JP2018179830A - Underwater hydrogen dissolved quantity measuring method - Google Patents

Underwater hydrogen dissolved quantity measuring method Download PDF

Info

Publication number
JP2018179830A
JP2018179830A JP2017081419A JP2017081419A JP2018179830A JP 2018179830 A JP2018179830 A JP 2018179830A JP 2017081419 A JP2017081419 A JP 2017081419A JP 2017081419 A JP2017081419 A JP 2017081419A JP 2018179830 A JP2018179830 A JP 2018179830A
Authority
JP
Japan
Prior art keywords
water
anode
electrolysis
metal
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081419A
Other languages
Japanese (ja)
Other versions
JP6820599B2 (en
Inventor
廣成 山田
Hiroshige Yamada
廣成 山田
修司 前尾
Shuji Maeo
修司 前尾
陽吉 小川
Yokichi Ogawa
陽吉 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miracle Center Co Ltd
Original Assignee
Miracle Center Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miracle Center Co Ltd filed Critical Miracle Center Co Ltd
Priority to JP2017081419A priority Critical patent/JP6820599B2/en
Publication of JP2018179830A publication Critical patent/JP2018179830A/en
Application granted granted Critical
Publication of JP6820599B2 publication Critical patent/JP6820599B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method capable of precisely measuring an underwater hydrogen dissolved quantity.SOLUTION: A method for measuring a hydrogen dissolved quantity contained in water includes: a process for performing electrolysis on the water with a metal whose ionization tendency is lower than the water being an anode; and a process for measuring an amount of mass reduction of the metal that is the anode or mass of dissolved metal-hydroxide in the electrolysis process.SELECTED DRAWING: Figure 1

Description

本発明は、水中の水素溶存量測定方法に関する。   The present invention relates to a method of measuring the amount of dissolved hydrogen in water.

水素水は、例えば、(1)花崗岩、セラミックスを通過させる方法、(2)電気分解を行う方法、(3)水素を水にバブリングする方法等の方法で製造することが知られている。本明細書では、このいずれも「水素水」と呼び、この水素水は、種々の効用が述べられており、美容用化粧水用途、飲料水、注射液等の医療用途や農業、農業用資材の洗浄剤等に用いられている。   Hydrogen water is known to be produced by methods such as (1) passing granite, ceramics, (2) performing electrolysis, (3) bubbling hydrogen into water, or the like. In this specification, all of these are called "hydrogen water", and this hydrogen water is described for various effects, and it is used as a cosmetic for cosmetic application, drinking water, medical application such as injection liquid, etc., agricultural and agricultural materials It is used for the cleaning agents of

しかしながら、水素水の構造が明らかでないため、化学的な検証はほとんど進んでいない。なかでも、水素水中の溶存水素量を正確に測定することは、水素水の効用を判断するうえで重要であるが、現在市販されている水素ガスセンサ等で測定した場合には溶存水素量を正確に測定できないのが現状である。   However, chemical verification has hardly progressed because the structure of hydrogen water is not clear. Above all, it is important to determine the amount of hydrogen dissolved in the hydrogen water correctly in order to judge the effect of hydrogen water, but when it is measured with a hydrogen gas sensor currently marketed, the amount of dissolved hydrogen is accurately measured At present, it is impossible to measure

本発明は、上記のような課題を解決しようとするものであり、水中の溶存水素量を正確に測定することができる方法を提供することを目的とする。   The present invention is intended to solve the problems as described above, and an object thereof is to provide a method capable of accurately measuring the amount of hydrogen dissolved in water.

上記の課題を解決するために鋭意研究した結果、本発明者らは、イオン化傾向が水より低い金属を陽極として対象の水の電気分解を行い、陽極の質量減少量又は溶出した金属水酸化物の質量を測定することで、正確に溶存水素量を測定することができることを見出した。本発明は、このような知見に基づき、さらに研究を重ね、完成させたものである。即ち、本発明は以下の構成を包含する。
項1.水中に含まれる水素溶存量の測定方法であって、
前記水に対して、イオン化傾向が水より低い金属を陽極として電気分解を行う工程、及び
前記電気分解工程における陽極である金属の質量減少量又は溶出した金属水酸化物の質量を測定する工程
を備える方法。
項2.前記陽極が銅である、項1に記載の方法。
項3.前記電気分解における印加電圧が、前記水の電気分解が起こらない電圧である、項1又は2に記載の方法。
項4.前記印加電圧が1.20V以下である、項3に記載の方法。
項5.電気分解による金属水酸化物の生成が起こらなくなるまで通電する、項1〜4のいずれか1項に記載の方法。
項6.水中に含まれる水素溶存量を検知する水素センサ(特に溶存水素センサ)であって、
前記水に対して、水中のイオン化傾向が水より低い金属を陽極として電気分解を行う電気分解部と、
前記電気分解工程における陽極である金属の質量減少量又は溶出した金属水酸化物の質量を検出する検出部と
を備える、水素センサ(特に溶存水素センサ)。
As a result of earnestly researching to solve the above problems, the present inventors electrolyze target water by using a metal whose ionization tendency is lower than that of water as an anode, and the mass reduction amount of the anode or the eluted metal hydroxide It has been found that the amount of dissolved hydrogen can be accurately measured by measuring the mass of. The present invention has been further researched and completed based on such findings. That is, the present invention includes the following configurations.
Item 1. A method of measuring the amount of dissolved hydrogen contained in water,
A step of performing electrolysis on the water using a metal whose ionization tendency is lower than that of water as an anode, and measuring a mass reduction amount of the metal that is the anode in the electrolysis step or a mass of the eluted metal hydroxide How to prepare.
Item 2. The method according to Item 1, wherein the anode is copper.
Item 3. The method according to claim 1 or 2, wherein the applied voltage in the electrolysis is a voltage at which the electrolysis of water does not occur.
Item 4. The method according to Item 3, wherein the applied voltage is 1.20 V or less.
Item 5. The method according to any one of Items 1 to 4, wherein electricity is applied until generation of metal hydroxide by electrolysis does not occur.
Item 6. A hydrogen sensor (especially a dissolved hydrogen sensor) that detects the amount of dissolved hydrogen contained in water,
An electrolysis unit that performs electrolysis using, as an anode, a metal whose ionization tendency in water is lower than that of water;
A hydrogen sensor (particularly, a dissolved hydrogen sensor), comprising: a detection unit that detects a mass reduction amount of metal that is an anode in the electrolysis step or a mass of eluted metal hydroxide;

本発明によれば、水中の溶存水素量を正確に測定することができる。   According to the present invention, the amount of dissolved hydrogen in water can be accurately measured.

通常(従来)の水の電気分解を説明する概略図である。It is the schematic explaining the electrolysis of normal (conventional) water. 実施例に用いた電気分解用容器及び電極を示す。The container and electrode for electrolysis used for the Example are shown.

本発明の水中に含まれる水素溶存量の測定方法は、前記水に対して、イオン化傾向が水より低い金属を陽極として電気分解を行う工程、及び前記電気分解工程における陽極である金属の質量減少量又は溶出した金属水酸化物の質量を測定する工程を備える。   In the method of measuring the amount of dissolved hydrogen contained in water according to the present invention, a step of performing electrolysis on the water using a metal whose ionization tendency is lower than that of water as an anode, and mass reduction of the metal serving as the anode in the electrolysis step Measuring the amount or mass of the eluted metal hydroxide.

また、本発明の水素センサ(特に溶存水素センサ)は、前記水に対して、水中のイオン化傾向が水より低い金属を陽極として電気分解を行う電気分解部と、前記電気分解工程における陽極である金属の質量減少量又は溶出した金属水酸化物の質量を検出する検出部とを備えることにより、本発明の測定方法を介して水中の溶存水素量を評価することができる。   Further, the hydrogen sensor (particularly the dissolved hydrogen sensor) of the present invention is an electrolysis unit for performing electrolysis with respect to the water using a metal whose ionization tendency in water is lower than that of water as an anode, and an anode in the electrolysis step. By providing a detection unit that detects a mass reduction amount of metal or a mass of eluted metal hydroxide, the amount of dissolved hydrogen in water can be evaluated through the measurement method of the present invention.

1.電気分解工程
本工程では、対象となる水に対して、イオン化傾向が水より低い金属を陽極として電気分解を行う。
1. Electrolysis Step In this step, electrolysis is performed on the target water using a metal whose ionization tendency is lower than that of water as an anode.

通常、純水の電気分解を行う場合は、イオン化傾向の小さい材料(金、白金、炭素等)を電極として用い、電流が流れやすいように少量の水酸化ナトリウムを溶解させて行う。この場合、図1に示されるように、陽極では純水中の水酸化物イオン(OH-)が酸化されて酸素が発生し、陰極では水(H2O)が還元されて水素が発生する。この際、陽極における酸化反応により生じた電子が陽極から陰極へ移動することにより電流が流れる。水中では、 In general, when electrolysis of pure water is performed, a material (gold, platinum, carbon, etc.) having a small ionization tendency is used as an electrode, and a small amount of sodium hydroxide is dissolved to facilitate current flow. In this case, as shown in FIG. 1, the anode hydroxide ions in the pure water (OH -) is oxidized to generate oxygen, hydrogen is generated water (H 2 O) is reduced in the cathode . At this time, a current flows as electrons generated by the oxidation reaction at the anode move from the anode to the cathode. In the water

という電離平衡状態にあるため、純水であってもわずかに電流が流れる。また、陽極として水よりイオン化傾向の大きい金属を使用すると、陽極では酸素は発生せず、陽極自身がイオン化される。例えば、陽極として銅を用いた場合は、Cuがイオン化(酸化)され、水中の水酸化物イオン(OH-)と結合してCu(OH)2となり沈殿を生じる。ただし、純水を電気分解する場合には、一定の電圧を印加する必要があり、電圧が低い場合にはこの反応はほとんど起きない(水酸化物イオンの酸化反応では平衡電位は1.23Vである)。 Because of the ionization equilibrium state, even with pure water, a slight current flows. In addition, when a metal having a higher ionization tendency than water is used as the anode, no oxygen is generated at the anode, and the anode itself is ionized. For example, in the case of using copper as an anode, Cu is ionized (oxidized) and combines with hydroxide ions (OH ) in water to form Cu (OH) 2 and precipitate. However, in the case of electrolysis of pure water, it is necessary to apply a constant voltage, and when the voltage is low, this reaction hardly occurs (the equilibrium potential is 1.23 V in the oxidation reaction of hydroxide ion) ).

一方、水素が水中に溶存している水素水の電気分解反応も、基本的には上記純水の場合と同様の反応が起こる。ただし、陽極として水よりイオン化傾向の大きい金属を使用した場合には、上記した水の電気分解が起こらないような電位範囲であっても、陽極となる金属がイオン化(酸化)され、金属水酸化物となって沈殿を生じる。水素水を低い電圧で電気分解した場合にこのような反応が生じる理由は必ずしも明らかではないが、電気分解中に水素水はH3O2 -(H2O・OH-)という構造を有しており、OH-が純水と比較して非常に活性な状態で存在しているためと考えられる。なお、本明細書において、活性な水酸化物イオンH3O2 -(H2O・OH-)と水素イオン(H+)とが遊離しやすい状態にある水素水を活性水素水と呼ぶ。この場合、このような活性水素水へ通電した場合の陽極及び陰極におけるイオン反応式は、陽極として銅を使用した場合を例に取ると以下のとおりである。 On the other hand, also in the electrolysis reaction of hydrogen water in which hydrogen is dissolved in water, basically the same reaction occurs as in the case of pure water. However, when a metal having a larger ionization tendency than water is used as the anode, the metal serving as the anode is ionized (oxidized) even in the above-described potential range in which the electrolysis of water does not occur. It becomes a thing and produces a precipitate. Although this reason the reaction occurs is not always clear when electrolysis of aqueous hydrogen at a low voltage, hydrogen water during electrolysis H 3 O 2 - (H 2 O · OH -) has the structure of and, OH - it is considered because it is present in a very active state in comparison with the pure water. In the present specification, hydrogen water in which active hydroxide ions H 3 O 2 (H 2 O · OH ) and hydrogen ions (H + ) are easily released is referred to as active hydrogen water. In this case, the ion reaction formulas at the anode and the cathode when the active hydrogen water is energized are as follows when copper is used as an anode.

以上のような現象は、陽極として水よりイオン化傾向の大きい金属を使用して水素水を電気分解した場合に生じるため、陽極としてはイオン化傾向の大きい金属を使用することが好ましい。陽極として使用する金属としては、上記のとおり水が電気分解しない電位領域で金属が溶出する必要がある観点からは標準電極電位が小さいことが好ましい一方、溶存水素量を正確に測定する観点からは陽極における酸化反応の速度は速すぎないほうが好ましい観点からは標準電極電位が大きいことが好ましい。このような観点から、陽極として使用する金属としては、水素(H2)を基準(0V)として標準電極電位が-0.40〜+0.80Vである金属が好ましく、-0.20〜+0.50Vである金属がより好ましい。このような金属としては、例えば、コバルト、ニッケル、スズ、鉛、銅等が挙げられ、銅が最も好ましい。 Since the phenomenon as described above occurs when hydrogen water is electrolyzed using a metal having a larger ionization tendency than water as an anode, it is preferable to use a metal having a large ionization tendency as an anode. As the metal used as the anode, it is preferable that the standard electrode potential is small from the viewpoint that the metal needs to elute in the potential region where water is not electrolyzed as described above, but from the viewpoint of accurately measuring the amount of dissolved hydrogen. It is preferable that the standard electrode potential is large from the viewpoint that the rate of the oxidation reaction at the anode should not be too fast. From such a viewpoint, as a metal used as an anode, a metal having a standard electrode potential of −0.40 to +0.80 V with hydrogen (H 2 ) as a standard (0 V) is preferable, and a metal of −0.20 to +0.50 V Is more preferred. Examples of such metals include cobalt, nickel, tin, lead, copper and the like, with copper being most preferred.

一方、陰極の材質としては特に制限されないが、上記した陰極反応を起こしやすい観点からはイオン化傾向の小さい材料を使用することが好ましい。このような陰極の材質としては、例えば、金、白金、パラジウム、銀、銅、鉛、スズ、ニッケル、コバルト、鉄、亜鉛、マンガン、チタン、アルミニウム等が挙げられる。   On the other hand, the material of the cathode is not particularly limited, but from the viewpoint of easily causing the above-mentioned cathode reaction, it is preferable to use a material having a small ionization tendency. Examples of the material of such a cathode include gold, platinum, palladium, silver, copper, lead, tin, nickel, cobalt, iron, zinc, manganese, titanium, aluminum and the like.

電気分解の際の好ましい印加電圧は、陽極及び陰極の材質等に応じて変化し得る。ただし、溶存水素量を正確に測定するためには水の電気分解がほとんど起こらない範囲とすることが好ましい。このような観点から、印加電圧は、1.20V以下が好ましく、1.10V以下がより好ましい。一方、上記陽極における酸化反応をより確実に起こす観点からは、陽極に使用する金属の標準電極電位よりも高い電位(特に陽極に使用する金属の標準電極電位よりも0.10V以上高い電位)を印加することが好ましい。例えば、陽極として銅を採用する場合は、印加電圧は0.50V以上が好ましく、0.70V以上がより好ましい。   The preferred applied voltage at the time of electrolysis may vary depending on the material of the anode and the cathode. However, in order to accurately measure the amount of dissolved hydrogen, it is preferable to set the range in which electrolysis of water hardly occurs. From such a viewpoint, the applied voltage is preferably 1.20 V or less, more preferably 1.10 V or less. On the other hand, from the viewpoint of more reliably causing the oxidation reaction at the anode, a potential higher than the standard electrode potential of the metal used for the anode (in particular, a potential higher by 0.10 V or more than the standard electrode potential of the metal used for the anode) is applied. It is preferable to do. For example, when using copper as an anode, 0.50 V or more is preferable and, as for an applied voltage, 0.70 V or more is more preferable.

一方、電気分解時間は、対象となる水の電気伝導度、陽極及び陰極の材質及び表面積等に応じて電圧、電流、電流密度等が変化し得るので一概に決定することはできないが、溶存水素量を正確に測定する観点から、電気分解による金属水酸化物の生成が起こらなくなるまで通電することが好ましい。例えば、陽極として銅を使用する場合は、1〜10時間程度(特に3〜7時間程度)通電することができる。また、電気分解の際の温度は特に制限されず、例えば、0〜50℃(特に室温)で行うことができる。   On the other hand, the electrolysis time can not be determined indiscriminately because the voltage, current, current density, etc. may change according to the electrical conductivity of the water of interest, the material and surface area of the anode and cathode, etc. From the viewpoint of accurately measuring the amount, it is preferable to conduct electricity until the formation of metal hydroxide by electrolysis does not occur. For example, in the case of using copper as an anode, current can be supplied for about 1 to 10 hours (particularly for about 3 to 7 hours). Moreover, the temperature in particular in the case of electrolysis is not restrict | limited, For example, it can carry out at 0-50 degreeC (especially room temperature).

2.測定工程
上記のように電気分解処理を行うことにより、上記陽極における酸化反応により、陽極として使用した金属と活性な水酸化物イオンとが反応し、陽極の一部が水中に溶出するため、電気分解処理後には陽極の質量が減少する。この陽極の質量の減少量を測定することで、反応に寄与した活性な水酸化物イオン(H2O・OH-)の量を評価することができる。上記のとおり、活性水素水は活性な水酸化物イオンH3O2 -(H2O・OH-)と水素イオン(H+)とが遊離しやすい状態にあるため、反応に寄与した活性な水酸化物イオン(H2O・OH-)の量を評価することにより、溶存水素量も評価することが可能である。
2. Measurement process As described above, by performing the electrolysis treatment, the metal used as the anode and the active hydroxide ion react with each other by the oxidation reaction at the anode, and a part of the anode is eluted in water. After the decomposition treatment, the mass of the anode decreases. By measuring the decrease in mass of the anode, the amount of active hydroxide ions (H 2 O · OH ) contributing to the reaction can be evaluated. As described above, since active hydrogen water is in a state in which active hydroxide ion H 3 O 2 (H 2 O · OH ) and hydrogen ion (H + ) are easily released, the active hydrogen water contributes to the reaction. It is also possible to evaluate the amount of dissolved hydrogen by evaluating the amount of hydroxide ion (H 2 O · OH ).

具体的には、陽極の質量の減少量が多いほど、反応に寄与した活性な水酸化物イオンの量が多く、溶存水素量も多いと評価することができる。この際、市販されている水素ガスセンサでは有効数字1桁程度の精度でしか評価できないのに対し、有効数字2桁程度の精度で評価することが可能である。   Specifically, it can be evaluated that the amount of active hydroxide ions contributing to the reaction is large and the amount of dissolved hydrogen is also large as the amount of decrease in mass of the anode is large. At this time, it is possible to evaluate with a precision of about two significant figures, while a commercially available hydrogen gas sensor can only evaluate with a precision of about one significant figure.

一方、上記のように電気分解処理を行った場合、上記陽極における酸化反応により、陽極として使用した金属と活性な水酸化物イオンとが反応し、陽極の一部が金属水酸化物となって沈殿する。この沈殿物の質量を測定することで、同様に、反応に寄与した活性な水酸化物イオン(H2O・OH-)の量を評価し、さらに、溶存水素量を評価することが可能である。 On the other hand, when the electrolysis treatment is performed as described above, the metal used as the anode and the active hydroxide ion react with each other by the oxidation reaction at the anode, and a part of the anode becomes a metal hydroxide. Precipitate. Similarly, by measuring the mass of this precipitate, it is possible to evaluate the amount of active hydroxide ions (H 2 O · OH ) that contributed to the reaction, and further to evaluate the amount of dissolved hydrogen. is there.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。   EXAMPLES The present invention will be described in more detail based on examples given below, but the present invention is not limited by these examples.

実施例
図2に示す電気分解用容器及び電極を用いて、電気分解及び計測を行った。具体的には、メスシリンダーで秤量した試験液体を60mL用意し、それをプラスチックケースに入れた。電極はおおよそ20mmW×50mmL×3mmtのサイズに成形した銅を陽極、アルミニウムを陰極に用いた。銅陽極の質量を電子天秤で秤量した後電極を固定した蓋を閉めて1Vの電圧を印加し、沈殿物の生成がほとんど見られなくなるまで5時間程度通電を行った。その後銅陽極を取り出し、再度質量を秤量した。
EXAMPLE Electrolysis and measurement were performed using the vessel for electrolysis and the electrode shown in FIG. Specifically, 60 mL of a test liquid weighed with a measuring cylinder was prepared and placed in a plastic case. The electrode used the copper shape | molded to the size of about 20 mmW x 50 mmL x 3 mmt for an anode, and used aluminum for a cathode. The mass of the copper anode was weighed using an electronic balance, then the lid on which the electrode was fixed was closed and a voltage of 1 V was applied, and current was applied for about 5 hours until almost no formation of precipitate was observed. The copper anode was then removed and weighed again.

各測定結果について、以下に示す。測定は、サクラ水及び創成水については1回測定を行った後に2週間空けて再度測定を行った。また、他の水については1回測定を行った。なお、サクラ水は、福島県東白川郡矢祭町大字東館字中新田41番地分析結果に付け加えて(株)サクラサク 矢祭工場内の水道水から、交流電磁場電解水素水発生装置GFX-11MA001を使用し生成した電解水素水である。   Each measurement result is shown below. The measurement was performed again for two weeks after measuring once for cherry water and creation water. In addition, other water was measured once. In addition, Sakura Water is added to the analysis results at 41 Nakashinda, O-ji Higashi-sha, Higashi-Shirakawa-gun, Fukushima Prefecture, and from the tap water in the Sakura Saku Arrow Festival plant, using the AC electromagnetic field electrolyzed hydrogen water generator GFX-11MA001 It is generated electrolytic hydrogen water.

試験例1:測定結果(1回目)
1回目の測定結果を表1〜3に示す。
Test example 1: Measurement result (first time)
The first measurement results are shown in Tables 1 to 3.

試験例2:測定結果(2回目)
上記試験例1で用いた創生水及びサクラ水について、2週間の期間を空けて再度測定を試みた。結果を表4に示す。
Test example 2: Measurement result (second time)
With respect to the fresh water and the cherry water used in the above-mentioned Test Example 1, the measurement was tried again after a two-week period. The results are shown in Table 4.

まとめ
実施例では、水素水の主要な構造であると考えられるH3O2 -(H2O・OH-)に着目し評価を行った。水の電気分解が進行しない電圧でも水素水では電気分解が行われることから、このOH-が確実に存在し、非常に活性なイオンであることが分かる。
Conclusion In the example, evaluation was performed focusing on H 3 O 2 (H 2 O · OH ) which is considered to be the main structure of hydrogen water. Since electrolysis is performed in hydrogen water even at a voltage at which the electrolysis of water does not proceed, it can be seen that this OH - is surely present and is a very active ion.

実際の測定では銅陽極と活性な水酸化物イオンとの反応により減少した銅陽極の質量を計測することで活性な水酸化物イオンの量を測定した。ゆえに溶存水素濃度の測定ではなく活性水酸化物イオン濃度の測定を行ったことになるが、活性水素水は活性な水酸化物イオンH3O2 -(H2O・OH-)と水素イオン(H+)とが遊離しやすい状態にあるため、この結果から溶存水素量も評価することが可能である。 In the actual measurement, the amount of active hydroxide ion was measured by measuring the mass of the copper anode reduced by the reaction between the copper anode and the active hydroxide ion. Therefore, the measurement of the active hydroxide ion concentration was carried out instead of the measurement of the dissolved hydrogen concentration, but the active hydrogen water is active hydroxide ion H 3 O 2 (H 2 O · OH ) and hydrogen ion Since (H + ) is in a state of being easily released, it is possible to evaluate the amount of dissolved hydrogen from this result.

また、濃度の表記として通常の体積濃度(ppm:mg/L)に加えてモル濃度(mM:ミリモーラー)を用いた。モル濃度とは単位体積の溶液中の溶質の物質量である。化学反応式を用いて反応を行う際には反応配合量を検討する際にモルという単位が必要になることからよく使われる単位である。例えば塩酸と水酸化ナトリウムの中和反応を考えると化学反応式は、HCl+NaOH → NaCl+H2Oとなる。この場合1molの塩酸を中和するには1molの水酸化ナトリウムが必要であり1molのNaCl、1molのH2Oが生じることが簡単にわかる。またモルは原子、分子、イオン、電子、その他の粒子あるいは集合体であっても関係なく用いることができるため、化学反応を検討する場合には重要な単位である。これを考慮すると1Lの創生水には、約0.6mmolの活性な水酸化物イオンが含まれているので約0.6mmol相当の反応をすることが分かる。 In addition to the usual volume concentration (ppm: mg / L), the molar concentration (mM: millimolar) was used as the expression of concentration. The molar concentration is the substance mass of the solute in a unit volume of solution. When conducting a reaction using a chemical reaction formula, it is a unit that is often used because a unit of mole is required when examining the amount of reaction mixture. For example, considering the neutralization reaction of hydrochloric acid and sodium hydroxide, the chemical reaction formula is HCl + NaOH → NaCl + H 2 O. In this case, it can be easily seen that 1 mol of sodium hydroxide is required to neutralize 1 mol of hydrochloric acid, and 1 mol of NaCl and 1 mol of H 2 O are formed. In addition, since moles can be used regardless of atoms, molecules, ions, electrons, and other particles or aggregates, they are important units when considering chemical reactions. In view of this, it can be seen that 1 L of fresh water contains about 0.6 mmol of active hydroxide ions, so that a reaction of about 0.6 mmol is performed.

今回測定した水素水を、活性な水酸化物イオンのモル濃度が多い順に並べ替えまとめると表5のようになり、この順に溶存水素量が多いことも理解できる。   It is as shown in Table 5 when the hydrogen water measured this time is rearranged in order of many active hydroxide ion's molar concentration, and it becomes as shown in Table 5. It can also be understood that the amount of dissolved hydrogen is large in this order.

Claims (6)

水中に含まれる水素溶存量の測定方法であって、
前記水に対して、イオン化傾向が水より低い金属を陽極として電気分解を行う工程、及び
前記電気分解工程における陽極である金属の質量減少量又は溶出した金属水酸化物の質量を測定する工程
を備える方法。
A method of measuring the amount of dissolved hydrogen contained in water,
A step of performing electrolysis on the water using a metal whose ionization tendency is lower than that of water as an anode, and measuring a mass reduction amount of the metal that is the anode in the electrolysis step or a mass of the eluted metal hydroxide How to prepare.
前記陽極が銅である、請求項1に記載の方法。 The method of claim 1, wherein the anode is copper. 前記電気分解における印加電圧が、前記水の電気分解が起こらない電圧である、請求項1又は2に記載の方法。 The method according to claim 1, wherein the applied voltage in the electrolysis is a voltage at which the electrolysis of the water does not occur. 前記印加電圧が1.20V以下である、請求項3に記載の方法。 The method according to claim 3, wherein the applied voltage is 1.20 V or less. 電気分解による金属水酸化物の生成が起こらなくなるまで通電する、請求項1〜4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the process is continued until the generation of the metal hydroxide by electrolysis does not occur. 水中に含まれる水素溶存量を検知する水素センサであって、
前記水に対して、水中のイオン化傾向が水より低い金属を陽極として電気分解を行う電気分解部と、
前記電気分解工程における陽極である金属の質量減少量又は溶出した金属水酸化物の質量を検出する検出部と
を備える、水素センサ。
A hydrogen sensor that detects the amount of dissolved hydrogen contained in water,
An electrolysis unit that performs electrolysis using, as an anode, a metal whose ionization tendency in water is lower than that of water;
A hydrogen sensor, comprising: a detection unit that detects a mass reduction amount of metal that is an anode in the electrolysis step or a mass of eluted metal hydroxide.
JP2017081419A 2017-04-17 2017-04-17 Method for measuring dissolved hydrogen content in water Active JP6820599B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081419A JP6820599B2 (en) 2017-04-17 2017-04-17 Method for measuring dissolved hydrogen content in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081419A JP6820599B2 (en) 2017-04-17 2017-04-17 Method for measuring dissolved hydrogen content in water

Publications (2)

Publication Number Publication Date
JP2018179830A true JP2018179830A (en) 2018-11-15
JP6820599B2 JP6820599B2 (en) 2021-01-27

Family

ID=64275199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081419A Active JP6820599B2 (en) 2017-04-17 2017-04-17 Method for measuring dissolved hydrogen content in water

Country Status (1)

Country Link
JP (1) JP6820599B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176931A (en) * 2019-04-19 2020-10-29 陽吉 小川 Measuring method, measuring device, program, and computer-readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252789A1 (en) * 2002-09-14 2005-11-17 Fray Derek J Hydrogen sensing apparatus and method
JP2015087221A (en) * 2013-10-30 2015-05-07 株式会社日本トリム Dissolved hydrogen concentration measuring method and electrolytic solution generation device
JP2016033496A (en) * 2014-07-31 2016-03-10 株式会社富士技研 Hydrogen concentration detection element
JP2017020823A (en) * 2015-07-08 2017-01-26 東西化学産業株式会社 Dissolved hydrogen concentration measurement device and measuring method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050252789A1 (en) * 2002-09-14 2005-11-17 Fray Derek J Hydrogen sensing apparatus and method
JP2015087221A (en) * 2013-10-30 2015-05-07 株式会社日本トリム Dissolved hydrogen concentration measuring method and electrolytic solution generation device
JP2016033496A (en) * 2014-07-31 2016-03-10 株式会社富士技研 Hydrogen concentration detection element
JP2017020823A (en) * 2015-07-08 2017-01-26 東西化学産業株式会社 Dissolved hydrogen concentration measurement device and measuring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020176931A (en) * 2019-04-19 2020-10-29 陽吉 小川 Measuring method, measuring device, program, and computer-readable storage medium
JP7349675B2 (en) 2019-04-19 2023-09-25 陽吉 小川 Measuring method, measuring device, program, and computer-readable storage medium

Also Published As

Publication number Publication date
JP6820599B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
Tan et al. Passiflora edulia Sims leaves Extract as renewable and degradable inhibitor for copper in sulfuric acid solution
Gnedenkov et al. The detailed corrosion performance of bioresorbable Mg-0.8 Ca alloy in physiological solutions
Sreekanth et al. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy
Tromans Aqueous potential‐pH equilibria in copper‐benzotriazole systems
EP3070465A1 (en) Reforming-water-antirust-effect determination device and reforming-water-antirust-effect determination method
Sherif et al. Corrosion of magnesium/manganese alloy in chloride solutions and its inhibition by 5-(3-aminophenyl)-tetrazole
Vascon et al. Elucidation of constant current density molecular plating
JP2011220717A (en) Method of measuring polarization resistance, method of monitoring corrosion speed, and polarization resistance measuring device
Asserghine et al. A scanning electrochemical microscopy characterization of the localized corrosion reactions occurring on nitinol in saline solution after anodic polarization
Chiu et al. Sensitivity enhancement for quantitative electrochemical determination of a trace amount of accelerator in copper plating solutions
JP2018179830A (en) Underwater hydrogen dissolved quantity measuring method
JP6947212B2 (en) Method for manufacturing molten salt titanium plating solution composition and titanium plating member
D’souza et al. Corrosion resistance of an SS 316L alloy in artificial saliva in presence of a sparkle fresh toothpaste
JP5145916B2 (en) Electrolyte for polarographic diaphragm electrode and polarographic diaphragm electrode
JP2017056426A (en) Method of producing slightly acidic hypochlorous acid water
Nishimura Corrosion resistance of titanium alloy on the overpack for high-level radioactive waste disposal
JP2006038835A (en) Method for measuring corrosion rate of metal and corrosion-proof method for metal using the same
YC et al. The Influence of Chlorination of Saline Environments on Localized Corrosion of Stainless Steels
JP2015172511A (en) Electric copper plating solution analysis device and electric copper plating solution analysis method
JP2019188375A (en) Active hydrogen water production method and active hydrogen water production apparatus
Kublanovsky et al. Electrodeposition of palladium coatings from iminodiacetate electrolyte
Petkov et al. Mathematical modelling of the process of electrochemical production of NaClO from diluted chloride solutions
ROMAŞ et al. Influence of caffeine on the passivity of cobalt-chromium-molybdenum alloy in artificial saliva
Sunada et al. The Influence of Ni Content on the Corrosion Resistance of Cu-Ni-Sn-CP Sintered Alloys in Poor Quality Fuel
JP2009150728A (en) Measuring method of free cyanide concentration

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170417

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201223

R150 Certificate of patent or registration of utility model

Ref document number: 6820599

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250