JP2009150728A - Measuring method of free cyanide concentration - Google Patents

Measuring method of free cyanide concentration Download PDF

Info

Publication number
JP2009150728A
JP2009150728A JP2007327901A JP2007327901A JP2009150728A JP 2009150728 A JP2009150728 A JP 2009150728A JP 2007327901 A JP2007327901 A JP 2007327901A JP 2007327901 A JP2007327901 A JP 2007327901A JP 2009150728 A JP2009150728 A JP 2009150728A
Authority
JP
Japan
Prior art keywords
cyanide
free
concentration
amount
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007327901A
Other languages
Japanese (ja)
Inventor
Kazue Ban
和恵 伴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Industries Co Ltd
Original Assignee
Shinko Electric Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Industries Co Ltd filed Critical Shinko Electric Industries Co Ltd
Priority to JP2007327901A priority Critical patent/JP2009150728A/en
Publication of JP2009150728A publication Critical patent/JP2009150728A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of a free cyanide concentration capable of measuring easily the free cyanogen concentration, and hardly generating dispersion. <P>SOLUTION: When measuring the free cyanide concentration in electroplating solution into which a cyanide is added, an exfoliation electric quantity required for exfoliating the whole quantity of a deposited metal is measured relative to various electroplating solutions having each different free cyanide concentration acquired beforehand by changing an addition quantity of the cyanide into the electroplating solution into which the cyanide is not added, by a cyclic voltammetry method (CV method) for sweeping between a potential for depositing a prescribed amount of metal and a potential for exfoliating the whole quantity of the deposited metal, to thereby acquire a calibration curve showing a relation between the free cyanide concentration and the exfoliation electric quantity, and then the free cyanide concentration is detected from the exfoliation electric quantity measured by the CV method and the calibration curve, relative to practical electroplating solution into which the cyanide is added, served to electrolytic plating. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は遊離シアン濃度の測定方法に関し、更に詳細にはシアン化合物が添加された電解めっき液中の遊離シアン濃度を簡易に測定する遊離シアン濃度の測定方法に関する。   The present invention relates to a method for measuring a free cyan concentration, and more particularly to a method for measuring a free cyan concentration in which a free cyan concentration in an electrolytic plating solution to which a cyanide compound is added is simply measured.

電解めっきには、シアン化合物を添加したシアン浴が用いられている電解めっきが存在する。かかるシアン浴では、浴中の遊離シアン濃度の管理が得られるめっきの良否を左右する。
例えば、シアン浴を用いた電解銅めっきでは、浴中の陽極側及び陰極側では、下記(化1)に反応が進行している。
ここで、シアン浴中の遊離シアン濃度が低い場合には、下記化2の反応が進行し、陽極に用いられている銅板の溶解反応がスムーズに進行せず、黒色皮膜の形成や不溶性塩を生じ、銅補給が困難となる。
他方、シアン浴中の遊離シアン濃度が高い場合には、下記化3の反応が進行し、Cu(CN) 2-が安定となるため、水素の発生が多くなって電流効率が低下する。
As the electrolytic plating, there is electrolytic plating using a cyan bath to which a cyanide compound is added. In such a cyan bath, the quality of plating that can control the free cyan concentration in the bath is influenced.
For example, in electrolytic copper plating using a cyan bath, the reaction proceeds to the following (Chemical Formula 1) on the anode side and the cathode side in the bath.
Here, when the free cyanide concentration in the cyan bath is low, the reaction of the following chemical formula 2 proceeds, the dissolution reaction of the copper plate used for the anode does not proceed smoothly, the formation of a black film or insoluble salts. This makes copper replenishment difficult.
On the other hand, when the free cyanide concentration in the cyan bath is high, the reaction of the following chemical formula 3 proceeds and Cu (CN) 4 2− becomes stable, so that hydrogen is generated and current efficiency decreases.

この様に、シアン浴中の遊離シアン濃度の管理は大切であるが、従来、シアン浴中の遊離シアン濃度の測定は、化学分析(滴定)によって行われている。かかる化学分析は、煩雑であり、作業者の熟練度によっても測定結果に多少のバラツキが発生する。
このため、下記特許文献1には、シアンイオン電極を用いてシアン浴中の遊離シアンイオンを測定し、シアン浴中のシアンイオン濃度を制御することが提案されている。
特開2003−313699号公報
As described above, the management of the free cyan concentration in the cyan bath is important, but conventionally, the measurement of the free cyan concentration in the cyan bath is performed by chemical analysis (titration). Such chemical analysis is complicated, and the measurement results vary somewhat depending on the skill level of the operator.
For this reason, the following Patent Document 1 proposes to measure a free cyanide ion in a cyan bath using a cyan ion electrode to control the cyan ion concentration in the cyan bath.
JP 2003-313699 A

シアンイオン電極を用いてシアン浴中の遊離シアンイオンを測定することによって、シアン浴中の遊離シアン濃度を連続して測定でき、必要に応じてシアン化合物を添加してシアン浴中の遊離シアン濃度を一定に保持できる。
しかしながら、シアンイオン電極を用いたシアン浴中のシアンイオン濃度の測定結果には、シアン浴中のイオン強度、pH、温度、攪拌条件、共存イオン等の種々の影響を受けるため、測定した遊離シアン濃度にはバラツキが発生し易いおそれがある。
そこで、本発明では、操作が煩雑或いはバラツキが発生し易い従来の遊離シアン濃度の測定方法の課題を解決し、遊離シアン濃度を簡便に測定でき、バラツキが発生し難い遊離シアン濃度の測定方法を提供することを目的とする。
By measuring the free cyanide ion in the cyan bath using a cyan ion electrode, the free cyan concentration in the cyan bath can be continuously measured. Can be kept constant.
However, the measurement results of cyanide concentration in a cyan bath using a cyan ion electrode are affected by various effects such as ionic strength, pH, temperature, stirring conditions, and coexisting ions in the cyan bath. There is a possibility that the concentration tends to vary.
Therefore, the present invention solves the problem of the conventional method for measuring free cyan density, which is complicated and is likely to cause variations, and provides a method for measuring the free cyan density, which can easily measure the free cyan density and hardly causes variations. The purpose is to provide.

本発明者は、前記課題を解決すべく検討したところ、所定量の金属が析出する電位と析出した金属の全量が剥離する電位との間を掃引するサイクリック・ボルタンメトリー法(CV法)によって測定した、析出金属の全量が剥離するに要した剥離電気量と電解めっき液中の遊離シアン濃度とが良好な関連を示すことを知り、本発明に到達した。
すなわち、本発明は、シアン化合物が添加された電解めっき液中の遊離シアン濃度を測定する際に、予め前記シアン化合物が無添加の電解めっき液中にシアン化合物の添加量を変更して得た遊離シアン濃度が異なる種々の電解めっき液について、所定量の金属が析出する電位と析出した金属の全量が剥離する電位との間を掃引するサイクリック・ボルタンメトリー法(CV法)によって、析出金属の全量が剥離するに要した剥離電気量を測定し、前記遊離シアン濃度と剥離電気量との関係を示す検量線を得た後、前記シアン化合物が添加されて電解めっきに供される実用電解めっき液について、前記CV法によって測定した剥離電気量と前記検量線とから遊離シアン濃度を検出することを特徴とする遊離シアン濃度の測定方法にある。
The present inventor has studied to solve the above-mentioned problem, and measured by a cyclic voltammetry method (CV method) that sweeps between a potential at which a predetermined amount of metal is deposited and a potential at which the total amount of deposited metal is separated. Thus, the present inventors have reached the present invention by knowing that the amount of electricity required for the separation of the total amount of the deposited metal and the free cyanide concentration in the electrolytic plating solution show a good relationship.
That is, the present invention was obtained by measuring the amount of cyanide added in advance in the electroplating solution to which the cyanide was not added when measuring the free cyanide concentration in the electroplating solution to which the cyanide was added. For various electroplating solutions having different free cyanide concentrations, the cyclic voltammetry method (CV method) that sweeps between the potential at which a predetermined amount of metal is deposited and the potential at which the entire amount of deposited metal is peeled off is used. Practical electrolytic plating in which the amount of electricity required to peel the entire amount is measured and a calibration curve showing the relationship between the free cyanide concentration and the amount of peeled electricity is obtained, and then the cyanide compound is added and used for electrolytic plating In the method for measuring free cyanide concentration, the free cyanide concentration is detected from the peel electricity amount measured by the CV method and the calibration curve.

かかる本発明において、剥離電気量の測定を、めっき金属が溶出する陽極側電極と、所定速度で回転し、前記めっき金属が析出する作用電極と、参照電極としての飽和カロメル電極とを具備するCV測定装置を用いて行うことが好ましい。
また、検量線として、遊離シアン濃度と剥離電気量との関係が直線状となる範囲の検量線を用いることが測定精度を向上できる。
更に、シアン化合物が無添加の電解めっき液中に添加するシアン化合物として、シアン化カリ(KCN)を好適に用いることができる。
尚、電解めっき液として、電解銅めっき液に対して本発明を好適に適用できる。
In the present invention, the amount of electricity peeled is measured by a CV comprising an anode-side electrode from which the plating metal elutes, a working electrode that rotates at a predetermined speed to deposit the plating metal, and a saturated calomel electrode as a reference electrode. It is preferable to use a measuring device.
Moreover, the measurement accuracy can be improved by using a calibration curve in a range in which the relationship between the free cyan density and the amount of peeled electricity is linear.
Furthermore, potassium cyanide (KCN) can be suitably used as the cyan compound added to the electroplating solution to which no cyanide is added.
In addition, this invention is suitably applicable with respect to an electrolytic copper plating solution as an electrolytic plating solution.

本発明によれば、シアン化合物が添加された電解めっき液中の遊離シアン濃度を簡易で且つバラツキを少なくして測定できる。得られた遊離シアン濃度は、電解めっき液中の遊離シアン濃度の管理に用いることができる。その結果、電解めっき液中の遊離シアン濃度を適切な範囲に制御でき、得られためっきの品質を向上できる。   According to the present invention, the free cyan concentration in an electrolytic plating solution to which a cyanide compound is added can be measured easily and with less variation. The obtained free cyan density | concentration can be used for management of the free cyan density | concentration in electroplating liquid. As a result, the free cyanide concentration in the electrolytic plating solution can be controlled within an appropriate range, and the quality of the obtained plating can be improved.

本発明では、先ず、シアン化合物が無添加の電解めっき液中にシアン化合物の添加量を変更して得た遊離シアン濃度が異なる種々の電解めっき液について、所定量の金属が析出する電位と析出した金属の全量が剥離する電位との間を掃引するサイクリック・ボルタンメトリー法(CV法)によって、析出金属の全量が剥離するに要した剥離電気量を測定し、遊離シアン濃度と剥離電気量との関係を示す検量線を作成する。
かかるCV法によって析出金属の全量が剥離するに要した剥離電気量を測定する際には、図1に示す測定装置を用いる。図1の測定装置では、めっき槽40内の電解めっき液42内に、陽極としての金属板から成る電極10及び陰極としての作用電極20が浸漬されている。作用電極20としては、白金回転電極を用いる。
かかるめっき槽40の電解めっき液42は、中継槽32を経由して基準電極30と接触している。この基準電極30は、飽和カロメル電極(S.C.E)を用いている。基準電極30としては、公知の基準電極、例えば銀/塩化銀電極を用いることができる。
かかる測定装置を用いたCV法では、基準電極30を基準に作用電極20の電位を掃引することによって、作用電極20上でめっき金属を析出するめっき操作と析出しためっき金属を剥離する剥離操作とを繰り返す。この掃引の間に作用電極20と銅板電極10との間に流れる電流を測定して図2示すボルタモグラムを得る。
図2に示すボルタモグラムは、作用電極20の電位を、基準電極30と等しい電位→aの電位→基準電極30と等しい電位→bの電位→基準電極30と等しい電位として得たものである。
電位値が0の点が基準電極30の電位と等しい電位であり、電流値<0となる領域は作用電極20にめっき金属が析出するめっき領域Aである。
これに対し、電流値>0となる領域は、めっき領域Aで作用電極20に析出しためっき金属が剥離する剥離領域Bである。
かかる図2に示すボルタモグラムを用い、その剥離領域Bの面積(電位×電流)からめっき金属の剥離電気量を算出できる。
In the present invention, first, with respect to various electroplating solutions having different free cyan concentrations obtained by changing the addition amount of the cyanide compound in the electroplating solution to which no cyanide is added, the potential at which a predetermined amount of metal is deposited and the precipitation The amount of peeled electricity required to peel off the total amount of deposited metal was measured by a cyclic voltammetry method (CV method) that sweeps between the total amount of the deposited metal and the peeling potential. Create a calibration curve showing the relationship.
When measuring the amount of peel electricity required to peel all the deposited metal by such a CV method, the measuring device shown in FIG. 1 is used. In the measuring apparatus of FIG. 1, an electrode 10 made of a metal plate as an anode and a working electrode 20 as a cathode are immersed in an electrolytic plating solution 42 in a plating tank 40. A platinum rotating electrode is used as the working electrode 20.
The electrolytic plating solution 42 in the plating tank 40 is in contact with the reference electrode 30 via the relay tank 32. The reference electrode 30 uses a saturated calomel electrode (SCE). As the reference electrode 30, a known reference electrode such as a silver / silver chloride electrode can be used.
In the CV method using such a measuring apparatus, by sweeping the potential of the working electrode 20 with respect to the reference electrode 30, a plating operation for depositing a plating metal on the working electrode 20 and a peeling operation for peeling the deposited plating metal are performed. repeat. The voltammogram shown in FIG. 2 is obtained by measuring the current flowing between the working electrode 20 and the copper plate electrode 10 during this sweep.
The voltammogram shown in FIG. 2 is obtained by setting the potential of the working electrode 20 as the potential equal to the reference electrode 30 → the potential of a → the potential equal to the reference electrode 30 → the potential of b → the potential equal to the reference electrode 30.
The point where the potential value is 0 is equal to the potential of the reference electrode 30 and the region where the current value <0 is the plating region A where the plating metal is deposited on the working electrode 20.
On the other hand, the region where the current value> 0 is the peeling region B where the plating metal deposited on the working electrode 20 in the plating region A peels off.
Using the voltammogram shown in FIG. 2, the amount of peeling electricity of the plated metal can be calculated from the area (potential × current) of the peeling region B.

図1に示す測定装置によって、シアン化合物が無添加の電解銅めっき液に、所定量のシアン化カリウム(KCN)を添加し、掃引速度100mV/秒で掃引して測定したボルタモグラムを図3に示す。図3に示すボルタモグラムにおいて、符号12の曲線がKCN1g/Lを添加した電解銅めっき液のものであり、符号14の曲線がKCN5g/Lを添加した電解銅めっき液のものである。また、符号16の曲線がKCN10g/Lを添加した電解銅めっき液のものである。   FIG. 3 shows a voltammogram measured by adding a predetermined amount of potassium cyanide (KCN) to an electrolytic copper plating solution to which a cyanide is not added and sweeping at a sweep rate of 100 mV / second by the measuring apparatus shown in FIG. In the voltammogram shown in FIG. 3, the curve indicated by reference numeral 12 is that of an electrolytic copper plating solution to which 1 g / L of KCN has been added, and the curve of reference numeral 14 is that of an electrolytic copper plating solution to which 5 g / L of KCN has been added. Moreover, the curve of the code | symbol 16 is the thing of the electrolytic copper plating solution which added KCN10g / L.

図3に示す電流値>0となる領域であって、作用電極20に析出した銅が剥離する剥離領域の剥離電気量(AR値)について、KCNの添加量を変更して測定した結果を図4に示す。KCNの添加量が0〜15g/Lの領域では、KCNの添加量とAR値とは反比例の関係(直線状)にある。
一方、KCNの添加量が20g/L以上の領域でも、KCNの添加量とAR値とは反比例の関係(直線状)にあるが、KCNの添加量が15g/L以下の領域に比較して、その傾斜が緩和されている。KCNの添加量が20g/L以上の領域では、発生する水素の影響を受けるためと考えられる。この様に、水素が発生する領域は、電解銅めっき液としては実用に供し得ないため、電解銅めっき液の遊離シアン濃度の管理には不要な領域である。
従って、KCNの添加量とAR値とが直線状の関係を有するKCNの添加量が0〜15g/Lの領域が、電解銅めっき液の遊離シアン濃度の管理に用いることのできる領域である。
FIG. 3 shows the results of measuring the amount of electricity peeled off (AR value) in the peeling region where the copper deposited on the working electrode 20 peels in the region where the current value> 0 shown in FIG. 4 shows. In the region where the amount of KCN added is 0 to 15 g / L, the amount of KCN added and the AR value are in an inversely proportional relationship (linear).
On the other hand, even in the region where the amount of KCN added is 20 g / L or more, the amount of KCN added and the AR value are in an inversely proportional relationship (linear), but compared with the region where the amount of KCN added is 15 g / L or less. The slope has been relaxed. This is considered to be due to the influence of hydrogen generated in the region where the amount of KCN added is 20 g / L or more. Thus, since the region where hydrogen is generated cannot be put to practical use as an electrolytic copper plating solution, it is an unnecessary region for managing the free cyan concentration of the electrolytic copper plating solution.
Therefore, the region where the additive amount of KCN in which the additive amount of KCN and the AR value have a linear relationship is 0 to 15 g / L is a region that can be used for managing the free cyanide concentration of the electrolytic copper plating solution.

KCNの添加量が0〜15g/Lの領域において、作用電極20の表面状態等の影響を解消すべく、KCNの添加量が0のときのAR値をAR0として、AR値とAR0との比(AR/AR0)を計算し、KCNの添加量に対してプロットすると図5に示す様に、右下がりの直線状の検量線を得ることができる。管理対象の電解銅めっき液についてのAR/AR0を求めることによって、図5に示す検量線から電解銅めっき液中のKCN濃度を求めることができる。
更に、電解銅めっき液中に添加したKCNは、電解銅めっき液中で完全にイオン化されており、すべてのCNが遊離シアンとなるため、添加したKCNから電解銅めっき液中の遊離シアン濃度を計算し、AR/AR0に対してプロットすると図6に示す右下がりの直線状の検量線を得ることができる。管理対象の電解銅めっき液についてのAR/AR0を求めることによって、図6に示す検量線から電解銅めっき液中の遊離シアン濃度を求めることができる。
In the region where the addition amount of KCN is 0 to 15 g / L, the AR value when the addition amount of KCN is 0 is AR0 to eliminate the influence of the surface state of the working electrode 20, and the ratio of the AR value to AR0 When (AR / AR0) is calculated and plotted against the added amount of KCN, a linear calibration curve with a downward slope can be obtained as shown in FIG. By obtaining AR / AR0 for the electrolytic copper plating solution to be managed, the KCN concentration in the electrolytic copper plating solution can be obtained from the calibration curve shown in FIG.
Furthermore, the KCN was added to the electrolytic copper plating solution, are fully ionized in the electrolytic copper plating solution, all CN - for becomes free cyanide, free cyanide concentration of the electrolytic copper plating solution from the added KCN , And plotted against AR / AR0, the downward-sloping linear calibration curve shown in FIG. 6 can be obtained. By obtaining AR / AR0 for the electrolytic copper plating solution to be managed, the free cyan concentration in the electrolytic copper plating solution can be obtained from the calibration curve shown in FIG.

図5及び図6に示す検量線を作成した電解銅めっき液と同一組成の電解銅めっき液について、KCNを添加することなく図1に示す測定装置を用いて剥離電気量(AR0値)を測定した。その値は145.5mcであった。
次いで、この電解銅めっき液に、下記表1の様に、KCNを添加した後、図1に示す測定装置を用いて剥離電気量(AR値)を測定した。かかるAR値とAR0値とから(AR/AR0)を求めて下記表1に併記した。
求めた(AR/AR0)に基づいて図5に示す検量線からKCN濃度を求めると共に、図6に示す検量線から遊離シアン濃度を求めて、その結果を表1に示した。
For the electrolytic copper plating solution having the same composition as the electrolytic copper plating solution for which the calibration curve shown in FIGS. 5 and 6 was prepared, the amount of peel electricity (AR0 value) was measured using the measuring apparatus shown in FIG. 1 without adding KCN. did. Its value was 145.5 mc.
Next, as shown in Table 1 below, KCN was added to the electrolytic copper plating solution, and the amount of peel electricity (AR value) was measured using the measuring apparatus shown in FIG. (AR / AR0) was determined from the AR value and the AR0 value, and is shown in Table 1 below.
Based on the obtained (AR / AR0), the KCN concentration was determined from the calibration curve shown in FIG. 5 and the free cyanide concentration was determined from the calibration curve shown in FIG. 6. The results are shown in Table 1.

表1から明らかな様に、電解銅めっき液に添加したKCN量から求めたKCN濃度と、図5に示す検量線から求めたKCN濃度及び図6に示す検量線から求めた遊離シアン濃度とは略一致している。
従って、管理対象の電解銅めっき液について、図1に示す測定装置によって、作用電極20に析出した銅が剥離する剥離領域の剥離電気量(AR値)を測定し、(AR/AR0)を算出することによって、図5に示す検量線からKCN濃度と図6に示す検量線から遊離シアン濃度とを求めることができる。その結果、管理対象の電解銅めっき液中の遊離シアン濃度を適正範囲となるように管理でき、緻密で且つ均斉な銅めっき皮膜を形成できる。
As is clear from Table 1, the KCN concentration obtained from the KCN amount added to the electrolytic copper plating solution, the KCN concentration obtained from the calibration curve shown in FIG. 5, and the free cyan concentration obtained from the calibration curve shown in FIG. It is almost coincident.
Therefore, with respect to the electrolytic copper plating solution to be managed, the measurement device shown in FIG. 1 measures the amount of peeling electricity (AR value) in the peeling region where the copper deposited on the working electrode 20 peels, and calculates (AR / AR0). Thus, the KCN concentration can be obtained from the calibration curve shown in FIG. 5 and the free cyan density can be obtained from the calibration curve shown in FIG. As a result, the free cyanide concentration in the electrolytic copper plating solution to be managed can be managed so as to be within an appropriate range, and a dense and uniform copper plating film can be formed.

以上の説明は、主として電解銅めっき液について説明してきたが、シアン化合物を添加したシアン浴が用いられている電解めっき、例えば電解金めっき液や電解銀めっき液にも本発明を適用できる。
また、添加するシアン化合物として、KCNに代えてシアン化ナトリウム(NaCN)を用いることができる。
Although the above description has mainly described the electrolytic copper plating solution, the present invention can also be applied to electrolytic plating using a cyan bath to which a cyanide compound is added, for example, an electrolytic gold plating solution and an electrolytic silver plating solution.
As a cyan compound to be added, sodium cyanide (NaCN) can be used instead of KCN.

サイクリック・ボルタンメトリー法(CV法)に用いる測定装置の一例を説明する概略図である。It is the schematic explaining an example of the measuring apparatus used for the cyclic voltammetry method (CV method). 図1に示す測定装置を用いて電解めっき液について得られるボルタモグラムを説明する説明図である。It is explanatory drawing explaining the voltammogram obtained about an electroplating liquid using the measuring apparatus shown in FIG. 図2に示す測定装置と用いてKCNの添加量を変更した電解銅めっき液について得られたボルタモグラムである。It is the voltammogram obtained about the electrolytic copper plating solution which changed the addition amount of KCN using the measuring apparatus shown in FIG. 図2に示す測定装置と用いてKCNの添加量を変更した電解銅めっき液について得られたボルタモグラムから得られた剥離電気量(AR)をKCN濃度に対してプロットしたグラフである。It is the graph which plotted the peeling electric energy (AR) obtained from the voltammogram obtained about the electrolytic copper plating solution which changed the addition amount of KCN using the measuring apparatus shown in FIG. 2 with respect to the KCN density | concentration. KCN濃度が15g/L以下の領域について、測定された剥離電気量(AR)とKCN無添加の電解銅めっき液の剥離電気量(AR0)との比(AR/AR0)を、KCN濃度に対してプロットして得た検量線を示すグラフである。For the region where the KCN concentration is 15 g / L or less, the ratio (AR / AR0) of the measured amount of peel electricity (AR) to the amount of peel electricity (AR0) of the electrolytic copper plating solution without addition of KCN is expressed with respect to the KCN concentration. It is a graph which shows the calibration curve obtained by plotting. (AR/AR0)を遊離シアン濃度に対してプロットして得た検量線を示すグラフである。It is a graph which shows the calibration curve obtained by plotting (AR / AR0) with respect to a free cyan density | concentration.

符号の説明Explanation of symbols

10 電極
20 作用電極
30 基準電極
32 中継槽
40 めっき槽
42 電解めっき液
A 金属が析出するめっき領域
B 金属が剥離する剥離領域
DESCRIPTION OF SYMBOLS 10 Electrode 20 Working electrode 30 Reference electrode 32 Relay tank 40 Plating tank 42 Electrolytic plating solution A Plating area where metal deposits B Peeling area where metal peels

Claims (5)

シアン化合物が添加された電解めっき液中の遊離シアン濃度を測定する際に、
予め前記シアン化合物が無添加の電解めっき液中にシアン化合物の添加量を変更して得た遊離シアン濃度が異なる種々の電解めっき液について、所定量の金属が析出する電位と析出した金属の全量が剥離する電位との間を掃引するサイクリック・ボルタンメトリー法(CV法)によって、析出金属の全量が剥離するに要した剥離電気量を測定し、前記遊離シアン濃度と剥離電気量との関係を示す検量線を得た後、
前記シアン化合物が添加されて電解めっきに供される実用電解めっき液について、前記CV法によって測定した剥離電気量と前記検量線とから遊離シアン濃度を検出することを特徴とする遊離シアン濃度の測定方法。
When measuring the free cyanide concentration in the electroplating solution to which cyanide was added,
For various electroplating solutions with different free cyan concentrations obtained by changing the amount of cyanide added to the electroplating solution to which no cyanide is added in advance, the potential for depositing a predetermined amount of metal and the total amount of deposited metal Measure the amount of peel electricity required for the entire amount of deposited metal to peel off by the cyclic voltammetry method (CV method) that sweeps between the potential of the peeled metal and the relationship between the free cyanide concentration and the amount of peeled electricity. After obtaining the calibration curve shown,
Measurement of free cyanide concentration by detecting free cyanide concentration from the amount of electricity peeled and measured by the CV method for a practical electrolytic plating solution to which the cyanide compound is added and used for electroplating Method.
剥離電気量の測定を、めっき金属が溶出する陽極側電極と、所定速度で回転し、前記めっき金属が析出する作用電極と、参照電極としての飽和カロメル電極とを具備するCV測定装置を用いて行う請求項1記載の遊離シアン濃度の測定方法。   The amount of electricity peeled is measured using a CV measuring device comprising an anode-side electrode from which the plating metal is eluted, a working electrode that rotates at a predetermined speed and on which the plating metal is deposited, and a saturated calomel electrode as a reference electrode. The method for measuring free cyanide concentration according to claim 1 to be performed. 検量線として、遊離シアン濃度と剥離電気量との関係が直線状となる範囲の検量線を用いる請求項1又は請求項2記載の遊離シアン濃度の測定方法。   The method for measuring the free cyan concentration according to claim 1 or 2, wherein a calibration curve in a range in which the relationship between the free cyan concentration and the peeled electricity amount is linear is used as the calibration curve. 電解めっき液として、電解銅めっき液を用いる請求項1〜3のいずれか一項記載の遊離シアン濃度の測定方法。   The method for measuring free cyanide concentration according to any one of claims 1 to 3, wherein an electrolytic copper plating solution is used as the electrolytic plating solution. シアン化合物が無添加の電解めっき液中に添加するシアン化合物として、シアン化カリ(KCN)を用いる請求項1〜4のいずれか一項記載の遊離シアン濃度の測定方法。   The method for measuring free cyanide concentration according to any one of claims 1 to 4, wherein potassium cyanide (KCN) is used as a cyanide compound added to an electroplating solution to which no cyanide compound is added.
JP2007327901A 2007-12-19 2007-12-19 Measuring method of free cyanide concentration Withdrawn JP2009150728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007327901A JP2009150728A (en) 2007-12-19 2007-12-19 Measuring method of free cyanide concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007327901A JP2009150728A (en) 2007-12-19 2007-12-19 Measuring method of free cyanide concentration

Publications (1)

Publication Number Publication Date
JP2009150728A true JP2009150728A (en) 2009-07-09

Family

ID=40920012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007327901A Withdrawn JP2009150728A (en) 2007-12-19 2007-12-19 Measuring method of free cyanide concentration

Country Status (1)

Country Link
JP (1) JP2009150728A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390933A (en) * 2021-06-09 2021-09-14 宁夏坤正生物科技有限公司 Ion meter determination method for determining content of cyanide in wastewater
CN113670905A (en) * 2021-07-30 2021-11-19 中国热带农业科学院橡胶研究所 Rapid detection method for rubber tree HCN and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113390933A (en) * 2021-06-09 2021-09-14 宁夏坤正生物科技有限公司 Ion meter determination method for determining content of cyanide in wastewater
CN113670905A (en) * 2021-07-30 2021-11-19 中国热带农业科学院橡胶研究所 Rapid detection method for rubber tree HCN and application thereof
CN113670905B (en) * 2021-07-30 2023-08-25 中国热带农业科学院橡胶研究所 Rapid detection method for HCN of rubber tree and application thereof

Similar Documents

Publication Publication Date Title
JP4041667B2 (en) Plating bath analysis method
JP5218359B2 (en) Electrolytic copper plating solution analyzer
TWI245814B (en) Improved method for analysis of three organic additives in an acid copper plating bath
JP5335096B2 (en) Method for measuring concentration of stabilizing additive in electroless metal or metal alloy plating electrolyte and control method thereof
US6508924B1 (en) Control of breakdown products in electroplating baths
JP2004325441A (en) Analytical method
US20030201191A1 (en) Electrochemical method for direct organic additives analysis in copper baths
US7384535B2 (en) Bath analysis
WO2005100967A2 (en) Electrochemical deposition analysis system including high-stability electrode
JP2009150728A (en) Measuring method of free cyanide concentration
Bek et al. The effect of thallium ions on the gold dissolution rate in thiosulfate electrolytes
He et al. Electrochemical mechanism of Cr (iii) reduction for preparing crystalline chromium coatings based on 1-butyl-3-methylimidazolium hydrogen sulfate ionic liquid
KR102445228B1 (en) Measuring method for concentration of additive breakdown product in plating solution
JP2005171347A (en) Method of controlling electrolytic copper plating liquid
Tuna et al. EQCM and EIS characterization of electrochemical deposition of tin from aqueous solution containing pyrophosphate
Neshkova et al. Real-time stoichiometry monitoring of electrodeposited chalcogenide films via coulometry and electrochemical quartz-crystal microgravimetry with hydrodynamic control. Ag2+ δSe case
US6773569B2 (en) Potential pulse-scan methods of analyzing organic additives in plating baths with multi-component additives
JP4385824B2 (en) Method and apparatus for analyzing electrolytic copper plating solution
CN101819131B (en) Electrochemical test solution for evaluating corrosion resistance of cold-rolled sheet phosphate coating
JPH0798296A (en) Measuring method for concentration of additive in electroless copper plating liquid
JP2015172511A (en) Electric copper plating solution analysis device and electric copper plating solution analysis method
Couche et al. The dissolution of copper metal by acidified iron (III) in acetonitrile-water solutions
JP2005226085A (en) Method and apparatus for analyzing copper electroplating liquid
Zangari et al. Molecular Structure of the Solid-Liquid Interface and Its Relationship to Electrodeposition 8
Kuznetsov et al. Electrodeposition of copper-containing polymer coatings from sulfate electrolytes containing N-methylpyrrolidone

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110301