JP2020175658A - Microwave and electromagnetic heated foaming method, mold and foaming material therefor - Google Patents

Microwave and electromagnetic heated foaming method, mold and foaming material therefor Download PDF

Info

Publication number
JP2020175658A
JP2020175658A JP2020073188A JP2020073188A JP2020175658A JP 2020175658 A JP2020175658 A JP 2020175658A JP 2020073188 A JP2020073188 A JP 2020073188A JP 2020073188 A JP2020073188 A JP 2020073188A JP 2020175658 A JP2020175658 A JP 2020175658A
Authority
JP
Japan
Prior art keywords
microwave
mold
dielectric heating
foamed
foaming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020073188A
Other languages
Japanese (ja)
Other versions
JP6993598B2 (en
Inventor
林柏昌
Po-Chang Lin
秦光澤
Kuang-Tse Chin
謝榮祥
Jung-Hsiang Hsieh
游雅純
ya-chun Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Herlin Up Co Ltd
Original Assignee
Herlin Up Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Herlin Up Co Ltd filed Critical Herlin Up Co Ltd
Publication of JP2020175658A publication Critical patent/JP2020175658A/en
Application granted granted Critical
Publication of JP6993598B2 publication Critical patent/JP6993598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3415Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/58Moulds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/10Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing nitrogen, the blowing agent being a compound containing a nitrogen-to-nitrogen bond
    • C08J9/102Azo-compounds
    • C08J9/103Azodicarbonamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/083EVA, i.e. ethylene vinyl acetate copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2509/00Use of inorganic materials not provided for in groups B29K2503/00 - B29K2507/00, as filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/04N2 releasing, ex azodicarbonamide or nitroso compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/184Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Abstract

To provide a microwave and electromagnetic heated foaming method, and a mold and a foaming material therefor.SOLUTION: There is provided a foaming method that comprises: a step of adding a foam material into a mold; a step of simultaneously applying a microwave and electromagnetic energy to the mold under a normal or low pressure; and a step of molding the foam material into molded foam body by the microwave and electromagnetic energy. The mold has a microwave penetrating part and an electromagnetic heating part, which can form a closed receiving space in the mold by screwing the surfaces facing each other. A microwave is applied to the microwave penetrating part, and electromagnetic energy is applied to the electromagnetic heating part. Use of electromagnetic heating achieves: superior thermal conversion efficiency and heating rates to those of ordinary infrared heating or heating with an electric heating tube; energy saving; and foaming under normal pressure or reduced pressure.SELECTED DRAWING: Figure 1

Description

本発明は、発泡成形方法、並びにそれに用いる型及び発泡材に関し、特に、マイクロ波及び誘電加熱による発泡成形方法、並びにそれに用いる型及び発泡材に関する。 The present invention relates to a foam molding method and a mold and a foam material used therein, and more particularly to a foam molding method by microwave and dielectric heating, and a mold and a foam material used therein.

既存の発泡方法は、外部熱源の熱伝導によって発泡材における発泡剤を発泡させることで発泡成形を行うが、熱が材料の外部から内部へ伝導するため、加熱の不均一になり易く、発泡材の品質管理が難しい。そのような外部熱源の熱伝導による加熱方法は、普通、高圧環境で発泡しなければならない。しかしながら、高圧発泡に適用されない結晶性材料の場合、泡が破れ、又は成形性不良という問題が起こり易い。 In the existing foaming method, foam molding is performed by foaming a foaming agent in a foaming material by heat conduction of an external heat source, but since heat is conducted from the outside to the inside of the material, heating tends to be uneven, and the foaming material Quality control is difficult. Such a method of heating by heat conduction of an external heat source usually has to foam in a high pressure environment. However, in the case of a crystalline material that is not applied to high-pressure foaming, problems such as foam breakage or poor moldability are likely to occur.

科学技術の発展につれて、発泡方法として、マイクロ波による加熱、発泡する方法が開発されている。マイクロ波によって材料に分散される特定の分子を共鳴振動させることで、前記従来の外部から内部への熱伝導が不均一である課題を改善できる。しかしながら、マイクロ波による加熱方法において、例えば、マイクロ波透過性を有するプラスチック材料で型を製造しなければならない。しかしながら、全プラスチック製の型は、耐久性が十分ではないという問題を有する。 With the development of science and technology, a method of heating by microwave and foaming has been developed as a foaming method. By resonating and vibrating specific molecules dispersed in the material by microwaves, it is possible to solve the conventional problem of non-uniform heat conduction from the outside to the inside. However, in the microwave heating method, for example, the mold must be made of a plastic material having microwave transparency. However, all-plastic molds have the problem of insufficient durability.

既存の発泡成形方法及びそれに派生するマイクロ波加熱技術の欠点を解決するために、本発明は、マイクロ波誘電加熱式発泡成形方法を提供する。本発明のマイクロ波誘電加熱式発泡成形方法は、発泡材を型に入れる工程と、常圧又は減圧環境下で、前記型にマイクロ波及び電磁エネルギーを同時に印加する工程と、前記マイクロ波及び前記電磁エネルギーによって前記発泡材を発泡成形体に成形する工程とを有する。前記型は、互いに対向する面が螺合して前記型内に密閉した受容空間を形成できるマイクロ波透過部及び誘電加熱部を有する。また、前記マイクロ波を前記マイクロ波透過部に印加し、前記電磁エネルギーを前記誘電加熱部に印加する。 In order to solve the drawbacks of the existing foam molding method and the microwave heating technique derived thereto, the present invention provides a microwave dielectric heating type foam molding method. The microwave dielectric heating type foam molding method of the present invention includes a step of putting a foam material into a mold, a step of simultaneously applying microwave and electromagnetic energy to the mold under normal pressure or reduced pressure environment, and the microwave and the said. It has a step of molding the foam material into a foam molded product by electromagnetic energy. The mold has a microwave transmitting portion and a dielectric heating portion capable of forming a closed receiving space in the mold by screwing surfaces facing each other. Further, the microwave is applied to the microwave transmitting portion, and the electromagnetic energy is applied to the dielectric heating portion.

前記発泡材は、前記型に入れる時に未発泡状態、半発泡状態又は発泡済状態である。前記発泡材の発泡済状態は、ビーズ状、プレート状、ストリップ状、スター状、又は不規則な形態である。前記発泡材の前記未発泡状態は連続発泡構造であり、前記発泡済状態又は半発泡状態は不連続発泡構造である。 The foaming material is in an unfoamed, semi-foamed or foamed state when placed in the mold. The foamed state of the foam material is bead-shaped, plate-shaped, strip-shaped, star-shaped, or irregularly shaped. The non-foamed state of the foaming material has a continuously foamed structure, and the foamed or semi-foamed state has a discontinuous foamed structure.

前記型の前記マイクロ波透過部に前記マイクロ波及び前記電磁エネルギーを印加すると共に、さらに空気圧式、電気式又は油圧式の機械的外力を印加することで、前記マイクロ波透過部を前記誘電加熱部に緊密に合わせる。 By applying the microwave and the electromagnetic energy to the microwave transmitting portion of the mold and further applying a pneumatic, electric or hydraulic mechanical external force, the microwave transmitting portion is heated by the dielectric heating unit. Tightly fit to.

また、本発明は、前記マイクロ波誘電加熱発泡成形方法に適用する型を提供する。本発明の型は、底部が外側に突出するマイクロ波透過部と、頂部が内側に凹み、前記マイクロ波透過部と螺合して受容空間を形成できる誘電加熱部とを有する。 The present invention also provides a mold applied to the microwave dielectric heating foam molding method. The mold of the present invention has a microwave transmitting portion having a bottom projecting outward and a dielectric heating portion having a top recessed inward and capable of forming a receiving space by screwing with the microwave transmitting portion.

前記型は、前記マイクロ波透過部と前記誘電加熱部との間に設けられ、底部が外に突出し、前記誘電加熱部の頂部と螺合して前記受容空間を形成できる中蓋をさらに有する。 The mold is further provided with an inner lid which is provided between the microwave transmitting portion and the dielectric heating portion, has a bottom portion protruding outward, and can be screwed with the top portion of the dielectric heating portion to form the receiving space.

前記マイクロ波加熱部はプラスチック製であり、前記誘電加熱部は金属製である。 The microwave heating unit is made of plastic, and the dielectric heating unit is made of metal.

前記マイクロ波加熱部の外表面及び前記誘電加熱部の内表面にそれぞれ対応するねじ構造を有する。好ましくは、前記中蓋は前記マイクロ波加熱部と共に回転しない。 It has a screw structure corresponding to the outer surface of the microwave heating unit and the inner surface of the dielectric heating unit, respectively. Preferably, the inner lid does not rotate with the microwave heating section.

上記説明から分かるように、本発明において、マイクロ波及び電磁エネルギーを利用する複合式加熱方法を利用するため、それに用いる型は、その一部がマイクロ波透過性を有するプラスチック材料を利用し、その他の構造部分が従来通りに金属材料で製造できるので耐久性を有する。また、本発明において、誘電加熱を利用するため、その熱変換効率及び加熱速度が普通の赤外線による加熱又は電気加熱管による加熱より優れ、エネルギーの節約、常圧又は減圧環境下での発泡成形を達成できる。 As can be seen from the above description, in the present invention, in order to utilize a composite heating method utilizing microwaves and electromagnetic energy, the mold used for the method uses a plastic material in which a part thereof has microwave transparency, and the others. Since the structural part of is made of metal material as before, it is durable. Further, in the present invention, since dielectric heating is used, its heat conversion efficiency and heating rate are superior to those of ordinary infrared heating or electric heating tube heating, and energy saving, foam molding under normal pressure or reduced pressure environment can be performed. Can be achieved.

従来の加熱発泡方法において、材料の充填が緊密ではなく、発泡材のそれぞれの分子が個別に熱源を吸収する。そのため、熱伝導効率が低く、熱均一性が不十分であり、加熱均一性及び熱伝導性の不十分によって発泡成形効果が低くなる問題を生じやすい。本発明において、マイクロ波及び電磁エネルギーを利用する複合式加熱(以下、複合式加熱と略称する)を利用し、さらに特殊な構造を有する型を利用することで、型の内部温度を素早く上昇をさせ、熱均一性を有効に高め、従来のマイクロ波の加熱不均一という問題を改善できる。また、従来の熱風、赤外線、電気加熱管等の加熱方法を改良し、熱損失及びエネルギー消費を低下させ、熱均一性を向上できる。なお、電磁エネルギーの熱変更率が他の方法より高いため、温度の上昇速度が従来の単一加熱源(例えばマイクロ波、電気加熱管、又は熱風等)を利用する方法より早い。よって、従来の物理的又は化学発泡成形を置き換え、別途に設備、例えばプレス発泡、射出発泡、蒸気プレス成形(例えば発泡スチロール、フォームビーズの成形等)、押出成形等の設備を購入する必要がない。なお、本発明の工程及び型によれば、物理発泡材成形体又は化学発泡材成形体等の発泡体を製造でき、別途に機械設備、例えば熱間押出機、射出成形機、蒸気プレス成形機を購入する必要がない。よって、容易に各メーカーの機械に適用でき、高い設置コストを費やす必要がない。 In the conventional heat foaming method, the filling of the material is not tight, and each molecule of the foaming material absorbs the heat source individually. Therefore, the heat conduction efficiency is low, the heat uniformity is insufficient, and the foam molding effect is likely to be lowered due to the insufficient heat uniformity and heat conductivity. In the present invention, compound heating using microwaves and electromagnetic energy (hereinafter abbreviated as composite heating) is used, and by using a mold having a special structure, the internal temperature of the mold can be quickly raised. It is possible to effectively improve the thermal uniformity and improve the problem of the conventional microwave heating non-uniformity. In addition, the conventional heating methods such as hot air, infrared rays, and electric heating tubes can be improved to reduce heat loss and energy consumption and improve thermal uniformity. Since the heat change rate of the electromagnetic energy is higher than that of other methods, the rate of temperature rise is faster than that of the conventional method using a single heating source (for example, microwave, electric heating tube, hot air, etc.). Therefore, it is not necessary to replace the conventional physical or chemical foam molding and separately purchase equipment such as press foam, injection foam, steam press molding (for example, styrofoam, foam bead molding, etc.), extrusion molding, and the like. According to the process and mold of the present invention, a foam such as a physical foam material molded product or a chemical foam material molded product can be produced, and separately mechanical equipment such as a hot extruder, an injection molding machine, or a steam press molding machine can be manufactured. No need to buy. Therefore, it can be easily applied to the machines of each manufacturer, and it is not necessary to spend a high installation cost.

本発明は、物理的又は化学発泡材の成形によってプラスチックの軽量化を達成できる。また、下向きに回転するねじを有する型によれば、型の高さが調整可能となる。なお、型のねじ込む設計によれば、粒子同士間の接触面積を向上させ、エネルギー消費及び成形時間を低減できる。よって、常圧又は減圧環境下で発泡成形体を製造できる。本発明の方法は、化学発泡又は物理発泡に適用できる。マイクロ波及び電磁エネルギーを利用する複合式加熱方法によれば、化学発泡剤の場合、より安定、均一に発泡させ、さらに架橋剤によって溶融物の強度を高めると共に、結晶性及び非結晶性材料の発泡均一性を向上できる。そのため、今まで結晶性材料が有する泡が破れ、又は成形性不良等の問題を解決できる。なお、物理発泡材の場合、架橋剤を添加する必要がなく、複合式加熱によって発泡体に成形できる。物理発泡体は、化学発泡体と異なり、廃棄後にリサイクルでき、環境にやさしい材料である。 The present invention can achieve weight reduction of plastics by molding physical or chemical foaming materials. Also, according to the mold having a screw that rotates downward, the height of the mold can be adjusted. According to the screwing design of the mold, the contact area between the particles can be improved, and energy consumption and molding time can be reduced. Therefore, the foam molded product can be produced under normal pressure or reduced pressure environment. The method of the present invention can be applied to chemical foaming or physical foaming. According to the composite heating method using microwaves and electromagnetic energy, in the case of a chemical foaming agent, foaming is more stable and uniform, and the strength of the melt is increased by a cross-linking agent, and crystalline and non-crystalline materials are used. Foaming uniformity can be improved. Therefore, problems such as bubbles of the crystalline material being broken or poor moldability can be solved. In the case of a physical foaming material, it is not necessary to add a cross-linking agent, and the foam can be formed into a foam by composite heating. Unlike chemical foams, physical foams are environmentally friendly materials that can be recycled after disposal.

本発明の第1実施例のフローチャートである。It is a flowchart of 1st Example of this invention. 本発明の型の第1実施例の模式図である。It is a schematic diagram of the 1st Example of the type of this invention. 本発明の型の第2実施例の模式図である。It is a schematic diagram of the 2nd Example of the type of this invention.

図1を参考しながら説明する。本発明マイクロ波誘電加熱式発泡成形方法の第1実施例は、下記工程1〜3を有する。
工程1:発泡材を型10に入れる。前記型10は、互いに対向する面が螺合して前記型10内に密閉した受容空間を形成できるマイクロ波透過部11及び誘電加熱部13を有する。
工程2:常圧又は減圧環境下で、前記型10に同時にマイクロ波W及び電磁エネルギーEを印加する。好ましくは、前記マイクロ波Wを前記マイクロ波透過部11に印加し、前記電磁エネルギーEを前記誘電加熱部13に印加する。
工程3:前記マイクロ波W及び前記電磁エネルギーEによって前記発泡材を発泡成形体に成形する。
This will be described with reference to FIG. The first embodiment of the microwave dielectric heating type foam molding method of the present invention has the following steps 1 to 3.
Step 1: Put the foam material in the mold 10. The mold 10 has a microwave transmitting portion 11 and a dielectric heating portion 13 capable of forming a closed receiving space in the mold 10 by screwing surfaces facing each other.
Step 2: Under normal pressure or reduced pressure environment, microwave W and electromagnetic energy E are simultaneously applied to the mold 10. Preferably, the microwave W is applied to the microwave transmitting unit 11, and the electromagnetic energy E is applied to the dielectric heating unit 13.
Step 3: The foam material is molded into a foam molded product by the microwave W and the electromagnetic energy E.

前記マイクロ波Wの周波数は、好ましくは100MHz〜3000GHzの範囲にり、更に好ましくは300MHz〜3000GHzの範囲にある。また、前記電磁エネルギーEの仕事率は、好ましくは1W〜2000KWの範囲にあり、前記マイクロ波W及び前記電磁エネルギーEによって成形した前記発泡成形体の発泡状態によって決定する。 The frequency of the microwave W is preferably in the range of 100 MHz to 3000 GHz, more preferably in the range of 300 MHz to 3000 GHz. The power of the electromagnetic energy E is preferably in the range of 1 W to 2000 KW, and is determined by the foamed state of the foamed molded product molded by the microwave W and the electromagnetic energy E.

図2を参考しながら説明する。上記方法に対応する本発明の前記型10の前記マイクロ波透過部11は、好ましくはプラスチック製であり、前記誘電加熱部13は、好ましくは金属製である。前記型10の第1実施例において、前記マイクロ波透過部11及び前記誘電加熱部13は、互いに螺合可能な構造に形成される。好ましくは、前記マイクロ波透過部11の底部が外に突出して前記誘電加熱部13の内凹部にねじ締めて前記受容空間を形成できる。図3を参考しながら説明する。前記型10の第2実施例において、前記マイクロ波透過部11の底部が外に突出せずに平面となり、前記型10は、中蓋12を更に有する。前記中蓋12は、前記誘電加熱部13の内凹部に対応して外に突出する。前記中蓋12及び前記誘電加熱部13を互いにねじ締めて前記受容空間を形成する。前記発泡材は、前記マイクロ波透過部11及び前記誘電加熱部13が螺合して形成した前記受容空間に置く、前記マイクロ波透過部11の突出部によって押して固定され、誘電加熱金属部に合わせて均一に加熱できる。空気圧式、電気式又は油圧式の機械的外力を印加することで、前記マイクロ波透過部11又は前記中蓋12を前記誘電加熱部13に緊密に合わせてもよい。 This will be described with reference to FIG. The microwave transmitting portion 11 of the mold 10 of the present invention corresponding to the above method is preferably made of plastic, and the dielectric heating portion 13 is preferably made of metal. In the first embodiment of the mold 10, the microwave transmitting portion 11 and the dielectric heating portion 13 are formed in a structure that can be screwed into each other. Preferably, the bottom portion of the microwave transmitting portion 11 projects outward and is screwed into the inner recess of the dielectric heating portion 13 to form the receiving space. This will be described with reference to FIG. In the second embodiment of the mold 10, the bottom portion of the microwave transmitting portion 11 is flat without protruding outward, and the mold 10 further has an inner lid 12. The inner lid 12 projects outward corresponding to the inner recess of the dielectric heating unit 13. The inner lid 12 and the dielectric heating portion 13 are screwed together to form the receiving space. The foaming material is pressed and fixed by the protruding portion of the microwave transmitting portion 11 placed in the receiving space formed by screwing the microwave transmitting portion 11 and the dielectric heating portion 13, and is aligned with the dielectric heating metal portion. Can be heated uniformly. By applying a pneumatic, electric or hydraulic mechanical external force, the microwave transmitting portion 11 or the inner lid 12 may be closely aligned with the dielectric heating portion 13.

さらに、本発明の前記型10の第3実施例において、前記マイクロ波透過部11の外表面及び前記誘電加熱部13の内表面にそれぞれ対応するねじ構造(111、131)を有することで、前記マイクロ波透過部11と前記誘電加熱部13を組み合わせた構造の高さを調整できる。それによって、別の型を用意しなくても、前記発泡材を異なる成形体、例えば発泡成形体の厚さが異なるものに成形できる。前記マイクロ波透過部11を前記発泡材に押すことで、より安定して均一に成形できる。 Further, in the third embodiment of the mold 10 of the present invention, by having screw structures (111, 131) corresponding to the outer surface of the microwave transmitting portion 11 and the inner surface of the dielectric heating portion 13, respectively, the above. The height of the structure in which the microwave transmitting portion 11 and the dielectric heating portion 13 are combined can be adjusted. Thereby, the foam material can be molded into different molded bodies, for example, those having different thicknesses of the foamed molded products without preparing another mold. By pressing the microwave transmitting portion 11 against the foaming material, more stable and uniform molding can be performed.

また、本発明の第3実施例において、前記マイクロ波透過部11の外表面及び前記誘電加熱部13の内表面にそれぞれ対応するねじ構造(111、131)を有する場合、好ましくは、更に前記中蓋12を利用する。前記中蓋12を前記誘電加熱部13に設置すれば、前記マイクロ波透過部11と連動して回転されない。そのため、非円形又はその他の非対称的な構造に形成できる。なお、前記マイクロ波透過部11の下向き回転程度によって加熱均一性及び成形効果を調整できる。 Further, in the third embodiment of the present invention, when the outer surface of the microwave transmitting portion 11 and the inner surface of the dielectric heating portion 13 have screw structures (111, 131) corresponding to each of the outer surface, preferably, further in the above. The lid 12 is used. If the inner lid 12 is installed in the dielectric heating unit 13, it will not rotate in conjunction with the microwave transmission unit 11. Therefore, it can be formed into a non-circular or other asymmetric structure. The heating uniformity and the molding effect can be adjusted by the degree of downward rotation of the microwave transmitting portion 11.

さらに、本発明の前記誘電加熱部13は、即時に加熱温度を監視する温度監視装置を設置してもよい。 Further, the dielectric heating unit 13 of the present invention may be provided with a temperature monitoring device that immediately monitors the heating temperature.

前記型10の前記マイクロ波透過部11と前記誘電加熱部13との螺合可能な構造は、CNC加工成形、レーザー加工成形、キャスティング成形、プレス加工成形、砂型鋳造成形、オーバーモールディング成形、ラピッドプロトタイピング、熱間押出成形、射出成形、又は3Dプリント成形等の加工方法によって製造できる。前記螺合可能な構造は、前記型10の前記マイクロ波透過部11と前記誘電加熱部13とを直接に又は間接的に組み合わせることができる。直接に組み合わせるとは、前記加工成形技術によって前記マイクロ波透過部11(上蓋とも称する)、前記中蓋、又は前記誘電加熱部13(下蓋とも称する)に凹凸を加え、前記螺合構造を利用して前記発泡材を発泡体に成形する。間接的に組み合わせるとは、前記型10と前記凹凸とを間接的に組み合わせて、マイクロ波及び電磁エネルギーを利用する複合式加熱方法によって、その凹凸構造及び前記発泡材を前記発泡体に成形する(インサート成形)。 The screwable structure of the microwave transmitting portion 11 of the mold 10 and the dielectric heating portion 13 includes CNC processing molding, laser processing molding, casting molding, press processing molding, sand mold casting molding, overmolding molding, and rapid prototyping. It can be manufactured by processing methods such as typing, hot extrusion molding, injection molding, or 3D print molding. The screwable structure can directly or indirectly combine the microwave transmitting portion 11 of the mold 10 and the dielectric heating portion 13. Direct combination means that the microwave transmitting portion 11 (also referred to as an upper lid), the inner lid, or the dielectric heating portion 13 (also referred to as a lower lid) is made uneven by the processing molding technique, and the screwed structure is used. Then, the foam material is formed into a foam. Indirectly combining means that the mold 10 and the unevenness are indirectly combined, and the uneven structure and the foaming material are formed into the foam by a composite heating method using microwaves and electromagnetic energy. Insert molding).

また、上記方法に対応する本発明の前記発泡材は、基本的に3種類に分けられる。第1種類は、前記型10に入れる前に未発泡状態となる発泡材である。第2種類は、前記型10に入れる前に不完全発泡状態又は半発泡状態となる発泡材である。第3種類は、前記型10に入れる前に発泡済状態となる発泡材である。未発泡状態とは、マイクロ波/電磁エネルギーによる発泡の前の混合工程において、前記発泡材が発泡しない状態である。不完全発泡状態又は半発泡状態とは、マイクロ波/電磁エネルギーによる発泡の前の混合工程において、前記発泡材が発泡したが、その発泡が不完全(半発泡)である状態である。その例としては、発泡剤が不完全に反応され、又は2種類以上の発泡温度が異なる発泡剤を添加すると、発泡材が小さな顆粒状な半発泡体状態になる場合が挙げられる。発泡済状態とは、マイクロ波/電磁エネルギーによって発泡成形する前に、前記発泡材が既に発泡した状態である。その例としては、高圧流体を物理発泡剤とし、連続溶融押出による造粒/造板、高圧流体含浸、溶解平衡、一次加熱発泡、二次加熱発泡、加圧処理等の技術によって発泡材を生成する場合が挙げられ、好ましくは、超臨界流体によって発泡してフォームビーズを形成するか、又は熱可塑性ポリウレタン(E−TPU)を発泡することが挙げられる。発泡済状態の好ましい状態は、ビーズ状、プレート状、ストリップ状、スター状、又は不規則な形態が挙げられる。 Further, the foaming material of the present invention corresponding to the above method is basically classified into three types. The first type is a foaming material that is in a non-foamed state before being placed in the mold 10. The second type is a foaming material that is in an incompletely foamed state or a semi-foamed state before being placed in the mold 10. The third type is a foaming material that is in a foamed state before being placed in the mold 10. The non-foamed state is a state in which the foaming material does not foam in the mixing step before foaming by microwave / electromagnetic energy. The incompletely foamed state or the semi-foamed state is a state in which the foaming material is foamed in the mixing step before the foaming by microwave / electromagnetic energy, but the foaming is incomplete (semi-foamed). An example of this is the case where the foaming agent is incompletely reacted, or when two or more foaming agents having different foaming temperatures are added, the foaming material becomes a small granular semi-foamed state. The foamed state is a state in which the foamed material has already been foamed before being foam-molded by microwave / electromagnetic energy. As an example, a high-pressure fluid is used as a physical foaming agent, and a foam material is produced by techniques such as granulation / plate making by continuous melt extrusion, high-pressure fluid impregnation, dissolution equilibrium, primary heat foaming, secondary heat foaming, and pressure treatment. It is preferable to foam with a supercritical fluid to form foam beads, or to foam thermoplastic polyurethane (E-TPU). Preferred states of the foamed state include beads, plates, strips, stars, or irregular forms.

本発明のマイクロ波誘電加熱式発泡成形方法によって成形した前記発泡成形体は、連続発泡構造及び不連続発泡構造に分けられる。連続発泡構造について、未発泡状態の前記発泡材を前記型10に入れ、発泡させて得られる前記発泡成形体の発泡構造が連続発泡構造である。不連続発泡構造について、不完全発泡状態/半発泡状態及び完全発泡済状態の前記発泡材を使用し、本発明のマイクロ波電磁エネルギー発泡成形方法によって前記発泡成形体を形成し、さらに不完全発泡状態の前記発泡材をもう一度発泡成形させ、又は発泡済状態の前記発泡材を接着することで前記発泡成形体を得るが、前記発泡成形体の各発泡構造の間を接着されるため、不連続発泡構造となる。 The foam molded product molded by the microwave dielectric heating type foam molding method of the present invention is divided into a continuous foam structure and a discontinuous foam structure. Regarding the continuous foaming structure, the foaming structure of the foamed molded product obtained by putting the foaming material in an unfoamed state into the mold 10 and foaming the foamed material is a continuous foaming structure. Regarding the discontinuous foam structure, the foamed material in the incompletely foamed state / semi-foamed state and the completely foamed state is used to form the foamed molded product by the microwave electromagnetic energy foam molding method of the present invention, and further incompletely foamed. The foamed molded product is obtained by foam-molding the foamed material in the state again or adhering the foamed material in the foamed state, but it is discontinuous because it is bonded between the foamed structures of the foamed molded product. It has a foamed structure.

さらに、前記発泡材は、熱可塑性プラスチック材料99.98部以下(好ましくは99部以下)、発泡剤0.1〜30部、及びマイクロ波及び/又は電磁エネルギー吸収剤0.01〜20部を含む。 Further, the foaming material contains 99.98 parts or less (preferably 99 parts or less) of the thermoplastic material, 0.1 to 30 parts of the foaming agent, and 0.01 to 20 parts of the microwave and / or electromagnetic energy absorber. Including.

好ましくは、前記発泡材は、架橋剤0.1〜10部、マイクロ波吸収促進剤0.01〜20部、及び/又は機能性添加剤0.01〜20部をさらに含む。その場合、熱可塑性プラスチック材料は99.77部以下(好ましくは99部以下)であり、前記発泡剤、並びにマイクロ波及び/又は電磁エネルギー吸収剤の含有量は前記と同じである。前記比率に記載の部は、wt%を示す。 Preferably, the foaming agent further comprises 0.1-10 parts of a cross-linking agent, 0.01-20 parts of a microwave absorption accelerator, and / or 0.01-20 parts of a functional additive. In that case, the amount of the thermoplastic plastic material is 99.77 parts or less (preferably 99 parts or less), and the contents of the foaming agent and the microwave and / or electromagnetic energy absorber are the same as described above. The part described in the ratio indicates wt%.

前記熱可塑性プラスチック材料は、結晶性又は非結晶性の液体又は固体材料、及びその共重合体が挙げられる。このような材料は、例えば、ポリエステル熱可塑性樹脂、動的架橋熱可塑性樹脂、ポリスチレン系樹脂、ポリオレフィン系樹脂、ゴム、ケイ素樹脂、フッ素樹脂、ポリカーボネート 類又は生分解性樹脂が挙げられ、好ましくは、ポリエチレン(PE)、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリスチレン(PS)、アクリロニトリルーブタジエンースチレン共重合体(ABS)、フェノール樹脂(PF)、尿素樹脂(UF)、ポリビニルアルコール(PVA)、エチレンプロピレンゴム(EPM)、エチレンプロピレンジエンゴム(EPDM)、ニトリルゴム(NBR)、オレフィン系エラストマー(TPO)、動的架橋型熱可塑性エラストマー(TPV)、ポリエステル系熱可塑性エラストマー(TPEE)、エチレン酢酸ビニル(EVA)、熱可塑性ポリウレタン(TPU)、ポリウレタン(PU)、ポリイソシアヌレート(PIR)、ポリアミド樹脂(PA)、ポリエチレンテレフタラート(PET)、ポリ乳酸(PLA)、ヒドロキシブチレート−バリレート共重合体(PHBV)、ポリブチレンサクシネート(PBS)、メラミン(Melamine)、ポリエステルポリオール(Polyester Polyol、例えばポリエステルジオール(Polyester Diol))、ポリカプロラクトン(PCL)、乳酸−グリコール酸共重合体、ポリ3−ヒドロキシブチレート(P3HB)、ポリメタクリル酸メチル(PMMA)、エポキシ樹脂(Epoxy)、ポリテトラメチレンカーボネート、液体シリコーンゴム、ポリエチレンテレフタレート−1,4−シクロヘキサンジメチルエステル(PETG)、又はテレフタル酸−1,4−シクロヘキサンジメタノール−2,2,4,4−テトラメチル−1,3−シクロブタンジオール共重合体(Tritan Copolyester)が挙げられる。 Examples of the thermoplastic plastic material include crystalline or non-crystalline liquid or solid materials and copolymers thereof. Examples of such a material include polyester thermoplastic resin, dynamically crosslinked thermoplastic resin, polystyrene-based resin, polyolefin-based resin, rubber, silicon resin, fluororesin, polycarbonates, and biodegradable resin. Polyethylene (PE), Polyester (PP), Polyvinyl Chloride (PVC), Polystyrene (PS), Acrylonitrile-butadiene-styrene copolymer (ABS), Phenolic resin (PF), Urea resin (UF), Polyvinyl alcohol (PVA) ), Ethethylene propylene rubber (EPM), ethylene propylene diene rubber (EPDM), nitrile rubber (NBR), olefin-based elastomer (TPO), dynamically cross-linked thermoplastic elastomer (TPV), polyester-based thermoplastic elastomer (TPEE), Ethylene vinyl acetate (EVA), thermoplastic polyurethane (TPU), polyurethane (PU), polyisocyanurate (PIR), polyamide resin (PA), polyethylene terephthalate (PET), polylactic acid (PLA), hydroxybutyrate-variate Copolymer (PHBV), Polybutylene succinate (PBS), Melamine, Polyester Polyol, such as Polyester Diol, Polycaprolactone (PCL), Lactobacillus-glycolic acid copolymer, Poly 3-Hydroxybutyrate (P3HB), polymethylmethacrylate (PMMA), epoxy resin (Epoxy), polytetramethylene carbonate, liquid silicone rubber, polyethylene terephthalate-1,4-cyclohexanedimethylester (PETG), or terephthalic acid- Examples thereof include 1,4-cyclohexanedimethanol-2,2,4,4-tetramethyl-1,3-cyclobutanediol copolymer (Tritan Polyester).

前記発泡剤は、物理発泡剤、化学発泡剤、又は物理化学複合発泡剤(即ち、物理発泡剤及び化学発泡剤両方を用いる)が挙げられる。前記物理発泡剤は、膨脹ミクロスフェア(発泡ミクロスフェア)、中空ミクロスフェア(例えば、ガラス中空ミクロスフェア、セラミック中空ミクロスフェア、又はフェノール樹脂中空ミクロスフェア等)、粉末(例えば、ガラス繊維又は炭素繊維等粉末)、気体物理発泡剤、液体物理発泡剤が挙げられる。前記気体物理発泡剤は、ペンタン、ヘキサン、ヘプタン、ジクロロメタン、ジクロロエタン、トリクロロメタン、ブタン、イソヘプタン、窒素ガス、二酸化炭素ガス、アルゴンガス、ヘリウムガス、酸素ガス、ネオンガス、空気等が挙げられる。前記液体物理発泡剤は、脂肪族炭化水素、低沸点(<300℃)アルコール、エステル、エーテル、ケトン、芳香族炭化水素、フロン類、炭化水素(例えばハイドロフルオロオレフィン)、ハイドロクロロフルオロカーボン、ハイドロフルオロカーボン、ハロゲン化カーボン、パーフルオロプロパン、石油エーテル、エタノール、ジメチルエーテル、ジエチルエーテル、メチルエチルエーテル、トルエン、アセトン、クロロフルオロメタン、トリフルオロメタン、1,1−ジフルオロエタン、1,1,1,2−テトラフルオロエタン、クロロメタン、クロロエタン、ジクロロメタン、次亜フッ素酸、シクロヘキサン、シクロペンタンが挙げられる。前記化学発泡剤は、無機化学発泡剤及び有機化学発泡剤が挙げられる。前記無機化学発泡剤は、炭酸水素ナトリウム、炭酸ナトリウム、炭酸アンモニウム、炭酸水素アンモニウム、亜硝酸アンモニウム、水素化ホウ素カリウム、水素化ホウ素ナトリウム、過酸化水素等が挙げられる。前記有機化学発泡剤は、アゾジカーボンアミド(Azodicarbonamide、AC)、アゾビスイソブチロニトリル(Azobisisobutyronitrile、AIBN)、アゾジカルボン酸ジイソプロピル(Diisopropyl Azodicarboxylate、DIPA)、N,N’−ジニトロソペンタメチレンテトラアミン(N,N’−Dinitroso Pentamethylene Tetramine、DPT又はDNPT)、p−トルエンスルホニルヒドラジド(P−Toluene Sulfonyl Hydrazide、TSH)、4,4’〜オキシジベンゼンスルホニルヒドラジド(4,4’−Oxydibenzenesulfonyl Hydrazide、OBSH)、ベンゼンスルホニルヒドラジド(Benzenesulfonyl Hydrazide、BSH)、トリヒドラジドトリアジン(Trihydrazine Triazine、THT)、p−トルエンスルホニルセミカルバジド(P−Toluenesulfonyl Semicarbazide、発泡剤K)、2,2’−アゾビス(2,4−ジメチルバレロニトリル)(2,2’−Azobis(2,4−dimethyl)valeronitrile、ABVN)、硫酸ヒドラジド類、アゾニトリル化物、アゾジカルボン酸誘導体、ベンゼンスルホニルヒドラジド化合物、ニトロソ化合物、ジアゾベンゼン化合物、尿素等化合物、及びそれらの共重合体が挙げられる。 Examples of the foaming agent include a physical foaming agent, a chemical foaming agent, or a physicochemical composite foaming agent (that is, both a physical foaming agent and a chemical foaming agent are used). The physical foaming agent includes expanded microspheres (foamed microspheres), hollow microspheres (eg, glass hollow microspheres, ceramic hollow microspheres, phenol resin hollow microspheres, etc.), powders (eg, glass fibers, carbon fibers, etc.). Powder), gaseous physical foaming agent, liquid physical foaming agent. Examples of the gaseous physical foaming agent include pentane, hexane, heptane, dichloromethane, dichloroethane, trichloromethane, butane, isoheptane, nitrogen gas, carbon dioxide gas, argon gas, helium gas, oxygen gas, neon gas, air and the like. The liquid physical foaming agent includes aliphatic hydrocarbons, low boiling point (<300 ° C.) alcohols, esters, ethers, ketones, aromatic hydrocarbons, chlorofluorocarbons, hydrocarbons (for example, hydrofluoroolefins), hydrochlorofluorocarbons, and hydrofluorocarbons. , Carbon halide, perfluoropropane, petroleum ether, ethanol, dimethyl ether, diethyl ether, methyl ethyl ether, toluene, acetone, chlorofluoromethane, trifluoromethane, 1,1-difluoroethane, 1,1,1,2-tetrafluoro Examples thereof include ethane, chloromethane, chloroethane, dichloromethane, hypochlorofluorocarbons, cyclohexanes and cyclopentanes. Examples of the chemical foaming agent include an inorganic chemical foaming agent and an organic chemical foaming agent. Examples of the inorganic chemical foaming agent include sodium hydrogen carbonate, sodium carbonate, ammonium carbonate, ammonium hydrogen carbonate, ammonium nitrite, potassium borohydride, sodium borohydride, hydrogen peroxide and the like. The organic chemical effervescent agent includes azodicarbonamide (AC), azobisisobutyronirile (AIBN), diisopropyl azodicarboxylate (Diisopropyl Azodicarboxylate, DIPA), N, N'-dinitro. Amin (N, N'-Ditintroso Pentamethylene Hydrazide, DPT or DNPT), p-Toluene Sulfonyl Hydrazide, TSH, 4,4'~ Oxydibenzenesulfonyl Hydrazide (4,4'-Oxydrazide) OBSH), benzenesulfonyl hydrazide (Bendenesulfonyl Hydrazide, BSH), trihydrazidotriazine (Trit), p-toluenesulfonyl semicarbazide (P-Toluenesulfonyl Azobisisobuty, P-Toluenesulfonyl Semicarbazid, Dimethylvaleronitrile) (2,2'-Azobis (2,4-dimethyl) valeronitrile, ABVN), hydrazides sulfate, azonitriles, azodicarboxylic acid derivatives, benzenesulfonyl hydrazide compounds, nitroso compounds, diazobenzene compounds, urea and other compounds , And their copolymers.

前記架橋剤は、1種類又は2種類以上の架橋剤を添加してもよい。前記架橋剤の種類は、ジクミルペルオキシド(dicumyl peroxide、DCP)、2,5−ジメチル−2,5−ジ(tert−ブチルペルオキシ)ヘキサン(2,5−dimethyl−2,5−di(tert−butyl peroxy)−hexane、商品名L−101)、ベンゾイルペルオキシド(benzoyl peroxide、BPO)、ジ−tert−ブチルペルオキシド(di−tert−butylperoxide、TBP)、2,5−ジメチル−2−ヒドロキシ−5−tert−ブチルペルオキシ−3−ヘキシン(2、5−dimethyl−2−hydroxy−5−tert−butyl peroxy−3−hexyne、商品名OP−2)、トリアリルイソシアヌレート(triallyl isocyanurate、TAIC)、ジ−tert−ブチルペルオキシド(di−tert−butyl peroxide、DTBP)、アクリル酸(acrylic acid、AA)、ジアセチルペルオキシド(diacetyl peroxide)、tert−ブチルペルオキシピバレート(tert−butyl peroxypivalate、DTBP)、tert−ブチルペルオキシイソプロピルベンゼン(tert−butyl peroxyisopropylbenzene)、1,1−ジ(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン(1、1−di−(tert−butyl peroxy)−3,3,5−trimethylcyclohexane)、2,5−ジメチル−2,5−ジ(tert−ブチルペルオキシ)ヘキサン(2,5−dimethyl−2,5−di−(tert−butylperoxy)hexane)、ブチル−4,4−ビス(tert−ブチルジオキシ)バレラート(butyl−4,4−bis(tert−butyldioxy)valerate)、ビス(2,4−ジクロロベンゾイル)ペルオキシド(bis(2,4−dichlorobenzoyl)peroxide)、ビス(4−メチルベンゾイル)ペルオキシド(bis(4−methylbenzoyl)peroxide)、1,4−ジ(2−tert−ブチルペルオキシイソプロピル)ベンゼン(1,4−di−(2−tert−butylperoxyisopropyl)benzene)、tert−ブチルペルオキシベンゾエート(tert−butyl peroxybenzoate)、tert−ブチル−3,5,5−トリメチルペルオキシヘキサノアート(tert−butyl−3,5,5−trimethylperoxyhexanoate)、tert−ブチルペルオキシ−2−エチルヘキシルカーボネート(tert−butylperoxy−2−ethylhexyl carbonate)、トリオキサシクロヘプタン化合物、3,3,5,7,7−ペンタメチル−1,2,4−トリオキセパン(3,3,5,7,7−pentamethyl−1,2,4−trioxepane)、ラウロイルペルオキシド(lauroyl peroxide)、ジ(4−tert−ブチルシクロヘキシル)ペルオキシジカーボネート(di(4−tert−butylcyclohexyl)peroxydicarbonate)、ジセチルペルオキシジカーボネート(dicetyl peroxydicarbonate)、ジミリスチルペルオキシジカーボネート(dimyristyl peroxydicarbonate)、tert−アミルペルオキシピバレート(tert−amyl peroxypivalate)、ジ−3−メトキシブチルエステルペルオキシジカーボネート(di−3−methoxybutyl peroxydicabonate)、ジイソブチリルペルオキシド(diisobutyryl peroxide)、tert−ブチルペルオキシネオデカノエート(tert−butyl peroxyneodecanoate)、tert−ブチルペルオキシネオヘプタノエート(tert−butyl peroxyneoheptanoate)、ジ(3,5,5−トリメチルヘキサノイル)ペルオキシド(di(3,5,5−trimethylhexanoyl)peroxide)、1,1,3,3−テトラメチルブチルペルオキシネオデカノエト(1,1,3,3−tetramethylbutyl peroxyneodecanoate)、クメンペルオキシネオデカノエト(cumyl peroxyneodecanoate)、ジ(2−エチルヘキシル)ペルオキシジカーボネート(di(2−ethylhexyl)peroxydicarbonate)、ビス(イソプロピル)ペルオキシジカーボネート(bis(isopropyl)peroxydicarbonate)、1,1−ジ(tert−ブチルペルオキシ)−3,3,5−トリメチルシクロヘキサン(1,1−di(tert−butylperoxy)−3,3,5−trimethylcyclohexane)、2,2’−アゾビス(2−メチルブチロニトリル)(2、2’−azobis(2−methylbutyronitrile))、デカノイルペルオキシド(decanoyl peroxide)、1,3−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン(1,3−bis(tert−butylperoxyisopropyl)benzene)、1,4−ビス(tert−ブチルペルオキシイソプロピル)ベンゼン(1,4−bis(tert−butylperoxy−isopropyl)benzene)、2,5−ジメチル−2,5−ジ(2−エチルヘキサノイルペルオキシ)ヘキサン(2,5−dimethyl−2,5−di(2−ethylhexanoylperoxy)hexane)、tert−アミルペルオキシ−2−エチルヘキシルカーボネート(tert−amylperoxy−2−ethylhexyl carbonate)、tert−ブチルヒドロペルオキシド(tert−butyl hydroperoxide)、3,5−ジイソプロピルベンゼンヒドロペルオキシド(3,5−diisopropylbenzene hydroperoxide)、無水マレイン酸(melaic anhydride、MAH)等ペルオキシド及びその化合物が挙げられる。 As the cross-linking agent, one kind or two or more kinds of cross-linking agents may be added. The types of the cross-linking agent are dicumyl peroxide (DCP), 2,5-dimethyl-2,5-di (tert-butylperoxy) hexane (2,5-dimethyl-2,5-di (tert-)). butyl peroxide (BPO), trade name L-101), benzoyl peroxide (BPO), di-tert-butyl peroxide, TBP, 2,5-dimethyl-2-hydroxy-5- tert-butylperoxy-3-hexine (2,5-dimethyl-2-hydroxy-5-tert-butyl peroxide, trade name OP-2), triallyl isocyanurate (TAIC), di- tert-butyl peroxide (DTBP), acrylic acid (AA), diacetyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxide, tert-butyl peroxide, tert-butyl peroxide, tert-butyl peroxide, AA. Isopropylbenzene (tert-butyl peroxide), 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane (1,1-di- (tert-butyl peroxide) -3,3,5-trimethylcyclohexane) ), 2,5-Dimethyl-2,5-di (tert-butylperoxy) hexane (2,5-dimethyl-2,5-di- (tert-butylperoxy) hexane), butyl-4,4-bis (tert) -Butyldioxy) Valerate (butyl-4,4-bis (tert-butyldioxy) peroxide), bis (2,4-dichlorobenzoyl) peroxide (bis (2,4-dichlorobenzoyl) peroxide), bis (4-methylbenzoyl) peroxide (Bis (4-methylbenzoyl) peroxide), 1,4-di (2-tert-butylperoxyisopropyl) benzene (1,4-di- (2-tert-butylperoxyisopropyl) be nzene), tert-butyl peroxybenzoate, tert-butyl-3,5,5-trimethylperoxyhexanoate (tert-butyl-3,5,5-trimethylperoxyhexanoate), tert-butylperoxy-2 -Ethylhexyl carbonate (tert-butylperoxy-2-ethylhexyl carbide), trioxacycloheptane compound, 3,3,5,7,7-pentamethyl-1,2,4-trioxepan (3,3,5,7,7-) pentamethyl-1,2,4-trioxepane), lauroyl peroxide, di (4-tert-butylcyclohexyl) peroxydicarbonate (di (4-tert-butylcyclohexyl) peroxydicyclodicarbonate, dicetylperoxydicarbonate). ), Dimyristyl peroxydicarbonate, tert-amyl peroxypivalate, di-3-methoxybutyl ester peroxydicarbonate, di-3-methoxybutylibiyl peroxide. Peroxide), tert-butyl peroxyneodecanoate, tert-butyl peroxyneoheptanoate, di (3,5,5-trimethylhexanoyl) peroxide (3,5,5-trimethylhexanoyl) , 5,5-trimethylhexanoyl) peroxide), 1,1,3,3-tetramethylbutyl peroxyneodecanoeto (1,1,3,3-tetramethylbutyl peroxide peroxide), cumemperoxyneodecanoate. Di (2-ethylhexyl) peroxydicarbonate (di (2-ethylhexyl) peroxide), bis (a) Sopropyl) peroxydicarbonate (bis (isopropyl) peroxide peroxide), 1,1-di (tert-butylperoxy) -3,3,5-trimethylcyclohexane (1,1-di (tert-butylperoxy) -3,3,5 -Trimethylcyclohexane), 2,2'-azobis (2-methylbutyronitrile) (2,2'-azobis (2-methylbutyrontile)), decanoyl peroxide, 1,3-bis (tert-butylperoxy) Isopropyl) benzene (1,3-bis (tert-butylperoxy-isopropyl) bendene), 1,4-bis (tert-butylperoxyisopropyl) benzene (1,4-bis (tert-butylperoxy-isopropyl) bendene), 2,5- Dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane (2,5-dimethyl-2,5-di (2-ethylhexanoylperoxy) hexane), tert-amylperoxy-2-ethylhexyl carbonate (tert-amylperoxy-) 2-ethylhexyl peroxide), tert-butyl hydroperoxide, 3,5-diisopropylbenzene hydroperoxide (3,5-diisopropylbendene peroxide peroxide), maleic anhydride (melaic peroxide), male peroxide peroxide (melaic peroxide) Can be mentioned.

本発明の前記不完全発泡状態/半発泡状態又は完全発泡済状態の物理発泡材又は化学発泡材は、前記架橋剤を添加しなくて単独に、又は化学発泡剤、物理発泡剤、発泡ミクロスフェア又はフォームビーズと組み合わせて使用し、更にマイクロ波及び電磁エネルギー複合式加熱によって不連続発泡構造又は連続発泡構造に成形できる。 The incompletely foamed / semi-foamed or fully foamed physical or chemically foamed material of the present invention can be used alone without the addition of the cross-linking agent, or the chemical foaming agent, physical foaming agent, foamed microspheres. Alternatively, it can be used in combination with foam beads and can be further formed into a discontinuous foam structure or a continuous foam structure by microwave and electromagnetic energy composite heating.

前記マイクロ波及び/又は電磁エネルギー吸収剤は、前記発泡材がマイクロ波及び/又は電磁エネルギーの吸収性を持つように用いられ、下記材料の1種類、又は1種類以上を組み合わせて使用できる。前記材料は、マイクロ波吸収性材料及び電磁エネルギー吸収熱伝導性材料を含む。前記マイクロ波吸収性材料は、窒化物、酸化物、炭化物、グラフェン、ガラス繊維、炭素繊維、セルロースナノクリスタル等が挙げられる。前記窒化物は、窒化ホウ素、窒化ケイ素、窒化バナジウム、窒化チタン、窒化ガリウム、窒化アルミニウムが挙げられる。前記酸化物は、酸化アルミニウム、酸化マグネシウム、酸化亜鉛、酸化ジルコニウム、酸化鉄、酸化ケイ素、酸化チタン、酸化銅が挙げられる。前記炭化物は、炭化ケイ素、炭化バナジウム、炭化チタン、炭化ホウ素、炭化ニオブ、炭化モリブデン、炭化タンタル、炭化クロム、炭化ハフニウム、炭化ジルコニウム、炭化タングステン、炭素繊維、カーボンナノチューブが挙げられる。前記電磁エネルギー吸収熱伝導性材料は、ナノ元素粉末、例えばナノグラファイト粉末、ナノモリブデン粉末、ナノケイ素粉末、ナノチタン粉末、ナノコバルト粉末、ナノビスマス粉末、ナノ金粉末、ナノ銀粉末、ナノ銅粉末、ナノアルミニウム粉末、ナノ亜鉛粉末、ナノスズ粉末、ナノニッケル粉末、ナノ鉄粉末、ナノタングステン粉末が挙げられる。 The microwave and / or electromagnetic energy absorber is used so that the foam material has the ability to absorb microwave and / or electromagnetic energy, and one or a combination of the following materials can be used. The material includes a microwave absorbing material and an electromagnetic energy absorbing heat conductive material. Examples of the microwave absorbing material include nitrides, oxides, carbides, graphene, glass fibers, carbon fibers, cellulose nanocrystals and the like. Examples of the nitride include boron nitride, silicon nitride, vanadium nitride, titanium nitride, gallium nitride, and aluminum nitride. Examples of the oxide include aluminum oxide, magnesium oxide, zinc oxide, zirconium oxide, iron oxide, silicon oxide, titanium oxide and copper oxide. Examples of the carbide include silicon carbide, vanadium carbide, titanium carbide, boron carbide, niobium carbide, molybdenum carbide, tantalum carbide, chromium carbide, hafnium carbide, zirconium carbide, tungsten carbide, carbon fiber, and carbon nanotube. The electromagnetic energy absorbing thermal conductive material includes nanoelement powder, for example, nanographite powder, nanomolybdenum powder, nanosilicon powder, nanotitanium powder, nanocobalt powder, nanobismus powder, nanogold powder, nanosilver powder, nanocopper powder, nano. Examples thereof include aluminum powder, nanozinc powder, nanotin powder, nanonickel powder, nanoiron powder, and nanotungsten powder.

前記マイクロ波吸収促進剤は、マイクロ波吸収性を促進するように、前記発泡材に外添してマイクロ波加熱均一度を促進するために用いられる(前記熱可塑性プラスチック材料、発泡剤(ミクロスフェア、発泡剤)、マイクロ波/電磁エネルギー吸収剤、架橋剤、及び機能性添加剤は、内添成分に属する)。前記マイクロ波吸収促進剤は、好ましくは前記不完全発泡状態/半発泡状態又は完全発泡済状態の発泡材に添加し、発泡材の表面に付着することで、マイクロ波吸収効果を促進できる。続きに、マイクロ波照射の反応メカニズムについて説明する。簡単に言えば、双極子分極及びイオン伝導において、マイクロ波場の作用では、双極子又はイオンが電界(又は磁界)の振動変換による分子運動又は誘電損失と一致しないことによって発熱する。そのため、イオン化可能な材料、例えば界面活性剤又は塩類は、マイクロ波場又は電磁エネルギー場の作用で加熱効率及び熱伝導率を向上する効果を有する。微視的に見ると、イオン化可能な材料は、発泡材に吸着し、発泡材の表面に吸着する空気を除去することで、空気によって発泡材粒子同士間に生じる隙間を減少できる。そのため、発泡構造の粘着、結合状態を改善し、熱伝導率及び加熱速度を向上できる。本発明の前記マイクロ波吸収促進剤は、好ましくは、極性液体又は極性物質を含む液体、もしくは電離可能/イオン化可能な液体であり、例えば、水、界面活性剤、塩類、有機酸、有機アルコール等を単独又は前記素材と組み合わせて使用できる。前記界面活性剤は、カチオン界面活性剤、アニオン界面活性剤、両性型界面活性剤、及び非イオン界面活性剤が含まれる(そのうち、前記非イオン界面活性剤は電離しないが、イオン化材料を発泡材に安定に吸着する効果を有する)。前記界面活性剤は、その熔点が低いため、マイクロ波/電磁エネルギーを吸収し、前記発泡材の表面を素早く加熱して前記発泡材同士を粘着する効果を有する。前記有機酸、有機アルコールは、好ましくは炭素鎖の数が6以下である。前記塩類は、金属イオン、アンモニウムイオン、酸基イオン、非金属イオン結合の化合物が挙げられる。前記マイクロ波吸収促進剤が良好なマイクロ波吸収性を有する共に優れた熱伝導性を有する。工程温度に応じて高沸点又は低沸点を有する極性液体を選択できる。工程温度が高い場合、高沸点を有する極性液体を使用する。逆に、工程温度が低い場合、低沸点の極性液体を使用する。前記マイクロ波吸収促進剤は、高熔点のフォームビーズを成形する時に安定に成形できない問題を改善し、フォームビーズ同士間の粘着力を向上させ、破裂又は強度不足等の問題を避ける。 The microwave absorption accelerator is used to promote microwave heating uniformity by externally adding to the foam material so as to promote microwave absorption (the thermoplastic plastic material, a foaming agent (microsphere)). , Foaming agents), microwave / electromagnetic energy absorbers, cross-linking agents, and functional additives belong to the internal components). The microwave absorption accelerator can be preferably added to the foaming material in the incompletely foamed state / semi-foamed state or the completely foamed state and adhered to the surface of the foaming material to promote the microwave absorption effect. Next, the reaction mechanism of microwave irradiation will be described. Simply put, in dipole polarization and ionic conduction, the action of microwave fields generates heat because the dipoles or ions do not match the molecular motion or dielectric loss due to the vibrational conversion of the electric field (or magnetic field). Therefore, ionizable materials such as surfactants or salts have the effect of improving heating efficiency and thermal conductivity by the action of a microwave field or an electromagnetic energy field. From a microscopic point of view, the ionizable material is adsorbed on the foaming material, and by removing the air adsorbed on the surface of the foaming material, the gap created between the foaming material particles by the air can be reduced. Therefore, the adhesion and the bonding state of the foamed structure can be improved, and the thermal conductivity and the heating rate can be improved. The microwave absorption accelerator of the present invention is preferably a polar liquid or a liquid containing a polar substance, or an ionizable / ionizable liquid, for example, water, a surfactant, salts, organic acids, organic alcohols and the like. Can be used alone or in combination with the above materials. The surfactant includes a cationic surfactant, an anionic surfactant, an amphoteric surfactant, and a nonionic surfactant (of which the nonionic surfactant does not ionize, but the ionizing material is a foaming material. Has the effect of stably adsorbing). Since the surfactant has a low melting point, it has the effect of absorbing microwave / electromagnetic energy and rapidly heating the surface of the foaming material to adhere the foaming materials to each other. The organic acid and the organic alcohol preferably have 6 or less carbon chains. Examples of the salts include compounds having a metal ion, an ammonium ion, an acid group ion, and a non-metal ion bond. The microwave absorption accelerator has good microwave absorption and excellent thermal conductivity. A polar liquid having a high boiling point or a low boiling point can be selected depending on the process temperature. If the process temperature is high, use a polar liquid with a high boiling point. On the contrary, when the process temperature is low, a polar liquid having a low boiling point is used. The microwave absorption accelerator improves the problem that the foam beads having a high melting point cannot be molded stably, improves the adhesive force between the foam beads, and avoids problems such as bursting or insufficient strength.

前記機能性添加剤は、機能性を持つように用いられ、可塑剤、滑剤、界面活性剤、気泡調整剤、難燃剤、カップリング剤、増強剤、酸化防止剤、帯電防止剤、熱安定剤、光安定剤、着色剤、加工助剤、耐衝撃性改良剤、無機粉末、フィラー粉末が挙げられる。前記可塑剤は、安息香酸エステル(例えば安息香酸メチル、安息香酸エチル、ジプロピレングリコールジベンゾアート及びその誘導体)、エステル類化合物(例えばクエン酸トリエチル、クエン酸トリメチル、クエン酸アセチルトリエチルエステル及びその誘導体)、エーテル類化合物(例えばアジピン酸エーテルエステル、エチレングリコールブチルエーテルエステル及びその誘導体)、ポリカプロラクトン化合物(例えばポリカプロラクトンジオール及びその誘導体)又はカーボネート化合物(例えば炭酸ジメチル、炭酸ジフェニル及びその誘導体)が挙げられる。前記界面活性剤は、アニオン界面活性剤、カチオン界面活性剤、非イオン界面活性剤、両性型界面活性剤が挙げられる。前記気泡調整剤は、ホウ酸亜鉛、ホウ砂、リン酸系核剤、フェノール系核剤、アミン系核剤、ポリフルオロエチレン系樹脂粉末が挙げられる。前記無機粉末は、タルク粉末、炭酸カルシウム、カオリン、ゼオライト、マイカ粉末、チオ硫酸ナトリウムが挙げられる。前記フィラー粉末は、有機ミクロスフェア、無機ミクロスフェア、金属粒子、金属酸化物ミクロスフェアが挙げられ、本発明の発泡成形体のプラスチック減量化及び軽量化の効果を有すると共に、発泡成形体の物理的強度、例えば耐摩耗性を向上できる。そのうち、前記ミクロスフェアは、中実ミクロスフェア又は中空ミクロスフェア(軽量化効果を有する)であってもよい。前記有機ミクロスフェアは、ポリエステルミクロスフェア、ポリ塩化ビニリデンミクロスフェア、アクリル樹脂ミクロスフェア、フェノール樹脂ミクロスフェア、ポリ乳酸ミクロスフェア、ポリスチレンミクロスフェア、エポキシ樹脂ミクロスフェア、ポリアニリンミクロスフェア、ポリアミドミクロスフェア、メラミン/ホルムアルデヒドミクロスフェアが挙げられる。前記無機ミクロスフェアは、ガラスミクロスフェア、セラミックミクロスフェア、二酸化ケイ素ミクロスフェア、カーボンミクロスフェア、炭酸カルシウムミクロスフェア、グラフェンミクロスフェアが挙げられる。前記金属粒子は、マグネシウム、アルミニウム、ジルコニウム、カルシウム、チタン、バナジウム、クロム、コバルト、ニッケル、銅、ゲルマニウム、モリブデン、銀、インジウム、スズ、タングステン、イリジウム、プラチナ、鉄、又は金等の粒子が挙げられる。前記金属酸化物ミクロスフェアは、酸化アルミニウムミクロスフェアが挙げられる。前記ミクロスフェアは、単独または組み合わせて使用できる。また、前記ミクロスフェアの表面に表面処理を施して混合の均一性を高めてもよい。前記表面処理は、例えば、ポリシロキサン化合物又は含フッ素化合物を使用して表面張力を下げる処理が挙げられる。 The functional additive is used to have functionality, and is used as a plasticizer, lubricant, surfactant, bubble conditioner, flame retardant, coupling agent, enhancer, antioxidant, antistatic agent, heat stabilizer. , Light stabilizers, colorants, processing aids, impact resistance improvers, inorganic powders, filler powders. The plasticizer includes benzoic acid esters (for example, methyl benzoate, ethyl benzoate, dipropylene glycol dibenzoate and derivatives thereof), and ester compounds (for example, triethyl citrate, trimethyl citrate, acetyltriethyl citrate ester and derivatives thereof). , Ether compounds (eg, adipic acid ether ester, ethylene glycol butyl ether ester and derivatives thereof), polycaprolactone compounds (eg, polycaprolactone diol and derivatives thereof) or carbonate compounds (eg, dimethyl carbonate, diphenyl carbonate and derivatives thereof). Examples of the surfactant include anionic surfactants, cationic surfactants, nonionic surfactants, and amphoteric surfactants. Examples of the bubble adjusting agent include zinc borate, borax, phosphoric acid-based nucleating agent, phenol-based nucleating agent, amine-based nucleating agent, and polyfluoroethylene-based resin powder. Examples of the inorganic powder include talc powder, calcium carbonate, kaolin, zeolite, mica powder, and sodium thiosulfate. Examples of the filler powder include organic microspheres, inorganic microspheres, metal particles, and metal oxide microspheres. The filler powder has the effect of reducing the amount of plastic and the weight of the foam molded product of the present invention, and the physical foam molded product. Strength, such as abrasion resistance, can be improved. Among them, the microsphere may be a solid microsphere or a hollow microsphere (having a weight reduction effect). The organic microspheres include polyester microspheres, polyvinylidene chloride microspheres, acrylic resin microspheres, phenol resin microspheres, polylactic acid microspheres, polystyrene microspheres, epoxy resin microspheres, polyaniline microspheres, polyamide microspheres, and melamine /. Formaldehyde microspheres can be mentioned. Examples of the inorganic microspheres include glass microspheres, ceramic microspheres, silicon dioxide microspheres, carbon microspheres, calcium carbonate microspheres, and graphene microspheres. Examples of the metal particles include particles such as magnesium, aluminum, zirconium, calcium, titanium, vanadium, chromium, cobalt, nickel, copper, germanium, molybdenum, silver, indium, tin, tungsten, iridium, platinum, iron, and gold. Be done. Examples of the metal oxide microsphere include aluminum oxide microsphere. The microspheres can be used alone or in combination. Further, the surface of the microsphere may be surface-treated to improve the uniformity of mixing. Examples of the surface treatment include a treatment of lowering the surface tension by using a polysiloxane compound or a fluorine-containing compound.

表1において、前記熱可塑性プラスチック材料としてEVA又はPEを使用する本発明の2つの実施例を示す。 Table 1 shows two embodiments of the present invention using EVA or PE as the thermoplastic material.

本発明は、上記実施例に限定されない。本発明の精神に基づいてなされた均等的な変更及び改良は、いずれも本発明の範囲に含まれる。 The present invention is not limited to the above examples. Equal changes and improvements made in the spirit of the invention are all within the scope of the invention.

10 型
11 マイクロ波透過部
111 マイクロ波透過部の雄ねじ構造
13 誘電加熱部
131 誘電加熱部の雌ねじ構造
W マイクロ波
E 電磁エネルギー
Type 10 11 Microwave transmission part 111 Male thread structure of microwave transmission part 13 Dielectric heating part 131 Female screw structure of dielectric heating part W Microwave E Electromagnetic energy

Claims (10)

発泡材を型に入れる工程と、
常圧又は減圧環境下で、前記型に同時にマイクロ波及び電磁エネルギーを印加する工程と、
前記マイクロ波及び前記電磁エネルギーによって前記発泡材を連続発泡構造又は不連続発泡構造を有する発泡成形体に発泡する工程とを有し、
前記型は、互いに対向する面が螺合して前記型内に密閉した受容空間を形成できるマイクロ波透過部及び誘電加熱部を有し、
前記マイクロ波を前記マイクロ波透過部に印加し、前記電磁エネルギーを前記誘電加熱部に印加することを特徴とする、マイクロ波誘電加熱式発泡成形方法。
The process of putting the foam material into the mold and
A step of simultaneously applying microwaves and electromagnetic energy to the mold under normal pressure or reduced pressure environment,
It has a step of foaming the foaming material into a foamed molded product having a continuously foamed structure or a discontinuous foamed structure by the microwave and the electromagnetic energy.
The mold has a microwave transmitting portion and a dielectric heating portion capable of forming a closed receiving space in the mold by screwing surfaces facing each other.
A microwave dielectric heating type foam molding method, characterized in that the microwave is applied to the microwave transmitting portion and the electromagnetic energy is applied to the dielectric heating portion.
前記発泡材は、前記型に入れる時に未発泡状態、半発泡状態又は発泡済状態であることを特徴とする請求項1に記載のマイクロ波誘電加熱式発泡成形方法。 The microwave dielectric heating type foam molding method according to claim 1, wherein the foamed material is in an unfoamed state, a semi-foamed state, or a foamed state when placed in the mold. 前記発泡材の発泡済状態は、ビーズ状、プレート状、ストリップ状、スター状、又は不規則な形態であることを特徴とする、請求項2に記載のマイクロ波誘電加熱式発泡成形方法。 The microwave dielectric heating type foam molding method according to claim 2, wherein the foamed state of the foam material is in a bead shape, a plate shape, a strip shape, a star shape, or an irregular shape. 前記発泡材の前記未発泡状態は連続発泡構造であり、
前記発泡済状態又は半発泡状態は不連続発泡構造であることを特徴とする、請求項3に記載のマイクロ波誘電加熱式発泡成形方法。
The unfoamed state of the foaming material has a continuously foamed structure.
The microwave dielectric heating type foam molding method according to claim 3, wherein the foamed state or the semi-foamed state has a discontinuous foamed structure.
前記型の前記マイクロ波透過部に前記マイクロ波及び前記電磁エネルギーを印加すると共に、さらに空気圧式、電気式又は油圧式の機械的外力を印加することで、前記マイクロ波透過部を前記誘電加熱部に緊密に合わせることを特徴とする、請求項2に記載のマイクロ波誘電加熱式発泡成形方法。 By applying the microwave and the electromagnetic energy to the microwave transmitting portion of the mold and further applying a pneumatic, electric or hydraulic mechanical external force, the microwave transmitting portion is heated by the dielectric heating unit. The microwave dielectric heating type foam molding method according to claim 2, which is characterized by being closely aligned with the above. 底部が外側に突出するマイクロ波透過部と、
頂部が内側に凹み、前記マイクロ波透過部と螺合して受容空間を形成できる誘電加熱部とを有することを特徴とする、マイクロ波誘電加熱用発泡成形型。
A microwave transmission part whose bottom protrudes outward, and
A foam molding mold for microwave dielectric heating, characterized in that the top portion is recessed inward and has a dielectric heating portion capable of forming a receiving space by screwing with the microwave transmitting portion.
前記マイクロ波透過部と前記誘電加熱部との間に設けられ、底部が外に突出し、前記誘電加熱部の頂部と螺合して前記受容空間を形成できる中蓋をさらに有することを特徴とする、請求項6に記載のマイクロ波誘電加熱用発泡成形型。 It is characterized by further having an inner lid provided between the microwave transmitting portion and the dielectric heating portion, the bottom portion of which protrudes outward, and which can be screwed with the top portion of the dielectric heating portion to form the receiving space. , The foam molding mold for microwave dielectric heating according to claim 6. 前記マイクロ波加熱部はプラスチック製であり、前記誘電加熱部は金属製であることを特徴とする、請求項6に記載のマイクロ波誘電加熱用発泡成形型。 The foam molding mold for microwave dielectric heating according to claim 6, wherein the microwave heating unit is made of plastic and the dielectric heating unit is made of metal. 前記マイクロ波加熱部の外表面及び前記誘電加熱部の内表面にそれぞれ対応するねじ構造を有することで、前記マイクロ波加熱部を回転して前記誘電加熱部にねじ締めすることを特徴とする、請求項6に記載のマイクロ波誘電加熱用発泡成形型。 By having a screw structure corresponding to the outer surface of the microwave heating unit and the inner surface of the dielectric heating unit, the microwave heating unit is rotated and screwed to the dielectric heating unit. The foam molding mold for microwave dielectric heating according to claim 6. 前記中蓋は前記マイクロ波加熱部と共に回転しないことを特徴とする、請求項6に記載のマイクロ波誘電加熱用発泡成形型。 The foam molding mold for microwave dielectric heating according to claim 6, wherein the inner lid does not rotate together with the microwave heating unit.
JP2020073188A 2019-04-18 2020-04-16 Microwave dielectric heating type foam molding method, mold and foam material used for it Active JP6993598B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW108113623A TWI765150B (en) 2019-04-18 2019-04-18 Microwave and electromagnetic heated method
TW108113623 2019-04-18

Publications (2)

Publication Number Publication Date
JP2020175658A true JP2020175658A (en) 2020-10-29
JP6993598B2 JP6993598B2 (en) 2022-01-13

Family

ID=72660408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020073188A Active JP6993598B2 (en) 2019-04-18 2020-04-16 Microwave dielectric heating type foam molding method, mold and foam material used for it

Country Status (5)

Country Link
US (1) US11731323B2 (en)
JP (1) JP6993598B2 (en)
CN (1) CN111823469B (en)
DE (1) DE102020110352A1 (en)
TW (1) TWI765150B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7058371B1 (en) 2021-12-02 2022-04-21 西川ゴム工業株式会社 Manufacturing method of soundproof material
KR102441885B1 (en) * 2021-04-14 2022-09-13 한국신발피혁연구원 Microwave reactive heat skin and manufacturing method for foam article using the same
WO2023017862A1 (en) * 2021-08-13 2023-02-16 マイクロ波化学株式会社 Foam manufacturing method and foam manufacturing device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206094B4 (en) 2012-04-13 2019-12-05 Adidas Ag Soles for sports footwear, shoes and method of making a shoe sole
DE102013002519B4 (en) 2013-02-13 2016-08-18 Adidas Ag Production method for damping elements for sportswear
DE102016209046B4 (en) 2016-05-24 2019-08-08 Adidas Ag METHOD FOR THE PRODUCTION OF A SHOE SOLE, SHOE SOLE, SHOE AND PREPARED TPU ITEMS
DE102016209045B4 (en) 2016-05-24 2022-05-25 Adidas Ag METHOD AND DEVICE FOR AUTOMATICALLY MANUFACTURING SHOE SOLES, SOLES AND SHOES
DE102016223980B4 (en) 2016-12-01 2022-09-22 Adidas Ag Process for the production of a plastic molding
CN114102961A (en) * 2020-08-28 2022-03-01 正合林兴业股份有限公司 Uniform heating method
US20220234256A1 (en) 2021-01-28 2022-07-28 Adidas Ag Mold and method for manufacturing a component by molding, component thereof and shoe with such a component
CN113603983A (en) * 2021-08-19 2021-11-05 安徽瑞琦塑胶科技有限公司 Wave-absorbing plastic master batch and preparation method thereof
CN116175859B (en) * 2023-03-03 2023-10-20 东莞海瑞斯新材料科技有限公司 Thermal drying machine case for supercritical fluid disposable foaming forming product
CN116462880B (en) * 2023-04-24 2024-03-08 广州坤灏鞋业有限公司 Rubber easy to foam and preparation method thereof, and rubber shoes and shoe preparation method
CN116444974B (en) * 2023-06-12 2023-10-03 山东联欣环保科技有限公司 High-temperature-resistant carbon dioxide-based alloy, foaming material thereof and preparation method thereof
CN117164933B (en) * 2023-10-09 2024-04-19 亿策科技有限公司 Polystyrene foam wave-absorbing material with surface modified by polarization and preparation method thereof

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2424807A1 (en) * 1978-05-02 1979-11-30 Saunier Jean Pierre Moulding impermeable panels from coated expanded polystyrene beads - using moulds subjected to superficial and microwave heating
US4853420A (en) * 1987-05-04 1989-08-01 The Dow Chemical Company Foamable thermoplastic polymers and a method for foaming
JPH0739105B2 (en) * 1991-02-28 1995-05-01 鬼怒川ゴム工業株式会社 Mold for high frequency molding
DE19503240C2 (en) * 1995-02-02 1997-04-10 Huels Chemische Werke Ag Mold for gelation and vulcanization of molded articles made of latex foam using microwave energy
TW325134U (en) * 1997-06-06 1998-01-11 yao-dong Zhang Modified structure of sulfurization tester foaming mold
JPH11268043A (en) * 1998-03-20 1999-10-05 Toyo Mach & Metal Co Ltd Die clamping device
JP3259685B2 (en) * 1998-07-15 2002-02-25 日本電気株式会社 Printer controller device
CN1548287A (en) * 2003-05-19 2004-11-24 电子科技大学 Microwave hot forming apparatus
WO2006054531A1 (en) * 2004-11-16 2006-05-26 Jsr Corporation Process for producing crosslinked molded foam
TW200744832A (en) * 2006-06-06 2007-12-16 Shieny Co Ltd Formation mold for PU tire made of two prescriptions and formation method for the same
CN101474843A (en) * 2009-01-23 2009-07-08 苏州雅安节能科技有限公司 Energy-saving high-efficiency foaming molding mold
CN201685363U (en) * 2010-06-02 2010-12-29 李国展 Electronic heating device for sole production mould
CN102729313B (en) * 2011-04-11 2015-07-29 李苏扬 Be provided with the extrusion equipment of the plant fiber products of microwave heating equipment
CN104400955A (en) * 2014-12-07 2015-03-11 青岛科技大学 Rubber microwave vulcanizing and molding device
CN208006114U (en) * 2018-03-07 2018-10-26 泉州师范学院 A kind of radio frequency foam device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102441885B1 (en) * 2021-04-14 2022-09-13 한국신발피혁연구원 Microwave reactive heat skin and manufacturing method for foam article using the same
WO2023017862A1 (en) * 2021-08-13 2023-02-16 マイクロ波化学株式会社 Foam manufacturing method and foam manufacturing device
JP7058371B1 (en) 2021-12-02 2022-04-21 西川ゴム工業株式会社 Manufacturing method of soundproof material
JP2023082378A (en) * 2021-12-02 2023-06-14 西川ゴム工業株式会社 Method for manufacturing soundproof material

Also Published As

Publication number Publication date
TWI765150B (en) 2022-05-21
CN111823469A (en) 2020-10-27
CN111823469B (en) 2022-06-17
DE102020110352A1 (en) 2020-10-22
TW202039664A (en) 2020-11-01
US11731323B2 (en) 2023-08-22
US20200331178A1 (en) 2020-10-22
JP6993598B2 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP6993598B2 (en) Microwave dielectric heating type foam molding method, mold and foam material used for it
JP5566851B2 (en) Thermally foamable resin composition, thermally foamable resin sheet, thermally foamable laminate, foam and production method thereof
JP5388584B2 (en) Expanded and extruded polyolefin foam produced using a blowing agent based on methyl formate
JP5150042B2 (en) Resin composition for closed cell molded body and closed cell molded body
US20120211912A1 (en) Molded foam article and method of producing molded foam article
JP2009242811A5 (en)
WO2012153579A1 (en) Thermally expandable resin composition, thermally expandable resin sheet, foam and method for producing same
Dugad et al. Recent advancements in manufacturing technologies of microcellular polymers: A review
CA3126411A1 (en) Novel foaming process for production of foam materials
JP3732418B2 (en) Expandable styrene resin particles
TW202110606A (en) Mould Adapted to Microwave and electromagnetic heated method
JP2009242635A (en) Antistatic styrenic resin foamed molding and its manufacturing method
TWM615329U (en) Mould adapted to microwave and electromagnetic heated method
KR102010457B1 (en) Composition for low density molded foam article and method of fabricating molded foam article using the same
KR102588768B1 (en) Microwave heat moldable polymer composition and molding method of foam composition using the same
JP5719730B2 (en) Thermally foamable resin composition, thermally foamable resin sheet, foam and method for producing the same
JP2005343967A (en) Resin composition for closed-cell molding and closed-cell molding
JP5477197B2 (en) Speaker diaphragm
WO2012057209A1 (en) Foamable resin composition, foamable resin sheet, foam and method for producing same
Schroeck et al. Chemical blowing agents for polyethylene
TW201516080A (en) Foamable thermoplastic vulcanization body composition and its application
JP2001139014A (en) Polypropylene resin foam mold container
KR20060025252A (en) Biodegradable foam sheet and method for preducing the same
JP2009242634A (en) Antistatic styrenic resin foamed molding and its manufacturing method
CN110682493A (en) Method for in-mold foaming by electronic crosslinking

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210323

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210622

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6993598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250