JP2009242634A - Antistatic styrenic resin foamed molding and its manufacturing method - Google Patents

Antistatic styrenic resin foamed molding and its manufacturing method Download PDF

Info

Publication number
JP2009242634A
JP2009242634A JP2008091620A JP2008091620A JP2009242634A JP 2009242634 A JP2009242634 A JP 2009242634A JP 2008091620 A JP2008091620 A JP 2008091620A JP 2008091620 A JP2008091620 A JP 2008091620A JP 2009242634 A JP2009242634 A JP 2009242634A
Authority
JP
Japan
Prior art keywords
mold
molded article
molding
styrene
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008091620A
Other languages
Japanese (ja)
Inventor
Yuichi Gondo
裕一 権藤
Hideo Matsumura
英保 松村
Yoshio Hirobe
義男 廣部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2008091620A priority Critical patent/JP2009242634A/en
Publication of JP2009242634A publication Critical patent/JP2009242634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a molding method which, relating to a method of manufacturing a styrenic foamed molding by impregnating styrenic resin particles with an easily-volatile foaming agent and a surfactant, filling the pre-expanded particles obtained by heating into a mold and subjecting to heating and cooling processes, can give a foamed molding having higher antistatic properties and free of portion-to-portion fluctuations of the antistatic properties of the obtained foamed molding. <P>SOLUTION: In carrying out in-mold foam molding by impregnating styrenic resin particles with an easily-volatile foaming agent and a surfactant, filling the pre-expanded particles obtained by heating into a mold and subjecting to heating and cooling processes, after the cooling process following the in-mold foaming is conducted, an additional water treatment process is conducted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、帯電防止性スチレン系樹脂発泡成形体及びその製造方法に関する。   The present invention relates to an antistatic styrene resin foam molded article and a method for producing the same.

スチレン系樹脂発泡成形体は、その優れた耐衝撃性、耐磨耗性及び耐油性から、自動車部品等の機械部品の通い箱、電気製品等の緩衝包装材として広く利用されている。
しかしながら、スチレン系樹脂は、電気絶縁性が高いゆえに、摩擦によって容易に帯電し、ほこりの付着によって発泡成形体の外観を損ねるばかりか、内容物に集塵よる汚染や静電破壊を起こすため、液晶等の電子部品の包装材として使用するには問題があった。
Styrenic resin foam moldings are widely used as cushioning packaging materials for mechanical parts such as automobile parts and electrical products because of their excellent impact resistance, wear resistance and oil resistance.
However, since the styrene resin has high electrical insulation, it is easily charged by friction, and not only the appearance of the foamed molded product is damaged by the adhesion of dust, but also the contents are contaminated by dust collection and electrostatic breakdown. There was a problem in using it as a packaging material for electronic parts such as liquid crystals.

国際公開番号WO2004/090029号公報(特許文献1)には、スチレン改質オレフィン系樹脂粒子に揮発性発泡剤を含浸させて発泡性樹脂粒子を得た後、該発泡性樹脂粒子100重量部に対して界面活性剤0.1〜2.0重量部を含浸させることで、帯電防止性の優れた発泡性スチレン改質オレフィン系樹脂粒子から帯電防止性スチレン系樹脂発泡成形体を得る方法が記載されている。   In International Publication No. WO2004 / 090029 (Patent Document 1), styrene-modified olefin resin particles are impregnated with a volatile foaming agent to obtain expandable resin particles, and then 100 parts by weight of the expandable resin particles are added. On the other hand, a method for obtaining an antistatic styrene resin foam molded article from expandable styrene modified olefin resin particles having excellent antistatic properties by impregnating with 0.1 to 2.0 parts by weight of a surfactant is described. Has been.

一方、特開昭56−64842号公報(特許文献2)には、型内成形工程にて、冷却工程の途中で一度成形型を型開きして、空気に暴露させた後、再度型締めすることで、冷却時間の短縮が可能となり、成形サイクルをアップさせる方法が記載されている。   On the other hand, in JP-A-56-64842 (Patent Document 2), in the in-mold molding process, the mold is once opened during the cooling process, exposed to air, and then clamped again. Thus, a method for shortening the cooling time and increasing the molding cycle is described.

国際公開番号WO2004/090029号公報International Publication Number WO2004 / 090029 特開昭56−64842号公報JP 56-64842 A

しかしながら、上記特許文献1に記載の方法で得られるスチレン系樹脂発泡成形体は、発泡成形体全体として見た場合の帯電防止性能は良好であるが、発泡成形体の部位による性能にバラツキがあることや、より高い帯電防止性能が必要とされる部位には適応できない。   However, the styrenic resin foam molded article obtained by the method described in Patent Document 1 has good antistatic performance when viewed as the whole foam molded article, but the performance varies depending on the part of the foam molded article. In addition, it cannot be applied to a site where higher antistatic performance is required.

一方、特許文献2には帯電防止性能についての記載はなく、更に、この方法は、冷却効率を上昇させるために冷却中に型開きを行なうものである。また、特許文献2には、型開きの際に、水冷とともに型開きしてもよいと記載されているが、空隙が生じるために、発泡体に水が滴る状態で流れないし、更に、高い発泡圧での型開きであるため、開いた瞬時型内で発泡体が膨張し、狙いの寸法どおりの成形体が得られない。   On the other hand, Patent Document 2 does not describe antistatic performance, and this method further performs mold opening during cooling in order to increase cooling efficiency. Patent Document 2 describes that when the mold is opened, the mold may be opened together with water cooling. However, since voids are generated, the foam does not flow in a state where water drops, and further, high foaming is performed. Since the mold is opened with pressure, the foam expands in the opened instantaneous mold, and a molded body with the target dimensions cannot be obtained.

従って、スチレン系樹脂粒子に易揮発性発泡剤及び界面活性剤を含浸させ、加熱して得られた予備発泡粒子を、金型内に充填し加熱及び冷却工程に付すことでスチレン系樹脂発泡成形体を製造する方法で、より高い帯電防止性能を有し、更に、得られる成形体の部位による帯電防止性能にバラツキのない発泡成形体が得られる型内発泡成形方法が望まれていた。   Therefore, styrene resin foam molding is performed by impregnating styrene resin particles with a readily volatile foaming agent and a surfactant, heating the pre-expanded particles obtained in the mold, and subjecting them to heating and cooling processes. There is a demand for an in-mold foam molding method that can provide a foamed molded product having higher antistatic performance and a non-fluctuating antistatic performance depending on the portion of the resulting molded product.

本発明の発明者等は、鋭意検討した結果、スチレン系樹脂粒子に易揮発性発泡剤及び非イオン系界面活性剤を含浸させ、加熱して得られた予備発泡粒子を、金型内に充填し加熱及び冷却工程に付すことで型内発泡成形を行なうに際し、型内発泡後の冷却工程を行なった後に、更に水処理工程を行なうことにより、より高い帯電防止性能を有し、更に、得られる成形体の部位による帯電防止性能にバラツキのない発泡成形体が得られることを意外にも見出し、本発明に至った。   As a result of intensive studies, the inventors of the present invention have impregnated styrene resin particles with a readily volatile foaming agent and a nonionic surfactant, and filled the pre-expanded particles obtained by heating into the mold. When performing in-mold foam molding by subjecting it to heating and cooling steps, after performing the cooling step after in-mold foaming, further water treatment step has higher antistatic performance, Surprisingly, it was found that a foamed molded product having no variation in antistatic performance depending on the portion of the molded product obtained was obtained, and the present invention was achieved.

かくして本発明によれば、スチレン系樹脂粒子に易揮発性発泡剤及びスチレン系樹脂粒子100重量部に対して非イオン系界面活性剤を0.5〜3.5重量部含浸させ、加熱して予備発泡粒子とし、前記予備発泡粒子を金型内で型内発泡成形を行なうに際し、型内発泡後の冷却工程を金型内の発泡成形体の発泡圧が0.01MPa以下に低下するまで行なった後に、金型内に水を入れて発泡成形体表面に接触させる水処理工程を行なう帯電防止性スチレン系樹脂発泡成形体の製造方法が提供される。   Thus, according to the present invention, the styrene resin particles are impregnated with 0.5 to 3.5 parts by weight of a non-volatile surfactant with respect to 100 parts by weight of the volatile foaming agent and the styrene resin particles, and heated. When pre-foamed particles are used and the pre-foamed particles are subjected to in-mold foam molding in the mold, the cooling step after in-mold foaming is performed until the foaming pressure of the foam molded body in the mold is reduced to 0.01 MPa or less. Thereafter, there is provided a method for producing an antistatic styrene resin foam molded article in which a water treatment step of bringing water into a mold and contacting the surface of the foam molded article is performed.

また、本発明によれば、上記方法によって得られる発泡成形体であり、前記発泡成形体が1×1011Ω以下の平均表面抵抗率を有する帯電防止性スチレン系樹脂発泡成形体が提供される。 Further, according to the present invention, there is provided an antistatic styrene resin foam molded article obtained by the above method, wherein the foam molded article has an average surface resistivity of 1 × 10 11 Ω or less. .

本発明によれば、より高い帯電防止性能を有し、更に、得られる発泡成形体の部位による帯電防止性能にバラツキのない帯電防止性に優れたスチレン系樹脂発泡成形体が得られる。   According to the present invention, it is possible to obtain a styrenic resin foam molded article having higher antistatic performance and having excellent antistatic properties with no variation in antistatic performance depending on the portion of the obtained foam molded article.

以下、本発明をより詳細に説明する。
本発明におけるスチレン系樹脂粒子としては、ポリスチレン、ポリメチルスチレン、スチレン−アクリロニトリル共重合体、スチレン−アクリロニトリルブタジエン共重合体、スチレン−アクリル酸エステル共重合体、スチレン−メタクリル酸メチル共重合体、ポリスチレンとポリエチレンもしくはポリプロピレンの架橋樹脂等からなる粒子が挙げられる。こられの樹脂は混合されていてもよく、ポリスチレン系樹脂以外の他の樹脂を混合してもよい。他の樹脂としてはポリエチレン、ポリプロピレン等のポリオレフィン系樹脂等が挙げられる。本発明では、特に、ポリオレフィン改質スチレン系樹脂が好ましく、更にはポリエチレン改質スチレン系樹脂が好ましい。
Hereinafter, the present invention will be described in more detail.
As the styrene resin particles in the present invention, polystyrene, polymethylstyrene, styrene-acrylonitrile copolymer, styrene-acrylonitrile butadiene copolymer, styrene-acrylic acid ester copolymer, styrene-methyl methacrylate copolymer, polystyrene And particles made of polyethylene or polypropylene cross-linked resin. These resins may be mixed, or other resins other than polystyrene resins may be mixed. Examples of other resins include polyolefin resins such as polyethylene and polypropylene. In the present invention, a polyolefin-modified styrene resin is particularly preferable, and a polyethylene-modified styrene resin is more preferable.

ポリエチレン改質スチレン系樹脂は、例えば、特公昭51−46138号公報、特公昭59−3487号公報、特公昭63−28443号公報に記載されているように、ポリオレフィン系樹脂粒子が分散保持された水性媒体中にスチレン系モノマーを加えて重合させることで得られる。ここで、ポリエチレン系樹脂とスチレン系モノマーとの比率に制限はない。   Polyethylene-modified styrene-based resin has polyolefin resin particles dispersed and held as described in, for example, Japanese Patent Publication No. 51-46138, Japanese Patent Publication No. 59-3487, and Japanese Patent Publication No. 63-28443. It can be obtained by adding a styrenic monomer to an aqueous medium for polymerization. Here, there is no restriction | limiting in the ratio of a polyethylene-type resin and a styrene-type monomer.

一方、スチレン系樹脂粒子は易揮発性発泡剤を含浸させることによって、発泡性スチレン系樹脂粒子を得ることができる。易揮発性発泡剤としては、例えばプロパン、ブタン、イソブタン、ペンタン、イソペンタン、シクロペンタン、ヘキサン等の炭化水素等を単独もしくは2種以上混合して用いることができる。発泡剤の使用量は、目的とする成形体の発泡倍数によって決定されるが、スチレン系樹脂粒子100重量部に対して、10〜30重量部であることが好ましい。   On the other hand, expandable styrene resin particles can be obtained by impregnating the styrene resin particles with a readily volatile foaming agent. As the readily volatile foaming agent, for example, hydrocarbons such as propane, butane, isobutane, pentane, isopentane, cyclopentane, hexane and the like can be used alone or in admixture of two or more. Although the usage-amount of a foaming agent is determined by the foaming multiple of the target molded object, it is preferable that it is 10-30 weight part with respect to 100 weight part of styrene resin particles.

更に、発泡性スチレン系樹脂粒子の発泡及び成形を容易に行なうために、シクロヘキサン、エチルベンゼン、トルエン等の発泡助剤を使用してもよい。発泡助剤は、ポリエチレン改質スチレン系樹脂粒子100重量部に対して、2重量部以下であることが好ましい。   Furthermore, a foaming aid such as cyclohexane, ethylbenzene, or toluene may be used to facilitate foaming and molding of the expandable styrene resin particles. The foaming assistant is preferably 2 parts by weight or less with respect to 100 parts by weight of the polyethylene-modified styrene resin particles.

更に、この段階で添加する非イオン系界面活性剤の添加量はスチレン系樹脂粒子100重量部に対し、0.5〜3.5重量部であり、好ましくは1.0〜3.0重量部である。0.5重量部より少ないと帯電防止性が十分でないことがあり、3.5重量部より多いと発泡成形体にベトツキが生じることがあり、ほこりがかえって付着しやすくなってしまう。   Furthermore, the addition amount of the nonionic surfactant added at this stage is 0.5 to 3.5 parts by weight, preferably 1.0 to 3.0 parts by weight with respect to 100 parts by weight of the styrene resin particles. It is. If the amount is less than 0.5 parts by weight, the antistatic property may not be sufficient. If the amount is more than 3.5 parts by weight, the foamed molded product may become sticky, and the dust tends to adhere to it.

本発明のスチレン系樹脂粒子に含浸させる非イオン系界面活性剤としては、ポリオキシエチレンアルキルアミン(例えば、ポリオキシエチレンラウリルアミン等)、ポリエチレングリコール脂肪酸エステル、アルキルジエタノールアミド、アルキルジエタノールアミン、アルキルモノエタノールアミン、ポリアルキレングリコール誘導体等のHLB値7以下の界面活性剤を使用することができる。それらの中で、好ましくはポリオキシエチレンアルキルアミン(より好ましくは、ポリオキシエチレンラウリルアミン)、アルキルジエタノールアミン及びアルキルモノエタノールアミンが挙げられる。上記アルキルは、炭素数8〜18のアルキルが好ましく、炭素数11〜13のアルキルがより好ましい。   Examples of the nonionic surfactant impregnated in the styrene resin particles of the present invention include polyoxyethylene alkylamine (for example, polyoxyethylene laurylamine), polyethylene glycol fatty acid ester, alkyldiethanolamide, alkyldiethanolamine, alkylmonoethanol. Surfactants having an HLB value of 7 or less, such as amines and polyalkylene glycol derivatives, can be used. Among them, preferably, polyoxyethylene alkylamine (more preferably, polyoxyethylene laurylamine), alkyldiethanolamine, and alkylmonoethanolamine are used. The alkyl is preferably an alkyl having 8 to 18 carbon atoms, and more preferably an alkyl having 11 to 13 carbon atoms.

得られた発泡性スチレン系樹脂粒子を予備発泡粒子にする場合には、これに水蒸気を接触させて所定の密度まで発泡する。この発泡粒子は通常24時間程度保管し熟成させる。
その後、金型内に予備発泡粒子を充填し、再度加熱して予備発泡粒子を型内発泡させて粒子同士を熱融着させ、冷却を行なうことで発泡成形体を得ることができる。加熱用の媒体は、ゲージ圧力0.05〜0.15MPaの水蒸気が好適に使用される。
When the obtained expandable styrenic resin particles are used as pre-expanded particles, water vapor is brought into contact therewith to expand to a predetermined density. The expanded particles are usually stored and aged for about 24 hours.
Thereafter, the pre-expanded particles are filled in the mold, heated again, the pre-expanded particles are expanded in-mold, the particles are heat-fused, and cooled to obtain a foam-molded article. As the heating medium, water vapor with a gauge pressure of 0.05 to 0.15 MPa is preferably used.

スチレン系予備発泡粒子を用いた型内成形における加熱工程は一般的に、型加熱工程、一方加熱工程、逆一方加熱工程、両面加熱工程の順に行なわれる。
一連の加熱工程終了後、冷却工程が行なわれる。スチレン系樹脂の成形方法では、冷却工程は水冷工程、排水工程及び放冷工程に分けられるが、本発明の場合、水冷工程後、排水工程及び放冷工程を行なわずに、そのまま水処理工程を行なってもよい。
Generally, the heating process in the in-mold molding using the styrene-based pre-expanded particles is performed in the order of the mold heating process, the one heating process, the reverse one heating process, and the double-side heating process.
A cooling process is performed after completion | finish of a series of heating processes. In the styrenic resin molding method, the cooling process is divided into a water cooling process, a drainage process, and a cooling process. In the present invention, after the water cooling process, the water treatment process is performed without performing the draining process and the cooling process. You may do it.

水処理工程の水は常温(約25℃)の水が用いられる。
冷却工程は通常時間で表され、その冷却時間とは、金型に水を入れ始める時点から発泡成形体の発泡圧(面圧)が0.01MPa以下に低下するまでの時間であり、通常50〜400秒である。また、冷却工程中の水冷工程の時間は、通常5〜30秒である。
Water at room temperature (about 25 ° C.) is used for the water treatment process.
The cooling step is usually expressed in time, and the cooling time is the time from when the water is started to be poured into the mold until the foaming pressure (surface pressure) of the foamed molded product is reduced to 0.01 MPa or less. ~ 400 seconds. Moreover, the time of the water cooling process in a cooling process is 5 to 30 seconds normally.

水処理工程の時間は、金型内の発泡成形体の発泡圧(面圧)が0.01MPa以下に低下した後、金型内の圧を0〜0.02MPaに維持して、金型内に水を注入し始める時点から水を止めるまでの時間であり、20〜200秒が好ましい。20秒未満ではより高い帯電防止性能が得られず、200秒を超えて行なうと金型が極度に冷却されてしまうので、この金型を用いて新たに製造するには、長時間加熱せねばならないことや、帯電防止性能に変化のないことから、生産性が低下することがある。
水処理工程後、排水工程を経て発泡成形体が取り出される。
The time of the water treatment step is to maintain the pressure in the mold at 0 to 0.02 MPa after the foaming pressure (surface pressure) of the foamed molded body in the mold is reduced to 0.01 MPa or less. It is the time from the start of injecting water to the stop of water, and preferably 20 to 200 seconds. If it is less than 20 seconds, higher antistatic performance cannot be obtained, and if it exceeds 200 seconds, the mold is extremely cooled. Therefore, in order to newly manufacture using this mold, it must be heated for a long time. Productivity may decrease due to the absence of changes in antistatic performance.
After the water treatment step, the foamed molded product is taken out through a drainage step.

本発明において、帯電防止性の有無に関しては、発泡成形体の表面抵抗率を測定して判断する。
更に、本発明の発泡成形体の部分部分での帯電防止性能のバラツキに関しては、上記表面抵抗率のバラツキ度について標準偏差を求めて判断する。
In the present invention, the presence or absence of antistatic properties is determined by measuring the surface resistivity of the foamed molded product.
Furthermore, regarding the variation in the antistatic performance in the partial portion of the foamed molded article of the present invention, the standard deviation is determined for the degree of variation in the surface resistivity.

以下に本発明を実施例によって詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
なお、実施例及び比較例で得られた発泡成形体の表面抵抗率の測定方法及び表面抵抗率のバラツキ度の評価方法を下記する。
EXAMPLES The present invention will be described in detail below by examples, but the present invention is not limited to these examples.
In addition, the measuring method of the surface resistivity of the foaming molding obtained by the Example and the comparative example and the evaluation method of the variation degree of surface resistivity are described below.

(表面抵抗率測定方法)
JIS K6911:1995「熱硬化性プラスチック一般試験方法」記載の方法により測定した。即ち、試験装置((株)アドバンテスト製デジタル超高抵抗/微少電流計R8340及びレジスティビティ・チェンバR12702A)を使用し、試料サンプルに、約30Nの荷重にて電極を圧着させ500V1分間充電後の抵抗値を測定し、次式により算出した。試料サンプルは、100×100×原厚み(10以下)mmとし、同一発泡成形体から10個のサンプルを切り出し、それぞれについて測定を行なった。表面抵抗率が1×1011Ω以下であれば、その発泡成形体はより高い帯電防止性を有すると判断した。
(Surface resistivity measurement method)
Measured by the method described in JIS K6911: 1995 “General Test Method for Thermosetting Plastics”. In other words, using a test device (digital super high resistance / microammeter R8340 manufactured by Advantest Co., Ltd. and resiliency chamber R12702A), an electrode is crimped to a sample sample with a load of about 30 N, and the resistance after charging for 500 V for 1 minute. The value was measured and calculated by the following formula. The sample sample was 100 × 100 × original thickness (10 or less) mm, and 10 samples were cut out from the same foamed molded article and measured for each. If the surface resistivity was 1 × 10 11 Ω or less, the foamed molded article was judged to have higher antistatic properties.

ρs=π(D+d)/(D-d)×Rs
ρs : 表面抵抗率(MΩ)
D : 表面の環状電極の内径(cm)
d : 表面電極の内円の外径(cm)
Rs: 表面抵抗(MΩ)
ρs = π (D + d) / (D−d) × Rs
ρs: Surface resistivity (MΩ)
D: Inner diameter (cm) of surface annular electrode
d: outer diameter of inner circle of surface electrode (cm)
Rs: Surface resistance (MΩ)

(表面抵抗率のバラツキ度の評価方法)
表面抵抗率のバラツキ度は次のように求めた。n=10で測定した表面抵抗率をそれぞれ対数(log10)で返し、その対数について標準偏差を求めた。標準偏差が1.0以下であれば非常にバラツキが少ないと判断した。
(Evaluation method for variation in surface resistivity)
The degree of variation in surface resistivity was determined as follows. The surface resistivity measured at n = 10 was returned in logarithm (log 10 ), and the standard deviation was determined for the logarithm. If the standard deviation was 1.0 or less, it was judged that there was very little variation.

(メルトフローレートの測定方法)
メルトフローレートは、JIS K 7210:1999「プラスチック−熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」B法記載の方法により測定した。
(Measuring method of melt flow rate)
The melt flow rate was measured by the method described in JIS K 7210: 1999 “Testing method for melt mass flow rate (MFR) and melt volume flow rate (MVR) of plastic-thermoplastic plastic” B method.

製造例1(ポリエチレン系樹脂ペレットの作成)
メルトフローレートが0.3g/10分、酢酸ビニル含量が5.5重量%であるエチレン−酢酸ビニル共重合体100重量部に対して、気泡調整剤としてケイ酸カルシウム0.3重量部とステアリン酸カルシウム0.1重量部を加えて押出機で均一に混練した後造粒し、ポリエチレン系樹脂のペレットを得た。
Production Example 1 (Preparation of polyethylene resin pellets)
With respect to 100 parts by weight of an ethylene-vinyl acetate copolymer having a melt flow rate of 0.3 g / 10 minutes and a vinyl acetate content of 5.5% by weight, 0.3 part by weight of calcium silicate as a foam regulator and steer After adding 0.1 parts by weight of calcium phosphate and uniformly kneading with an extruder, the mixture was granulated to obtain polyethylene resin pellets.

製造例2(ポリエチレン改質スチレン系樹脂粒子の作成)
内容積100リットルの攪拌機付き耐圧容器に、前記ポリエチレン系樹脂ペレット40重量部、水120重量部、ピロリン酸マグネシウム0.45重量部、ドデシルベンゼンスルホン酸ソーダ0.02重量部を添加し、攪拌しながら85℃まで昇温した。別にラジカル重合開始剤としてベンゾイルパーオキサイド0.3重量部、及びt−ブチルパーオキシベンゾエート0.02重量部、架橋剤としてジクミルパーオキサイド0.8重量部を60重量部のスチレン単量体に溶解させて溶液とし、これを前記水中に加えてポリエチレン系樹脂ペレット粒子に吸収させながら4時間維持して重合を行なった。その後、140℃に昇温して3時間保持した後、冷却してポリエチレン改質スチレン系樹脂粒子を取り出した。
Production Example 2 (Preparation of polyethylene-modified styrene resin particles)
In a pressure-resistant container with a stirrer having an internal volume of 100 liters, 40 parts by weight of the polyethylene resin pellets, 120 parts by weight of water, 0.45 parts by weight of magnesium pyrophosphate and 0.02 parts by weight of sodium dodecylbenzenesulfonate are added and stirred. The temperature was raised to 85 ° C. Separately, 0.3 parts by weight of benzoyl peroxide as a radical polymerization initiator and 0.02 parts by weight of t-butylperoxybenzoate and 0.8 parts by weight of dicumyl peroxide as a crosslinking agent were added to 60 parts by weight of styrene monomer. The solution was dissolved to form a solution, and this was added to the water and absorbed in polyethylene resin pellet particles, and maintained for 4 hours for polymerization. Thereafter, the temperature was raised to 140 ° C. and held for 3 hours, and then cooled to take out polyethylene-modified styrene resin particles.

実施例1(発泡剤の含浸及び発泡成形)
内容積50リットルの耐圧で密閉可能なV型ブレンダーにポリエチレン改質スチレン系樹脂粒子を100重量部、非イオン系界面活性剤としてポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)を2.0重量部加え、密閉し攪拌しながら、ブタン14重量部を圧入した。そして、器内を50℃に4時間維持した後、冷却して発泡性の樹脂粒子を取り出した。取り出した発泡性の樹脂粒子は直ちにバッチ式発泡機で嵩倍数30倍(嵩密度0.033g/cm3)に予備発泡し、その後室温で24時間保存した。
Example 1 (Impregnation of foaming agent and foam molding)
100 parts by weight of polyethylene-modified styrene resin particles and 2 polyoxyethylene laurylamine (Elegant S-100 manufactured by NOF Corporation) as a nonionic surfactant in a V-type blender with an internal volume of 50 liters that can be sealed with pressure resistance. 0.0 part by weight was added, and 14 parts by weight of butane was press-fitted while sealing and stirring. And after maintaining the inside of a container at 50 degreeC for 4 hours, it cooled and took out the foamable resin particle. The taken-out foamable resin particles were immediately pre-foamed to a bulk multiple of 30 times (bulk density 0.033 g / cm 3 ) with a batch type foaming machine, and then stored at room temperature for 24 hours.

この予備発泡粒子を400×300×30mmの成形機の金型内に充填し、ゲージ圧力0.08MPaの水蒸気をもって、加熱発泡を行なった。加熱工程の詳細は、金型加熱工程、一方加熱工程、逆一方加熱工程、両面加熱工程であり、それぞれ5秒、5秒、5秒、20秒、注入して加熱発泡させた。次に冷却工程として、水冷工程を15秒とり、排水を行ない、発泡圧が0.005MPaを示すまで真空放冷工程を行なった。0.005MPaを示した後、水処理工程を50秒行ない、排水が終了した後、離型を行ない金型から倍数30倍(密度0.033g/cm3)の発泡成形体を取り出した。
得られた発泡成形体は、40℃の乾燥室にて8時間以上乾燥させた。
本工程の概略図を図1に示す。
The pre-expanded particles were filled in a mold of a 400 × 300 × 30 mm molding machine, and heated and foamed with water vapor having a gauge pressure of 0.08 MPa. The details of the heating process were a mold heating process, a one-side heating process, a reverse one-side heating process, and a double-sided heating process, which were injected for 5 seconds, 5 seconds, 5 seconds, and 20 seconds, respectively, and heated and foamed. Next, as a cooling process, the water cooling process was taken for 15 seconds, drained, and the vacuum cooling process was performed until the foaming pressure showed 0.005 MPa. After showing 0.005 MPa, the water treatment step was performed for 50 seconds, and after draining was completed, the mold was released, and a foamed molded product having a multiple of 30 times (density 0.033 g / cm 3 ) was taken out from the mold.
The obtained foamed molded article was dried in a drying room at 40 ° C. for 8 hours or more.
A schematic diagram of this step is shown in FIG.

実施例2
水処理工程を150秒とした以外は実施例1と同様に発泡成形体を得た。
実施例3
冷却工程における真空放冷工程を発泡圧が−0.02MPaを示すまで行なったこと以外は実施例1と同様に発泡成形体を得た。
本工程の概略図を図2に示す。
Example 2
A foamed molded product was obtained in the same manner as in Example 1 except that the water treatment step was set to 150 seconds.
Example 3
A foamed molded article was obtained in the same manner as in Example 1 except that the vacuum cooling step in the cooling step was performed until the foaming pressure showed -0.02 MPa.
A schematic diagram of this step is shown in FIG.

実施例4
冷却工程における水冷工程を0.01MPaの発泡圧を示すまで行なったこと以外は、実施例1と同様に発泡成形体を得た。
実施例5
冷却工程における水冷工程を0.01MPaの発泡圧を示すまで行ない、水処理工程を150秒行なったこと以外は実施例1と同様に発泡成形体を得た。
Example 4
A foamed molded article was obtained in the same manner as in Example 1 except that the water cooling step in the cooling step was performed until a foaming pressure of 0.01 MPa was exhibited.
Example 5
A water-cooled process in the cooling process was performed until a foaming pressure of 0.01 MPa was exhibited, and a foamed molded article was obtained in the same manner as in Example 1 except that the water treatment process was performed for 150 seconds.

実施例6〜10
非イオン系界面活性剤であるポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)の添加量を1.0重量部としたこと以外は、それぞれ実施例1〜5と同様に発泡成形体を得た。
実施例11
水処理工程を20秒行なったこと以外は実施例1と同様に発泡成形体を得た。
Examples 6-10
Foam-molded articles in the same manner as in Examples 1 to 5 except that the amount of polyoxyethylene laurylamine (ELEGAN S-100 manufactured by NOF Corporation), which is a nonionic surfactant, was 1.0 part by weight. Got.
Example 11
A foamed molded product was obtained in the same manner as in Example 1 except that the water treatment step was performed for 20 seconds.

実施例12
非イオン系界面活性剤であるポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)の添加量を3.0重量部としたこと以外は、実施例1と同様に発泡成形体を得た。
実施例13
非イオン系界面活性剤であるポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)をアルキルモノエタノールアミン(日油社製、ナイミーンL−201)としたこと以外は実施例1と同様に発泡成形体を得た。
Example 12
A foamed molded article was obtained in the same manner as in Example 1 except that the amount of polyoxyethylene laurylamine (Elegant S-100 manufactured by NOF Corporation), which is a nonionic surfactant, was 3.0 parts by weight. .
Example 13
Example 1 except that polyoxyethylene laurylamine (Elegant S-100, manufactured by NOF Corporation), which is a nonionic surfactant, was changed to alkyl monoethanolamine (Nymeen L-201, manufactured by NOF Corporation). A foamed molded product was obtained.

実施例14
内容量100リットルの攪拌機付き重合容器に、水40リットル、第三リン酸カルシウム100gおよびドデシルベンゼンスルホン酸カルシウム2.0gを入れ、続いて攪拌しながらスチレン40.0kg、ベンゾイルパーオキサイド96.0g、t−ブチルパーオキサイド28.0gを添加し、90℃で昇温して6時間保持した。更に、125℃に昇温してから2時間後冷却しスチレン樹脂粒子を得た。
Example 14
In a polymerization vessel equipped with a stirrer having an internal volume of 100 liters, 40 liters of water, 100 g of tribasic calcium phosphate and 2.0 g of calcium dodecylbenzenesulfonate were placed, followed by stirring with 40.0 kg of styrene, 96.0 g of benzoyl peroxide, t- 28.0 g of butyl peroxide was added, the temperature was raised at 90 ° C. and held for 6 hours. Further, the temperature was raised to 125 ° C. and then cooled for 2 hours to obtain styrene resin particles.

内容積50リットルの耐圧で密閉可能なV型ブレンダーに上記作成したスチレン樹脂粒子を100重量部、非イオン系界面活性剤としてポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)を2.0重量部加え、密閉し攪拌しながら、ブタン14重量部を圧入した。そして、器内を50℃に4時間維持した後、冷却して発泡性の樹脂粒子を取り出した。取り出した発泡性スチレン樹脂粒子は13℃の雰囲気下で5日間管理した後、バッチ式発泡機で嵩倍数30倍(嵩密度0.033g/cm3)に予備発泡し、その後室温で24時間保存した。この予備発泡粒子を400×300×30mmの成形機の金型内に充填し、金型加熱工程、一方加熱工程、逆一方加熱工程、両面加熱工程をゲージ圧力0.08MPaの水蒸気を用いて、それぞれ5秒、5秒、5秒、20秒間注入して加熱発泡させた。水冷工程を15秒取り、排水を行ない、発泡圧が0.005MPaを示すまで真空放冷工程を行なった。0.005MPaを示した後、水処理工程を50秒行ない、排水が終了した後、離型を行ない金型から倍数30倍(密度0.033g/cm3)の発泡成形体を取り出した。得られた発泡成形体は、40℃の乾燥室にて8時間以上乾燥させた。 1. 100 parts by weight of the styrene resin particles prepared above in a V-type blender having an internal volume of 50 liters that can be sealed with pressure resistance, and 2. polyoxyethylene laurylamine (ELEGAN S-100 manufactured by NOF Corporation) as a nonionic surfactant. 0 part by weight was added, and 14 parts by weight of butane was press-fitted while sealing and stirring. And after maintaining the inside of a container at 50 degreeC for 4 hours, it cooled and took out the foamable resin particle. After taking out the expandable styrene resin particles for 5 days in an atmosphere of 13 ° C., the foamed styrene resin particles are pre-foamed to a bulk multiple of 30 times (bulk density 0.033 g / cm 3 ) with a batch type foaming machine, and then stored at room temperature for 24 hours. did. The pre-expanded particles are filled in a mold of a 400 × 300 × 30 mm molding machine, and the mold heating step, one heating step, the opposite one heating step, and the double-side heating step are performed using water vapor with a gauge pressure of 0.08 MPa, Injection was carried out for 5 seconds, 5 seconds, 5 seconds and 20 seconds, respectively, and foamed by heating. The water cooling step was taken for 15 seconds, drained, and the vacuum cooling step was performed until the foaming pressure was 0.005 MPa. After showing 0.005 MPa, the water treatment step was performed for 50 seconds, and after draining was completed, the mold was released, and a foamed molded product having a multiple of 30 times (density 0.033 g / cm 3 ) was taken out from the mold. The obtained foamed molded article was dried in a drying room at 40 ° C. for 8 hours or more.

比較例1
非イオン系界面活性剤であるポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)の添加量を2.0重量部とし、水処理工程を行なわなかったこと以外は実施例1と同様に発泡成形体を得た。
本工程の概略図を図3に示す。
Comparative Example 1
The same as in Example 1 except that the amount of polyoxyethylene laurylamine (Elegan S-100 manufactured by NOF Corporation), which is a nonionic surfactant, was 2.0 parts by weight and the water treatment step was not performed. A foamed molded product was obtained.
A schematic diagram of this step is shown in FIG.

比較例2〜6
非イオン系界面活性剤であるポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)の添加量を0.1重量部としたこと以外は、それぞれ実施例1〜5と同様に発泡成形体を得た。
比較例7
非イオン系界面活性剤を添加するのではなく、イオン系界面活性剤である脂肪族第4級アンモニウム塩(第一工業製薬社製 カチオーゲンES−L)をポリエチレン改質スチレン系樹脂に対して1.5重量部添加したこと以外は実施例1と同様に発泡成形体を得た。
Comparative Examples 2-6
Foam-molded products in the same manner as in Examples 1 to 5, except that the amount of polyoxyethylene laurylamine (Elegance S-100 manufactured by NOF Corporation), which is a nonionic surfactant, was 0.1 parts by weight. Got.
Comparative Example 7
Rather than adding a nonionic surfactant, an aliphatic quaternary ammonium salt that is an ionic surfactant (Cathogen ES-L manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) is added to the polyethylene-modified styrene resin. A foamed molded article was obtained in the same manner as in Example 1 except that 0.5 part by weight was added.

比較例8
ポリオキシエチレンラウリルアミン(日油社製 エレガンS−100)の添加量を5.0重量部としたこと以外は実施例1と同様に行なった。得られた予備発泡粒子及び発泡成形体は、表面にベトツキがあり、ほこりがかえって付着しやすいものであった。良好な発泡成形体ではなかったので、表面抵抗率の測定等は行なわなかった。
Comparative Example 8
The same procedure as in Example 1 was performed except that the amount of polyoxyethylene laurylamine (Elegan S-100 manufactured by NOF Corporation) was 5.0 parts by weight. The obtained pre-expanded particles and the foamed molded article had stickiness on the surface, and dust was easily changed and adhered. Since it was not a good foamed molded article, the surface resistivity was not measured.

上記で得られた発泡成形体について、帯電防止性能の測定を前記の表面抵抗率測定の測定方法に従って行なった。測定試料は得られた発泡成形体から切り出し、温度20℃、湿度65%の環境下にて24時間以上保存した後に測定を行なった。更に、得られた表面抵抗率から前記の方法によりそのバラツキ度の評価を行なった。それらの結果を、用いた界面活性剤の量、各工程での圧力及び時間と合わせて下記する。   About the foaming molding obtained above, the measurement of antistatic performance was performed according to the measuring method of the above-mentioned surface resistivity measurement. A measurement sample was cut out from the obtained foamed molded article and measured after being stored for 24 hours or more in an environment of a temperature of 20 ° C. and a humidity of 65%. Further, the degree of variation was evaluated from the obtained surface resistivity by the above method. The results are described below together with the amount of surfactant used, the pressure and time in each step.

Figure 2009242634
Figure 2009242634

以上のように、本発明によれば、スチレン系樹脂に易揮発性発泡剤及び非イオン系界面活性剤を含浸させ、加熱して得られた予備発泡粒子を、金型内に充填し加熱及び冷却工程に付すことで発泡成形体を製造する方法において、冷却工程を成形体の発泡圧が0.01MPa以下に低下するまで行なった後、更に水処理工程を行なえば、より高い帯電防止性能を有し、更に、得られる発泡成形体の部位による帯電防止性能にバラツキのない帯電防止性に優れたスチレン系樹脂の発泡成形体が得られる。   As described above, according to the present invention, a pre-expanded particle obtained by impregnating a styrene resin with a readily volatile foaming agent and a nonionic surfactant and heating it is filled in a mold and heated. In the method of producing a foamed molded article by subjecting it to a cooling step, after the cooling step is performed until the foaming pressure of the molded body is reduced to 0.01 MPa or less, if a water treatment step is further performed, higher antistatic performance can be obtained. In addition, a foamed molded product of a styrenic resin having excellent antistatic properties with no variation in antistatic performance depending on the portion of the foamed molded product obtained is obtained.

実施例1の工程の概略図である。2 is a schematic diagram of a process of Example 1. FIG. 実施例3の工程の概略図である。FIG. 6 is a schematic diagram of a process of Example 3. 比較例1の工程の概略図である。5 is a schematic view of a process of Comparative Example 1. FIG.

Claims (5)

スチレン系樹脂粒子に易揮発性発泡剤及びスチレン系樹脂粒子100重量部に対して非イオン系界面活性剤を0.5〜3.5重量部含浸させ、加熱して予備発泡粒子とし、前記予備発泡粒子を金型内で型内発泡成形を行なうに際し、型内発泡後の冷却工程を金型内の発泡成形体の発泡圧が0.01MPa以下に低下するまで行なった後に、金型内に水を入れて発泡成形体表面に接触させる水処理工程を行なうことを特徴とする帯電防止性スチレン系樹脂発泡成形体の製造方法。 The styrene-based resin particles are impregnated with 0.5 to 3.5 parts by weight of a non-ionic surfactant with respect to 100 parts by weight of the readily volatile foaming agent and the styrene-based resin particles, and heated to obtain pre-expanded particles. When the foamed particles are subjected to in-mold foam molding in the mold, the cooling step after foaming in the mold is performed until the foaming pressure of the foam molded body in the mold decreases to 0.01 MPa or less, and then the mold is placed in the mold. A method for producing an antistatic styrene-based resin foam molded article, comprising performing a water treatment step of bringing water into contact with the surface of the foam molded article. 前記スチレン系樹脂粒子がポリオレフィン改質スチレン系樹脂粒子である請求項1に記載の帯電防止性スチレン系樹脂発泡成形体の製造方法。 The method for producing an antistatic styrene resin foam molded article according to claim 1, wherein the styrene resin particles are polyolefin-modified styrene resin particles. 前記水処理工程が、前記金型内の圧を0〜0.02MPaに維持して20〜200秒行なわれる、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the water treatment step is performed for 20 to 200 seconds while maintaining the pressure in the mold at 0 to 0.02 MPa. 請求項1〜3のいずれか1つに記載の製造方法によって得られる発泡成形体であり、前記発泡成形体が1×1011Ω以下の平均表面抵抗率を有することを特徴とする帯電防止性スチレン系樹脂発泡成形体。 It is a foaming molding obtained by the manufacturing method as described in any one of Claims 1-3, The said foaming molding has an average surface resistivity of 1 * 10 < 11 > (ohm) or less, Antistatic property characterized by the above-mentioned. Styrenic resin foam molding. 前記発泡成形体が1.0以下の表面抵抗率の標準偏差を有する請求項4に記載の帯電防止性スチレン系樹脂発泡成形体。 The antistatic styrene resin foam molded article according to claim 4, wherein the foam molded article has a standard deviation of a surface resistivity of 1.0 or less.
JP2008091620A 2008-03-31 2008-03-31 Antistatic styrenic resin foamed molding and its manufacturing method Pending JP2009242634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008091620A JP2009242634A (en) 2008-03-31 2008-03-31 Antistatic styrenic resin foamed molding and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008091620A JP2009242634A (en) 2008-03-31 2008-03-31 Antistatic styrenic resin foamed molding and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2009242634A true JP2009242634A (en) 2009-10-22

Family

ID=41304916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008091620A Pending JP2009242634A (en) 2008-03-31 2008-03-31 Antistatic styrenic resin foamed molding and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2009242634A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043513A (en) * 2016-02-05 2017-08-15 株式会社Jsp The manufacture method of compound resin expanded beads, compound resin expanded beads formed body and compound resin expanded beads

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107043513A (en) * 2016-02-05 2017-08-15 株式会社Jsp The manufacture method of compound resin expanded beads, compound resin expanded beads formed body and compound resin expanded beads
CN107043513B (en) * 2016-02-05 2021-01-01 株式会社Jsp Composite resin expanded particle, composite resin expanded particle molded body, and method for producing composite resin expanded particle

Similar Documents

Publication Publication Date Title
JP5548621B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP5216388B2 (en) Antistatic styrenic resin foam molding and method for producing the same
JP3732418B2 (en) Expandable styrene resin particles
JP2011026436A (en) Foamable composite resin particle, method for producing the same, prefoamed particle, and foam molded article
WO2013111368A1 (en) Expandable polystyrene-type resin particles and method for producing same, and molded foam
JP3970188B2 (en) Self-extinguishing foamable styrenic resin particles, pre-foamed particles and self-extinguishing foam
JP6612634B2 (en) Styrenic resin foamable particles, foamed particles and foamed molded article
JP5528148B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
JP5486981B2 (en) Pre-foaming method for expandable thermoplastic resin particles
JP2009242634A (en) Antistatic styrenic resin foamed molding and its manufacturing method
JP5346571B2 (en) Method for producing pre-expanded particles
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP5401083B2 (en) Pre-expanded particles, method for producing the same, and foam molded article
CN107075164B (en) Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, and thermoplastic expanded molded article
JP2018100380A (en) Polystyrene-based resin foamable particle and method for producing the same, polystyrene-based resin foamed particle and method for producing the same, and polystyrene-based resin foamed molded body and method for producing the same
KR20140085261A (en) Expandable resin composition, method for preparing the same and foam using the same
JP2011213900A (en) Method for producing pre-foamed particle, pre-foamed particle and foamed molded product
JP5470127B2 (en) Thermoplastic resin pre-expanded particle manufacturing method, thermoplastic resin pre-expanded particle manufacturing apparatus
JP5545988B2 (en) Expandable resin particles and method for producing the same, pre-expanded particles and foamed molded article
JP6228610B2 (en) Polystyrene-based composite resin particles, expandable composite resin particles, pre-expanded particles, and method for producing expanded molded body
JPH101561A (en) Expandable styrene resin particle
JP5290027B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5518510B2 (en) Method for producing expandable polystyrene resin particles, method for producing polystyrene resin pre-expanded particles, and method for producing polystyrene resin foam molding
JP2010270284A (en) Styrene-modified polyethylene resin foamed molded article