic cell 210. After confirming this, the application and measurement device 112 is operated to clean the measurement electrode 111. Cleaning is performed by applying an alternating current voltage to the measurement electrode 111 at the maximum output allowed by the application and measurement device 112. Thereby, dissolution of salt crystals etc. deposited on the surface of the measurement electrode 111 can be promoted.
  • FIG. 6 is a flowchart showing the operation flow of the space sterilization device 200 during the generation period of hypochlorous acid.
  • the main controller 250 confirms that the electrolytic cell 210 is full of water (S101).
  • the cleaning unit 128 of the measurement control device 120 which has acquired the information indicating that the water is full from the main control device 250, controls the application measurement device 112 to apply an AC voltage of a predetermined power to the measurement electrode 111. 111 cleaning is performed (S102). Thereafter, the process waits until an electrolytic treatment start signal is generated (S103).
  • the electrolytic treatment start signal is output by the electrolytic control unit 251 (see FIG. 10) included in the main controller 250.
  • the AC power supply device 131 of the application and measurement device 112 applies a predetermined AC voltage to the measurement electrode 111, and the liquid resistance value measurement device 132 applies a predetermined AC voltage to the measurement electrode 111.
  • the water temperature sensor 113 measures the water temperature (S104).
  • the measurement information acquisition unit 121 of the measurement control device 120 acquires a liquid resistance value as conductivity information and also acquires temperature information.
  • the concentration calculation unit 123 corrects the conductivity based on correction information using temperature information.
  • the concentration calculation unit 123 stores the corrected conductivity together with the number of calculations (S105). Note that the first measurement after filling the electrolytic cell 210 with water may be omitted. If omitted, the electrical conductivity may be stored as the initial value of electrical conductivity equivalent to tap water containing a predetermined amount of salt.
  • the electrolyzer 230 applies a DC voltage to the electrolytic electrode 220 at a predetermined output for a predetermined time to perform electrolysis of the water containing chlorine in the electrolytic cell 210 (S106). This produces hypochlorous acid water.
  • the measurement instruction section 124 determines that electrolysis has ended based on the execution information acquired by the electrolysis execution acquisition section 125, the measurement instruction section 124 controls the measurement means 110 to measure the liquid resistance value.
  • the measurement information acquisition unit 121 also acquires temperature information (S107).
  • the concentration calculation unit 123 takes the reciprocal of the liquid resistance value, converts it into conductivity, and calculates the conductivity based on the correction information. Then, the difference between the previously calculated conductivity and the currently calculated conductivity is calculated. Further, the obtained differences are accumulated as shown in Equation 2 (S109).
  • the concentration calculating unit 123 calculates the hypochlorous acid concentration using the accumulated difference and the conversion information (S110), and outputs the calculated hypochlorous acid concentration to the main controller 250 (S111).
  • the above steps from electrolysis (S106) to output of hypochlorous acid concentration (S111) are repeated until the electrolytic treatment end signal is generated (until the end of the production period). For example, when the main controller 250 determines that the hypochlorous acid concentration exceeds a predetermined concentration threshold (see FIG. 11), the electrolysis control unit 251 may generate an end signal for the electrolysis process.
  • the concentration of hypochlorous acid water obtained by electrolyzing chlorine-containing water can be provided as an inexpensive module. be able to. Further, the hypochlorous acid concentration measuring device 100 has a relatively simple structure and can stably measure the hypochlorous acid concentration over a long period of time.
  • hypochlorous acid concentration can be calculated stably and with high accuracy using one conversion information.
  • the circuit configuration of the application and measurement device 112 can be made relatively simple. Furthermore, by selecting the frequency of the applied alternating current voltage from a range of 1 kHz or more and 100 kHz or less, the liquid resistance value can be stably measured.
  • FIG. 7 is a flowchart showing the operation flow of the space sterilization device 200 during the decay period of hypochlorous acid.
  • the concentration calculation unit 123 calculates the electrical conductivity information, which is the electrical conductivity measured before the last electrolysis in the production period, and the electrical conductivity after the electrolysis is performed.
  • the hypochlorous acid concentration calculated based on the difference between the measured conductivity information and the post-conductivity information is stored in the storage device 102. Further, the post-conductivity information is stored in the storage device 102.
  • the measurement instruction unit 124 waits for a predetermined time (S202) based on information from a timer (not shown), and then controls the measurement means 110 to measure the liquid resistance value. . Furthermore, the measurement information acquisition unit 121 acquires temperature information (S203). The concentration calculation unit 123 takes the reciprocal of the liquid resistance value, converts it into conductivity, and calculates the conductivity based on the correction information. Then, the difference between the conductivity based on the conductivity information stored in the storage device 102 and the conductivity calculated this time is calculated. Further, the obtained differences are accumulated as shown in Equation 3 (S205). Note that the difference becomes a positive value in the decay period.
  • m indicates the number of times the liquid resistance value is measured during the decay period.
  • the electrical conductivity (m) means the electrical conductivity at the m-th measurement.
  • M indicates the total number of liquid resistance measurements during the decay period.
  • the concentration calculation unit 123 uses the accumulated difference and the conversion information to calculate the hypochlorous acid concentration (S206).
  • the conversion information acquisition unit 122 acquires as conversion information decay period conversion information that is different from generation period conversion information that is conversion information used in the generation period.
  • the inventor believes that the relationship between the hypochlorous acid concentration and the conductivity of water during the decay period, as shown in FIG. 8, is different from that during the production period shown in FIG.
  • the cumulative relationship between the hypochlorous acid concentration and the difference in conductivity between the generation period and the decay period is a proportional relationship as shown in FIGS. 4 and 9.
  • m in FIG. 8 is an integer.
  • description of specific numerical values of hypochlorous acid concentration and electrical conductivity is omitted.
  • the inventor has created decay period conversion information as a function, which shows the relationship between hypochlorous acid concentration and electrical conductivity, as shown in the graph of FIG. 9.
  • the conversion information acquisition unit 122 acquires the function stored in the storage device 102 included in the measurement control device 120 as decay period conversion information.
  • the concentration calculation unit 123 calculates the hypochlorous acid concentration using the decay period conversion information. Concentration calculation unit 123 outputs the calculated hypochlorous acid concentration to main controller 250 (S207).
  • FIG. 10 is a block diagram showing a processing unit realized by causing a processor included in the main control device 250 to execute a program.
  • the electrolysis control unit 251 included in the main control device 250 starts the decay period.
  • the electrolysis device 230 is controlled by outputting a start signal for the electrolytic treatment so that the electrolytic treatment is terminated and transitions to the generation period in which hypochlorous acid is generated (S209).
  • hypochlorous acid concentration is not below the lower limit threshold (S208, No)
  • a series of processes (S203-S207) for outputting the hypochlorous acid concentration is executed. be done.
  • the hypochlorous acid concentration can be measured at predetermined intervals by using the configuration for generating hypochlorous acid as is. Thereby, the hypochlorous acid concentration in the electrolytic cell 210 can be maintained between the lower limit threshold and the additional concentration threshold. Therefore, the effect of the space sterilization device 200 can be maintained for a long period of time.
  • the electrolysis control unit 251 may stabilize the hypochlorous acid concentration in the electrolytic cell 210 over time as shown in FIG. 14. Specifically, the electrolysis control unit 251 acquires the hypochlorous acid concentration calculated by the concentration calculation unit 123, and when the hypochlorous acid concentration is below the lower limit threshold, the concentration of hypochlorous acid in the electrolytic cell 210 is The electrolysis device 230 may be controlled based on electrolysis information that provides a target concentration that is greater than or equal to the lower limit threshold, at least less than the additional concentration threshold, and preferably less than the concentration threshold.
  • the electrolysis information includes information regarding the amount of applied charge, which is the amount of charge required to change the current concentration of hypochlorous acid to the target concentration.
  • the amount of applied charge is proportional to the product of the current value applied to the electrolytic electrode 220 during electrolysis and the duration time, which is the time during which the current is applied, as shown in Equation 4 below.
  • the electrolysis information includes current value and duration.
  • the electrolysis control unit 251 calculates electrolysis information that makes the concentration of hypochlorous acid the target concentration, but the electrolysis control unit 251 calculates the electrolysis information that makes the concentration of hypochlorous acid the target concentration by changing at least one of the current value and duration. calculate.
  • the electrolysis control unit 251 may divide the duration included in the electrolysis information into multiple periods. Specifically, the following equation 5 holds true.
  • the electrolysis control unit 251 calculates electrolysis information including interval information indicating that a predetermined first time interval is to be left between execution of electrolysis corresponding to the acquired execution information and execution of the next electrolysis.
  • the first time is specifically a time of 30 minutes or more. The inventor has obtained from experience that by leaving an interval of 30 minutes or more, the load on the electrolytic electrode 220 can be reduced and the life of the electrolytic electrode 220 can be extended. Alternatively, the first time may be a short time of 10 minutes or less. The inventor has obtained from experience that the concentration of hypochlorous acid in the electrolytic cell 210 becomes uniform by performing electrolysis at intervals of 10 minutes or less.
  • the electrolysis control unit 251 controls the electrolysis control unit 251 after a predetermined second time has elapsed from the execution of the electrolysis corresponding to the execution information.
  • Measurement instruction information that causes conductivity information to be measured is output to the measurement control device 120, and after the second time has elapsed, the hypochlorous acid concentration calculated by the concentration calculation unit 123 is acquired, and the hypochlorous acid concentration in the electrolytic cell 210 is Electrolysis information including a concentration reduction time at which the acid concentration reaches a lower threshold value lower than the target concentration is calculated, and the electrolyzer 230 is controlled to start electrolysis when the concentration reduction time has elapsed. Further, the electrolysis control unit 251 outputs measurement instruction information to the measurement control device 120 to execute measurement of conductivity information after a predetermined third time has elapsed from the elapse of the second time, and calculates the concentration after the third time has elapsed.
  • the accuracy of the concentration reduction time may be improved by acquiring the hypochlorous acid concentration calculated by the department and updating the concentration reduction time during which the concentration of hypochlorous acid in the electrolytic cell becomes lower than the target concentration.
  • aspect (1-2) includes aspect (1-1), in which the measurement control device 120 includes an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis, and an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis; a measurement instruction unit 124 that causes the measuring means 110 to measure the conductivity information when the electrolysis is not performed, and the concentration calculation unit 123 calculates the difference in the conductivity information measured before and after the electrolysis is performed. Calculate the hypochlorous acid concentration based on
  • the aspect (1-3) includes the aspect (1-1) or the aspect (1-2), in which the measuring means 110 is arranged in a separated state in the hypochlorous acid water stored in the electrolytic cell 210.
  • a pair of measurement electrodes 111 are connected to each other, an application measurement device 112 applies an AC voltage selected from a range of 1 kHz or more to 100 kHz or less, and the liquid resistance value between the measurement electrodes 111 is determined as conductivity.
  • a concentration calculation unit 123 calculates the hypochlorous acid concentration based on the measured liquid resistance value.
  • aspect (1-5) includes any one of aspects (1-1) to (1-4), and the measurement control device 120 is configured to ensure that the conductivity information measured by the measuring means is within a predetermined range.
  • a measurement adjustment unit 127 is provided to adjust at least one of the output power of the application measurement device 112 and the gain of the liquid resistance value measurement device 132 so as to be within the range.
  • the liquid resistance value can be measured accurately, and it can contribute to accurate calculation of hypochlorous acid concentration.
  • the cleanliness of the measurement electrode 111 can be maintained constant, and the hypochlorous acid concentration can be calculated stably and accurately.
  • aspect (2-1) includes any one of aspects (1-1) to (1-6), and the measurement control device 120 executes electrolysis to obtain execution information indicating execution of electrolysis.
  • the measurement instruction section 124 includes an acquisition section 125 and a measurement instruction section 124 that causes the measurement means 110 to measure conductivity information when electrolysis is not executed based on the execution information. , conductivity information is repeatedly measured at predetermined intervals before the next electrolysis is performed, and the concentration calculation unit 123 calculates each hypochlorous acid concentration based on the plurality of measured conductivity information.
  • aspect (2-3) includes aspects (1-1) to (1-6), and either aspect (2-1) or aspect (2-2), and the measurement control device 120 , an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis, and a measurement instruction unit 124 that causes the measurement means 110 to measure conductivity information when electrolysis is not executed based on the execution information.
  • the concentration calculation unit 123 includes: previous conductivity information that is conductivity information measured before performing electrolysis; and conductivity information that is the last conductivity information in the generation period that is measured after performing electrolysis.
  • the hardness of the water put into the electrolytic cell 210 can be offset by the measurement immediately after electrolysis and the measurement after the decay period has passed, and the stability is not dependent on the hardness of the water put into the electrolytic cell 210.
  • the hypochlorous acid concentration can be calculated.
  • the aspect (1-7) of the space sterilization device 200 that can be derived from the above embodiment includes an electrolytic cell 210 that stores water containing chlorine, and an electrolytic electrode 220 that is inserted into the electrolytic cell 210. , an electrolytic device 230 that applies a voltage to an electrolytic electrode 220 to electrolyze water containing chlorine to generate hypochlorous acid water, and measures the concentration of hypochlorous acid in the generated hypochlorous acid water.
  • a space sterilization device 200 comprising a hypochlorous acid concentration measuring device 100 for measuring hypochlorous acid concentration, and a diffusion means 240 for diffusing at least hypochlorous acid in the generated hypochlorous acid water into the atmosphere.
  • the acid concentration measuring device 100 includes a measuring means 110 that measures conductivity information indicating the conductivity of hypochlorous acid water stored in an electrolytic cell 210, and a measurement control device 120 that controls the measuring means 110.
  • the measurement control device 120 includes a measurement information acquisition section 121 that acquires conductivity information from the measurement means 110, a conversion information acquisition section 122 that acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information, and a measurement information acquisition section 122 that acquires conductivity information from the measurement means 110. and a concentration calculation unit 123 that calculates the hypochlorous acid concentration based on the conductivity information and conversion information.
  • hypochlorous acid water with a predetermined concentration can be generated, and the space sterilization effect can be efficiently exhibited.
  • aspect (2-4) includes aspect (1-7), in which the measurement control device 120 includes an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis, and an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis; and a measurement instruction section 124 that causes the measurement means 110 to measure the conductivity information when the measurement means 110 is not performing the electrolysis.
  • the conductivity information is repeatedly measured at predetermined intervals during the decay period in which conductivity information is not performed, and the concentration calculation unit 123 calculates each hypochlorous acid concentration based on the plurality of measured conductivity information.
  • aspect (2-5) includes aspect (1-7) or aspect (2-4), in which the hypochlorous acid concentration obtained from the hypochlorous acid concentration measuring device 100 in the decay period exceeds the lower limit threshold.
  • a main control device 250 is provided which has an electrolysis control section 251 that controls the electrolysis device 230 so as to generate hypochlorous acid when the amount of hypochlorous acid decreases.
  • hypochlorous acid concentration in the electrolytic cell 210 can be maintained within a predetermined range, and the space sterilization effect can be maintained constant.
  • the aspect (1-8) of the hypochlorous acid concentration measuring method is the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in the electrolytic tank 210.
  • the hypochlorous acid concentration measuring method includes a measurement information acquisition unit 121 that collects conductivity information from a measuring means 110 that measures conductivity information indicating the conductivity of hypochlorous acid water stored in an electrolytic cell 210.
  • the conversion information acquisition unit 122 acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information, and calculates the hypochlorous acid concentration based on the acquired conductivity information and conversion information. Calculated by the department.
  • hypochlorous acid concentration can be accurately measured using a simple device.
  • the attenuation state of the hypochlorous acid concentration can be accurately measured.
  • aspect (3-1) includes any of aspects (1-1) to (1-6) and aspects (2-1) to (2-3), and the measurement information acquisition unit 121 acquires the conductivity information from the measuring means 110 at an acquisition period 302 that is slower than the time resolution of the measuring means 110, and the concentration calculation unit 123 calculates the conductivity information based on the conductivity information corresponding to a plurality of alternating current cycles and the conversion information. Calculate the hypochlorous acid concentration.
  • conductivity can be derived even with the measurement control device 120 having a low operating speed, and cost reduction can be achieved.
  • aspect (3-2) includes any of aspect (3-1), aspect (1-1) to aspect (1-6), and aspect (2-1) to aspect (2-3).
  • the measuring means 110 includes a liquid resistance value measuring device 132 that measures the liquid resistance value between the measuring electrodes 111 as conductivity information, and the concentration calculation unit 123 calculates hypochlorous acid based on the measured liquid resistance value. Calculate the concentration.
  • aspect (3-3) includes any of aspect (3-2), aspect (1-1) to aspect (1-6), and aspect (2-1) to aspect (2-3).
  • the application measuring device 112 applies an alternating voltage or an alternating current between the pair of measuring electrodes 111 at a frequency at which the liquid resistance value measured by the liquid resistance value measuring device 132 does not have an imaginary component.
  • the conductivity can be accurately derived using the conductivity information corresponding to the AC cycles of an integer or more to be multiplied.
  • aspect (3-5) includes aspects (3-1) to (3-4), aspects (1-1) to (1-6), and aspects (2-1) to (2-2). -3), and the concentration calculation unit 123 calculates the hypochlorous acid concentration using the waveform calculated from the obtained conductivity information.
  • aspect (3-6) includes aspects (3-1) to (3-4), aspects (1-1) to (1-6), and aspects (2-1) to (2-2). -3), and the concentration calculation unit 123 calculates the hypochlorous acid concentration using the maximum value and minimum value of the obtained conductivity information.
  • the liquid resistance value can be relatively easily measured by electrochemical impedance spectroscopy.
  • Aspect (4-1) of the hypochlorous acid water generating device that can be derived from the above embodiment is a device in which the diffusion means 240 is excluded from the hypochlorous acid concentration measuring device 100, and the aspect (4-1) is a device that excludes the diffusion means 240 from the hypochlorous acid concentration measuring device 100.
  • the electrolysis control section 251 includes a concentration calculation section. The hypochlorous acid concentration calculated by 123 is acquired, and the electrolyzer 230 is controlled based on the electrolysis information that makes the concentration of hypochlorous acid in the electrolytic cell 210 the target concentration.
  • the hypochlorous acid concentration in the electrolytic cell 210 is stably adjusted to the target concentration using electrolytic information regarding the generated hypochlorous acid concentration. It can be done.
  • aspect (4-2) includes aspect (4-1), and when the hypochlorous acid concentration calculated by the concentration calculation unit 123 is lower than the target concentration, the electrolysis control unit 251 controls the hypochlorous acid concentration. calculates electrolytic information including at least one of a current value and duration at which the target concentration is achieved.
  • the target concentration can be accurately achieved using the current value and duration, which are easily adjustable parameters.
  • aspect (4-3) includes aspect (4-2), in which the electrolysis control unit 251 divides the duration into a plurality of parts and calculates electrolysis information including the divided duration.
  • the aspect (4-4) includes the aspect (4-2) or the aspect (4-3), and the electrolysis control unit 251 starts the next electrolysis from the execution of the electrolysis corresponding to the acquired execution information.
  • Electrolysis information including interval information indicating that a predetermined first time interval is left until execution is calculated.
  • aspect (4-5) includes any one of aspects (4-1) to (4-4), and the electrolysis control unit 251 is configured to perform electrolysis based on the hypochlorous acid concentration before and after performing electrolysis. Calculate electrolysis information.
  • hypochlorous acid concentration parameters that affect the calculation of hypochlorous acid concentration, such as water hardness, can be excluded, and electrolysis information can be calculated based on accurate hypochlorous acid concentration.
  • aspect (4-6) includes any one of aspects (4-1) to (4-5), and the electrolysis control unit 251 sets the hypochlorous acid concentration calculated by the concentration calculation unit 123 to the target level. If the concentration is higher than the concentration, measurement instruction information is output to the measurement control device 120 to cause the conductivity information to be measured after a predetermined second time has elapsed from the execution of electrolysis corresponding to the execution information, and the concentration is determined after the second time has elapsed.
  • the calculation unit 123 acquires the calculated hypochlorous acid concentration, and controls the electrolyzer 230 based on electrolysis information including the concentration reduction time during which the concentration of hypochlorous acid in the electrolytic cell 210 becomes lower than the target concentration.
  • the time period for the concentration to decrease below the target concentration may be the time period for the hypochlorous acid concentration to reach the lower limit threshold.
  • aspect (4-7) includes aspect (4-6), in which the electrolysis control unit 251 provides measurement instruction information that causes conductivity information to be measured after a predetermined third time has elapsed from the elapse of the second time. is output to the measurement control device 120, and the concentration of hypochlorous acid calculated by the concentration calculation unit 123 is obtained after the third time has elapsed, and the concentration of hypochlorous acid in the electrolytic cell 210 is lower than the target concentration. The time is updated, and the electrolysis device 230 is controlled based on the electrolysis information including the updated concentration reduction time.
  • the concentration reduction time can be derived more accurately, and the hypochlorous acid concentration can be kept constant.
  • Aspect (4-8) of the space sterilization device that can be derived from the above embodiment is hypochlorous acid water produced by any of the hypochlorous acid water generation devices from aspect (4-1) to aspect (4-7).
  • a diffusion means 240 is provided for diffusing chloric acid water into the atmosphere.
  • At least the hypochlorous acid in the hypochlorous acid water having a stable concentration can be diffused into the space, and the space sterilization effect can be stably exhibited.
  • Aspect (4-9) of the hypochlorous acid water generation method is hypochlorous acid water generation method in any of the hypochlorous acid water generation apparatuses from aspect (4-1) to aspect (4-7).
  • a measurement information acquisition unit 121 acquires conductivity information from a measuring means 110
  • a conversion information acquisition unit 122 acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information.
  • the electrolysis execution acquisition unit 125 acquires execution information indicating the execution of electrolysis
  • the measurement instruction unit 124 executes measurement of conductivity information by the measuring means 110 when electrolysis is not executed based on the execution information.
  • the concentration calculation unit 123 calculates the hypochlorous acid concentration based on the conductivity information measured before and after the execution of electrolysis and the conversion information, and obtains the hypochlorous acid concentration calculated by the concentration calculation unit 123.
  • the electrolysis control section controls the electrolysis device 230 based on the electrolysis information that makes the concentration of hypochlorous acid in the electrolytic cell 210 the target concentration.
  • the hypochlorous acid concentration in the electrolytic cell 210 is stably adjusted to the target concentration using electrolytic information regarding the generated hypochlorous acid concentration. It can be done.
  • the present invention is not limited to the above embodiments.
  • the embodiments of the present invention may be realized by arbitrarily combining the components described in this specification or by excluding some of the components.
  • the present invention also includes modifications obtained by making various modifications to the above-described embodiments that a person skilled in the art can conceive without departing from the gist of the present invention, that is, the meaning of the words written in the claims. It will be done.
  • the measuring means 110 does not need to include the water temperature sensor 113 and does not need to acquire correction information.
  • the measurement control device 120 may not need to adjust the gain.
  • cleaning may not be necessary by periodically replacing the measurement electrode 111.
  • main control device 250 and the measurement control device 120 have been described as separate bodies, the main control device 250 and the measurement control device 120 may be integrated. That is, the main control device 250, the measurement control device 120, and the electrolysis control section 251 may be realized by having one processor execute a program.
  • hypochlorous acid concentration measuring device 100 may be applied to a hypochlorous acid water generating device.
  • the conversion information and correction information may be acquired through communication such as a network instead of being stored in the storage device 102 included in the measurement control device 120.
  • the measurement information acquisition unit 121 acquires the AC cycle 300 applied by the application measurement device 112 based on a plurality of conductivity information (for example, conductivity information of the same phase) that is assumed to have the same value in the AC cycle 300. It is also possible to detect a shift in the cycle 302 and update the acquisition cycle 302 to correspond to the actual AC cycle based on the detected shift. Specifically, as shown in the upper graph in FIG. zero). However, the value 311 of the acquired conductivity information may deviate. The measurement information acquisition unit 121 detects that a deviation has occurred when the difference 303 between the value of the conductivity information assumed in advance and the value of the conductivity information actually obtained is equal to or greater than a threshold value. Then, based on the difference 303, the acquisition cycle 302 may be updated as shown in the lower graph of FIG. 13 so that the values of the same phase become the same value (zero).
  • timing of the update process of the acquisition cycle 302 is not limited, and may be before the conductivity information acquisition for the initial measurement of liquid resistance value (S104) in the generation period shown in the flowchart of FIG. 6, or during the decay period.
  • the updating process may be performed for calibration before acquiring the conductivity information for the liquid resistance value measurement (S203) in step S203. Further, the updating process may be performed every time conductivity information for measuring the liquid resistance value is acquired or every predetermined number of times.

Abstract

A hypochlorite concentration measurement device (100) for measuring the concentration of a hypochlorite produced by subjecting water containing chlorine to electrolysis in an electrolytic bath (210), said device being equipped with a measurement means (110) for measuring electric conductivity information, which expresses the electric conductivity of aqueous hypochlorite stored in the electrolytic bath (210), and a measurement control device (120) for controlling the measurement means (110), and being configured in a manner such that: the measurement control device (120) is equipped with a measurement information acquisition unit (121) for acquiring electric conductivity information, a conversion information acquisition unit (122) for acquiring conversion information, and a concentration calculation unit (123) for calculating the hypochlorite concentration on the basis of the measured electric conductivity information and the conversion information.

Description

次亜塩素酸濃度測定装置、および次亜塩素酸水生成装置Hypochlorous acid concentration measurement device and hypochlorous acid water generation device
 本発明は、次亜塩素酸濃度測定装置、および次亜塩素酸濃度測定装置を備えた次亜塩素酸水生成装置に関する。 The present invention relates to a hypochlorous acid concentration measuring device and a hypochlorous acid water generating device equipped with the hypochlorous acid concentration measuring device.
 例えば、特許文献1には、次亜塩素酸イオンの紫外線の吸光による吸光減衰に基づき次亜塩素酸水の濃度を測定するいわゆる紫外吸光式の測定技術が記載されている。 For example, Patent Document 1 describes a so-called ultraviolet absorption measurement technique that measures the concentration of hypochlorous acid water based on the absorption attenuation caused by the absorption of ultraviolet rays by hypochlorite ions.
 また、特許文献2には、次亜塩素酸の電気化学的な還元電流に基づき次亜塩素酸水の濃度を測定するいわゆるポーラロ式の測定技術が記載されている。 Additionally, Patent Document 2 describes a so-called Polaro measurement technique that measures the concentration of hypochlorous acid water based on the electrochemical reduction current of hypochlorous acid.
特開2000-343080号公報Japanese Patent Application Publication No. 2000-343080 特開2011-7508号公報Japanese Patent Application Publication No. 2011-7508
 紫外吸光式の測定技術では、測定用の紫外光を発光する光源などが比較的短期間に劣化し、次亜塩素酸水の濃度の測定値が変動する。このため、測定値を安定させるためには補正作業が必要になるなど取り扱いが煩雑になる。また、紫外用部品が高価でありコスト的に問題が有る。 In the ultraviolet absorption type measurement technology, the light source that emits ultraviolet light for measurement deteriorates in a relatively short period of time, and the measured value of the concentration of hypochlorous acid water fluctuates. Therefore, handling becomes complicated, as correction work is required to stabilize the measured values. Furthermore, the ultraviolet components are expensive, which poses a cost problem.
 ポーラロ式の測定技術では、測定に用いられる電極の汚染により次亜塩素酸水の濃度の測定値が変動する。このため、測定値を安定させるためには電極の清掃作業などが必要になるなど取り扱いが煩雑になる。電極の材料が貴金属であるため測定装置自体が高価でありコスト的に問題が有る。 In the Polaro-type measurement technique, the measured value of the concentration of hypochlorous acid water fluctuates due to contamination of the electrodes used for measurement. For this reason, handling becomes complicated, such as cleaning of the electrodes, etc., in order to stabilize the measured values. Since the material of the electrode is a noble metal, the measuring device itself is expensive and there is a cost problem.
 発明者は、前記課題に基づき鋭意研究と実験の結果、安定的に測定できる次亜塩素酸水の電導度が次亜塩素酸水の濃度を比較的正確に示す指標となることを見出すに至った。本発明は、発明者の知見に基づきなされたものであり、簡単な構成で次亜塩素酸水の濃度を測定することができる次亜塩素酸濃度測定装置、空間除菌装置、および次亜塩素酸濃度測定方法の提供を目的とする。 As a result of intensive research and experiments based on the above-mentioned problem, the inventor discovered that the electrical conductivity of hypochlorous acid water, which can be stably measured, is a relatively accurate indicator of the concentration of hypochlorous acid water. Ta. The present invention was made based on the knowledge of the inventor, and provides a hypochlorous acid concentration measuring device, a space sterilization device, and a hypochlorous acid concentration measuring device that can measure the concentration of hypochlorous acid water with a simple configuration. The purpose is to provide a method for measuring acid concentration.
 上記目的を達成するために、本発明の一態様に係る次亜塩素酸濃度測定装置は、電解槽に貯留される塩素を含んだ水を電気分解して発生させた次亜塩素酸の濃度を測定する次亜塩素酸濃度測定装置であって、前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段と、前記測定手段を制御する測定制御装置と、を備え、前記測定手段は、前記電解槽に貯留される次亜塩素酸水中に離隔状態で配置される一対の測定電極と、一対の前記測定電極の間に所定の交流周期の交流電圧または交流電流を印加する印加測定装置と、を備え、前記測定制御装置は、前記測定手段から電導度情報を前記測定手段の時間分解能よりも遅い取得周期で取得する測定情報取得部と、次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する換算情報取得部と、前記交流周期の複数周期分に対応する前記電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する濃度算出部と、を備える。 In order to achieve the above object, a hypochlorous acid concentration measuring device according to one aspect of the present invention measures the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic cell. A hypochlorous acid concentration measuring device for measuring, comprising a measuring means for measuring conductivity information indicating the conductivity of hypochlorous acid water stored in the electrolytic cell, and a measurement control device for controlling the measuring means. , the measuring means is configured to apply an AC voltage or an AC voltage with a predetermined AC cycle between a pair of measuring electrodes that are arranged in a separated state in the hypochlorous acid water stored in the electrolytic tank, and a pair of the measuring electrodes. an application measurement device that applies an alternating current; a conversion information acquisition unit that acquires conversion information indicating a relationship between the acid concentration and the conductivity information; and a conversion information acquisition unit that calculates the hypochlorous acid concentration based on the conductivity information corresponding to a plurality of alternating current cycles and the conversion information. and a concentration calculation unit that calculates the concentration.
 また、本発明の一態様に係る次亜塩素酸水生成装置は、塩素を含んだ水を貯留する電解槽と、前記電解槽中に挿入状態で配置される電解電極と、前記電解電極に電圧を印加し、塩素を含んだ前記水を電気分解して次亜塩素酸水を発生させる電解装置と、上記の次亜塩素酸濃度測定装置と、前記電解装置を制御する主制御装置と、を備え、前記測定制御装置は、電気分解の実行を示す実行情報を取得する電気分解実行取得部と、前記実行情報に基づき電気分解を実行していない際に前記測定手段に電導度情報の測定を実行させる測定指示部と、を備え、前記濃度算出部は、電気分解の実行の前後において測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出し、前記主制御装置は、前記濃度算出部が算出した次亜塩素酸濃度の情報に基づき、前記電解槽中の次亜塩素酸の濃度が目標濃度となる電解情報を前記電解装置に出力する電解制御部を備える。 Further, the hypochlorous acid water generating device according to one aspect of the present invention includes an electrolytic cell that stores water containing chlorine, an electrolytic electrode that is inserted into the electrolytic cell, and a voltage applied to the electrolytic electrode. an electrolysis device that applies chlorine and electrolyzes the water containing chlorine to generate hypochlorous acid water, the above-mentioned hypochlorous acid concentration measuring device, and a main control device that controls the electrolysis device. The measurement control device includes: an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis; and an electrolysis execution acquisition unit configured to cause the measuring means to measure conductivity information when electrolysis is not being executed based on the execution information. a measurement instructing section to cause the electrolysis to be carried out; , an electrolysis control section that outputs electrolysis information such that the concentration of hypochlorous acid in the electrolytic cell becomes a target concentration to the electrolysis device, based on information on the hypochlorous acid concentration calculated by the concentration calculation section.
 本発明によれば、次亜塩素酸濃度を効率よく測定することができる。 According to the present invention, hypochlorous acid concentration can be efficiently measured.
空間除菌装置を簡易的に側方から示す図である。It is a figure showing a space sterilization device simply from the side. 測定制御装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a measurement control device. 生成期における次亜塩素酸濃度と次亜塩素酸水の電導度との関係を示すグラフである。It is a graph showing the relationship between the hypochlorous acid concentration and the conductivity of hypochlorous acid water during the generation period. 生成期における電導度の差分の累積と次亜塩素酸濃度との関係を示すグラフである。It is a graph showing the relationship between the accumulation of differences in electrical conductivity during the generation period and the hypochlorous acid concentration. 測定手段が備える液抵抗値測定用回路のブロック図である。FIG. 2 is a block diagram of a liquid resistance value measuring circuit included in the measuring means. 次亜塩素酸の生成期における空間除菌装置動作の流れを示すフローチャートである。It is a flowchart showing the flow of the space sterilization device operation during the generation period of hypochlorous acid. 次亜塩素酸の減衰期における空間除菌装置の動作の流れを示すフローチャートである。It is a flow chart showing the flow of operation of the space sterilization device during the decay period of hypochlorous acid. 減衰期における次亜塩素酸濃度と次亜塩素酸水の電導度との関係を示すグラフである。It is a graph showing the relationship between the hypochlorous acid concentration and the conductivity of hypochlorous acid water in the decay period. 減衰期における電導度の差分の累積と次亜塩素酸濃度との関係を示すグラフである。It is a graph showing the relationship between the accumulation of differences in conductivity during the decay period and the hypochlorous acid concentration. 主制御装置の機能構成を示すブロック図である。FIG. 2 is a block diagram showing the functional configuration of a main controller. 生成期、および減衰期における次亜塩素酸濃度の経時的変化を示すグラフである。It is a graph showing temporal changes in hypochlorous acid concentration during the production period and the decay period. 液抵抗値測定装置が検出する出力側の交流波形と取得周期との関係を示すグラフである。It is a graph which shows the relationship between the AC waveform on the output side detected by the liquid resistance value measuring device and the acquisition period. 取得周期の更新態様を説明するための図である。FIG. 3 is a diagram for explaining an update mode of an acquisition cycle. 次亜塩素酸濃度を安定化させるための生成期、および減衰期における次亜塩素酸濃度の経時的変化を示すグラフである。2 is a graph showing temporal changes in hypochlorous acid concentration during a generation period for stabilizing the hypochlorous acid concentration and a decay period.
 以下、本発明に係る次亜塩素酸濃度測定装置、次亜塩素酸水生成装置、空間除菌装置、および次亜塩素酸濃度測定方法の実施の形態について、図面を参照しつつ説明する。なお、以下の実施の形態は、本発明を説明するために一例を挙示するものであり、本発明を限定する主旨ではない。例えば、以下の実施の形態において示される形状、構造、材料、構成要素、相対的位置関係、接続状態、数値、数式、方法における各段階の内容、各段階の順序などは、一例であり、以下に記載されていない内容を含む場合がある。また、平行、直交などの幾何学的な表現を用いる場合があるが、これらの表現は、数学的な厳密さを示すものではなく、実質的に許容される誤差、ずれなどが含まれる。また、同時、同一などの表現も、実質的に許容される範囲を含んでいる。 Hereinafter, embodiments of a hypochlorous acid concentration measuring device, a hypochlorous acid water generating device, a space sterilization device, and a hypochlorous acid concentration measuring method according to the present invention will be described with reference to the drawings. Note that the following embodiments are provided as an example to explain the present invention, and are not intended to limit the present invention. For example, the shapes, structures, materials, components, relative positional relationships, connection states, numerical values, formulas, contents of each step in the method, order of each step, etc. shown in the following embodiments are merely examples. It may contain content not listed. Furthermore, although geometric expressions such as parallel and perpendicular are sometimes used, these expressions do not indicate mathematical rigor and include substantially permissible errors, deviations, and the like. Furthermore, expressions such as "simultaneously" and "identical" also include a substantially permissible range.
 また、図面は、本発明を説明するために適宜強調、省略、または比率の調整を行った模式的な図となっており、実際の形状、位置関係、および比率とは異なる。また、図中に示す場合があるX軸、Y軸、Z軸は、図の説明のために任意に設定した直交座標を示している。つまりZ軸は、鉛直方向に沿う軸とは限らず、X軸、Y軸は、水平面内に存在するとは限らない。 Furthermore, the drawings are schematic diagrams with emphasis, omission, or ratio adjustment as appropriate to explain the present invention, and the actual shapes, positional relationships, and ratios differ from the drawings. Further, the X-axis, Y-axis, and Z-axis that may be shown in the drawings indicate orthogonal coordinates arbitrarily set for the purpose of explaining the drawings. In other words, the Z-axis is not necessarily an axis along the vertical direction, and the X-axis and Y-axis are not necessarily in a horizontal plane.
 また、以下では複数の発明を一つの実施の形態として包括的に説明する場合がある。また、以下に記載する内容の一部は、本発明に関する任意の構成要素として説明している。 Further, below, multiple inventions may be comprehensively described as one embodiment. Further, some of the contents described below are explained as optional components related to the present invention.
 また、フローチャートは、一例であり、処理の順序が異なる、複数の処理が統合される、一つの処理が分離されるなど、処理の流れが異なっても本発明の実施の形態に含まれる。 Further, the flowchart is an example, and even if the process flow is different, such as a different order of processing, multiple processes being integrated, or one process being separated, it is included in the embodiment of the present invention.
 図1は、空間除菌装置200を簡易的に側方から示す図である。空間除菌装置200は、次亜塩素酸水中の少なくとも次亜塩素酸を空間中に放出する。また、空間除菌装置200は、空間内の大気を次亜塩素酸水中に導入する。空間は、建物の屋内空間などの閉じられた空間を対象としている。具体的に空間としては、一般家庭の居住空間、または、病院若しくは介護施設の室内空間などを例示することができる。なお、空間は、完全に閉じた空間でなくてもよく、屋外と繋がっていてもよい。また、空間は、建物内の空間だけでなく、電車または自動車などの移動体内の空間であってもよい。 FIG. 1 is a diagram simply showing the space sterilization device 200 from the side. The space sterilization device 200 releases at least hypochlorous acid in the hypochlorous acid water into the space. Moreover, the space sterilization device 200 introduces the atmosphere in the space into the hypochlorous acid water. The target space is a closed space such as an indoor space of a building. Specifically, examples of the space include a living space in a general home, an indoor space in a hospital or a nursing care facility, and the like. Note that the space does not need to be a completely closed space, and may be connected to the outdoors. Further, the space may be not only a space inside a building but also a space inside a moving body such as a train or a car.
 次亜塩素酸水は、除菌、および脱臭効果を有する。具体的には、次亜塩素酸水は、酸化作用を有し、空間の浮遊菌、物体に付着した付着菌、または、臭い物質を酸化により分解することで、除菌、および脱臭を行う。なお、「除菌」の文言は、本明細書、請求の範囲において便宜的に記載するものであり、「殺菌」などの意味を含む。また、「菌」は、ウイルス、カビなども含むものとして記載している。 Hypochlorous acid water has sterilization and deodorizing effects. Specifically, hypochlorous acid water has an oxidizing effect, and sterilizes and deodorizes by decomposing floating bacteria in the space, bacteria adhering to objects, or odor substances through oxidation. Note that the term "sterilization" is used for convenience in the present specification and claims, and includes meanings such as "sterilization." In addition, "bacteria" is described as including viruses, molds, etc.
 図1に示されるように、空間除菌装置200は、電解槽210と、電解電極220と、電解装置230と、次亜塩素酸濃度測定装置100と、拡散手段240と、主制御装置250と、を備えている。 As shown in FIG. 1, the space sterilization device 200 includes an electrolytic cell 210, an electrolytic electrode 220, an electrolytic device 230, a hypochlorous acid concentration measuring device 100, a diffusion means 240, and a main controller 250. , is equipped with.
 電解槽210は、塩素を含んだ水を貯留する水槽であり、電解槽210内において塩素を含んだ水を電気分解することにより、次亜塩素酸水が生成される。塩素を含んだ水は、例えば塩を溶解した水などを例示することができる。 The electrolytic cell 210 is a water tank that stores water containing chlorine, and hypochlorous acid water is generated by electrolyzing the water containing chlorine in the electrolytic cell 210. Examples of water containing chlorine include water in which salt is dissolved.
 電解電極220は、電解槽210に貯留される塩素を含んだ水内に挿入状態で配置される導電性の一対の部材である。電解電極220の形状は、特に限定されるものではないが、本実施の形態の場合、矩形の板状(帯状)である。一対の電解電極220は、それぞれの主面(最も面積が大きい面)が対向するように配置されている。電解電極220の材質は、導電性を備える材質であれば特に限定されるものではない。例えば電解電極220は、導電性基材の表面に触媒層が被覆された構成を挙示することができる。導電性基材は、例えば、チタン、鉄、銅、ニオブ、タンタルなどの金属単体あるいはそれらの合金などが挙げられる。製造時の加工しやすさ、あるいは製造コストを考慮すると導電性基材の材質は、チタンあるいはチタン合金が好ましい。触媒層は、白金やイリジウムなどを含有する触媒を例示することができる。その他の触媒層に含まれる混合物としては、金属、合金、金属酸化物等のいずれかの金属状態でもよく、例えば、鉛、金、ニッケル、銅、銀、鉄、パラジウム、ルテニウム、ロジウム、炭素などが挙げられる。 The electrolytic electrodes 220 are a pair of conductive members inserted into the chlorine-containing water stored in the electrolytic tank 210. Although the shape of the electrolytic electrode 220 is not particularly limited, in the case of this embodiment, it is a rectangular plate shape (band shape). The pair of electrolytic electrodes 220 are arranged so that their respective main surfaces (the surfaces with the largest area) face each other. The material of the electrolytic electrode 220 is not particularly limited as long as it is conductive. For example, the electrolytic electrode 220 may have a structure in which the surface of a conductive base material is coated with a catalyst layer. Examples of the conductive base material include simple metals such as titanium, iron, copper, niobium, and tantalum, or alloys thereof. In consideration of ease of processing during manufacturing or manufacturing cost, the material of the conductive base material is preferably titanium or a titanium alloy. The catalyst layer can be exemplified by a catalyst containing platinum, iridium, or the like. Other mixtures contained in the catalyst layer may be in any metal state such as metals, alloys, metal oxides, etc., such as lead, gold, nickel, copper, silver, iron, palladium, ruthenium, rhodium, carbon, etc. can be mentioned.
 電解装置230は、一対の電解電極220の間に所定の直流電圧を印加する直流電源装置である。電解装置230は、主制御装置250の制御により、一対の電解電極220に電圧を印加するか否か、つまり一対の電解電極220への電圧印加のオン、オフが選択される。 The electrolysis device 230 is a DC power supply device that applies a predetermined DC voltage between a pair of electrolysis electrodes 220. In the electrolytic device 230, whether or not to apply a voltage to the pair of electrolytic electrodes 220, that is, whether to apply voltage to the pair of electrolytic electrodes 220, is selected on or off under the control of the main controller 250.
 拡散手段240は、管軸(図1中の左右方向)周りに回転する円筒状の部材であり、電解槽210に貯留される次亜塩素酸水に拡散手段240の周縁の一部が周期的に浸漬し、毛細管現象などを利用して水を次亜塩素酸水の液面よりも上に持ち上げる。液面よりも上に持ち上げられた次亜塩素酸水の間に空気を通過させることで、次亜塩素酸水中の少なくとも次亜塩素酸を空間中大気中に拡散する。大気中に存在する菌(ウイルス、カビなど含む)は、拡散手段240により持ち上げられた次亜塩素酸水と接触することで除菌(ウイルス、カビなどの不活性化を含む)される。また、大気中に拡散された次亜塩素酸水中の少なくとも次亜塩素酸と接触することでも除菌される。 The diffusion means 240 is a cylindrical member that rotates around the tube axis (in the left-right direction in FIG. The water is immersed in the hypochlorous acid solution, and the water is lifted above the level of the hypochlorous acid solution using capillary action. By passing air between the hypochlorous acid water lifted above the liquid level, at least the hypochlorous acid in the hypochlorous acid water is diffused into the atmosphere. Bacteria (including viruses, mold, etc.) existing in the atmosphere are sterilized (including inactivation of viruses, mold, etc.) by contacting with the hypochlorous acid water lifted up by the diffusion means 240. Bacteria can also be sterilized by contact with at least the hypochlorous acid in the hypochlorous acid solution diffused into the atmosphere.
 なお、拡散手段240は、電解装置230中の次亜塩素酸水を遠心破砕などにより微細化して空間に放出し、次亜塩素酸水中の少なくとも次亜塩素酸を空間中に拡散させる装置であってもかまわない。 Note that the diffusion means 240 is a device that atomizes the hypochlorous acid water in the electrolytic device 230 by centrifugal crushing or the like and releases it into the space, and diffuses at least the hypochlorous acid in the hypochlorous acid water into the space. It doesn't matter.
 主制御装置250は、プロセッサを備え、プロセッサにブログラムを実行させることにより、空間除菌装置200を制御する装置である。本実施の形態の場合、主制御装置250は、後述の次亜塩素酸濃度測定装置100から電解槽210中の次亜塩素酸濃度を取得し、次亜塩素酸濃度が一定になるように電解装置230を制御する。なお、次亜塩素酸濃度を一定にする技術は後述する。ここで、次亜塩素酸濃度とは、次亜塩素酸、および次亜塩素酸イオンの合計濃度を意味している。また、主制御装置250は、電解槽210に設けられている水位センサ260から水位を示す水位情報を取得し、電解槽210内の水位が所定の水位閾値に達していない場合は、電解装置230が動作しないように制御する。 The main control device 250 is a device that includes a processor and controls the space sterilization device 200 by causing the processor to execute a program. In the case of this embodiment, the main controller 250 acquires the hypochlorous acid concentration in the electrolytic cell 210 from the hypochlorous acid concentration measuring device 100, which will be described later, and performs electrolysis so that the hypochlorous acid concentration is constant. Control device 230. Note that the technique for keeping the hypochlorous acid concentration constant will be described later. Here, the hypochlorous acid concentration means the total concentration of hypochlorous acid and hypochlorite ions. The main controller 250 also acquires water level information indicating the water level from a water level sensor 260 provided in the electrolyzer 210, and if the water level in the electrolyzer 210 has not reached a predetermined water level threshold, the main controller 250 control so that it does not operate.
 次亜塩素酸濃度測定装置100は、電解槽210に貯留される塩素を含んだ水を電気分解して発生させた次亜塩素酸の濃度を測定する装置であって、測定手段110と、測定制御装置120と、を備えている。 The hypochlorous acid concentration measuring device 100 is a device that measures the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic cell 210, and includes a measuring means 110, a measuring means 110, A control device 120 is provided.
 測定手段110は、電解槽210に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する装置であって、一対の測定電極111と、印加測定装置112と、を備えている。本実施の形態の場合、測定手段110は、電解槽210に貯留される水の温度を示す温度情報を測定する水温センサ113を備える。測定手段110は、電導度情報を所定の時間分解能で取得する。測定手段110の時間分解能は、例えばナノセックオーダー程度である。 The measuring means 110 is a device for measuring conductivity information indicating the conductivity of hypochlorous acid water stored in the electrolytic cell 210, and includes a pair of measuring electrodes 111 and an application measuring device 112. . In the case of this embodiment, the measuring means 110 includes a water temperature sensor 113 that measures temperature information indicating the temperature of water stored in the electrolytic cell 210. The measuring means 110 acquires conductivity information with a predetermined time resolution. The time resolution of the measurement means 110 is, for example, on the order of nanoseconds.
 測定電極111は、電解槽210に貯留される次亜塩素酸水中に離隔状態で配置される一対の導電性の部材である。測定電極111の形状は、特に限定されるものではないが、本実施の形態の場合、矩形の板状(帯状)であり、電解電極220よりも小型である。一対の測定電極111は、それぞれの主面が対向するように配置されている。測定電極111の材質は、導電性を備える材質であれば特に限定されるものではない。なお、測定電極111の材質は、特に限定されるものではないが、耐食性を備える導電性材料が好ましい。具体的に測定電極111の材質としては、チタン、チタン合金、ステンレス鋼などを挙示することができる。これらの材質は、測定電極111に容易に加工することができ、製造コストを抑えることができる。 The measurement electrodes 111 are a pair of conductive members that are placed apart from each other in the hypochlorous acid water stored in the electrolytic tank 210. Although the shape of the measurement electrode 111 is not particularly limited, in the case of this embodiment, it is a rectangular plate shape (band shape) and is smaller than the electrolytic electrode 220. The pair of measurement electrodes 111 are arranged so that their respective main surfaces face each other. The material of the measurement electrode 111 is not particularly limited as long as it is conductive. Note that the material of the measurement electrode 111 is not particularly limited, but a conductive material with corrosion resistance is preferable. Specifically, examples of the material of the measurement electrode 111 include titanium, titanium alloy, stainless steel, and the like. These materials can be easily processed into the measurement electrode 111 and can reduce manufacturing costs.
 印加測定装置112は、一対の測定電極111の間に所定の交流電圧を印加する交流電源装置131(図5参照)を備える。また、印加測定装置112は、一対の測定電極111の間の液抵抗値を電導度情報として測定する液抵抗値測定装置132(図5参照)を備える。例えば、液抵抗値測定装置132は、電気化学インピーダンス分光法により液抵抗値を測定する。液抵抗値は、交流電源装置131が印加した入力側の交流電圧(交流電流)により一対の測定電極111の間に発生する出力側の交流電流(交流電圧)を検出し、入力波形および出力波形に基づき測定される。電気化学インピーダンス分光法とは、溶液のインピーダンスを計測し、溶液の状態を解析する手段であり、インピーダンスの実部、虚部を計測し、ナイキスト線図などを活用して溶液の液抵抗値を測定することができる。印加測定装置112は、測定制御装置120の制御により、一対の測定電極111に交流電圧を印加するか否か、つまり一対の測定電極111への交流電圧印加のオン、オフを選択する。印加測定装置112が一対の測定電極111の間に印加する交流電圧の周波数は、限定されるものではない。例えば、交流電圧の周波数は、1kHz以上、100kHz以下の範囲から選定されることが好ましい。また、印加測定装置112は、印加する周波数を任意に調整できるものでも構わない。当該比較的高周波の範囲の交流電圧を印加することにより、液抵抗値測定装置は、交流インピーダンス法を用いて次亜塩素酸水の液抵抗値を算出する際に虚数項のない状態で液抵抗値を測定することができる。なお、印加測定装置112として交流電圧を印加する交流電源装置131を備える場合を例示したが、印加測定装置112は、交流電流を印加する交流電源装置131を備えてもよい。この場合、測定制御装置120は、交流電流の制御を行ってもかまわない。 The application and measurement device 112 includes an AC power supply device 131 (see FIG. 5) that applies a predetermined AC voltage between the pair of measurement electrodes 111. Further, the application measuring device 112 includes a liquid resistance value measuring device 132 (see FIG. 5) that measures the liquid resistance value between the pair of measurement electrodes 111 as conductivity information. For example, the liquid resistance value measuring device 132 measures the liquid resistance value using electrochemical impedance spectroscopy. The liquid resistance value is determined by detecting the output side AC current (AC voltage) generated between the pair of measurement electrodes 111 due to the input side AC voltage (AC current) applied by the AC power supply 131, and calculating the input waveform and output waveform. Measured based on Electrochemical impedance spectroscopy is a method of measuring the impedance of a solution and analyzing its state. It measures the real and imaginary parts of the impedance and uses Nyquist diagrams etc. to calculate the liquid resistance of the solution. can be measured. The application and measurement device 112 selects whether or not to apply an AC voltage to the pair of measurement electrodes 111, that is, whether to apply an AC voltage to the pair of measurement electrodes 111, under the control of the measurement control device 120. The frequency of the AC voltage applied between the pair of measurement electrodes 111 by the application and measurement device 112 is not limited. For example, the frequency of the alternating current voltage is preferably selected from a range of 1 kHz or more and 100 kHz or less. Furthermore, the application and measurement device 112 may be one that can arbitrarily adjust the applied frequency. By applying the AC voltage in the relatively high frequency range, the liquid resistance value measurement device calculates the liquid resistance value without an imaginary term when calculating the liquid resistance value of hypochlorous acid water using the AC impedance method. value can be measured. Although the application and measurement device 112 includes an AC power supply device 131 that applies an AC voltage, the application and measurement device 112 may also include an AC power supply device 131 that applies an AC current. In this case, the measurement control device 120 may control the alternating current.
 図2は、測定制御装置120の機能構成を示すブロック図である。測定制御装置120は、プロセッサを備え、プロセッサにブログラムを実行させることにより、印加測定装置112が一対の測定電極111に交流電圧を印加するタイミングを制御する。また、交流電圧を印加することにより得られる次亜塩素酸水の電導度を示す電導度情報を取得する。測定制御装置120は、処理部として測定情報取得部121と、換算情報取得部122と、濃度算出部123と、を備えている。本実施の形態の場合、測定制御装置120は、電気分解実行取得部125と、測定指示部124と、補正情報取得部126と、測定調整部127と、クリーニング部128と、を備える。 FIG. 2 is a block diagram showing the functional configuration of the measurement control device 120. The measurement control device 120 includes a processor, and controls the timing at which the application and measurement device 112 applies an AC voltage to the pair of measurement electrodes 111 by causing the processor to execute a program. Furthermore, conductivity information indicating the conductivity of hypochlorous acid water obtained by applying an alternating current voltage is acquired. The measurement control device 120 includes a measurement information acquisition section 121, a conversion information acquisition section 122, and a concentration calculation section 123 as processing sections. In the case of this embodiment, the measurement control device 120 includes an electrolysis execution acquisition section 125, a measurement instruction section 124, a correction information acquisition section 126, a measurement adjustment section 127, and a cleaning section 128.
 測定情報取得部121は、測定手段110から電導度情報を取得する。測定手段110から取得する電導度情報は、特に限定されるものではなく、次亜塩素酸水の電導度(電気伝導度)、または演算により電導度を導き出すことができる情報であればよい。例えば、電導度情報は、次亜塩素酸水の液抵抗値でもかまわない。測定制御装置120が交流インピーダンス法により計測した液抵抗値を測定情報取得部121が取得し、取得した液抵抗値の逆数を算出することで電導度を導出してもかまわない。本実施の形態の場合、測定情報取得部121は、測定手段110の時間分解能よりも遅い取得周期302(図12参照)で電導度情報を取得する。例えば、測定情報取得部121の取得周期302は、マイクロセックオーダーである。比較的遅い周期で電導度情報を間引きしながらサンプリングし、簡易的に電導度情報を位相情報も含めて取得する。これにより、低動作速度の測定制御装置120であっても電導度を導出することができ、低コスト化を実現することができる。取得周期302は、印加測定装置112が印加する交流電圧(交流電流)の交流周期を所定の分割数で分割した内の一つに対応する時間である分割時間と、分割数と互いに素であり3以上の整数と、の積が好ましい。具体的に例えば、図12のように、印加測定装置112が印加する交流周期300が10μs(100kHz)、分割数が10、均等に10分割した内の一つに対応する分割時間301が1μsとした場合、取得周期302は、分割数である10と互いに素であり3以上の整数の1つである3と、の積である3μsになる。従って、測定情報取得部121は、図12中の矢印で示す位相における電導度情報を取得する。 The measurement information acquisition unit 121 acquires conductivity information from the measurement means 110. The electrical conductivity information acquired from the measuring means 110 is not particularly limited, and may be information such as the electrical conductivity (electrical conductivity) of hypochlorous acid water or information from which the electrical conductivity can be derived by calculation. For example, the conductivity information may be a liquid resistance value of hypochlorous acid water. The measurement information acquisition unit 121 may obtain the liquid resistance value measured by the measurement control device 120 using the AC impedance method, and derive the conductivity by calculating the reciprocal of the obtained liquid resistance value. In the case of this embodiment, the measurement information acquisition unit 121 acquires conductivity information at an acquisition period 302 (see FIG. 12) that is slower than the time resolution of the measurement means 110. For example, the acquisition cycle 302 of the measurement information acquisition unit 121 is a microsec order. Conductivity information is sampled while being thinned out at a relatively slow cycle, and conductivity information including phase information is simply acquired. Thereby, even if the measurement control device 120 operates at a low operating speed, the conductivity can be derived, and cost reduction can be realized. The acquisition period 302 is coprime to the division time, which is a time corresponding to one of the predetermined divisions of the AC cycle of the AC voltage (AC current) applied by the application and measurement device 112, and the division number. A product of an integer of 3 or more is preferable. Specifically, for example, as shown in FIG. 12, the AC cycle 300 applied by the voltage application and measurement device 112 is 10 μs (100 kHz), the number of divisions is 10, and the division time 301 corresponding to one of the 10 equal divisions is 1 μs. In this case, the acquisition period 302 becomes 3 μs, which is the product of 10, which is the number of divisions, and 3, which is one of the integers that are mutually prime and greater than or equal to 3. Therefore, the measurement information acquisition unit 121 acquires conductivity information in the phase indicated by the arrow in FIG. 12.
 本実施の形態の場合、測定情報取得部121は、測定手段110が備える水温センサ113から温度情報も取得する。 In the case of this embodiment, the measurement information acquisition unit 121 also acquires temperature information from the water temperature sensor 113 included in the measurement means 110.
 換算情報取得部122は、次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する。発明者は、電解槽210に塩素を含んだ水(以下、本段落内では水と記載する)を貯留し、所定時間、所定の電圧で水の電気分解を実施した。電気分解を全く実施していない(0回)際に、次亜塩素酸濃度の測定、および水の電導度の測定を行い、前記条件で水の電気分解を実施する度に次亜塩素酸濃度の測定、および水の電導度の測定を行った。以上の実験に基づき、発明者は次亜塩素酸濃度と水の電導度とは、図3に示すように、反比例の関係にあることを見出すに至った。なお、図3に記載のnは、整数である。また、次亜塩素酸濃度、および電導度の具体的な数値の記載は省略している。 The conversion information acquisition unit 122 acquires conversion information indicating the relationship between the hypochlorous acid concentration and the conductivity information. The inventor stored water containing chlorine (hereinafter referred to as water in this paragraph) in an electrolytic cell 210, and electrolyzed the water at a predetermined voltage for a predetermined time. When electrolysis is not performed at all (0 times), the hypochlorous acid concentration and the conductivity of water are measured, and each time water electrolysis is performed under the above conditions, the hypochlorous acid concentration is and the conductivity of water. Based on the above experiments, the inventors have found that the hypochlorous acid concentration and the conductivity of water are in an inversely proportional relationship, as shown in FIG. 3. Note that n in FIG. 3 is an integer. Moreover, description of specific numerical values of hypochlorous acid concentration and electrical conductivity is omitted.
 以上から、発明者は、換算情報として図4のグラフに示すような、次亜塩素酸濃度と電導度との関係を示す換算情報を関数として作成した。本実施の形態の場合、換算情報取得部122は、測定制御装置120が備える記憶装置102に記憶された前記関数を換算情報として取得している。なお、図4は、次亜塩素酸の生成期に用いられる換算情報である生成期換算情報を示している。また、図4に示すグラフの縦軸は、電導度の差分になっている。電導度の差分については後述する。 From the above, the inventor created conversion information as a function, which shows the relationship between hypochlorous acid concentration and electrical conductivity, as shown in the graph of FIG. 4. In the case of this embodiment, the conversion information acquisition unit 122 acquires the function stored in the storage device 102 included in the measurement control device 120 as conversion information. Note that FIG. 4 shows production period conversion information that is conversion information used in the production period of hypochlorous acid. Moreover, the vertical axis of the graph shown in FIG. 4 is the difference in electrical conductivity. The difference in conductivity will be described later.
 濃度算出部123は、測定手段110から取得した電導度情報、および換算情報取得部122が取得した換算情報に基づき次亜塩素酸濃度を算出する。濃度算出部123は、算出した次亜塩素酸濃度を主制御装置250に出力する。なお、濃度算出部123についての具体的な説明は後述する。また、濃度算出部123が算出する次亜塩素酸濃度は、正確な(絶対的な)水溶液中の次亜塩素酸の濃度でなくてもよい。例えば、予め設定した基準濃度や、前回算出した濃度を基準濃度として、基準濃度より低い、基準濃度より高いなどの相対的な濃度も次亜塩素酸濃度に含まれる。さらに、基準濃度との差分(数値的な差)が明確でなくても次亜塩素酸濃度に含まれる。 The concentration calculation unit 123 calculates the hypochlorous acid concentration based on the conductivity information acquired from the measuring means 110 and the conversion information acquired by the conversion information acquisition unit 122. The concentration calculation unit 123 outputs the calculated hypochlorous acid concentration to the main controller 250. Note that a specific description of the concentration calculation section 123 will be given later. Furthermore, the hypochlorous acid concentration calculated by the concentration calculation unit 123 does not have to be an accurate (absolute) concentration of hypochlorous acid in the aqueous solution. For example, relative concentrations such as lower than the reference concentration and higher than the reference concentration are also included in the hypochlorous acid concentration, using a preset reference concentration or a previously calculated concentration as the reference concentration. Furthermore, even if the difference (numerical difference) from the standard concentration is not clear, it is included in the hypochlorous acid concentration.
 電気分解実行取得部125は、電解装置230、および電解電極220にて実行される電気分解の実行状態を示す実行情報を主制御装置250から取得する。これにより、電気分解実行取得部125は、電解槽210内において電気分解が実行されている状態か、実行されていない状態かを実行情報により把握することができる。 The electrolysis execution acquisition unit 125 acquires execution information indicating the execution state of electrolysis executed by the electrolysis device 230 and the electrolysis electrode 220 from the main controller 250. Thereby, the electrolysis execution acquisition unit 125 can grasp from the execution information whether electrolysis is being executed or not being executed in the electrolytic cell 210.
 測定指示部124は、電気分解実行取得部125が取得した実行情報に基づき電気分解を実行していない際に電導度情報を測定するよう測定手段110を制御する。これにより、電解装置230と測定制御装置120とを強固に絶縁しなくても正確に電導度情報を測定することができ、部品点数を抑制して装置の小型化に寄与することができる。 The measurement instruction unit 124 controls the measuring means 110 to measure conductivity information when electrolysis is not being performed based on the execution information acquired by the electrolysis execution acquisition unit 125. Thereby, conductivity information can be accurately measured without strongly insulating the electrolytic device 230 and the measurement control device 120, and the number of parts can be reduced, contributing to miniaturization of the device.
 補正情報取得部126は、測定された電導度情報から次亜塩素酸濃度を算出する際の温度補正を示す補正情報を取得する。補正情報は、実験的に電解槽210中の水の温度を変化させて次亜塩素酸水の温度と濃度との関係を測定して作成してもよい。また、電導度の温度係数を補正情報としてもよい。 The correction information acquisition unit 126 acquires correction information indicating temperature correction when calculating the hypochlorous acid concentration from the measured conductivity information. The correction information may be created by experimentally changing the temperature of the water in the electrolytic cell 210 and measuring the relationship between the temperature and concentration of the hypochlorous acid water. Further, the temperature coefficient of conductivity may be used as correction information.
 電導度の温度係数とは、下記式1で表される。 The temperature coefficient of conductivity is expressed by the following formula 1.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
t:次亜塩素酸水の温度(温度情報)
K:電導度
α:温度係数
t: Temperature of hypochlorous acid water (temperature information)
K: Conductivity α: Temperature coefficient
 αは、水に溶解する溶質の種類によって異なる。次亜塩素酸濃度の温度補正を行う場合、NaCl水(希塩水)の温度係数(226*10^(-4))が適していると発明者は見出している。なお、*、および・は乗算を示し、^はべき乗を示す。 α varies depending on the type of solute dissolved in water. The inventor has found that the temperature coefficient (226*10^(-4)) of NaCl water (dilute salt water) is suitable for temperature correction of hypochlorous acid concentration. Note that *, and * indicate multiplication, and ^ indicates exponentiation.
 濃度算出部123は、所定の時間、所定の電圧で実施された1回の電気分解の実行の前後において測定された2つの電導度情報を用いて次亜塩素酸濃度を算出する。これにより、塩素を含有させる水の硬度の換算情報に対する影響を除外することができる。具体的に例えば、塩素を含んだ水を作成する際に水道水を用いた場合、地域差によって水の硬度が異なるが、一回の電気分解の前後における電導度情報を用いることにより、どこの地域であっても共通の換算情報を用いて次亜塩素酸濃度を算出することができる。 The concentration calculation unit 123 calculates the hypochlorous acid concentration using two pieces of conductivity information measured before and after one electrolysis run performed for a predetermined time and at a predetermined voltage. This makes it possible to exclude the influence of the hardness of water containing chlorine on the conversion information. Specifically, for example, when tap water is used to create water containing chlorine, the hardness of the water varies depending on regional differences, but by using conductivity information before and after a single electrolysis process, it is possible to determine where the water is. Hypochlorous acid concentration can be calculated using common conversion information even in different regions.
 具体的な算出方法としては、電解槽210内の水を入れ替えた後、最初の電気分解の前の電導度情報の差分は、図4に示すように、ゼロとし、次亜塩素酸濃度もゼロとする。なお、実際に測定を実施し、電導度情報を取得してもかまわない。 As a specific calculation method, the difference in conductivity information after replacing the water in the electrolytic cell 210 and before the first electrolysis is set to zero, as shown in FIG. 4, and the hypochlorous acid concentration is also set to zero. shall be. Note that the conductivity information may be obtained by actually performing the measurement.
 次に、1回の電気分解の実施後、測定指示部124は、印加測定装置を動作させて測定を実施させる。測定情報取得部121は、電導度情報(液抵抗値)を取得して電導度に換算する。得られた電導度は、測定情報取得部121が取得した温度情報と補正情報取得部126が取得した補正情報とに基づき温度に対応した補正済みの電導度を導出する。ここで、測定情報取得部121は、測定手段110の時間分解能よりも遅い取得周期302で電導度情報を取得している場合、印加測定装置112が印加する複数の交流周期分の電導度情報に基づき電導度を導出する。具体的には、複数の交流周期分の電導度情報から交流電源装置131が印加した交流電圧(入力側)により測定電極111の間に発生する交流電流(出力側)の例えば1周期を生成することにより電導度が導出される。また、複数の交流周期分の電導度情報から最大値、および最小値を特定し、これらの値から電導度を導出しても構わない。これによれば、点在する情報から波形を生成する処理が不要となり測定制御装置120の負荷を抑制することができる。次に下記の式2に示すように、一つ前の回に導出した補正済みの電導度を減算する。減算により得られた差分を累積する。 Next, after performing one electrolysis, the measurement instruction unit 124 operates the application measurement device to perform measurement. The measurement information acquisition unit 121 acquires conductivity information (liquid resistance value) and converts it into conductivity. For the obtained conductivity, a corrected conductivity corresponding to the temperature is derived based on the temperature information acquired by the measurement information acquisition section 121 and the correction information acquired by the correction information acquisition section 126. Here, when the measurement information acquisition unit 121 acquires the conductivity information at an acquisition period 302 that is slower than the time resolution of the measurement means 110, the measurement information acquisition unit 121 acquires the conductivity information for a plurality of alternating current cycles applied by the application measurement device 112. The conductivity is derived based on the Specifically, for example, one cycle of the AC current (output side) generated between the measurement electrodes 111 by the AC voltage (input side) applied by the AC power supply device 131 is generated from conductivity information for a plurality of AC cycles. The electrical conductivity is thereby derived. Alternatively, the maximum value and the minimum value may be specified from the conductivity information for a plurality of alternating current cycles, and the conductivity may be derived from these values. According to this, the process of generating a waveform from scattered information becomes unnecessary, and the load on the measurement control device 120 can be suppressed. Next, as shown in Equation 2 below, the corrected conductivity derived in the previous round is subtracted. Accumulate the differences obtained by subtraction.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
nは、生成期における電気分解の回数を示す。
電導度(n)は、n回目の電気分解後の電導度を意味している。
Nは、生成期における電気分解の総回数を示す。
n indicates the number of times of electrolysis during the production period.
The electrical conductivity (n) means the electrical conductivity after the n-th electrolysis.
N indicates the total number of electrolysis during the production period.
 濃度算出部123は、図4に示す換算情報に基づき電導度の差分の累積から次亜塩素酸濃度を算出する。 The concentration calculation unit 123 calculates the hypochlorous acid concentration from the cumulative difference in conductivity based on the conversion information shown in FIG. 4.
 測定調整部127は、測定手段110が測定する電導度情報が所定の範囲内に収まるように、印加測定装置112が備える交流電源装置131の出力電力のゲインを変更する(図5の(a)の段参照)、および液抵抗値測定装置132のゲインを変更する、の少なくとも一方を実行する(図5の(b)の段参照)。これによれば高精度に電導度を測定することができる。ゲインの調整方法は、特に限定されるものではないが、小さいゲインから徐々にゲインを増加させ、出力である液抵抗値が飽和する手前のゲインに設定する方法を例示することができる。また、測定調整部127は、塩素を含む水で電解槽210を満水にした初期段階において少なくとも1回、ゲインの変更を実行すれば良い。 The measurement adjustment unit 127 changes the gain of the output power of the AC power supply device 131 included in the application measurement device 112 so that the conductivity information measured by the measurement means 110 falls within a predetermined range ((a) in FIG. 5). (see step (b) in FIG. 5), and changing the gain of the liquid resistance value measuring device 132 (see step (b) in FIG. 5). According to this, conductivity can be measured with high accuracy. The gain adjustment method is not particularly limited, but an example may be a method in which the gain is gradually increased from a small gain and set to a gain just before the liquid resistance value, which is the output, is saturated. Further, the measurement adjustment unit 127 may change the gain at least once in the initial stage of filling the electrolytic cell 210 with water containing chlorine.
 クリーニング部128は、電解槽210に設けられた水位センサ260により測定された水位情報に基づき、電解槽210に貯留される塩素を含んだ水の中に測定電極111の全体が浸漬されていることを確認後に印加測定装置112を動作させて測定電極111をクリーニングする。クリーニングは、印加測定装置112に許容されている最大の出力で測定電極111に交流電圧を印加することにより行う。これにより、測定電極111の表面に析出した塩の結晶などの溶解を促進することができる。 The cleaning unit 128 determines that the entire measuring electrode 111 is immersed in chlorine-containing water stored in the electrolytic cell 210 based on water level information measured by a water level sensor 260 provided in the electrolytic cell 210. After confirming this, the application and measurement device 112 is operated to clean the measurement electrode 111. Cleaning is performed by applying an alternating current voltage to the measurement electrode 111 at the maximum output allowed by the application and measurement device 112. Thereby, dissolution of salt crystals etc. deposited on the surface of the measurement electrode 111 can be promoted.
 次に、空間除菌装置200の動作を説明する。図6は、次亜塩素酸の生成期における空間除菌装置200の動作の流れを示すフローチャートである。まず、主制御装置250は、電解槽210内が満水であることを確認する(S101)。主制御装置250から満水であることを示す情報を取得した測定制御装置120のクリーニング部128は、測定電極111に所定の電力の交流電圧を印加するように印加測定装置112を制御し、測定電極111のクリーニングを行う(S102)。その後、電解処理の開始信号が発生するまで待機する(S103)。本実施の形態の場合、電解処理の開始信号は、主制御装置250が備える電解制御部251(図10参照)が出力する。 Next, the operation of the space sterilization device 200 will be explained. FIG. 6 is a flowchart showing the operation flow of the space sterilization device 200 during the generation period of hypochlorous acid. First, the main controller 250 confirms that the electrolytic cell 210 is full of water (S101). The cleaning unit 128 of the measurement control device 120, which has acquired the information indicating that the water is full from the main control device 250, controls the application measurement device 112 to apply an AC voltage of a predetermined power to the measurement electrode 111. 111 cleaning is performed (S102). Thereafter, the process waits until an electrolytic treatment start signal is generated (S103). In the case of this embodiment, the electrolytic treatment start signal is output by the electrolytic control unit 251 (see FIG. 10) included in the main controller 250.
 電解処理の開始信号が発生すると、初回の電解処理の前に、印加測定装置112の交流電源装置131は、測定電極111に所定の交流電圧を印加し、液抵抗値測定装置132は、電解槽210内の水の液抵抗値を測定する。また、水温センサ113は水温の測定を実行する(S104)。測定制御装置120の測定情報取得部121は、電導度情報として液抵抗値を取得し、また温度情報を取得する。濃度算出部123は、液抵抗値を電導度に変換後、温度情報を用いて補正情報に基づき電導度を補正する。濃度算出部123は、補正後の電導度を算出回数とともに記憶する(S105)。なお、電解槽210を満水にした後の最初の測定については、省略してもかまわない。省略した場合、電導度は、所定量の塩を含んだ水道水相当の電導度を初期値として記憶してもよい。 When the electrolytic treatment start signal is generated, before the first electrolytic treatment, the AC power supply device 131 of the application and measurement device 112 applies a predetermined AC voltage to the measurement electrode 111, and the liquid resistance value measurement device 132 applies a predetermined AC voltage to the measurement electrode 111. Measure the liquid resistance value of water in 210. Furthermore, the water temperature sensor 113 measures the water temperature (S104). The measurement information acquisition unit 121 of the measurement control device 120 acquires a liquid resistance value as conductivity information and also acquires temperature information. After converting the liquid resistance value into conductivity, the concentration calculation unit 123 corrects the conductivity based on correction information using temperature information. The concentration calculation unit 123 stores the corrected conductivity together with the number of calculations (S105). Note that the first measurement after filling the electrolytic cell 210 with water may be omitted. If omitted, the electrical conductivity may be stored as the initial value of electrical conductivity equivalent to tap water containing a predetermined amount of salt.
 次に、電解装置230は、電解電極220に所定の時間、所定の出力で直流電圧を電解電極220に印加し、電解槽210内の塩素を含む水の電気分解を実行する(S106)。これにより次亜塩素酸水が生成される。 Next, the electrolyzer 230 applies a DC voltage to the electrolytic electrode 220 at a predetermined output for a predetermined time to perform electrolysis of the water containing chlorine in the electrolytic cell 210 (S106). This produces hypochlorous acid water.
 電気分解実行取得部125が取得した実行情報に基づき電気分解が終了したと測定指示部124が判断すると、測定指示部124が液抵抗値を測定するように測定手段110を制御する。また、測定情報取得部121は、温度情報を取得する(S107)。濃度算出部123は、液抵抗値の逆数をとって電導度に変換し、補正情報に基づき電導度を算出する。そして、前回算出した電導度と今回算出した電導度の差分を算出する。また、得られた差分を式2に示すように累積する(S109)。濃度算出部123は累積された差分を用い、換算情報を用いて次亜塩素酸濃度を算出し(S110)、算出した次亜塩素酸濃度を主制御装置250へ出力する(S111)。 When the measurement instruction section 124 determines that electrolysis has ended based on the execution information acquired by the electrolysis execution acquisition section 125, the measurement instruction section 124 controls the measurement means 110 to measure the liquid resistance value. The measurement information acquisition unit 121 also acquires temperature information (S107). The concentration calculation unit 123 takes the reciprocal of the liquid resistance value, converts it into conductivity, and calculates the conductivity based on the correction information. Then, the difference between the previously calculated conductivity and the currently calculated conductivity is calculated. Further, the obtained differences are accumulated as shown in Equation 2 (S109). The concentration calculating unit 123 calculates the hypochlorous acid concentration using the accumulated difference and the conversion information (S110), and outputs the calculated hypochlorous acid concentration to the main controller 250 (S111).
 上記の電気分解(S106)から次亜塩素酸濃度の出力(S111)までを、電解処理の終了信号が発生するまで(生成期の終了まで)繰り返す。例えば、次亜塩素酸濃度が所定の濃度閾値(図11参照)を超えたと主制御装置250が判断した場合、電解処理の終了信号を電解制御部251が発生させてもよい。 The above steps from electrolysis (S106) to output of hypochlorous acid concentration (S111) are repeated until the electrolytic treatment end signal is generated (until the end of the production period). For example, when the main controller 250 determines that the hypochlorous acid concentration exceeds a predetermined concentration threshold (see FIG. 11), the electrolysis control unit 251 may generate an end signal for the electrolysis process.
 以上のように、本実施の形態にかかる次亜塩素酸濃度測定装置100によれば、塩素を含んだ水を電気分解して得られる次亜塩素酸水の濃度を、安価なモジュールとして提供することができる。また、次亜塩素酸濃度測定装置100は、比較的構造が簡単で長期的に安定して次亜塩素酸濃度を測定することができる。 As described above, according to the hypochlorous acid concentration measuring device 100 according to the present embodiment, the concentration of hypochlorous acid water obtained by electrolyzing chlorine-containing water can be provided as an inexpensive module. be able to. Further, the hypochlorous acid concentration measuring device 100 has a relatively simple structure and can stably measure the hypochlorous acid concentration over a long period of time.
 また、1回の電気分解の前後における電導度の差分を用いて次亜塩素酸濃度を算出することで、塩素を含む水が様々な硬度成分を含んでいる場合や硬度成分の含有比が異なる場合においても、電導度の差分を用いて硬度成分関連の情報を相殺することができる。したがって、地域差などにより水の硬度成分が異なる場合でも一つの換算情報を用いて次亜塩素酸濃度を安定して高精度に算出することができる。 In addition, by calculating the hypochlorous acid concentration using the difference in conductivity before and after one electrolysis, it is possible to calculate the hypochlorous acid concentration when water containing chlorine contains various hardness components or when the content ratio of hardness components is different. Even in this case, the difference in conductivity can be used to offset the information related to the hardness component. Therefore, even if the water hardness component differs due to regional differences, the hypochlorous acid concentration can be calculated stably and with high accuracy using one conversion information.
 また、交流電圧を印加して液抵抗値を測定する交流インピーダンス法を採用することにより印加測定装置112の回路構成を比較的平易にすることができる。また、印加する交流電圧の周波数を1kHz以上、100kHz以下の範囲から選定することにより、安定して液抵抗値を測定することができる。 Furthermore, by adopting the AC impedance method in which the liquid resistance value is measured by applying an AC voltage, the circuit configuration of the application and measurement device 112 can be made relatively simple. Furthermore, by selecting the frequency of the applied alternating current voltage from a range of 1 kHz or more and 100 kHz or less, the liquid resistance value can be stably measured.
 また、電解槽210中の水温に基づき電導度に温度補正を加えることで、より正確で高精度な次亜塩素酸濃度を算出することができる。 Furthermore, by adding temperature correction to the conductivity based on the water temperature in the electrolytic cell 210, it is possible to calculate the hypochlorous acid concentration more accurately and with high precision.
 また、交流電源装置、および液抵抗値測定装置132の少なくとも一方のゲインを調整し、初期段階における出力が飽和しない程度の大きな出力にすることで、高精度な濃度測定が可能になる。 In addition, highly accurate concentration measurement is possible by adjusting the gain of at least one of the AC power supply device and the liquid resistance value measuring device 132 to provide a large output that does not saturate the output in the initial stage.
 また、測定電極111に付着した塩の結晶の溶解をクリーニング処理により促進することで、測定電極111の付着物による測定結果の変動を抑制し、高精度な濃度測定が可能になる。 Furthermore, by promoting the dissolution of salt crystals attached to the measurement electrode 111 through the cleaning process, fluctuations in measurement results due to deposits on the measurement electrode 111 are suppressed, and highly accurate concentration measurement becomes possible.
 図7は、次亜塩素酸の減衰期における空間除菌装置200の動作の流れを示すフローチャートである。生成期の終了を示す電解処理の終了信号を受信すると、濃度算出部123は、生成期の最後の電気分解の実行前において測定された電導度である電導度情報と、電気分解の実行後において測定された電導度情報である後電導度情報と、の差分に基づき算出された次亜塩素酸濃度を記憶装置102に保存する。また、後電導度情報を記憶装置102に保存する。 FIG. 7 is a flowchart showing the operation flow of the space sterilization device 200 during the decay period of hypochlorous acid. Upon receiving the end signal of the electrolytic treatment indicating the end of the production period, the concentration calculation unit 123 calculates the electrical conductivity information, which is the electrical conductivity measured before the last electrolysis in the production period, and the electrical conductivity after the electrolysis is performed. The hypochlorous acid concentration calculated based on the difference between the measured conductivity information and the post-conductivity information is stored in the storage device 102. Further, the post-conductivity information is stored in the storage device 102.
 電解処理の終了信号の受信後、測定指示部124は、計時部(不図示)からの情報に基づき所定の時間待機(S202)した後、液抵抗値を測定するように測定手段110を制御する。また、測定情報取得部121は、温度情報を取得する(S203)。濃度算出部123は、液抵抗値の逆数をとって電導度に変換し、補正情報に基づき電導度を算出する。そして、記憶装置102に保存した後電導度情報に基づく電導度と今回算出した電導度の差分を算出する。また、得られた差分を式3に示すように累積する(S205)。なお減衰期において差分は正の値になる。 After receiving the electrolysis treatment end signal, the measurement instruction unit 124 waits for a predetermined time (S202) based on information from a timer (not shown), and then controls the measurement means 110 to measure the liquid resistance value. . Furthermore, the measurement information acquisition unit 121 acquires temperature information (S203). The concentration calculation unit 123 takes the reciprocal of the liquid resistance value, converts it into conductivity, and calculates the conductivity based on the correction information. Then, the difference between the conductivity based on the conductivity information stored in the storage device 102 and the conductivity calculated this time is calculated. Further, the obtained differences are accumulated as shown in Equation 3 (S205). Note that the difference becomes a positive value in the decay period.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
mは、減衰期における液抵抗値測定の回数を示す。
電導度(m)は、m回目の測定時の電導度を意味している。
Mは、減衰期における液抵抗値測定の総回数を示す。
m indicates the number of times the liquid resistance value is measured during the decay period.
The electrical conductivity (m) means the electrical conductivity at the m-th measurement.
M indicates the total number of liquid resistance measurements during the decay period.
 濃度算出部123は、累積された差分を用い、換算情報を用いて次亜塩素酸濃度を算出する(S206)。本実施の形態の場合、換算情報取得部122は、生成期に用いられる換算情報である生成期換算情報とは異なる減衰期換算情報を換算情報として取得している。 The concentration calculation unit 123 uses the accumulated difference and the conversion information to calculate the hypochlorous acid concentration (S206). In the case of the present embodiment, the conversion information acquisition unit 122 acquires as conversion information decay period conversion information that is different from generation period conversion information that is conversion information used in the generation period.
 発明者は、減衰期における次亜塩素酸濃度と水の電導度との関係は、図8に示すように、図3に示す生成期の場合と異なり、時間経過に伴って指数関数的な変化を示すが、生成期と減衰期の次亜塩素酸濃度と電導度の差分の累積の関係は、図4、図9に示すように両者ともに比例関係となっている。なお、図8に記載のmは、整数である。また、次亜塩素酸濃度、および電導度の具体的な数値の記載は省略している。以上から、発明者は、減衰期換算情報として図9のグラフに示すような、次亜塩素酸濃度と電導度との関係を示す減衰期換算情報を関数として作成している。本実施の形態の場合、換算情報取得部122は、測定制御装置120が備える記憶装置102に記憶された関数を減衰期換算情報として取得している。 The inventor believes that the relationship between the hypochlorous acid concentration and the conductivity of water during the decay period, as shown in FIG. 8, is different from that during the production period shown in FIG. However, the cumulative relationship between the hypochlorous acid concentration and the difference in conductivity between the generation period and the decay period is a proportional relationship as shown in FIGS. 4 and 9. Note that m in FIG. 8 is an integer. Moreover, description of specific numerical values of hypochlorous acid concentration and electrical conductivity is omitted. From the above, the inventor has created decay period conversion information as a function, which shows the relationship between hypochlorous acid concentration and electrical conductivity, as shown in the graph of FIG. 9. In the case of this embodiment, the conversion information acquisition unit 122 acquires the function stored in the storage device 102 included in the measurement control device 120 as decay period conversion information.
 濃度算出部123は、減衰期換算情報を用いて次亜塩素酸濃度を算出している。濃度算出部123は、算出した次亜塩素酸濃度を主制御装置250へ出力する(S207)。 The concentration calculation unit 123 calculates the hypochlorous acid concentration using the decay period conversion information. Concentration calculation unit 123 outputs the calculated hypochlorous acid concentration to main controller 250 (S207).
 図10は、主制御装置250が備えるプロセッサにプログラムを実行させることにより実現される処理部を示すブロック図である。主制御装置250が備える電解制御部251は、次亜塩素酸濃度測定装置100の濃度算出部123から取得した次亜塩素酸濃度が所定の下限閾値を下回ると(S208、Yes)、減衰期が終了し、次亜塩素酸を生成する生成期に移行するように電解処理の開始信号を出力し(S209)、電解装置230を制御する。一方、次亜塩素酸濃度が下限閾値を下回っていない場合(S208、No)、所定の時間待機後(S202)、次亜塩素酸濃度を出力するための一連の処理(S203-S207)が実行される。 FIG. 10 is a block diagram showing a processing unit realized by causing a processor included in the main control device 250 to execute a program. When the hypochlorous acid concentration obtained from the concentration calculation unit 123 of the hypochlorous acid concentration measurement device 100 falls below a predetermined lower limit threshold (S208, Yes), the electrolysis control unit 251 included in the main control device 250 starts the decay period. The electrolysis device 230 is controlled by outputting a start signal for the electrolytic treatment so that the electrolytic treatment is terminated and transitions to the generation period in which hypochlorous acid is generated (S209). On the other hand, if the hypochlorous acid concentration is not below the lower limit threshold (S208, No), after waiting for a predetermined time (S202), a series of processes (S203-S207) for outputting the hypochlorous acid concentration is executed. be done.
 なお、減衰期後の生成期において、生成期の終了を判断する次亜塩素酸濃度は、初回の電解処理の終了(初回の生成期の終了)を判断する濃度閾値とは異なる(本実施の形態の場合、濃度閾値よりも高い)追加濃度閾値で判断しても構わない(図11参照)。また、電解処理の開始信号出力後の電解槽210内の水の液抵抗値を測定、水温の測定(S104)、および電導度水温補正(S105)は、減衰期最後のデータを用いても構わない。 In addition, in the production period after the decay period, the hypochlorous acid concentration that determines the end of the production period is different from the concentration threshold that determines the end of the first electrolytic treatment (end of the first generation period) (in this implementation) In the case of morphology, the determination may be made using an additional density threshold value (higher than the density threshold value) (see FIG. 11). Furthermore, the data at the end of the decay period may be used for measuring the liquid resistance value of the water in the electrolytic cell 210, measuring the water temperature (S104), and correcting the conductivity water temperature (S105) after outputting the electrolytic treatment start signal. do not have.
 以上のように減衰期において、次亜塩素酸を生成するための構成をそのまま利用して次亜塩素酸濃度を所定の間隔で測定することができる。これにより、電解槽210内の次亜塩素酸濃度を下限閾値から追加濃度閾値の間で維持することができる。従って、空間除菌装置200の効果を長期間にわたって維持し続けることができる。 As described above, during the decay period, the hypochlorous acid concentration can be measured at predetermined intervals by using the configuration for generating hypochlorous acid as is. Thereby, the hypochlorous acid concentration in the electrolytic cell 210 can be maintained between the lower limit threshold and the additional concentration threshold. Therefore, the effect of the space sterilization device 200 can be maintained for a long period of time.
 また、電解制御部251は、図14に示すように電解槽210内の次亜塩素酸濃度を経時的に安定化させてもかまわない。具体的に電解制御部251は、濃度算出部123が算出した次亜塩素酸濃度を取得し、次亜塩素酸濃度が下限閾値以下である場合、電解槽210中の次亜塩素酸の濃度が下限閾値以上、少なくとも追加濃度閾値未満、望ましくは濃度閾値未満の目標濃度となる電解情報に基づき電解装置230を制御してもかまわない。 Further, the electrolysis control unit 251 may stabilize the hypochlorous acid concentration in the electrolytic cell 210 over time as shown in FIG. 14. Specifically, the electrolysis control unit 251 acquires the hypochlorous acid concentration calculated by the concentration calculation unit 123, and when the hypochlorous acid concentration is below the lower limit threshold, the concentration of hypochlorous acid in the electrolytic cell 210 is The electrolysis device 230 may be controlled based on electrolysis information that provides a target concentration that is greater than or equal to the lower limit threshold, at least less than the additional concentration threshold, and preferably less than the concentration threshold.
 ここで、電解情報には、現状の次亜塩素酸濃度から目標濃度になるために必要な電荷の量である印加電荷量に関する情報が含まれている。印加電荷量は、下記の式4に示すように電気分解の際に電解電極220に投入する電流値と電流を投入している時間である継続時間の積に比例する。 Here, the electrolysis information includes information regarding the amount of applied charge, which is the amount of charge required to change the current concentration of hypochlorous acid to the target concentration. The amount of applied charge is proportional to the product of the current value applied to the electrolytic electrode 220 during electrolysis and the duration time, which is the time during which the current is applied, as shown in Equation 4 below.
 印加電荷量=電流値*継続時間…式4 Applied charge amount = current value * duration time...Equation 4
 本実施の形態の場合、電解情報は、電流値、および継続時間が含まれる。電解制御部251は、次亜塩素酸の濃度が目標濃度となる電解情報を算出するが、電解制御部251は、電流値、および継続時間の少なくとも一方を変化させて目標濃度となる電解情報を算出する。 In the case of this embodiment, the electrolysis information includes current value and duration. The electrolysis control unit 251 calculates electrolysis information that makes the concentration of hypochlorous acid the target concentration, but the electrolysis control unit 251 calculates the electrolysis information that makes the concentration of hypochlorous acid the target concentration by changing at least one of the current value and duration. calculate.
 さらに、電解制御部251は、電解情報に含まれる継続時間を複数に分割してもかまわない。具体的には、下記式5の関係が成り立つ。 Further, the electrolysis control unit 251 may divide the duration included in the electrolysis information into multiple periods. Specifically, the following equation 5 holds true.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
S:分割数
 総印加電荷量:目標濃度になるために必要な電荷量
 電流値(s):s回目の電流値
 継続時間(s):s回目の継続時間
S: Number of divisions Total applied charge: Amount of charge required to reach the target concentration Current value (s): sth current value Duration (s): Sth duration
 また、電解制御部251は、取得した実行情報に対応する電気分解の実行から、次の電気分解の実行まで所定の第一時間の間隔を開けることを示す間隔情報を含む電解情報を算出してもよい。ここで、第一時間とは具体的には30分以上の時間である。30分以上間隔を開けることにより、電解電極220にかける負担を軽減し電解電極220の長寿命化に寄与できることを発明者は経験値として取得している。また、第一時間を10分以下の短い時間としてもよい。10分以下の間隔で電気分解を実行することにより、電解槽210中の次亜塩素酸濃度が均一になることを発明者は経験値として取得している。 Further, the electrolysis control unit 251 calculates electrolysis information including interval information indicating that a predetermined first time interval is to be left between execution of electrolysis corresponding to the acquired execution information and execution of the next electrolysis. Good too. Here, the first time is specifically a time of 30 minutes or more. The inventor has obtained from experience that by leaving an interval of 30 minutes or more, the load on the electrolytic electrode 220 can be reduced and the life of the electrolytic electrode 220 can be extended. Alternatively, the first time may be a short time of 10 minutes or less. The inventor has obtained from experience that the concentration of hypochlorous acid in the electrolytic cell 210 becomes uniform by performing electrolysis at intervals of 10 minutes or less.
 また、電解制御部251は、生成期終了直後において濃度算出部123が算出した次亜塩素酸濃度が目標濃度より高い場合、実行情報に対応する電気分解の実行から所定の第二時間の経過後に電導度情報の測定を実行させる測定指示情報を測定制御装置120に出力し、第二時間の経過後に濃度算出部123が算出した次亜塩素酸濃度を取得し、電解槽210中の次亜塩素酸の濃度が目標濃度より低い下限閾値となる濃度低下時間を含む電解情報を算出し、濃度低下時間を経過した時点で電気分解を開始するように電解装置230を制御する。さらに、電解制御部251は、第二時間の経過から所定の第三時間の経過後に電導度情報の測定を実行させる測定指示情報を測定制御装置120に出力し、第三時間の経過後に濃度算出部が算出した次亜塩素酸濃度を取得し、電解槽中の次亜塩素酸の濃度が目標濃度より低くなる濃度低下時間を更新することにより濃度低下時間の精度を向上させてもかまわない。 Further, if the hypochlorous acid concentration calculated by the concentration calculation unit 123 immediately after the end of the generation period is higher than the target concentration, the electrolysis control unit 251 controls the electrolysis control unit 251 after a predetermined second time has elapsed from the execution of the electrolysis corresponding to the execution information. Measurement instruction information that causes conductivity information to be measured is output to the measurement control device 120, and after the second time has elapsed, the hypochlorous acid concentration calculated by the concentration calculation unit 123 is acquired, and the hypochlorous acid concentration in the electrolytic cell 210 is Electrolysis information including a concentration reduction time at which the acid concentration reaches a lower threshold value lower than the target concentration is calculated, and the electrolyzer 230 is controlled to start electrolysis when the concentration reduction time has elapsed. Further, the electrolysis control unit 251 outputs measurement instruction information to the measurement control device 120 to execute measurement of conductivity information after a predetermined third time has elapsed from the elapse of the second time, and calculates the concentration after the third time has elapsed. The accuracy of the concentration reduction time may be improved by acquiring the hypochlorous acid concentration calculated by the department and updating the concentration reduction time during which the concentration of hypochlorous acid in the electrolytic cell becomes lower than the target concentration.
 上記実施の形態から導き出せる次亜塩素酸濃度測定装置100の態様(1-1)は、電解槽210に貯留される塩素を含んだ水を電気分解して発生させた次亜塩素酸の濃度を測定する次亜塩素酸濃度測定装置100であって、電解槽210に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段110と、測定手段110を制御する測定制御装置120と、を備え、測定制御装置120は、測定手段110から電導度情報を取得する測定情報取得部121と、次亜塩素酸濃度と電導度情報との関係を示す換算情報を取得する換算情報取得部122と、測定された電導度情報、および換算情報に基づき次亜塩素酸濃度を算出する濃度算出部123と、を備える。 Aspect (1-1) of the hypochlorous acid concentration measuring device 100 that can be derived from the above embodiment is to measure the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in the electrolytic tank 210. A hypochlorous acid concentration measuring device 100 for measuring, comprising a measuring means 110 for measuring conductivity information indicating the conductivity of hypochlorous acid water stored in an electrolytic cell 210, and a measurement control for controlling the measuring means 110. The measurement control device 120 includes a measurement information acquisition unit 121 that acquires conductivity information from the measurement means 110, and a conversion unit that acquires conversion information indicating the relationship between the hypochlorous acid concentration and the conductivity information. It includes an information acquisition section 122 and a concentration calculation section 123 that calculates the hypochlorous acid concentration based on the measured conductivity information and conversion information.
 これにより、簡単な構成で正確に次亜塩素酸濃度を算出することができる。 Thereby, hypochlorous acid concentration can be calculated accurately with a simple configuration.
 また、態様(1-2)は、態様(1-1)を含み、測定制御装置120は、電気分解の実行を示す実行情報を取得する電気分解実行取得部125と、実行情報に基づき電気分解を実行していない際に測定手段110に電導度情報の測定を実行させる測定指示部124と、を備え、濃度算出部123は、電気分解の実行の前後においてそれぞれ測定された電導度情報の差分に基づき次亜塩素酸濃度を算出する。 Further, aspect (1-2) includes aspect (1-1), in which the measurement control device 120 includes an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis, and an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis; a measurement instruction unit 124 that causes the measuring means 110 to measure the conductivity information when the electrolysis is not performed, and the concentration calculation unit 123 calculates the difference in the conductivity information measured before and after the electrolysis is performed. Calculate the hypochlorous acid concentration based on
 これによれば、電解槽210中に入れられる硬度を電解前後の測定で相殺することができ、電解槽210中に入れられる水の硬度によらない安定した次亜塩素酸濃度を算出することができる。 According to this, the hardness of the water put into the electrolytic cell 210 can be offset by measurements before and after electrolysis, and it is possible to calculate a stable hypochlorous acid concentration independent of the hardness of the water put into the electrolytic cell 210. can.
 また、態様(1-3)は、態様(1-1)、または態様(1-2)を含み、測定手段110は、電解槽210に貯留される次亜塩素酸水中に離隔状態で配置される一対の測定電極111と、一対の測定電極111の間に1kHz以上、100kHz以下の範囲から選定される交流電圧を印加する印加測定装置112と、測定電極111の間の液抵抗値を電導度情報として測定する液抵抗値測定装置132と、を備え、濃度算出部123は、測定された液抵抗値に基づき次亜塩素酸濃度を算出する。 Further, the aspect (1-3) includes the aspect (1-1) or the aspect (1-2), in which the measuring means 110 is arranged in a separated state in the hypochlorous acid water stored in the electrolytic cell 210. A pair of measurement electrodes 111 are connected to each other, an application measurement device 112 applies an AC voltage selected from a range of 1 kHz or more to 100 kHz or less, and the liquid resistance value between the measurement electrodes 111 is determined as conductivity. A concentration calculation unit 123 calculates the hypochlorous acid concentration based on the measured liquid resistance value.
 これによれば、虚数項のない状態で液抵抗値を算出することができ、算出処理を容易化することができる。 According to this, the liquid resistance value can be calculated without an imaginary term, and the calculation process can be facilitated.
 また、態様(1-4)は、態様(1-1)から態様(1-3)までのいずれかを含み、測定手段110は、電解槽210に貯留される水の温度を示す温度情報を測定する水温センサ113を備え、測定制御装置120は、測定された電導度情報から次亜塩素酸濃度を算出する際の温度補正を示す補正情報を取得する補正情報取得部126を備え、濃度算出部123は、測定情報取得部121が取得した温度情報と補正情報とに基づき補正して次亜塩素酸濃度を算出する。 Further, aspect (1-4) includes any one of aspects (1-1) to (1-3), and the measuring means 110 measures temperature information indicating the temperature of water stored in the electrolytic cell 210. The measurement control device 120 includes a water temperature sensor 113 for measurement, and a correction information acquisition unit 126 for acquiring correction information indicating temperature correction when calculating the hypochlorous acid concentration from the measured conductivity information, and performs concentration calculation. The unit 123 calculates the hypochlorous acid concentration by correcting it based on the temperature information and correction information acquired by the measurement information acquisition unit 121.
 これによれば、電解槽210内の温度による次亜塩素酸濃度の誤差を補正することができ、算出された次亜塩素酸濃度の精度を向上させることができる。 According to this, it is possible to correct an error in the hypochlorous acid concentration due to the temperature inside the electrolytic cell 210, and it is possible to improve the accuracy of the calculated hypochlorous acid concentration.
 また、態様(1-5)は、態様(1-1)から態様(1-4)までのいずれかを含み、測定制御装置120は、測定手段が測定する電導度情報が所定の範囲内に収まるように、印加測定装置112の出力電力、および液抵抗値測定装置132のゲインの少なくとも一方を調整する測定調整部127を備える。 Further, aspect (1-5) includes any one of aspects (1-1) to (1-4), and the measurement control device 120 is configured to ensure that the conductivity information measured by the measuring means is within a predetermined range. A measurement adjustment unit 127 is provided to adjust at least one of the output power of the application measurement device 112 and the gain of the liquid resistance value measurement device 132 so as to be within the range.
 これによれば、液抵抗値を正確に測定することができ、正確な次亜塩素酸濃度の算出に寄与することができる。 According to this, the liquid resistance value can be measured accurately, and it can contribute to accurate calculation of hypochlorous acid concentration.
 また、態様(1-6)は、態様(1-1)から態様(1-5)までのいずれかを含み、測定情報取得部121は、電解槽210に設けられた水位センサ260から所定の水位を示す水位情報を取得し、測定制御装置120は、水位情報に基づき測定電極111が電解槽210に貯留される塩素を含んだ水の中に配置されていることを確認後に印加測定装置112を動作させて測定電極111をクリーニングするクリーニング部128を備える。 Further, aspect (1-6) includes any one of aspects (1-1) to (1-5), in which the measurement information acquisition unit 121 acquires a predetermined value from the water level sensor 260 provided in the electrolytic cell 210. After acquiring water level information indicating the water level and confirming that the measurement electrode 111 is placed in the chlorine-containing water stored in the electrolytic tank 210 based on the water level information, the measurement control device 120 moves the application measurement device 112 to the water level information indicating the water level. A cleaning section 128 is provided which operates to clean the measurement electrode 111.
 これによれば、測定電極111の清浄度を一定に維持することができ、延いては次亜塩素酸濃度を安定して正確に算出することができる。 According to this, the cleanliness of the measurement electrode 111 can be maintained constant, and the hypochlorous acid concentration can be calculated stably and accurately.
 また、態様(2-1)は、態様(1-1)から態様(1-6)までのいずれかを含み、測定制御装置120は、電気分解の実行を示す実行情報を取得する電気分解実行取得部125と、実行情報に基づき電気分解を実行していない際に測定手段110に電導度情報の測定を実行させる測定指示部124と、を備え、測定指示部124は、電気分解の実行後、次の電気分解の実行前において所定の間隔で繰返し電導度情報の測定を実行させ、濃度算出部123は、測定された複数の電導度情報に基づきそれぞれの次亜塩素酸濃度を算出する。 Further, aspect (2-1) includes any one of aspects (1-1) to (1-6), and the measurement control device 120 executes electrolysis to obtain execution information indicating execution of electrolysis. The measurement instruction section 124 includes an acquisition section 125 and a measurement instruction section 124 that causes the measurement means 110 to measure conductivity information when electrolysis is not executed based on the execution information. , conductivity information is repeatedly measured at predetermined intervals before the next electrolysis is performed, and the concentration calculation unit 123 calculates each hypochlorous acid concentration based on the plurality of measured conductivity information.
 これによれば、電気分解後の電解槽210中の次亜塩素酸濃度の減衰状態を逐次モニタリングすることができる。 According to this, it is possible to successively monitor the attenuation state of the hypochlorous acid concentration in the electrolytic cell 210 after electrolysis.
 また、態様(2-2)は、態様(1-1)から態様(1-6)まで、および態様(2-1)のいずれかを含み、換算情報取得部122は、次亜塩素酸の生成期に用いられる情報である生成期換算情報とは異なる次亜塩素酸の減衰期に用いられる換算情報である減衰期換算情報を取得し、濃度算出部123は、測定された電導度情報、および減衰期換算情報に基づき次亜塩素酸濃度を算出する。 Further, aspect (2-2) includes any one of aspects (1-1) to (1-6), and aspect (2-1), and the conversion information acquisition unit 122 converts hypochlorous acid into The concentration calculation unit 123 obtains decay period conversion information, which is conversion information used in the decay period of hypochlorous acid, which is different from production period conversion information, which is information used in the production period, and the concentration calculation unit 123 calculates the measured conductivity information, Calculate the hypochlorous acid concentration based on the decay period conversion information.
 これによれば、電解槽210入の水分の蒸発などを考慮して減衰期における次亜塩素酸濃度を正確に算出することができる。 According to this, it is possible to accurately calculate the hypochlorous acid concentration in the decay period, taking into account the evaporation of water contained in the electrolytic cell 210, etc.
 また、態様(2-3)は、態様(1-1)から態様(1-6)まで、および態様(2-1)、態様(2-2)のいずれかを含み、測定制御装置120は、電気分解の実行を示す実行情報を取得する電気分解実行取得部125と、実行情報に基づき電気分解を実行していない際に測定手段110に電導度情報の測定を実行させる測定指示部124と、を備え、濃度算出部123は、電気分解の実行前において測定された電導度情報である前電導度情報と、電気分解の実行後において測定された電導度情報であって生成期における最後の後電導度情報と、の差分に基づき算出された次亜塩素酸濃度、および後電導度情報を基準とし、減衰期において生成期の後電導度情報より後に測定された電導度情報、および算出された次亜塩素酸濃度情報に基づき次亜塩素酸濃度の絶対値を算出する。なお、電気分解の実行前において測定された前電導度情報は、初回の電気分解の実行前の電導度情報でも良い。 Further, aspect (2-3) includes aspects (1-1) to (1-6), and either aspect (2-1) or aspect (2-2), and the measurement control device 120 , an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis, and a measurement instruction unit 124 that causes the measurement means 110 to measure conductivity information when electrolysis is not executed based on the execution information. , and the concentration calculation unit 123 includes: previous conductivity information that is conductivity information measured before performing electrolysis; and conductivity information that is the last conductivity information in the generation period that is measured after performing electrolysis. Based on the hypochlorous acid concentration calculated based on the difference between the post-conductivity information and the post-conductivity information, the conductivity information measured after the post-conductivity information in the generation period in the decay period and the calculated The absolute value of hypochlorous acid concentration is calculated based on the hypochlorous acid concentration information obtained. Note that the previous conductivity information measured before performing electrolysis may be conductivity information before performing electrolysis for the first time.
 これによれば、減衰期においても電解槽210中に入れられる硬度を電解直後の測定と減衰期経過後の測定で相殺することができ、電解槽210中に入れられる水の硬度によらない安定した次亜塩素酸濃度を算出することができる。 According to this, even during the decay period, the hardness of the water put into the electrolytic cell 210 can be offset by the measurement immediately after electrolysis and the measurement after the decay period has passed, and the stability is not dependent on the hardness of the water put into the electrolytic cell 210. The hypochlorous acid concentration can be calculated.
 また、上記実施の形態から導き出せる空間除菌装置200の態様(1-7)は、塩素を含んだ水を貯留する電解槽210と、電解槽210中に挿入状態で配置される電解電極220と、電解電極220に電圧を印加し、塩素を含んだ水を電気分解して次亜塩素酸水を発生させる電解装置230と、発生させた次亜塩素酸水中の次亜塩素酸の濃度を測定する次亜塩素酸濃度測定装置100と、発生させた次亜塩素酸水中の少なくとも次亜塩素酸を大気中に拡散する拡散手段240と、を備える空間除菌装置200であって、次亜塩素酸濃度測定装置100は、電解槽210に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段110と、測定手段110を制御する測定制御装置120と、を備え、測定制御装置120は、測定手段110から電導度情報を取得する測定情報取得部121と、次亜塩素酸濃度と電導度情報との関係を示す換算情報を取得する換算情報取得部122と、測定された電導度情報、および換算情報に基づき次亜塩素酸濃度を算出する濃度算出部123と、を備える。 Further, the aspect (1-7) of the space sterilization device 200 that can be derived from the above embodiment includes an electrolytic cell 210 that stores water containing chlorine, and an electrolytic electrode 220 that is inserted into the electrolytic cell 210. , an electrolytic device 230 that applies a voltage to an electrolytic electrode 220 to electrolyze water containing chlorine to generate hypochlorous acid water, and measures the concentration of hypochlorous acid in the generated hypochlorous acid water. A space sterilization device 200 comprising a hypochlorous acid concentration measuring device 100 for measuring hypochlorous acid concentration, and a diffusion means 240 for diffusing at least hypochlorous acid in the generated hypochlorous acid water into the atmosphere. The acid concentration measuring device 100 includes a measuring means 110 that measures conductivity information indicating the conductivity of hypochlorous acid water stored in an electrolytic cell 210, and a measurement control device 120 that controls the measuring means 110. The measurement control device 120 includes a measurement information acquisition section 121 that acquires conductivity information from the measurement means 110, a conversion information acquisition section 122 that acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information, and a measurement information acquisition section 122 that acquires conductivity information from the measurement means 110. and a concentration calculation unit 123 that calculates the hypochlorous acid concentration based on the conductivity information and conversion information.
 これによれば、所定の濃度の次亜塩素酸水を生成することができ、空間除菌効果を効率的に発揮させることができる。 According to this, hypochlorous acid water with a predetermined concentration can be generated, and the space sterilization effect can be efficiently exhibited.
 また、態様(2-4)は、態様(1-7)を含み、測定制御装置120は、電気分解の実行を示す実行情報を取得する電気分解実行取得部125と、実行情報に基づき電気分解を実行していない際に測定手段110に電導度情報の測定を実行させる測定指示部124と、を備え、測定指示部124は、次亜塩素酸の生成期における電気分解の実行後、電気分解が実行されない減衰期において所定の間隔で繰返し電導度情報の測定を実行させ、濃度算出部123は、測定された複数の電導度情報に基づきそれぞれの次亜塩素酸濃度を算出する。 Further, aspect (2-4) includes aspect (1-7), in which the measurement control device 120 includes an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis, and an electrolysis execution acquisition unit 125 that acquires execution information indicating execution of electrolysis; and a measurement instruction section 124 that causes the measurement means 110 to measure the conductivity information when the measurement means 110 is not performing the electrolysis. The conductivity information is repeatedly measured at predetermined intervals during the decay period in which conductivity information is not performed, and the concentration calculation unit 123 calculates each hypochlorous acid concentration based on the plurality of measured conductivity information.
 これによれば、減衰期における次亜塩素酸濃度の経時的変化をモニタリングすることができ、空間除菌効果を効果的に運用することができる。 According to this, it is possible to monitor changes over time in the hypochlorous acid concentration during the decay period, and the space sterilization effect can be effectively utilized.
 また、態様(2-5)は、態様(1-7)、または態様(2-4)を含み、減衰期において次亜塩素酸濃度測定装置100から取得した次亜塩素酸濃度が下限閾値を下回ると次亜塩素酸を生成するように電解装置230を制御する電解制御部251を有する主制御装置250を備える。 Further, aspect (2-5) includes aspect (1-7) or aspect (2-4), in which the hypochlorous acid concentration obtained from the hypochlorous acid concentration measuring device 100 in the decay period exceeds the lower limit threshold. A main control device 250 is provided which has an electrolysis control section 251 that controls the electrolysis device 230 so as to generate hypochlorous acid when the amount of hypochlorous acid decreases.
 これにより、電解槽210中の次亜塩素酸濃度を所定の範囲に維持することができ、空間除菌効果を一定に維持することができる。 Thereby, the hypochlorous acid concentration in the electrolytic cell 210 can be maintained within a predetermined range, and the space sterilization effect can be maintained constant.
 また、上記実施の形態から導き出せる次亜塩素酸濃度測定方法の態様(1-8)は、電解槽210に貯留される塩素を含んだ水を電気分解して発生させた次亜塩素酸の濃度を測定する次亜塩素酸濃度測定方法であって、電解槽210に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段110から電導度情報を測定情報取得部121が取得し、次亜塩素酸濃度と電導度情報との関係を示す換算情報を換算情報取得部122が取得し、取得された電導度情報、および換算情報に基づき次亜塩素酸濃度を濃度算出部が算出する。 Further, the aspect (1-8) of the hypochlorous acid concentration measuring method that can be derived from the above embodiment is the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in the electrolytic tank 210. The hypochlorous acid concentration measuring method includes a measurement information acquisition unit 121 that collects conductivity information from a measuring means 110 that measures conductivity information indicating the conductivity of hypochlorous acid water stored in an electrolytic cell 210. The conversion information acquisition unit 122 acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information, and calculates the hypochlorous acid concentration based on the acquired conductivity information and conversion information. Calculated by the department.
 これによれば、簡易的な装置により正確に次亜塩素酸濃度を測定することができる。 According to this, the hypochlorous acid concentration can be accurately measured using a simple device.
 また、態様(2-7)は、態様(1-8)を含み、測定情報取得部121は、次亜塩素酸の生成期における電気分解の実行後、電気分解が実行されない減衰期において所定の間隔で電解槽210に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段110から電導度情報を取得する。 Further, aspect (2-7) includes aspect (1-8), in which the measurement information acquisition unit 121 performs a predetermined measurement in a decay period in which electrolysis is not performed after performing electrolysis in the generation period of hypochlorous acid. Conductivity information is acquired from the measuring means 110 that measures conductivity information indicating the conductivity of hypochlorous acid water stored in the electrolytic cell 210 at intervals.
 これによれば、次亜塩素酸濃度の減衰状態を正確に測定することができる。 According to this, the attenuation state of the hypochlorous acid concentration can be accurately measured.
 また、態様(3-1)は、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)までのいずれかを含み、測定情報取得部121は、測定手段110から電導度情報を測定手段110の時間分解能よりも遅い取得周期302で取得し、濃度算出部123は、交流周期の複数周期分に対応する電導度情報、および換算情報に基づき次亜塩素酸濃度を算出する。 In addition, aspect (3-1) includes any of aspects (1-1) to (1-6) and aspects (2-1) to (2-3), and the measurement information acquisition unit 121 acquires the conductivity information from the measuring means 110 at an acquisition period 302 that is slower than the time resolution of the measuring means 110, and the concentration calculation unit 123 calculates the conductivity information based on the conductivity information corresponding to a plurality of alternating current cycles and the conversion information. Calculate the hypochlorous acid concentration.
 これによれば、低動作速度の測定制御装置120であっても電導度を導出することができ、低コスト化を実現することができる。 According to this, conductivity can be derived even with the measurement control device 120 having a low operating speed, and cost reduction can be achieved.
 また、態様(3-2)は、態様(3-1)、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)までのいずれかを含み、測定手段110は、測定電極111の間の液抵抗値を電導度情報として測定する液抵抗値測定装置132を備え、濃度算出部123は、測定された液抵抗値に基づき次亜塩素酸濃度を算出する。 In addition, aspect (3-2) includes any of aspect (3-1), aspect (1-1) to aspect (1-6), and aspect (2-1) to aspect (2-3). The measuring means 110 includes a liquid resistance value measuring device 132 that measures the liquid resistance value between the measuring electrodes 111 as conductivity information, and the concentration calculation unit 123 calculates hypochlorous acid based on the measured liquid resistance value. Calculate the concentration.
 これによれば、簡単な構成で正確に次亜塩素酸濃度を算出することが可能となる。 According to this, it becomes possible to accurately calculate the hypochlorous acid concentration with a simple configuration.
 また、態様(3-3)は、態様(3-2)、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)までのいずれかを含み、印加測定装置112は、一対の測定電極111の間に液抵抗値測定装置132において測定される液抵抗値が虚部成分を持たない周波数にて交流電圧または交流電流を印加する。 In addition, aspect (3-3) includes any of aspect (3-2), aspect (1-1) to aspect (1-6), and aspect (2-1) to aspect (2-3). The application measuring device 112 applies an alternating voltage or an alternating current between the pair of measuring electrodes 111 at a frequency at which the liquid resistance value measured by the liquid resistance value measuring device 132 does not have an imaginary component.
 これによれば、簡易的な計算により次亜塩素酸濃度を算出することができ、次亜塩素酸濃度測定装置100の負荷を軽減させることが可能となる。 According to this, the hypochlorous acid concentration can be calculated by simple calculation, and the load on the hypochlorous acid concentration measuring device 100 can be reduced.
 また、態様(3-4)は、態様(3-1)から態様(3-3)まで、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)までのいずれかを含み、取得周期302は、印加測定装置112が印加する交流周期を所定の分割数で分割した内の一つに対応する時間である分割時間と、分割数と互いに素であり3以上の整数と、の積である。 In addition, aspect (3-4) includes aspects (3-1) to (3-3), aspects (1-1) to (1-6), and aspects (2-1) to (2-2). -3), and the acquisition cycle 302 includes a division time that corresponds to one of the predetermined divisions of the AC cycle applied by the application and measurement device 112, and a division time that corresponds to one of the divisions and the division number. It is the product of a prime integer greater than or equal to 3.
 これによれば、乗算する整数以上の数の交流周期に対応した電導度情報により、低動作速度の測定制御装置120であっても正確に電導度を導出することができる。 According to this, even if the measurement control device 120 operates at a low operating speed, the conductivity can be accurately derived using the conductivity information corresponding to the AC cycles of an integer or more to be multiplied.
 また、態様(3-5)は、態様(3-1)から態様(3-4)まで、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)までのいずれかを含み、濃度算出部123は、所得した電導度情報から算出される波形を用いて次亜塩素酸濃度を算出する。 In addition, aspect (3-5) includes aspects (3-1) to (3-4), aspects (1-1) to (1-6), and aspects (2-1) to (2-2). -3), and the concentration calculation unit 123 calculates the hypochlorous acid concentration using the waveform calculated from the obtained conductivity information.
 これによれば、電気化学インピーダンス分光法により液抵抗値を比較的正確に測定することができる。 According to this, the liquid resistance value can be measured relatively accurately by electrochemical impedance spectroscopy.
 また、態様(3-6)は、態様(3-1)から態様(3-4)まで、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)までのいずれかを含み、濃度算出部123は、所得した電導度情報の最大値、最小値を用いて次亜塩素酸濃度を算出する。 In addition, aspect (3-6) includes aspects (3-1) to (3-4), aspects (1-1) to (1-6), and aspects (2-1) to (2-2). -3), and the concentration calculation unit 123 calculates the hypochlorous acid concentration using the maximum value and minimum value of the obtained conductivity information.
 これによれば、低動作速度の測定制御装置120であっても電気化学インピーダンス分光法により液抵抗値を比較的容易に測定することができる。 According to this, even if the measurement control device 120 operates at a low operating speed, the liquid resistance value can be relatively easily measured by electrochemical impedance spectroscopy.
 上記実施の形態から導き出せる次亜塩素酸水生成装置の態様(4-1)は、 次亜塩素酸濃度測定装置100から拡散手段240を除外した装置であり、態様(1-1)から態様(1-6)まで、態様(2-1)から態様(2-3)まで、態様(3-1)から態様(3-6)までのいずれかを含み、電解制御部251は、濃度算出部123が算出した次亜塩素酸濃度を取得し、電解槽210中の次亜塩素酸の濃度が目標濃度となる電解情報に基づき電解装置230を制御する。 Aspect (4-1) of the hypochlorous acid water generating device that can be derived from the above embodiment is a device in which the diffusion means 240 is excluded from the hypochlorous acid concentration measuring device 100, and the aspect (4-1) is a device that excludes the diffusion means 240 from the hypochlorous acid concentration measuring device 100. 1-6), from aspect (2-1) to aspect (2-3), and from aspect (3-1) to aspect (3-6), and the electrolysis control section 251 includes a concentration calculation section. The hypochlorous acid concentration calculated by 123 is acquired, and the electrolyzer 230 is controlled based on the electrolysis information that makes the concentration of hypochlorous acid in the electrolytic cell 210 the target concentration.
 これによれば、濃度算出部123が算出した次亜塩素酸濃度により、生成する次亜塩素酸の生成濃度に関する電解情報を用いて電解槽210内の次亜塩素酸濃度を安定的に目標濃度にすることができる。 According to this, based on the hypochlorous acid concentration calculated by the concentration calculation unit 123, the hypochlorous acid concentration in the electrolytic cell 210 is stably adjusted to the target concentration using electrolytic information regarding the generated hypochlorous acid concentration. It can be done.
 また、態様(4-2)は、態様(4-1)を含み、電解制御部251は、濃度算出部123が算出した次亜塩素酸濃度が目標濃度より低い場合、次亜塩素酸の濃度が目標濃度となる電流値、および継続時間の少なくとも一方を含む電解情報を算出する。 Further, aspect (4-2) includes aspect (4-1), and when the hypochlorous acid concentration calculated by the concentration calculation unit 123 is lower than the target concentration, the electrolysis control unit 251 controls the hypochlorous acid concentration. calculates electrolytic information including at least one of a current value and duration at which the target concentration is achieved.
 これによれば、簡単に調整可能なパラメーターである電流値、継続時間を用いて正確に目標濃度を達成することができる。 According to this, the target concentration can be accurately achieved using the current value and duration, which are easily adjustable parameters.
 また、態様(4-3)は、態様(4-2)を含み、電解制御部251は、継続時間を複数に分割し、分割された継続時間を含む電解情報を算出する。 Further, aspect (4-3) includes aspect (4-2), in which the electrolysis control unit 251 divides the duration into a plurality of parts and calculates electrolysis information including the divided duration.
 これによれば、分割された継続時間の内の先の継続時間により電気分解の傾向、つまり電流と分割された継続時間の一つによる次亜塩素酸濃度の増加量を把握することができる。これにより、結果を次の電気分解にフィードバックさせることが可能となる。 According to this, it is possible to grasp the tendency of electrolysis, that is, the amount of increase in hypochlorous acid concentration due to the current and one of the divided durations, based on the previous duration of the divided durations. This allows the results to be fed back to the next electrolysis.
 また、態様(4-4)は、態様(4-2)または態様(4-3)を含み、電解制御部251は、取得した実行情報に対応する電気分解の実行から、次の電気分解の実行まで所定の第一時間の間隔を開けることを示す間隔情報を含む電解情報を算出する。 Further, the aspect (4-4) includes the aspect (4-2) or the aspect (4-3), and the electrolysis control unit 251 starts the next electrolysis from the execution of the electrolysis corresponding to the acquired execution information. Electrolysis information including interval information indicating that a predetermined first time interval is left until execution is calculated.
 これによれば、第一時間のインターバルを設けることで、電解電極220の長寿命化を図ることができる。 According to this, by providing the first time interval, it is possible to extend the life of the electrolytic electrode 220.
 また、態様(4-5)は、態様(4-1)から態様(4-4)までのいずれかを含み、電解制御部251は、電気分解の実行の前後の次亜塩素酸濃度に基づき電解情報を算出する。 Further, aspect (4-5) includes any one of aspects (4-1) to (4-4), and the electrolysis control unit 251 is configured to perform electrolysis based on the hypochlorous acid concentration before and after performing electrolysis. Calculate electrolysis information.
 これによれば、水の硬度など次亜塩素酸濃度の算出に影響するパラメーターを除外することができ、正確な次亜塩素酸濃度に基づき電解情報を算出することができる。 According to this, parameters that affect the calculation of hypochlorous acid concentration, such as water hardness, can be excluded, and electrolysis information can be calculated based on accurate hypochlorous acid concentration.
 また、態様(4-6)は、態様(4-1)から態様(4-5)までのいずれかを含み、電解制御部251は、濃度算出部123が算出した次亜塩素酸濃度が目標濃度より高い場合、実行情報に対応する電気分解の実行から所定の第二時間の経過後に電導度情報の測定を実行させる測定指示情報を測定制御装置120に出力し、第二時間の経過後に濃度算出部123が算出した次亜塩素酸濃度を取得し、電解槽210中の次亜塩素酸の濃度が目標濃度より低くなる濃度低下時間を含む電解情報に基づき電解装置230を制御する。 Further, aspect (4-6) includes any one of aspects (4-1) to (4-5), and the electrolysis control unit 251 sets the hypochlorous acid concentration calculated by the concentration calculation unit 123 to the target level. If the concentration is higher than the concentration, measurement instruction information is output to the measurement control device 120 to cause the conductivity information to be measured after a predetermined second time has elapsed from the execution of electrolysis corresponding to the execution information, and the concentration is determined after the second time has elapsed. The calculation unit 123 acquires the calculated hypochlorous acid concentration, and controls the electrolyzer 230 based on electrolysis information including the concentration reduction time during which the concentration of hypochlorous acid in the electrolytic cell 210 becomes lower than the target concentration.
 これにより電解槽210内の次亜塩素酸濃度の増減を狭い幅で安定させることができる。なお、目標濃度より低くなる濃度低下時間は、次亜塩素酸濃度が下限閾値になる時間でもかまわない。 This makes it possible to stabilize the increase/decrease in the hypochlorous acid concentration within the electrolytic cell 210 within a narrow range. Note that the time period for the concentration to decrease below the target concentration may be the time period for the hypochlorous acid concentration to reach the lower limit threshold.
 また、態様(4-7)は、態様(4-6)を含み、電解制御部251は、第二時間の経過から所定の第三時間の経過後に電導度情報の測定を実行させる測定指示情報を測定制御装置120に出力し、第三時間の経過後に濃度算出部123が算出した次亜塩素酸濃度を取得し、電解槽210中の次亜塩素酸の濃度が目標濃度より低くなる濃度低下時間を更新し、更新された濃度低下時間含む電解情報に基づき電解装置230を制御する。 Further, aspect (4-7) includes aspect (4-6), in which the electrolysis control unit 251 provides measurement instruction information that causes conductivity information to be measured after a predetermined third time has elapsed from the elapse of the second time. is output to the measurement control device 120, and the concentration of hypochlorous acid calculated by the concentration calculation unit 123 is obtained after the third time has elapsed, and the concentration of hypochlorous acid in the electrolytic cell 210 is lower than the target concentration. The time is updated, and the electrolysis device 230 is controlled based on the electrolysis information including the updated concentration reduction time.
 これによれば、より正確に濃度低下時間を導出することができ、次亜塩素酸濃度を一定に保つことができる。 According to this, the concentration reduction time can be derived more accurately, and the hypochlorous acid concentration can be kept constant.
 上記実施の形態から導き出せる空間除菌装置の態様(4-8)は、態様(4-1)から態様(4-7)までのいずれかの次亜塩素酸水生成装置により生成させた次亜塩素酸水を大気中に拡散する拡散手段240を備える。 Aspect (4-8) of the space sterilization device that can be derived from the above embodiment is hypochlorous acid water produced by any of the hypochlorous acid water generation devices from aspect (4-1) to aspect (4-7). A diffusion means 240 is provided for diffusing chloric acid water into the atmosphere.
 これによれば、濃度が安定した次亜塩素酸水中の少なくとも次亜塩素酸を空間中に拡散させることができ、空間除菌効果を安定して発揮させることができる。 According to this, at least the hypochlorous acid in the hypochlorous acid water having a stable concentration can be diffused into the space, and the space sterilization effect can be stably exhibited.
 上記実施の形態から導き出せる次亜塩素酸水生成方法の態様(4-9)は、態様(4-1)から態様(4-7)までのいずれかの次亜塩素酸水生成装置における次亜塩素酸水生成方法であって、測定手段110から電導度情報を測定情報取得部121が取得し、次亜塩素酸濃度と電導度情報との関係を示す換算情報を換算情報取得部122が取得し、電気分解の実行を示す実行情報を電気分解実行取得部125が取得し、実行情報に基づき電気分解を実行していない際に測定手段110に電導度情報の測定を測定指示部124が実行し、電気分解の実行の前後において測定された電導度情報、および換算情報に基づき次亜塩素酸濃度を濃度算出部123が算出し、濃度算出部123が算出した次亜塩素酸濃度を取得し、電解槽210中の次亜塩素酸の濃度が目標濃度となる電解情報に基づき電解装置230を電解制御部が制御する。 Aspect (4-9) of the hypochlorous acid water generation method that can be derived from the above embodiments is hypochlorous acid water generation method in any of the hypochlorous acid water generation apparatuses from aspect (4-1) to aspect (4-7). In the chloric acid water generation method, a measurement information acquisition unit 121 acquires conductivity information from a measuring means 110, and a conversion information acquisition unit 122 acquires conversion information indicating the relationship between hypochlorous acid concentration and conductivity information. Then, the electrolysis execution acquisition unit 125 acquires execution information indicating the execution of electrolysis, and the measurement instruction unit 124 executes measurement of conductivity information by the measuring means 110 when electrolysis is not executed based on the execution information. Then, the concentration calculation unit 123 calculates the hypochlorous acid concentration based on the conductivity information measured before and after the execution of electrolysis and the conversion information, and obtains the hypochlorous acid concentration calculated by the concentration calculation unit 123. The electrolysis control section controls the electrolysis device 230 based on the electrolysis information that makes the concentration of hypochlorous acid in the electrolytic cell 210 the target concentration.
 これによれば、濃度算出部123が算出した次亜塩素酸濃度により、生成する次亜塩素酸の生成濃度に関する電解情報を用いて電解槽210内の次亜塩素酸濃度を安定的に目標濃度にすることができる。 According to this, based on the hypochlorous acid concentration calculated by the concentration calculation unit 123, the hypochlorous acid concentration in the electrolytic cell 210 is stably adjusted to the target concentration using electrolytic information regarding the generated hypochlorous acid concentration. It can be done.
 なお、本発明は、上記実施の形態に限定されるものではない。例えば、本明細書において記載した構成要素を任意に組み合わせて、また、構成要素のいくつかを除外して実現される別の実施の形態を本発明の実施の形態としてもよい。また、上記実施の形態に対して本発明の主旨、すなわち、請求の範囲に記載される文言が示す意味を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例も本発明に含まれる。 Note that the present invention is not limited to the above embodiments. For example, the embodiments of the present invention may be realized by arbitrarily combining the components described in this specification or by excluding some of the components. The present invention also includes modifications obtained by making various modifications to the above-described embodiments that a person skilled in the art can conceive without departing from the gist of the present invention, that is, the meaning of the words written in the claims. It will be done.
 例えば、上記実施の形態では、液抵抗値(電導度)の差分を用いて硬度成分の相違を相殺する場合を説明したが、差分を用いず液抵抗値(電導度)から次亜塩素酸濃度を算出してもかまわない。この場合、水の硬度の違いに対応した複数種類の換算情報を切り替えて適用してもかまわない。 For example, in the above embodiment, a case has been described in which the difference in hardness components is canceled out using the difference in liquid resistance value (electrical conductivity). It is okay to calculate. In this case, multiple types of conversion information corresponding to differences in water hardness may be switched and applied.
 また、液抵抗値(電導度)に対して温度補正を実行しなくてもかまわない。この場合、測定手段110は、水温センサ113を備えなくてもよく、補正情報を取得しなくても良い。 Furthermore, it is not necessary to perform temperature correction on the liquid resistance value (conductivity). In this case, the measuring means 110 does not need to include the water temperature sensor 113 and does not need to acquire correction information.
 また、例えば予め出荷時などにおいてゲインを適切に設定することで、測定制御装置120がゲインの調整を実施しなくても良い場合がある。 Furthermore, by setting the gain appropriately in advance, for example, at the time of shipment, the measurement control device 120 may not need to adjust the gain.
 また、測定電極111を定期的に交換するなどにより、クリーニングをしなくても良い場合がある。 Furthermore, cleaning may not be necessary by periodically replacing the measurement electrode 111.
 また、主制御装置250と測定制御装置120とを別体として説明したが、主制御装置250と測定制御装置120とが一体であっても良い。つまり一つのプロセッサにプログラムを実行させることにより主制御装置250と、測定制御装置120と、電解制御部251と、を実現してもかまわない。 Furthermore, although the main control device 250 and the measurement control device 120 have been described as separate bodies, the main control device 250 and the measurement control device 120 may be integrated. That is, the main control device 250, the measurement control device 120, and the electrolysis control section 251 may be realized by having one processor execute a program.
 また、次亜塩素酸濃度測定装置100を空間除菌装置200に用いる場合を説明したが、次亜塩素酸濃度測定装置100は、次亜塩素酸水生成装置に適用してもかまわない。 Furthermore, although a case has been described in which the hypochlorous acid concentration measuring device 100 is used in the space sterilization device 200, the hypochlorous acid concentration measuring device 100 may be applied to a hypochlorous acid water generating device.
 また、換算情報、補正情報は、測定制御装置120が有する記憶装置102に記憶されるのではなく、ネットワークなどの通信により取得してもかまわない。 Furthermore, the conversion information and correction information may be acquired through communication such as a network instead of being stored in the storage device 102 included in the measurement control device 120.
 また、測定情報取得部121は、交流周期300において同じ値になることが想定される複数の電導度情報(例えば同位相の電導度情報)に基づき印加測定装置112が印加する交流周期300に対する取得周期302のずれを検出し、検出されたずれに基づき実際の交流周期に対応するように取得周期302を更新しても構わない。具体的には、図13の上段のグラフに示すように、先に取得周期302を決定するために用いた事前交流周期310において、同位相である0の地点と10の地点とは同じ値(ゼロ)であることが想定される。しかし、取得された電導度情報の値311がずれる場合がある。測定情報取得部121は、事前に想定される電導度情報の値と実際に得られる電導度情報の値との差分303が閾値以上の場合、ずれが発生していると検出する。そして、差分303に基づき同位相の値が同じ値(ゼロ)になるように取得周期302を図13の下段のグラフに示すように更新しても構わない。 In addition, the measurement information acquisition unit 121 acquires the AC cycle 300 applied by the application measurement device 112 based on a plurality of conductivity information (for example, conductivity information of the same phase) that is assumed to have the same value in the AC cycle 300. It is also possible to detect a shift in the cycle 302 and update the acquisition cycle 302 to correspond to the actual AC cycle based on the detected shift. Specifically, as shown in the upper graph in FIG. zero). However, the value 311 of the acquired conductivity information may deviate. The measurement information acquisition unit 121 detects that a deviation has occurred when the difference 303 between the value of the conductivity information assumed in advance and the value of the conductivity information actually obtained is equal to or greater than a threshold value. Then, based on the difference 303, the acquisition cycle 302 may be updated as shown in the lower graph of FIG. 13 so that the values of the same phase become the same value (zero).
 また、取得周期302の更新処理のタイミングは、限定されるものではなく、図6のフローチャートに示される生成期における液抵抗値初期測定(S104)のための電導度情報取得の前や、減衰期における液抵抗値測定(S203)のための電導度情報取得の前などに更新処理をキャリブレーション的に実施しても構わない。また、液抵抗値の測定のための電導度情報を取得する度、または所定の回数毎に更新処理を実施しても構わない。 Furthermore, the timing of the update process of the acquisition cycle 302 is not limited, and may be before the conductivity information acquisition for the initial measurement of liquid resistance value (S104) in the generation period shown in the flowchart of FIG. 6, or during the decay period. The updating process may be performed for calibration before acquiring the conductivity information for the liquid resistance value measurement (S203) in step S203. Further, the updating process may be performed every time conductivity information for measuring the liquid resistance value is acquired or every predetermined number of times.
100 次亜塩素酸濃度測定装置
102 記憶装置
110 測定手段
111 測定電極
112 印加測定装置
113 水温センサ
120 測定制御装置
121 測定情報取得部
122 換算情報取得部
123 濃度算出部
124 測定指示部
125 電気分解実行取得部
126 補正情報取得部
127 測定調整部
128 クリーニング部
131 交流電源装置
132 液抵抗値測定装置
200 空間除菌装置
210 電解槽
220 電解電極
230 電解装置
240 拡散手段
250 主制御装置
251 電解制御部
260 水位センサ
300 交流周期
301 分割時間
302 取得周期
303 差分
310 事前交流周期
311 電導度情報の値
100 Hypochlorous acid concentration measuring device 102 Storage device 110 Measuring means 111 Measuring electrode 112 Application measuring device 113 Water temperature sensor 120 Measurement control device 121 Measurement information acquisition section 122 Conversion information acquisition section 123 Concentration calculation section 124 Measurement instruction section 125 Electrolysis execution Acquisition section 126 Correction information acquisition section 127 Measurement adjustment section 128 Cleaning section 131 AC power supply device 132 Liquid resistance value measuring device 200 Space sterilization device 210 Electrolytic cell 220 Electrolytic electrode 230 Electrolytic device 240 Diffusion means 250 Main controller 251 Electrolytic control section 260 Water level sensor 300 AC cycle 301 Division time 302 Acquisition cycle 303 Difference 310 Preliminary AC cycle 311 Value of conductivity information

Claims (14)

  1.  電解槽に貯留される塩素を含んだ水を電気分解して発生させた次亜塩素酸の濃度を測定する次亜塩素酸濃度測定装置であって、
     前記電解槽に貯留される次亜塩素酸水の電導度を示す電導度情報を測定する測定手段と、
     前記測定手段を制御する測定制御装置と、を備え、
     前記測定制御装置は、
     前記測定手段から電導度情報を取得する測定情報取得部と、
     次亜塩素酸濃度と前記電導度情報との関係を示す換算情報を取得する換算情報取得部と、
     測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する濃度算出部と、
    を備える次亜塩素酸濃度測定装置。
    A hypochlorous acid concentration measuring device that measures the concentration of hypochlorous acid generated by electrolyzing chlorine-containing water stored in an electrolytic tank,
    Measuring means for measuring conductivity information indicating the conductivity of the hypochlorous acid water stored in the electrolytic cell;
    A measurement control device that controls the measurement means,
    The measurement control device includes:
    a measurement information acquisition unit that acquires conductivity information from the measurement means;
    a conversion information acquisition unit that acquires conversion information indicating the relationship between hypochlorous acid concentration and the conductivity information;
    a concentration calculation unit that calculates a hypochlorous acid concentration based on the measured conductivity information and the conversion information;
    Hypochlorous acid concentration measuring device equipped with.
  2.  前記測定制御装置は、
     電気分解の実行を示す実行情報を取得する電気分解実行取得部と、
     前記実行情報に基づき電気分解を実行していない際に前記測定手段に電導度情報の測定を実行させる測定指示部と、を備え、
     前記濃度算出部は、
     電気分解の実行の前後において測定された電導度情報を用いて次亜塩素酸濃度の差分を算出する
    請求項1に記載の次亜塩素酸濃度測定装置。
    The measurement control device includes:
    an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis;
    a measurement instruction unit that causes the measuring means to measure conductivity information when electrolysis is not being executed based on the execution information,
    The concentration calculation unit includes:
    The hypochlorous acid concentration measuring device according to claim 1, wherein a difference in hypochlorous acid concentration is calculated using conductivity information measured before and after performing electrolysis.
  3.  前記測定手段は、
     前記電解槽に貯留される次亜塩素酸水中に離隔状態で配置される一対の測定電極と、
     一対の前記測定電極の間に1kHz以上、100kHz以下の範囲から選定される交流電圧を印加する印加測定装置と、
     前記測定電極の間の液抵抗値を電導度情報として測定する液抵抗値測定装置と、を備え
     前記濃度算出部は、
     測定された液抵抗値に基づき次亜塩素酸濃度を算出する
    請求項1に記載の次亜塩素酸濃度測定装置。
    The measuring means includes:
    a pair of measurement electrodes arranged in a separated state in hypochlorous acid water stored in the electrolytic tank;
    An application measuring device that applies an AC voltage selected from a range of 1 kHz or more and 100 kHz or less between the pair of measurement electrodes;
    a liquid resistance value measuring device that measures a liquid resistance value between the measurement electrodes as conductivity information;
    The hypochlorous acid concentration measuring device according to claim 1, wherein the hypochlorous acid concentration is calculated based on the measured liquid resistance value.
  4.  前記測定手段は、前記電解槽に貯留される水の温度を示す温度情報を測定する水温センサを備え、
     前記測定制御装置は、
     測定された電導度情報から次亜塩素酸濃度を算出する際の温度補正を示す補正情報を取得する補正情報取得部を備え、
     前記濃度算出部は、
     前記測定情報取得部が取得した温度情報と前記補正情報とに基づき補正して次亜塩素酸濃度を算出する
    請求項1に記載の次亜塩素酸濃度測定装置。
    The measuring means includes a water temperature sensor that measures temperature information indicating the temperature of water stored in the electrolytic cell,
    The measurement control device includes:
    comprising a correction information acquisition unit that acquires correction information indicating temperature correction when calculating hypochlorous acid concentration from measured conductivity information,
    The concentration calculation unit includes:
    The hypochlorous acid concentration measuring device according to claim 1, wherein the hypochlorous acid concentration is calculated by correcting it based on the temperature information acquired by the measurement information acquisition unit and the correction information.
  5.  前記測定制御装置は、
     前記測定手段が測定する電導度情報が所定の範囲内に収まるように、前記印加測定装置の出力電力、および前記液抵抗値測定装置のゲインの少なくとも一方を調整する測定調整部を備える
    請求項3に記載の次亜塩素酸濃度測定装置。
    The measurement control device includes:
    Claim 3, further comprising a measurement adjustment section that adjusts at least one of the output power of the application and measurement device and the gain of the liquid resistance value measurement device so that the conductivity information measured by the measurement means falls within a predetermined range. The hypochlorous acid concentration measuring device described in .
  6.  前記測定手段は、
     前記電解槽に貯留される次亜塩素酸水中に離隔状態で配置される一対の測定電極と、
     一対の前記測定電極の間に所定の交流周期の交流電圧または交流電流を印加する印加測定装置と、を備え、
     前記測定情報取得部は、
     前記測定手段から電導度情報を前記測定手段の時間分解能よりも遅い取得周期で取得し、
     前記濃度算出部は、
     前記交流周期の複数周期分に対応する前記電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出する
    請求項1に記載の次亜塩素酸濃度測定装置。
    The measuring means includes:
    a pair of measurement electrodes arranged in a separated state in hypochlorous acid water stored in the electrolytic tank;
    an application measuring device that applies an alternating current voltage or alternating current with a predetermined alternating cycle between the pair of measurement electrodes;
    The measurement information acquisition unit includes:
    acquiring conductivity information from the measuring means at an acquisition period slower than the time resolution of the measuring means;
    The concentration calculation unit includes:
    The hypochlorous acid concentration measuring device according to claim 1, wherein the hypochlorous acid concentration is calculated based on the conductivity information corresponding to a plurality of the alternating current cycles and the conversion information.
  7.  前記測定手段は、
     前記測定電極の間の液抵抗値を電導度情報として測定する液抵抗値測定装置を備え、
     前記濃度算出部は、
     測定された液抵抗値に基づき次亜塩素酸濃度を算出する
    請求項6に記載の次亜塩素酸濃度測定装置。
    The measuring means includes:
    A liquid resistance value measuring device that measures a liquid resistance value between the measurement electrodes as conductivity information,
    The concentration calculation unit includes:
    The hypochlorous acid concentration measuring device according to claim 6, wherein the hypochlorous acid concentration is calculated based on the measured liquid resistance value.
  8.  前記印加測定装置は、
     一対の前記測定電極の間に前記液抵抗値測定装置において測定される液抵抗値が虚部成分を持たない周波数にて交流電圧または交流電流を印加する
    請求項7に記載の次亜塩素酸濃度測定装置。
    The application measurement device includes:
    Hypochlorous acid concentration according to claim 7, wherein an alternating voltage or an alternating current is applied between the pair of measurement electrodes at a frequency at which the liquid resistance value measured by the liquid resistance value measuring device does not have an imaginary component. measuring device.
  9.  前記測定制御装置は、
     電気分解の実行を示す実行情報を取得する電気分解実行取得部と、
     前記実行情報に基づき電気分解を実行していない際に前記測定手段に電導度情報の測定を実行させる測定指示部と、を備え、
     前記測定指示部は、
     次亜塩素酸の生成期における電気分解の実行後、電気分解が実行されない減衰期において所定の間隔で繰返し電導度情報の測定を実行させ、
     前記濃度算出部は、
     測定された複数の電導度情報に基づきそれぞれの次亜塩素酸濃度を算出する
    請求項1に記載の次亜塩素酸濃度測定装置。
    The measurement control device includes:
    an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis;
    a measurement instruction unit that causes the measuring means to measure conductivity information when electrolysis is not being executed based on the execution information,
    The measurement instruction section is
    After performing electrolysis during the production period of hypochlorous acid, repeatedly measuring conductivity information at predetermined intervals during a decay period during which electrolysis is not performed;
    The concentration calculation unit includes:
    The hypochlorous acid concentration measuring device according to claim 1, wherein each hypochlorous acid concentration is calculated based on a plurality of pieces of measured conductivity information.
  10.  前記換算情報取得部は、
     次亜塩素酸の生成期に用いられる前記換算情報である生成期換算情報とは異なる次亜塩素酸の減衰期に用いられる前記換算情報である減衰期換算情報を取得し、
     前記濃度算出部は、
    測定された電導度情報、および前記減衰期換算情報に基づき次亜塩素酸濃度を算出する
    請求項9に記載の次亜塩素酸濃度測定装置。
    The conversion information acquisition unit includes:
    Obtaining decay period conversion information, which is the conversion information used in the decay period of hypochlorous acid, which is different from the production period conversion information, which is the conversion information used in the production period of hypochlorous acid,
    The concentration calculation unit includes:
    The hypochlorous acid concentration measuring device according to claim 9, wherein the hypochlorous acid concentration is calculated based on the measured conductivity information and the decay period conversion information.
  11.  前記測定制御装置は、
     電気分解の実行を示す実行情報を取得する電気分解実行取得部と、
     前記実行情報に基づき電気分解を実行していない際に前記測定手段に電導度情報の測定を実行させる測定指示部と、を備え、
     前記濃度算出部は、
     電気分解の実行前において測定された電導度情報である前電導度情報と、電気分解の実行後において測定された電導度情報であって生成期における最後の後電導度情報と、の差分に基づき算出された次亜塩素酸濃度、および前記後電導度情報を基準とし、減衰期において生成期の前記後電導度情報より後に測定された電導度情報、および算出された次亜塩素酸濃度情報に基づき次亜塩素酸濃度の絶対値を算出する
    請求項9に記載の次亜塩素酸濃度測定装置。
    The measurement control device includes:
    an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis;
    a measurement instruction unit that causes the measuring means to measure conductivity information when electrolysis is not being executed based on the execution information,
    The concentration calculation unit includes:
    Based on the difference between the previous conductivity information, which is the conductivity information measured before the electrolysis, and the last post-conductivity information in the generation period, which is the conductivity information measured after the electrolysis. Based on the calculated hypochlorous acid concentration and the post-conductivity information, conductivity information measured after the post-conductivity information in the production period in the decay period and the calculated hypochlorous acid concentration information The hypochlorous acid concentration measuring device according to claim 9, wherein the absolute value of the hypochlorous acid concentration is calculated based on the hypochlorous acid concentration.
  12.  塩素を含んだ水を貯留する電解槽と、
     前記電解槽中に挿入状態で配置される電解電極と、
     前記電解電極に電圧を印加し、塩素を含んだ前記水を電気分解して次亜塩素酸水を発生させる電解装置と、
     請求項1に記載の次亜塩素酸濃度測定装置と、
     前記電解装置を制御する主制御装置と、を備え、
     前記測定制御装置は、
     電気分解の実行を示す実行情報を取得する電気分解実行取得部と、
     前記実行情報に基づき電気分解を実行していない際に前記測定手段に電導度情報の測定を実行させる測定指示部と、を備え、
     前記濃度算出部は、
     電気分解の実行の前後において測定された電導度情報、および前記換算情報に基づき次亜塩素酸濃度を算出し、
     前記主制御装置は、
     前記濃度算出部が算出した次亜塩素酸濃度の情報に基づき、前記電解槽中の次亜塩素酸の濃度が目標濃度となる電解情報を前記電解装置に出力する電解制御部を備える
    次亜塩素酸水生成装置。
    An electrolytic tank that stores water containing chlorine,
    an electrolytic electrode inserted into the electrolytic cell;
    an electrolytic device that applies a voltage to the electrolytic electrode to electrolyze the water containing chlorine to generate hypochlorous acid water;
    The hypochlorous acid concentration measuring device according to claim 1,
    A main control device that controls the electrolyzer,
    The measurement control device includes:
    an electrolysis execution acquisition unit that acquires execution information indicating execution of electrolysis;
    a measurement instruction unit that causes the measuring means to measure conductivity information when electrolysis is not being executed based on the execution information,
    The concentration calculation unit includes:
    Calculating the hypochlorous acid concentration based on the conductivity information measured before and after performing electrolysis and the conversion information,
    The main control device includes:
    Hypochlorite comprising an electrolysis control unit that outputs electrolysis information such that the concentration of hypochlorous acid in the electrolytic cell becomes a target concentration to the electrolysis device based on information on the concentration of hypochlorous acid calculated by the concentration calculation unit. Acid water generator.
  13.  前記主制御装置は、
     実行情報を取得する実行情報取得部を備え、
     前記電解制御部は、
     前記濃度算出部が算出した次亜塩素酸濃度が目標濃度より低い場合、前記実行情報に含まれる電気分解の実行の際の電流値、および継続時間に基づき、次亜塩素酸の濃度が目標濃度となる電流値、および継続時間の少なくとも一方を含む電解情報を算出する
    請求項12に記載の次亜塩素酸水生成装置。
    The main control device includes:
    Equipped with an execution information acquisition unit that acquires execution information,
    The electrolysis control section is
    If the hypochlorous acid concentration calculated by the concentration calculation unit is lower than the target concentration, the hypochlorous acid concentration is lower than the target concentration based on the current value and duration during electrolysis execution included in the execution information. The hypochlorous acid water generating device according to claim 12, wherein electrolytic information including at least one of a current value and a duration time is calculated.
  14.  前記主制御装置は、
     実行情報を取得する実行情報取得部を備え、
     前記電解制御部は、
     前記濃度算出部が算出した次亜塩素酸濃度が目標濃度より高い場合、前記実行情報に対応する電気分解の実行から所定の第二時間の経過後に電導度情報の測定を実行させる測定指示情報を前記測定制御装置に出力し、前記第二時間の経過後に前記濃度算出部が算出した次亜塩素酸濃度の情報に基づき、前記電解槽中の次亜塩素酸の濃度が目標濃度より低くなる濃度低下時間を含む電解情報を前記電解装置に出力する
    請求項12に記載の次亜塩素酸水生成装置。
    The main control device includes:
    Equipped with an execution information acquisition unit that acquires execution information,
    The electrolysis control section is
    If the hypochlorous acid concentration calculated by the concentration calculation unit is higher than the target concentration, measurement instruction information that causes conductivity information to be measured after a predetermined second time has elapsed from the execution of electrolysis corresponding to the execution information. A concentration at which the concentration of hypochlorous acid in the electrolytic cell is lower than the target concentration, based on information on the hypochlorous acid concentration output to the measurement control device and calculated by the concentration calculation unit after the second time period has elapsed. The hypochlorous acid water generating device according to claim 12, wherein electrolytic information including a drop time is output to the electrolytic device.
PCT/JP2023/021386 2022-06-17 2023-06-08 Device for measuring hypochlorite concentration, and device for generating hypochlorite WO2023243535A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022098338 2022-06-17
JP2022-098338 2022-06-17
JP2022188711 2022-11-25
JP2022-188711 2022-11-25
JP2022198720 2022-12-13
JP2022-198720 2022-12-13

Publications (1)

Publication Number Publication Date
WO2023243535A1 true WO2023243535A1 (en) 2023-12-21

Family

ID=89191169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021386 WO2023243535A1 (en) 2022-06-17 2023-06-08 Device for measuring hypochlorite concentration, and device for generating hypochlorite

Country Status (1)

Country Link
WO (1) WO2023243535A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206659A (en) * 1988-11-30 1996-08-13 Fuji Electric Co Ltd Drinking water sterilizing apparatus
JP2018103167A (en) * 2016-12-27 2018-07-05 有限会社ターナープロセス Method and apparatus for supplying sterile water
US20190263686A1 (en) * 2018-02-26 2019-08-29 Z Intellectual Property Holding Company, Llc Systems and apparatus for producing electrolyzed water
JP2021032738A (en) * 2019-08-26 2021-03-01 公立大学法人公立諏訪東京理科大学 Salt concentration measuring device, head-mounted device, and method for measuring concentration of salt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08206659A (en) * 1988-11-30 1996-08-13 Fuji Electric Co Ltd Drinking water sterilizing apparatus
JP2018103167A (en) * 2016-12-27 2018-07-05 有限会社ターナープロセス Method and apparatus for supplying sterile water
US20190263686A1 (en) * 2018-02-26 2019-08-29 Z Intellectual Property Holding Company, Llc Systems and apparatus for producing electrolyzed water
JP2021032738A (en) * 2019-08-26 2021-03-01 公立大学法人公立諏訪東京理科大学 Salt concentration measuring device, head-mounted device, and method for measuring concentration of salt

Similar Documents

Publication Publication Date Title
Simka et al. Influence of anode material on electrochemical decomposition of urea
US20110108438A1 (en) Electrochemical Liquid Treatment System Using Dose Control
AU2019364339A1 (en) Systems and methods for detecting and measuring oxidizing compounds in test fluids
WO2023243535A1 (en) Device for measuring hypochlorite concentration, and device for generating hypochlorite
JP2004520577A (en) Electronic tongue as an ozone detector
JP2011007508A (en) Method for measuring concentration of free residual chlorine, and method for generating hypochlorous acid using the same
JP5004173B2 (en) Humidifier
TW202411642A (en) Hypochlorous acid concentration measuring device and hypochlorous acid water generating device
JP2024043371A (en) Hypochlorous acid water generator, space sterilization device, and hypochlorous acid concentration measurement method
TWM562301U (en) Device for producing sterilized water
JP2005060761A (en) Hypohalite generating device and method
JP6861416B2 (en) Chlorine dioxide gas concentration measuring instrument
JP2017119282A (en) Method for generating slightly acidic hypochlorous acid water, bipolar electrolytic tank and generation device
JP5181352B2 (en) Method and apparatus for measuring residual free chlorine concentration
JP2001174430A (en) Composite sensor for measuring concentration and ph of hypochlorous acid
KR20130076174A (en) Electrolysis controlling method for disinfective water maker
JP5358618B2 (en) Sugar concentration measuring device and sugar concentration measuring method
JP2017133935A5 (en)
JP2010243452A (en) Method and instrument for continuously measuring concentration of peracetic acid
JP2008058025A (en) Residual chlorine concentration meter
Clark et al. The effect of cathodic voltage-controlled electrical stimulation of titanium on the surrounding microenvironment pH: An experimental and computational study
AU2018373314A1 (en) Method for determining the free chlorine concentration in a tower using the chlorine as an active base
JP3838435B2 (en) Hypochlorous acid concentration measuring device
KR20180065696A (en) Apparatus and method of determining exchange period of sterilization electrode
KR101209821B1 (en) Measurement Method of Corrosion Rate of Metal in Water Solution

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823826

Country of ref document: EP

Kind code of ref document: A1