JP5290027B2 - Polyolefin resin pre-expanded particles and method for producing the same - Google Patents

Polyolefin resin pre-expanded particles and method for producing the same Download PDF

Info

Publication number
JP5290027B2
JP5290027B2 JP2009086731A JP2009086731A JP5290027B2 JP 5290027 B2 JP5290027 B2 JP 5290027B2 JP 2009086731 A JP2009086731 A JP 2009086731A JP 2009086731 A JP2009086731 A JP 2009086731A JP 5290027 B2 JP5290027 B2 JP 5290027B2
Authority
JP
Japan
Prior art keywords
weight
parts
polyolefin resin
carbon atoms
fatty acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009086731A
Other languages
Japanese (ja)
Other versions
JP2010159388A (en
Inventor
太郎 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2009086731A priority Critical patent/JP5290027B2/en
Publication of JP2010159388A publication Critical patent/JP2010159388A/en
Application granted granted Critical
Publication of JP5290027B2 publication Critical patent/JP5290027B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide pre-expanded polyolefin-based resin particles which, in spite of using a so-called higher fatty acid/glycerol ester which is safer but is poorer than other surfactants in the capability of giving antistatic performance in a usual humidity atmosphere, can give a polyolefin-based resin in-mold foam capable of stably exhibiting good antistatic performance in an atmosphere of a humidity of about 50% at which the in-mold foam is usually used. <P>SOLUTION: The pre-expanded polyolefin-based resin particles includes a &ge;6 and &le;24C fatty acid/glycerol ester and/or a &ge;6 and &le;24C fatty acid/polyglycerol ester and a &ge;6 and &le;20C aliphatic alcohol. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はポリオレフィン系樹脂予備発泡粒子およびその製造方法に関する。さらに詳しくは、良好な帯電防止性能を有する型内発泡成形体に好適に使用しうるポリオレフィン系樹脂予備発泡粒子及びその製造方法に関する。   The present invention relates to polyolefin resin pre-expanded particles and a method for producing the same. More specifically, the present invention relates to a polyolefin resin pre-foamed particle that can be suitably used for an in-mold foam molded article having good antistatic performance and a method for producing the same.

ポリオレフィン系樹脂発泡体は緩衝性、断熱性等の物性に優れる事から、包装材、緩衝材、断熱材、建築部材など様々な分野で使用されている。特にポリオレフィン系樹脂予備発泡粒子を金型に充填し、水蒸気などで加熱して予備発泡粒子同士を融着せしめて所定形状の発泡体を得る型内発泡成形法は、複雑な形状の製品を比較的容易に得ることができるため、多くの用途に用いられている。   Polyolefin resin foams are used in various fields such as packaging materials, buffer materials, heat insulating materials, and building materials because they are excellent in physical properties such as buffer properties and heat insulating properties. In particular, the in-mold foam molding method that fills polyolefin resin pre-expanded particles in a mold and heats them with steam to fuse the pre-expanded particles together to obtain a foam with a predetermined shape is a comparison of products with complex shapes. Therefore, it is used for many purposes.

これら用途の一つであるOA機器などの電子部品や機械部品の緩衝包装材には、埃や静電気を嫌う場合があり、この用途向けには帯電防止性能を有するポリオレフィン系樹脂予備発泡粒子からなる型内発泡成形体が用いられている。   One of these uses is cushioning packaging material for electronic parts and machine parts such as OA equipment, which may hate dust and static electricity. For this use, it consists of pre-expanded polyolefin resin particles with antistatic performance. In-mold foam moldings are used.

型内発泡成形体に帯電防止性能を付与する一般的な方法としては、型内発泡成形体表面に界面活性剤を塗布する方法や、あらかじめ樹脂に界面活性剤を練りこんだものから型内発泡成形体を製造する方法が代表的である。   As a general method for imparting antistatic performance to an in-mold foam molded product, a method of applying a surfactant to the surface of the in-mold foam molded product or a method in which a surfactant is kneaded into a resin in advance is used. A method for producing a molded body is representative.

後者の、あらかじめ樹脂に界面活性剤を練りこんだものから型内発泡成形体を製造する方法は、型内発泡成形体表面に界面活性剤を塗布する方法に比べ、帯電防止性能の持続性に優れ、作業方法が簡略化しやすいことから良く用いられている。   The latter method of producing an in-mold foam molded product from a pre-kneaded surfactant in the resin is more antistatic than the method of applying a surfactant to the surface of the in-mold foam molded product. It is often used because it is excellent and the working method is easy to simplify.

帯電防止性能を有するポリオレフィン系樹脂予備発泡粒子として、帯電防止能を有する平均分子量200〜1000のノニオン系界面活性剤を0.1〜5重量%含有する無架橋ポリオレフィン系樹脂を基材樹脂として使用する技術が開示されている(特許文献1)。   Non-crosslinked polyolefin resin containing 0.1 to 5% by weight of nonionic surfactant having antistatic ability and an average molecular weight of 200 to 1000 is used as a base resin as polyolefin resin prefoamed particles having antistatic performance The technique to do is disclosed (patent document 1).

また帯電防止能を有する平均分子量200から1000のノニオン系界面活性剤を0.1〜5重量%含有し、示差走査熱量測定によって得られるDSC曲線に10〜30J/gの熱量の高温ピークが現れるポリプロピレン系樹脂予備発泡粒子に関する技術が開示されている(特許文献2)。   Further, it contains 0.1 to 5% by weight of a nonionic surfactant having an average molecular weight of 200 to 1000 having antistatic ability, and a high temperature peak with a calorific value of 10 to 30 J / g appears in a DSC curve obtained by differential scanning calorimetry. A technology related to polypropylene resin pre-expanded particles is disclosed (Patent Document 2).

これら技術では、特定のノニオン系界面活性剤を用いることにより、帯電防止性能を有する界面活性剤が多量にブリードすることなく、必要な帯電防止性能を有する型内発泡成形体を得ることができるとし、そのノニオン系界面活性剤の一例として高級脂肪酸のグリセリンエステルなどが示されている。   In these technologies, by using a specific nonionic surfactant, it is possible to obtain an in-mold foam molded article having the necessary antistatic performance without bleeding a large amount of the surfactant having the antistatic performance. As an example of the nonionic surfactant, glycerin ester of higher fatty acid is shown.

高級脂肪酸のグリセリンエステルは、他の界面活性剤に比べ比較的安全性が高く、ノニオン系界面活性剤としてよく用いられているが、他のノニオン系界面活性剤、例えば高級アルキルアミンなどに比べ帯電防止性能に劣る傾向がある。このため特許文献1,2に記載されているような湿度65%程度の高湿度雰囲気下では十分な帯電防止性能の目安とされる、1012Ω以下の表面固有抵抗値を発揮するものの、通常発泡成形体を使用すると考えられる湿度50%程度の環境下では安定的に1012Ω以下の十分な帯電防止性能を得られないという欠点があった。 Higher fatty acid glycerin esters are relatively safer than other surfactants and are often used as nonionic surfactants. However, they are more charged than other nonionic surfactants such as higher alkylamines. There is a tendency to be inferior in prevention performance. For this reason, although it exhibits a surface resistivity of 10 12 Ω or less, which is a measure of sufficient antistatic performance in a high humidity atmosphere of about 65% humidity as described in Patent Documents 1 and 2, There is a disadvantage that sufficient antistatic performance of 10 12 Ω or less cannot be stably obtained in an environment of about 50% humidity where the foamed molded product is considered to be used.

一方で、ポリオレフィン系樹脂組成物への帯電防止剤として高級脂肪酸のグリセリンエステルに種々の添加剤を加え、その性能を改善する技術は旧来より開示されている。   On the other hand, a technique for improving performance by adding various additives to a glycerin ester of a higher fatty acid as an antistatic agent for a polyolefin-based resin composition has been conventionally disclosed.

たとえばグリセリン脂肪酸エステル、縮合脂肪酸エステル、飽和脂肪族アルコールの混合物からなる帯電防止剤を熱可塑性樹脂に配合してなる樹脂組成物に関する技術が開示されている(特許文献3)。   For example, a technique relating to a resin composition obtained by blending an antistatic agent composed of a mixture of glycerin fatty acid ester, condensed fatty acid ester and saturated aliphatic alcohol with a thermoplastic resin is disclosed (Patent Document 3).

また、ポリプロプレン系樹脂組成物に結晶核剤と多価アルコールと脂肪酸モノグリセリドを配合してなるポリプロピレン系樹脂組成物に関する技術が開示されている(特許文献4)。   Moreover, the technique regarding the polypropylene-type resin composition formed by mix | blending a crystal nucleating agent, a polyhydric alcohol, and a fatty acid monoglyceride with the polypropylene-type resin composition is disclosed (patent document 4).

しかしこれら技術は射出成形用途など非発泡のポリオレフィン系樹脂に関するものであり、発泡樹脂とは技術内容が異なる。すなわち樹脂を発泡する場合、発泡剤の存在下にて樹脂を溶融、もしくは半溶融する工程を経るため、帯電防止剤の樹脂中への分散挙動、樹脂表面への溶出状態が変わり、さらには帯電防止剤が変質してしまう場合もある。   However, these techniques relate to non-foamed polyolefin resins such as injection molding, and the technical contents are different from foamed resins. That is, when the resin is foamed, the resin is melted or semi-melted in the presence of a foaming agent, so that the dispersion behavior of the antistatic agent in the resin and the elution state on the resin surface change, and further charging In some cases, the inhibitor may be altered.

特に型内発泡成形に好適に用いられるポリオレフィン系樹脂予備発泡粒子は、耐圧容器内で水系分散媒と共に加熱溶融させて製造することが多く、加熱条件や分散媒種によっては帯電防止剤が水系分散媒中に溶出し、必要な帯電防止性能が発現しない。また帯電防止剤が水系分散媒中に溶出する過程で、該ポリオレフィン系樹脂予備発泡粒子の表層付近に帯電防止剤が集中してしまい、型内発泡成形時に該予備発泡粒子同士の相互融着を阻害し、良好な成形体が得られない。   In particular, polyolefin resin pre-expanded particles that are suitably used for in-mold foam molding are often produced by heating and melting together with an aqueous dispersion medium in a pressure resistant container. Depending on the heating conditions and type of dispersion medium, the antistatic agent may be dispersed in an aqueous system. It elutes in the medium and the necessary antistatic performance does not appear. Further, in the process of elution of the antistatic agent into the aqueous dispersion medium, the antistatic agent concentrates in the vicinity of the surface layer of the polyolefin resin pre-expanded particles, and the pre-expanded particles are mutually fused during in-mold foam molding. It inhibits and a good molded article cannot be obtained.

事実、特許文献5記載の技術において比較例3にグリセリンエステルであるモノグリセリドと高級アルコール複合系帯電防止剤を練りこんだ処方は外観や成形性が劣るとの記載がある。   In fact, in the technique described in Patent Document 5, there is a description in Comparative Example 3 that a formulation in which a monoglyceride which is a glycerin ester and a higher alcohol composite antistatic agent is kneaded is inferior in appearance and moldability.

また特許文献6には、親水性に優れ水濡れが速やかで、水が成型体に接触した当初から良好な通水性を呈する連通した空隙を有する通水性発泡成型体を提供することを目的として、発泡樹脂粒子を互いに結合一体化してなる連通した空隙を有する発泡成型体に、親水性付与剤が含有又は塗布されていることが開示されており、詳細な説明において、グリセリンエステルである多価アルコール脂肪酸エステルに高級アルコール等を併用して用いることも出来ると記載されているが、実施例などに具体的な記載はない。また、高級アルコールと記載されていても、その構成炭素数については様々な定義がある。   In addition, Patent Document 6 aims to provide a water-permeable foamed molded article having a continuous void that exhibits excellent water permeability from the beginning when water is in contact with the molded article, with excellent hydrophilicity and rapid water wetting. It is disclosed that a hydrophilicity imparting agent is contained in or applied to a foamed molded article having continuous voids formed by bonding and integrating foamed resin particles with each other. In the detailed description, polyhydric alcohol which is a glycerin ester Although it is described that a higher alcohol or the like can be used in combination with the fatty acid ester, there is no specific description in Examples. Even if it is described as a higher alcohol, there are various definitions for the number of constituent carbon atoms.

特開平3−28239号公報JP-A-3-28239 特開平7−304895号公報Japanese Patent Laid-Open No. 7-304895 特開平11−21547号公報Japanese Patent Laid-Open No. 11-21547 特開平9−59444号公報JP-A-9-59444 特開昭63−275648号公報JP-A-63-275648 特開平8−59875号公報Japanese Patent Laid-Open No. 8-59875

本発明は、他の界面活性剤に比べ安全性が高いが、通常湿度雰囲気下での帯電防止性能に劣るいわゆる高級脂肪酸のグリセリンエステルであっても、一般的に型内発泡成形体を使用すると考えられる50%程度の湿度雰囲気下で安定的に良好な帯電防止性能を発揮するポリオレフィン系樹脂型内発泡成形体を得ることのできるポリオレフィン系樹脂予備発泡粒子を提供することを目的とする。   The present invention is safer than other surfactants, but even if it is a so-called higher fatty acid glycerin ester which is inferior in antistatic performance under normal humidity atmosphere, generally using an in-mold foam molded article An object of the present invention is to provide polyolefin resin pre-expanded particles capable of obtaining a polyolefin resin-in-mold foam-molded article that stably exhibits good antistatic performance in a possible humidity atmosphere of about 50%.

本発明者は、炭素数が6以上24以下の脂肪酸のグリセリンエステルを用いながらも通常湿度雰囲気下で十分な帯電防止性能を発現する技術に関し鋭意研究した結果、炭素数が6以上24以下の脂肪酸のグリセリンエステルと、炭素数が6以上20以下の脂肪族アルコールを併用することで、ポリオレフィン系樹脂予備発泡粒子が高い帯電防止性能を発揮しうることを見出した。また、グリセリンを重合したポリグリセリンの脂肪酸エステルについても検討したところ、同様に効果が得られることを見出し、本発明を完成するに至った。   As a result of earnest research on a technique for expressing sufficient antistatic performance in a normal humidity atmosphere while using a glycerin ester of a fatty acid having 6 to 24 carbon atoms, the present inventors have found that the fatty acid has 6 to 24 carbon atoms. It has been found that the polyolefin resin pre-expanded particles can exhibit high antistatic performance by using together the glycerin ester and an aliphatic alcohol having 6 to 20 carbon atoms. Moreover, when the polyglycerol fatty acid ester which superposed | polymerized glycerol was also examined, it discovered that an effect was acquired similarly and came to complete this invention.

さらにポリオレフィン系樹脂予備発泡粒子を得る製造方法として、耐圧容器を用い、使用する原料樹脂に応じた特定の温度範囲で樹脂と水系分散物を加温、加圧し、耐圧容器内圧より低圧雰囲気下に放出することにより、含有させた帯電防止剤が変質することなく、表面固有抵抗性能を発揮しうる適度な溶出状態になることを見出した。   Furthermore, as a production method to obtain polyolefin resin pre-expanded particles, a pressure vessel is used, and the resin and aqueous dispersion are heated and pressurized in a specific temperature range according to the raw material resin to be used, and the atmosphere is lower than the pressure inside the pressure vessel. It has been found that by releasing, the antistatic agent contained can be in an appropriate elution state capable of exhibiting surface resistivity performance without being altered.

即ち、本発明の第1は、ポリオレフィン系樹脂100重量部に対し、(A)炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを0.1重量部以上5重量部以下と、(B)炭素数が6以上20以下の脂肪族アルコールを0.1重量部以上5重量部以下含んでなるポリオレフィン系樹脂組成物を基材樹脂とすることを特徴とするポリオレフィン系樹脂予備発泡粒子に関する。   That is, according to the first aspect of the present invention, (A) a glycerin ester of a fatty acid having 6 to 24 carbon atoms and / or a polyglycerin ester of a fatty acid having 6 to 24 carbon atoms is added to 100 parts by weight of the polyolefin resin. 0.1 to 5 parts by weight and (B) a polyolefin resin composition comprising 0.1 to 5 parts by weight of an aliphatic alcohol having 6 to 20 carbon atoms as a base resin The present invention relates to a polyolefin resin pre-expanded particle.

好ましい態様としては、炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを構成するポリグリセリンが、下記化1に示す、2以上10以下のグリセリンが重合したものであること、   As a preferred embodiment, the polyglycerin constituting the polyglycerin ester of a fatty acid having 6 to 24 carbon atoms is a polymer of 2 or more and 10 or less glycerin represented by the following chemical formula 1.

Figure 0005290027
Figure 0005290027

を特徴とする前記記載のポリオレフィン系樹脂予備発泡粒子に関する。 It relates to the polyolefin resin pre-expanded particles described above.

本発明の第2は、ポリオレフィン系樹脂100重量部に対し、(A)炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを0.1重量部以上5重量部以下と、(B)炭素数が6以上20以下の脂肪族アルコールを0.1重量部以上5重量部以下含んでなるポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を、耐圧容器内に水、分散剤、発泡剤と共に仕込み水系分散物となし、該ポリオレフィン系樹脂粒子の融点−20℃以上融点+20℃以下の温度範囲で加圧することにより該ポリオレフィン系樹脂粒子に発泡剤を含有させ、該水系分散物を耐圧容器内よりも低圧の雰囲気下に放出してえられることを特徴とする前記記載のポリオレフィン系樹脂予備発泡粒子の製造方法に関する。   In the second aspect of the present invention, (A) a glycerol ester of a fatty acid having 6 to 24 carbon atoms and / or a polyglycerol ester of a fatty acid having 6 to 24 carbon atoms is added to 100 parts by weight of the polyolefin resin. 1 to 5 parts by weight and (B) a polyolefin resin particle comprising a polyolefin resin composition comprising 0.1 to 5 parts by weight of an aliphatic alcohol having 6 to 20 carbon atoms In the pressure vessel, water, a dispersing agent and a foaming agent are added together to form an aqueous dispersion, and the polyolefin resin particles are foamed by pressurizing the polyolefin resin particles in a temperature range of -20 ° C to 20 ° C. The polyolefin resin as described above, wherein the polyolefin resin is obtained by containing an agent and releasing the aqueous dispersion in an atmosphere at a lower pressure than in the pressure vessel A method of manufacturing a 備発 foam particles.

本発明のポリオレフィン系樹脂予備発泡粒子は、通常湿度雰囲気下でも安定的に良好な帯電防止性能を発揮するポリオレフィン系樹脂型内発泡成形体を提供することができる。   The polyolefin resin pre-expanded particles of the present invention can provide a polyolefin resin in-mold foam-molded product that stably exhibits good antistatic performance even in a normal humidity atmosphere.

本発明におけるポリオレフィン系樹脂は、主モノマーとしてオレフィン系単量体を含んでなるものであり、たとえば、エチレン−プロピレンランダム共重合体、ブテン−1−プロピレンランダム共重合体、エチレン−ブテン−1−プロピレンランダム3元共重合体、エチレン−プロピレンブロック共重合体、ホモポリプロピレンなどのポリプロピレン系樹脂;低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体などのポリエチレン系樹脂;ポリブテン、ポリペンテンなどがあげられ、これらは単独で用いてもよく、2種以上併用してもよい。   The polyolefin resin in the present invention comprises an olefin monomer as a main monomer. For example, an ethylene-propylene random copolymer, a butene-1-propylene random copolymer, an ethylene-butene-1- Propylene random terpolymers, ethylene-propylene block copolymers, polypropylene resins such as homopolypropylene; low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer Polyethylene resins such as polybutene, polypentene, and the like. These may be used alone or in combination of two or more.

これらのうちでも、エチレン−プロピレンランダム共重合体、ブテン−1−プロピレンランダム共重合体、エチレン−ブテン−1−プロピレンランダム3元共重合体、直鎖状低密度ポリエチレンの少なくとも1種以上が型内発泡成形に好適に使用しうるポリオレフィン系樹脂予備発泡粒子を容易に得られるという点から好ましい。   Among these, at least one of ethylene-propylene random copolymer, butene-1-propylene random copolymer, ethylene-butene-1-propylene random terpolymer, and linear low-density polyethylene is a mold. This is preferable from the viewpoint that polyolefin resin pre-expanded particles that can be suitably used for inner foam molding can be easily obtained.

本発明におけるポリオレフィン系樹脂は、メルトインデックス(以下、MIと表記する場合がある)が、好ましくは0.1〜50g/10分の樹脂である。MIが前記の範囲であるとビーズ発泡性、型内発泡性が優れる点で好ましい。   The polyolefin resin in the present invention is a resin having a melt index (hereinafter sometimes referred to as MI) of preferably 0.1 to 50 g / 10 min. MI is preferably in the above range in terms of excellent bead foamability and in-mold foamability.

本発明のポリオレフィン系樹脂予備発泡粒子は、炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルと、炭素数が6以上20以下の脂肪族アルコールを含有する。   The polyolefin resin pre-expanded particles of the present invention comprise a glycerin ester of a fatty acid having 6 to 24 carbon atoms and / or a polyglycerin ester of a fatty acid having 6 to 24 carbon atoms and a fat having 6 to 20 carbon atoms. Contains group alcohols.

本発明における炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルは、化2で表される化合物であり、帯電防止性能を有している。   The glycerin ester of a fatty acid having 6 to 24 carbon atoms and / or the polyglycerin ester of a fatty acid having 6 to 24 carbon atoms in the present invention is a compound represented by Chemical Formula 2 and has antistatic performance. Yes.

Figure 0005290027
Figure 0005290027

(式中R1、R1’は少なくとも1つのメチル基と5から23個のメチレン基及び、またはメチン基からなるアルキル基である。) (Wherein R 1 and R 1 ′ are alkyl groups comprising at least one methyl group and 5 to 23 methylene groups and / or methine groups.)

本発明のグリセリンエステルおよび/またはポリグリセリンエステルを構成する脂肪酸の炭素数は、6以上24以下である。少ない場合は分子量が低いため樹脂表層へ溶出しやすい一方で融点が低くなり加工時の取り扱いに注意を要する傾向があり、また多い場合は樹脂表層への溶出に時間がかかる傾向があるなどの特色があるが、一般には炭素数18前後のものが自然界に多数存在するため安価であり、よく用いられる。   The carbon number of the fatty acid constituting the glycerin ester and / or polyglycerin ester of the present invention is 6 or more and 24 or less. When the amount is small, the molecular weight is low, so it is easy to elute to the resin surface layer, but the melting point is low and there is a tendency to be careful in handling during processing. However, in general, many carbon atoms having about 18 carbon atoms exist in nature, so they are inexpensive and often used.

ポリグリセリンは、グリセリンが2個以上重合したものであり、本発明においては、下記化3に示す、2以上10以下のグリセリンが重合したものを用いる。炭素数が6以上24以下の脂肪酸のポリグリセリンエステルで、重合度が低いものはグリセリンエステルと同様の性質を持つ。2以上10以下のグリセリンが重合したポリグリセリンと炭素数が6以上24以下の脂肪酸のエステルは、重合度1に相当する炭素数が6以上24以下の脂肪酸のグリセリンエステルと同様に良好な帯電防止性能を持つことから本発明に好適に用いられる。   Polyglycerin is obtained by polymerizing two or more glycerins, and in the present invention, a polymer obtained by polymerizing 2 or more and 10 or less glycerin shown in the following chemical formula 3 is used. A polyglycerol ester of a fatty acid having 6 to 24 carbon atoms and having a low degree of polymerization has the same properties as the glycerol ester. Polyglycerin in which 2 or more and 10 or less glycerin is polymerized and fatty acid ester having 6 or more and 24 or less carbon atoms are good antistatic properties like glycerin ester of fatty acid having 6 or more and 24 or less carbon atoms corresponding to polymerization degree 1 Since it has performance, it is preferably used in the present invention.

Figure 0005290027
Figure 0005290027

炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルは、ポリオレフィン系樹脂100重量部に対し、0.1重量部以上5重量部以下含まれ、好ましくは0.1重量部以上3重量部以下含まれる。前記炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルの添加量が0.1重量部未満の場合、型内発泡して得られるポリオレフィン系樹脂型内発泡成形体の帯電防止性能が不十分となる。一方、5重量部をこえると型内発泡成形に用いる際、ポリオレフィン系樹脂予備発泡粒子表面へ必要以上にブリードし、型内発泡成形時の加工性が悪化する。   The glycerol ester of a fatty acid having 6 to 24 carbon atoms and / or the polyglycerol ester of a fatty acid having 6 to 24 carbon atoms is contained in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of the polyolefin resin. Preferably, it is contained in an amount of 0.1 to 3 parts by weight. Polyolefin obtained by in-mold foaming when the amount of the glycerin ester of fatty acid having 6 to 24 carbon atoms and / or the polyglycerol ester of fatty acid having 6 to 24 carbon atoms is less than 0.1 parts by weight The antistatic performance of the resin-in-mold foam-molded product becomes insufficient. On the other hand, when the amount exceeds 5 parts by weight, when used for in-mold foam molding, the surface of the polyolefin resin pre-foamed particles is bleed more than necessary, and the workability during in-mold foam molding deteriorates.

本発明で使用する炭素数が6以上20以下の脂肪族アルコールは、化4で表される化合物で、帯電防止性能向上のメカニズムは詳細には不明であるが、前記炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルの、前記ポリオレフィン系樹脂中からのブリード性を調整していると考えられる。   The aliphatic alcohol having 6 to 20 carbon atoms used in the present invention is a compound represented by Chemical formula 4, and the mechanism for improving the antistatic performance is unknown in detail, but the carbon number is 6 to 24. It is considered that the glycerin ester of fatty acid and / or the polyglycerin ester of fatty acid having 6 to 24 carbon atoms is adjusted in bleeding property from the polyolefin resin.

Figure 0005290027
Figure 0005290027

(式中R2は少なくとも1つのメチル基と5から19個のメチレン基及び、またはメチン基からなるアルキル基である。 (Wherein R 2 is an alkyl group comprising at least one methyl group and 5 to 19 methylene groups and / or a methine group.

本発明の脂肪族アルコールは、グリセリンエステルおよび/またはポリグリセリンエステルを構成する脂肪酸との相溶性を合わせるほうが、ポリオレフィン系樹脂中への分散や、樹脂表層への溶出促進などの効率が良いと推測されるため、脂肪酸と炭素数を合わせて使用することが好ましい。   It is estimated that the aliphatic alcohol of the present invention is more efficient in dispersing in a polyolefin-based resin and promoting elution into a resin surface layer when the compatibility with the fatty acid constituting the glycerin ester and / or polyglycerin ester is matched. Therefore, it is preferable to use the fatty acid and the carbon number together.

一般に高級アルコールとは炭素数が6以上の脂肪族アルコールを称すが、ポリオレフィン系樹脂予備発泡粒子に用いる場合は、炭素数が20以下の高級アルコールを用いた場合に帯電防止性能の向上効果が見られる。   In general, higher alcohols refer to aliphatic alcohols having 6 or more carbon atoms, but when used for polyolefin resin pre-expanded particles, the effect of improving antistatic performance is seen when higher alcohols having 20 or less carbon atoms are used. It is done.

炭素数が6以上20以下の脂肪族アルコールは、前記ポリオレフィン系樹脂100重量部に対し、0.1重量部以上5重量部以下含まれ、好ましくは0.1重量部以上3重量部以下含まれる。前記脂肪族アルコールの添加量が0.1重量部未満の場合、型内発泡して得られるポリオレフィン系樹脂型内発泡成形体の帯電防止性能が不十分となる。一方、5重量部をこえると型内発泡成形に用いる際、予備発泡粒子表面へ必要以上にブリードし、型内発泡成形時の加工性が悪化する。   The aliphatic alcohol having 6 to 20 carbon atoms is contained in an amount of 0.1 to 5 parts by weight, preferably 0.1 to 3 parts by weight, based on 100 parts by weight of the polyolefin resin. . When the addition amount of the aliphatic alcohol is less than 0.1 parts by weight, the antistatic performance of the polyolefin resin in-mold foam molded product obtained by in-mold foaming becomes insufficient. On the other hand, when the amount exceeds 5 parts by weight, when used for in-mold foam molding, the surface of the pre-foamed particles is bleed more than necessary, and the workability during in-mold foam molding deteriorates.

ポリオレフィン系樹脂と炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステル、炭素数が6以上20以下の脂肪族アルコールとの混合順序、混合の仕方などには特に限定はないが、ポリオレフィン系樹脂の一部と炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルや炭素数が6以上20以下の脂肪族アルコールとから、まず含有率の高いマスターバッチ、たとえば含有率が5〜40重量%のマスターバッチを調製し、これと残りのポリオレフィン系樹脂とを混合する方法や、二軸押し出し機での共押出しする方法などが、炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルや炭素数が6以上20以下の脂肪族アルコールをポリオレフィン系樹脂中に均一に分散させやすいという点から好ましい。   Mixing order and mixing of polyolefin resin and glycerin ester of fatty acid having 6 to 24 carbon atoms and / or polyglycerin ester of fatty acid having 6 to 24 carbon atoms and aliphatic alcohol having 6 to 20 carbon atoms There is no particular limitation on the method, but a part of the polyolefin resin and a glycerin ester of a fatty acid having 6 to 24 carbon atoms and / or a polyglycerin ester of a fatty acid having 6 to 24 carbon atoms or a carbon number. First, a master batch having a high content, for example, a master batch having a content of 5 to 40% by weight, is prepared from 6 to 20 aliphatic alcohols, and this is mixed with the remaining polyolefin resin. The method of co-extrusion with a shaft extruder is a glycerin ester of a fatty acid having 6 to 24 carbon atoms and Or it is preferred in view of the 20 following fatty alcohol polyglycerol ester and the carbon number of 6 or more 24 or less fatty acid of 6 or more likely to be uniformly dispersed in the polyolefin resin carbon atoms.

本発明における炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルと炭素数が6以上20以下の脂肪族アルコールを含有するポリオレフィン系樹脂予備発泡粒子には、必要に応じて有機顔料を加えてもよい。   A polyolefin resin preliminary containing a glycerin ester of a fatty acid having 6 to 24 carbon atoms and / or a polyglycerin ester of a fatty acid having 6 to 24 carbon atoms and an aliphatic alcohol having 6 to 20 carbon atoms in the present invention. An organic pigment may be added to the expanded particles as necessary.

前記有機顔料としては、たとえば、ペリレン系、ポリアゾ系、キナクリドン系の有機顔料が例示されるが、これらに限定されるものではない。   Examples of the organic pigment include perylene-based, polyazo-based, and quinacridone-based organic pigments, but are not limited thereto.

前記有機顔料の含有量はポリオレフィン系樹脂100重量部に対し、0.001重量部以上0.1重量部以下であることが分散性や帯電防止性の点から好ましい。含有量が0.1重量部をこえるとポリオレフィン系樹脂予備発泡粒子の気泡径が微細となり、該ポリオレフィン系樹脂予備発泡粒子から得られるポリオレフィン系樹脂型内発泡成形体の表面性が劣り、見栄えが悪くなる傾向にある。   The content of the organic pigment is preferably 0.001 part by weight or more and 0.1 part by weight or less with respect to 100 parts by weight of the polyolefin resin from the viewpoint of dispersibility and antistatic property. When the content exceeds 0.1 parts by weight, the cell diameter of the polyolefin resin pre-expanded particles becomes fine, and the surface property of the polyolefin resin in-mold foam molded product obtained from the polyolefin resin pre-expanded particles is poor and looks good It tends to get worse.

ポリオレフィン系樹脂は、通常、予備発泡に利用されやすいように、あらかじめ押出機、ニーダー、バンバリーミキサー、ロールなどを用いて溶融し、円柱状、楕円状、球状、立方体状、直方体状などの所望の粒子形状で、その粒子の平均粒径が0.1〜10mm、好ましくは0.5〜5mm、平均重量が0.1〜100mg、好ましくは0.3〜10mg程度になるように成形加工される。その際、炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルや炭素数が6以上20以下の脂肪族アルコール、有機顔料などの添加剤は、通常、樹脂粒子の製造過程において溶融した樹脂中に添加することが好ましい。   The polyolefin resin is usually melted in advance using an extruder, kneader, Banbury mixer, roll, etc. so as to be easily used for pre-foaming, and has a desired shape such as a cylindrical shape, an elliptical shape, a spherical shape, a cubic shape, and a rectangular parallelepiped shape. The particles are molded so that the average particle diameter of the particles is 0.1 to 10 mm, preferably 0.5 to 5 mm, and the average weight is about 0.1 to 100 mg, preferably about 0.3 to 10 mg. . At that time, glycerol esters of fatty acids having 6 to 24 carbon atoms and / or additives such as polyglycerol esters of fatty acids having 6 to 24 carbon atoms, aliphatic alcohols having 6 to 20 carbon atoms, and organic pigments. In general, it is preferable to add to the molten resin in the process of producing the resin particles.

本発明のポリオレフィン系樹脂予備発泡粒子の製造方法は、ポリオレフィン系樹脂100重量部に対し、(A)炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを0.1重量部以上5重量部以下と、(B)炭素数が6以上20以下の脂肪族アルコールを0.1重量部以上5重量部以下含んでなるポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を、耐圧容器内に水、分散剤、発泡剤とともに仕込み水系分散物となし、該ポリオレフィン系樹脂粒子の融点−20℃以上融点+20℃以下の温度範囲で加圧することにより該ポリオレフィン系樹脂粒子に発泡剤を含有させ、該水系分散物を耐圧容器内よりも低圧の雰囲気下に放出してポリオレフィン系樹脂予備発泡粒子を得ることを特徴とする。   The method for producing pre-expanded polyolefin resin particles of the present invention is as follows: (A) a glycerin ester of a fatty acid having 6 to 24 carbon atoms and / or a fatty acid having 6 to 24 carbon atoms with respect to 100 parts by weight of the polyolefin resin. A polyolefin resin composition comprising 0.1 to 5 parts by weight of a polyglycerin ester and (B) 0.1 to 5 parts by weight of an aliphatic alcohol having 6 to 20 carbon atoms. By adding water, a dispersing agent, and a foaming agent together with water, a dispersing agent, and a foaming agent into the pressure-resistant container, and pressurizing the polyolefin resin particles in a temperature range from the melting point of −20 ° C. to the melting point + 20 ° C. Polyolefin resin particles are allowed to contain a foaming agent, and the aqueous dispersion is discharged under a lower pressure atmosphere than the pressure vessel. Characterized in that to obtain a resin pre-expanded particles.

前記耐圧容器には、とくに限定はなく、使用する圧力および温度に耐えられるものであればいずれのものでも使用しうる。前記耐圧容器の具体例としては、たとえばオートクレーブ型の耐圧容器があげられる。   The pressure vessel is not particularly limited, and any vessel that can withstand the pressure and temperature used can be used. Specific examples of the pressure vessel include an autoclave type pressure vessel.

前記分散剤は特に限定はないが、第三リン酸カルシウム、カオリン、硫酸バリウム、酸化チタン、燐酸マグネシウムなど難水溶性の無機系物質を用いることが多い。これらの中でも、第三リン酸カルシウム、カオリン、硫酸バリウムが少ない使用量でも水系分散物を安定的に放出させることができるため好ましい。   The dispersing agent is not particularly limited, but a poorly water-soluble inorganic substance such as tricalcium phosphate, kaolin, barium sulfate, titanium oxide, magnesium phosphate is often used. Among these, tricalcium phosphate, kaolin, and barium sulfate are preferable because the aqueous dispersion can be stably released even with a small use amount.

また、少量のドデシルベンゼンスルフォン酸ナトリウム、α−オレフィンスルフォン酸ナトリウムなどの、一般に分散助剤として使用されているアニオン界面活性剤を分散助剤として併用しうる。   Further, anionic surfactants generally used as a dispersion aid such as a small amount of sodium dodecylbenzene sulfonate and sodium α-olefin sulfonate can be used in combination as a dispersion aid.

また、分散剤の使用量についても一般に使用される量であり、ポリオレフィン系樹脂100重量部に対して0.1重量部以上5重量部以下であることが好ましい。また、分散助剤の使用量も、ポリオレフィン系樹脂100重量部に対して0.001重量部以上0.3重量部以下が好ましい。   The amount of the dispersant used is also generally used, and is preferably 0.1 parts by weight or more and 5 parts by weight or less with respect to 100 parts by weight of the polyolefin resin. The amount of the dispersion aid used is preferably 0.001 part by weight or more and 0.3 part by weight or less with respect to 100 parts by weight of the polyolefin resin.

さらに、水系分散物中におけるポリオレフィン系樹脂粒子の割合も、一般に採用される割合である水100重量部に対して20重量部以上100重量部以下であることが好ましく、得られるポリオレフィン系樹脂予備発泡粒子の品質安定性、生産性などの観点から、適宜決められる。   Furthermore, the proportion of the polyolefin resin particles in the aqueous dispersion is preferably 20 parts by weight or more and 100 parts by weight or less with respect to 100 parts by weight of water, which is a generally adopted ratio, and the resulting polyolefin resin pre-foamed It is appropriately determined from the viewpoint of particle quality stability and productivity.

前記発泡剤は特に限定はなく、環境面から水、無機ガスとして空気、窒素、炭酸ガス、高い発泡倍率が得られ易いという面から、n−ブタン、iso−ブタン、ペンタン等の揮発性発泡剤などが挙げられる。   The foaming agent is not particularly limited, and is volatile foaming agents such as n-butane, iso-butane, pentane and the like from the viewpoint of being easy to obtain water, inorganic gas as air, nitrogen, carbon dioxide, and high foaming ratio from the environmental aspect. Etc.

前記ポリオレフィン系樹脂粒子の融点は、示差走査熱量計(たとえばセイコー電子工業(株)製のDSC6200型)を用いてポリオレフィン系樹脂粒子5〜6mgを10℃/minの昇温速度で40℃から220℃まで昇温する事により樹脂粒子を融解し、その後10℃/minで220℃から40℃まで冷却することにより結晶化させた後に、さらに10℃/minで40℃から220℃まで昇温したときに得られるDSC曲線から、2回目の昇温時の融解ピーク温度として求められる。   The melting point of the polyolefin resin particles is from 40 ° C. to 220 ° C. at a temperature increase rate of 10 ° C./min using 5 to 6 mg of the polyolefin resin particles using a differential scanning calorimeter (for example, DSC6200 type manufactured by Seiko Electronics Industry Co., Ltd.). The resin particles were melted by raising the temperature to 10 ° C., then crystallized by cooling from 220 ° C. to 40 ° C. at 10 ° C./min, and then further raised from 40 ° C. to 220 ° C. at 10 ° C./min. It is calculated | required as a melting peak temperature at the time of the 2nd temperature rise from the DSC curve obtained sometimes.

また、耐圧容器内の水系分散物はポリオレフィン系樹脂粒子の融点−20℃以上融点+20℃以下の温度範囲とするが、製造するポリオレフィン系樹脂予備発泡粒子の原料樹脂種、添加剤、発泡倍率、使用する発泡剤種により、当該範囲内において適宜決められ、当該温度にて加圧して発泡剤が含浸せしめられる。一般に揮発性発泡剤を用いる場合は、加熱温度は低く、無機ガスなどでは加熱温度は高い傾向がある。また高温であるほど得られる予備発泡粒子の発泡倍率が高くなる傾向がある。   In addition, the aqueous dispersion in the pressure vessel has a temperature range of the melting point of the polyolefin resin particles −20 ° C. or higher and the melting point + 20 ° C. or lower, but the raw resin type of the polyolefin resin pre-foamed particles to be produced, additives, expansion ratio, Depending on the type of foaming agent to be used, it is appropriately determined within the range, and the foaming agent is impregnated by pressurization at the temperature. In general, when a volatile foaming agent is used, the heating temperature tends to be low, and the heating temperature tends to be high for inorganic gases and the like. Moreover, there exists a tendency for the expansion ratio of the pre-expanded particle obtained so that it is high temperature to become high.

また、前記耐圧容器内よりも低圧の雰囲気下とは、一般に予備発泡粒子を製造する際に、耐圧容器中の水系分散物を放出する低圧の雰囲気として採用される条件であるかぎりとくに制限はないが、たとえば大気中に放出する際には大気下、揮発性発泡剤を回収するために密閉系内に放出する場合には密閉系内の雰囲気下などのことである。   Further, the atmosphere under a pressure lower than that in the pressure vessel is not particularly limited as long as it is a condition adopted as a low pressure atmosphere for releasing the aqueous dispersion in the pressure vessel in general when producing the pre-expanded particles. However, for example, when it is released into the atmosphere, it is under the atmosphere, and when it is released into the closed system in order to recover the volatile foaming agent, it is under the atmosphere in the closed system.

以上のようにして得られる本発明のポリオレフィン系樹脂予備発泡粒子の大きさは0.3〜10mg/粒であることが好ましい。また、本発明の製造方法によって得られるポリオレフィン系樹脂予備発泡粒子の発泡倍率は、2〜60倍であることが好ましく、より好ましくは3〜40倍である。ここでいう発泡倍率とは、発泡前の樹脂粒子の密度、ポリオレフィン系樹脂予備発泡粒子の重量と水没体積から算出できる真倍率である。   The size of the polyolefin resin pre-expanded particles of the present invention obtained as described above is preferably 0.3 to 10 mg / particle. The expansion ratio of the polyolefin resin pre-expanded particles obtained by the production method of the present invention is preferably 2 to 60 times, and more preferably 3 to 40 times. The expansion ratio here is a true magnification that can be calculated from the density of the resin particles before foaming, the weight of the polyolefin resin pre-expanded particles and the submerged volume.

本発明のポリオレフィン系樹脂予備発泡粒子の密度は、使用される充填剤の有無、樹脂密度などによっても異なるが、0.015〜0.5g/cm3であることが好ましく、さらには0.022〜0.3g/cm3であることが好ましい。 The density of the polyolefin resin pre-expanded particles of the present invention varies depending on the presence or absence of the filler used, the resin density, etc., but is preferably 0.015 to 0.5 g / cm 3 , and more preferably 0.022. It is preferable that it is -0.3g / cm < 3 >.

本発明のポリオレフィン系樹脂予備発泡粒子は、型内発泡成形することによってポリオレフィン系樹脂型内発泡成形体となる。   The polyolefin resin pre-expanded particles of the present invention become a polyolefin resin in-mold foam-molded product by in-mold foam molding.

前記ポリオレフィン系樹脂予備発泡粒子を型内発泡成形に用いる場合には、イ)そのまま用いる方法、ロ)あらかじめ予備発泡粒子中に空気等の無機ガスを圧入し、発泡能を付与する方法、ハ)予備発泡粒子を圧縮状態で金型内に充填し成形する方法など、従来既知の方法が使用しうる。   When the polyolefin resin pre-foamed particles are used for in-mold foam molding, a) a method of using the same as it is, b) a method of previously injecting an inorganic gas such as air into the pre-foamed particles to give foaming ability, c) Conventionally known methods such as a method of filling pre-expanded particles in a mold in a compressed state and molding can be used.

本発明で製造されるポリオレフィン系樹脂予備発泡粒子からポリオレフィン系樹脂型内発泡成形体を製造する方法としては、たとえば閉鎖しうるが密閉し得ない成形金型内に前記ポリオレフィン系樹脂予備発泡粒子を充填し、水蒸気などを加熱媒体として0.05〜0.5MPa−G程度の加熱水蒸気圧で3〜30秒程度の加熱時間で成形しポリオレフィン系樹脂予備発泡粒子同士を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き型内発泡成形体とする方法などが挙げられる。   As a method for producing a polyolefin resin pre-expanded molded article from the polyolefin resin pre-expanded particles produced in the present invention, for example, the polyolefin resin pre-expanded particles are placed in a mold that can be closed but cannot be sealed. Filled and molded with steam or the like as a heating medium at a heating steam pressure of about 0.05 to 0.5 MPa-G for a heating time of about 3 to 30 seconds to fuse the polyolefin resin pre-expanded particles together, and then molding Examples include a method in which the mold is cooled by water cooling to such an extent that deformation of the in-mold foam-molded body after taking out the in-mold foam-molded body can be suppressed, and then the mold is opened to form an in-mold foam-molded body.

得られた型内発泡成形体は帯電防止性能を有し、通常使用される湿度50%程度の雰囲気下でも、1012Ω以下の良好な帯電防止性能を安定して発揮する。 The obtained in-mold foamed molded article has antistatic performance, and stably exhibits good antistatic performance of 10 12 Ω or less even in a normally used atmosphere of about 50% humidity.

次に本発明を実施例および比較例に基づき説明するが、本発明はこれら実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example and a comparative example, this invention is not limited to these Examples.

また実施例及び比較例における評価は下記の方法で行った。   Moreover, the evaluation in an Example and a comparative example was performed with the following method.

(予備発泡粒子の発泡倍率)
嵩体積約50cm3のポリプロピレン系樹脂予備発泡粒子の重量w(g)およびエタノール水没体積v(cm3)を求め、発泡前の樹脂粒子の密度d(g/cm3)から次式により求める。
予備発泡粒子の発泡倍率=d×v/w
(Expansion ratio of pre-expanded particles)
Seeking bulk volume weight w of the pre-expanded polypropylene resin particles of about 50 cm 3 (g) and ethanol submerged volume v (cm 3), calculated by the following equation from the density d of before foaming of the resin particles (g / cm 3).
Expansion ratio of pre-expanded particles = d × v / w

(型内発泡成形体の発泡倍率)
型内発泡成形体の重量W(g)と型内発泡成形体の体積V(cm3)を求め次式により求める。
型内発泡成形体の発泡倍率=d×V/W
(Foaming ratio of in-mold foam molding)
The weight W (g) of the in-mold foam-molded product and the volume V (cm 3 ) of the in-mold foam-molded product are determined by the following formula.
Foaming ratio of in-mold foam molding = d × V / W

(表面固有抵抗)
型内発泡成形体を温度23℃、湿度50%の室内に24時間、もしくは温度20℃、湿度65%の室内に24時間保存し、状態を調節したのち、JIS−K6911に準拠し、三菱油化(株)製のハイレスタMCP−HT201を用いて測定した。
(Surface resistivity)
In-mold foam moldings are stored in a room at 23 ° C and 50% humidity for 24 hours, or stored in a room at 20 ° C and 65% humidity for 24 hours. After adjusting the condition, Mitsubishi Oil complies with JIS-K6911. This was measured using Hiresta MCP-HT201 manufactured by Kasei Co.

(実施例1、2、3、9)
エチレン含有率3.6重量%、MI6.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステルもしくは炭素数が6以上24以下の脂肪酸のポリグリセリンエステル、脂肪族アルコール、有機顔料(商品名:ピグメントレッド)と、ポリエチレングリコール0.5重量部、タルク0.1重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Examples 1, 2, 3, 9)
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 3.6% by weight and MI of 6.0 g / 10 min, and a glycerin ester of fatty acids having 6 to 24 carbon atoms of the types and amounts shown in Table 1. Polyglycerin ester, aliphatic alcohol, organic pigment (trade name: Pigment Red), 0.5 parts by weight of polyethylene glycol and 0.1 parts by weight of talc were mixed and kneaded (220 ° C.) with a 50 mmφ extruder. And granulated to produce resin particles (1.2 mg / grain). The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.7重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.04重量部とを仕込み、さらに、炭酸ガスを10重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.7 parts by weight of tribasic calcium phosphate as a dispersing agent and 0.04 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 10 parts by weight of carbon dioxide gas was charged, and the mixture was stirred and held at the temperature and internal pressure shown in Table 1 for 30 minutes, and then passed through a 3 mmφ orifice provided at the bottom of the pressure vessel while holding the inside of the pressure vessel with carbon dioxide at the internal pressure. The aqueous dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、8時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the obtained pre-expanded particles were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 8 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, and then 400 mm × 300 mm. A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

Figure 0005290027
Figure 0005290027

(実施例4)
エチレン含有率3.6重量%、MI6.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、脂肪族アルコールと、ポリエチレングリコール0.5重量部、タルク0.1重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
Example 4
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 3.6% by weight and MI of 6.0 g / 10 min, a glycerin ester of a fatty acid of the type and amount shown in Table 1, an aliphatic alcohol, and polyethylene glycol 5 parts by weight and 0.1 part by weight of talc were mixed, kneaded with a 50 mmφ extruder (220 ° C.) and then granulated to produce resin particles (1.2 mg / grain). The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.7重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.04重量部とを仕込み、さらに、炭酸ガスを10重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.7 parts by weight of tribasic calcium phosphate as a dispersing agent and 0.04 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 10 parts by weight of carbon dioxide gas was charged, and the mixture was stirred and held at the temperature and internal pressure shown in Table 1 for 30 minutes, and then passed through a 3 mmφ orifice provided at the bottom of the pressure vessel while holding the inside of the pressure vessel with carbon dioxide at the internal pressure. The aqueous dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried.

得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、8時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the obtained pre-expanded particles were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 8 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, and then 400 mm × 300 mm. A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(実施例5)
エチレン含有率2.8重量%、MI8.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、脂肪族アルコール、有機顔料(商品名:ピグメントレッド)と、含水剤としてメラミン0.5重量部、タルク0.3重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Example 5)
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 2.8% by weight and MI of 8.0 g / 10 min, and the types and amounts of fatty acid glycerin ester, aliphatic alcohol, organic pigment (trade name) : Pigment Red) and 0.5 parts by weight of melamine and 0.3 parts by weight of talc as a water-containing agent were mixed, kneaded (220 ° C.) with a 50 mmφ extruder, granulated, and resin particles (1.2 mg / Grain). The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.5重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.02重量部とを仕込み、撹拌下、表1に示す温度とし、さらに空気で加圧することにより表1記載の内圧とした上で30分間保持し、含水させたのち、耐圧容器内を空気で前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を圧力0.05MPa−Gの飽和水蒸気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.5 parts by weight of tribasic calcium phosphate as a dispersant and 0.02 parts by weight of norman paraffin sodium sulfonate as a dispersion aid, Under stirring, the temperature shown in Table 1 was further applied, and the inner pressure shown in Table 1 was obtained by pressurizing with air. After holding the mixture for 30 minutes and containing water, the pressure vessel was maintained while maintaining the pressure inside the pressure vessel with air. The aqueous dispersion was discharged under a saturated water vapor pressure of 0.05 MPa-G through a 3 mmφ orifice provided in the lower part of the resulting product to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、3時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the pre-expanded particles obtained were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 3 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, then 400 mm × 300 mm A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(実施例6)
密度0.93g/cm3、MI2.0g/10分の直鎖状低密度ポリエチレン100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、脂肪族アルコール、有機顔料(商品名:ピグメントレッド)と、タルク0.1重量部を混合し、50mmφの押出機で混練(210℃)したのち、造粒し、樹脂粒子(3.0mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Example 6)
100 parts by weight of linear low-density polyethylene having a density of 0.93 g / cm 3 and MI of 2.0 g / 10 min, glycerin esters of fatty acids, fatty alcohols, organic pigments (trade name: Pigment) Red) and 0.1 part by weight of talc were mixed and kneaded (210 ° C.) with a 50 mmφ extruder, and then granulated to produce resin particles (3.0 mg / grain). The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム2.0重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.05重量部とを仕込み、さらに、イソブタンを15重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた5mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 2.0 parts by weight of calcium triphosphate as a dispersing agent and 0.05 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 15 parts by weight of isobutane was charged, and the mixture was stirred for 30 minutes at the temperature and internal pressure shown in Table 1. Then, the water system was passed through a 5 mmφ orifice provided at the bottom of the pressure vessel while holding the inside of the pressure vessel with carbon dioxide. The dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.08MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を80℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。   Next, the pre-expanded particles obtained were filled in a 400 mm × 300 mm × 50 mm mold, and the pre-expanded particles were heated and fused together with 0.08 MPa-G water vapor to obtain an in-mold foam-molded product, Removed from the mold. The in-mold foam molded product taken out from the mold was dried and cured in an oven at 80 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(実施例7、8)
エチレン含有率3.6重量%、MI6.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、脂肪族アルコール、有機顔料(商品名:キナクリドンレッド)と、ポリエチレングリコール0.5重量部、タルク0.1重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Examples 7 and 8)
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 3.6% by weight and MI of 6.0 g / 10 min, glycerin esters of fatty acids, fatty alcohols, organic pigments (trade names) shown in Table 1 : Quinacridone red), 0.5 parts by weight of polyethylene glycol and 0.1 parts by weight of talc were mixed, kneaded (220 ° C.) with a 50 mmφ extruder, granulated, and resin particles (1.2 mg / particle) Manufactured. The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.7重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.04重量部とを仕込み、さらに、炭酸ガスを10重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.7 parts by weight of tribasic calcium phosphate as a dispersing agent and 0.04 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 10 parts by weight of carbon dioxide gas was charged, and the mixture was stirred and held at the temperature and internal pressure shown in Table 1 for 30 minutes, and then passed through a 3 mmφ orifice provided at the bottom of the pressure vessel while holding the inside of the pressure vessel with carbon dioxide at the internal pressure. The aqueous dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、8時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the obtained pre-expanded particles were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 8 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, and then 400 mm × 300 mm. A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(比較例1)
エチレン含有率3.6重量%、MI6.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、有機顔料(商品名:ピグメントレッド)と、ポリエチレングリコール0.5重量部、タルク0.1重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Comparative Example 1)
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 3.6% by weight and MI of 6.0 g / 10 min, glycerin esters of fatty acids of the types and amounts shown in Table 1, and organic pigments (trade name: Pigment Red) Then, 0.5 parts by weight of polyethylene glycol and 0.1 parts by weight of talc were mixed, kneaded (220 ° C.) with a 50 mmφ extruder, and granulated to produce resin particles (1.2 mg / grain). The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.7重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.04重量部とを仕込み、さらに、炭酸ガスを10重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.7 parts by weight of tribasic calcium phosphate as a dispersing agent and 0.04 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 10 parts by weight of carbon dioxide gas was charged, and the mixture was stirred and held at the temperature and internal pressure shown in Table 1 for 30 minutes, and then passed through a 3 mmφ orifice provided at the bottom of the pressure vessel while holding the inside of the pressure vessel with carbon dioxide at the internal pressure. The aqueous dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、8時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the obtained pre-expanded particles were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 8 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, and then 400 mm × 300 mm. A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(比較例2)
エチレン含有率2.8重量%、MI8.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、有機顔料(商品名:ピグメントレッド)と、含水剤としてメラミン0.5部、タルク0.3重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Comparative Example 2)
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 2.8% by weight and MI of 8.0 g / 10 min, glycerol esters of fatty acids of the types and amounts shown in Table 1, and organic pigments (trade name: Pigment Red) Then, 0.5 parts of melamine and 0.3 parts by weight of talc were mixed as a water-containing agent, kneaded (220 ° C.) with a 50 mmφ extruder, and granulated to produce resin particles (1.2 mg / grain). . The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.5重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.02重量部とを仕込み、撹拌下、表1に示す温度とし、さらに空気で加圧することにより表1記載の内圧とした上で30分間保持し、含水させたのち、耐圧容器内を空気で前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を圧力0.05MPa−Gの飽和水蒸気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.5 parts by weight of tribasic calcium phosphate as a dispersant and 0.02 parts by weight of norman paraffin sodium sulfonate as a dispersion aid, Under stirring, the temperature shown in Table 1 was further applied, and the inner pressure shown in Table 1 was obtained by pressurizing with air. After holding the mixture for 30 minutes and containing water, the pressure vessel was maintained while maintaining the pressure inside the pressure vessel with air. The aqueous dispersion was discharged under a saturated water vapor pressure of 0.05 MPa-G through a 3 mmφ orifice provided in the lower part of the resulting product to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、3時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the pre-expanded particles obtained were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 3 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, then 400 mm × 300 mm A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(比較例3)
密度0.93g/cm3、MI2.0g/10分の直鎖状低密度ポリエチレン100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、有機顔料(商品名:ピグメントレッド)と、タルク0.1重量部を混合し、50mmφの押出機で混練(210℃)したのち、造粒し、樹脂粒子(3.0mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Comparative Example 3)
100 parts by weight of a linear low density polyethylene having a density of 0.93 g / cm 3 and MI of 2.0 g / 10 min, a glycerin ester of a fatty acid of the type and amount shown in Table 1, an organic pigment (trade name: Pigment Red), 0.1 parts by weight of talc was mixed, kneaded with a 50 mmφ extruder (210 ° C.) and then granulated to produce resin particles (3.0 mg / grain). The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム2.0重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.05重量部とを仕込み、さらに、イソブタンを15重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた5mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 2.0 parts by weight of calcium triphosphate as a dispersing agent and 0.05 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 15 parts by weight of isobutane was charged, and the mixture was stirred for 30 minutes at the temperature and internal pressure shown in Table 1. Then, the water system was passed through a 5 mmφ orifice provided at the bottom of the pressure vessel while holding the inside of the pressure vessel with carbon dioxide. The dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.08MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を80℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。   Next, the pre-expanded particles obtained were filled in a 400 mm × 300 mm × 50 mm mold, and the pre-expanded particles were heated and fused together with 0.08 MPa-G water vapor to obtain an in-mold foam-molded product, Removed from the mold. The in-mold foam molded product taken out from the mold was dried and cured in an oven at 80 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

(比較例4)
エチレン含有率3.6重量%、MI6.0g/10分のエチレン−プロピレンランダム共重合体100重量部と、表1に示す種類、量の脂肪酸のグリセリンエステル、炭素数が22の高級アルコールであるベヘニルアルコール、有機顔料(商品名:ピグメントレッド)と、ポリエチレングリコール0.5重量部、タルク0.1重量部を混合し、50mmφの押出機で混練(220℃)したのち、造粒し、樹脂粒子(1.2mg/粒)を製造した。得られた樹脂粒子の融点は表1に示すとおりであった。
(Comparative Example 4)
100 parts by weight of an ethylene-propylene random copolymer having an ethylene content of 3.6% by weight and MI of 6.0 g / 10 min, a glycerin ester of fatty acid of the type and amount shown in Table 1, and a higher alcohol having 22 carbon atoms. Behenyl alcohol, organic pigment (trade name: Pigment Red), 0.5 parts by weight of polyethylene glycol and 0.1 parts by weight of talc are mixed, kneaded (220 ° C) with a 50 mmφ extruder, granulated, and resin particles (1.2 mg / grain) was produced. The melting point of the obtained resin particles was as shown in Table 1.

300リットル耐圧容器に、水300重量部、得られた樹脂粒子100重量部、分散剤として第三リン酸カルシウム0.7重量部および分散助剤としてノルマンパラフィンスルフォン酸ソーダ0.04重量部とを仕込み、さらに、炭酸ガスを10重量部仕込み、撹拌下、表1に示す温度および内圧で30分間保持したのち、耐圧容器内を炭酸ガスで前記内圧に保持しながら耐圧容器の下部に設けた3mmφオリフィスを通して水系分散物を大気圧下に放出し、予備発泡粒子をえた。そののち水で洗浄し、乾燥させた。得られた予備発泡粒子の発泡倍率は表1に示す通りであった。   A 300 liter pressure vessel was charged with 300 parts by weight of water, 100 parts by weight of the obtained resin particles, 0.7 parts by weight of tribasic calcium phosphate as a dispersing agent and 0.04 parts by weight of norman paraffin sodium sulfonate as a dispersing aid, Further, 10 parts by weight of carbon dioxide gas was charged, and the mixture was stirred and held at the temperature and internal pressure shown in Table 1 for 30 minutes. The aqueous dispersion was discharged under atmospheric pressure to obtain pre-expanded particles. After that, it was washed with water and dried. The expansion ratio of the obtained pre-expanded particles was as shown in Table 1.

次に、得られた予備発泡粒子を1m3の耐圧容器に仕込み、0.5MPa−Gに加圧し、8時間保持して予備発泡粒子の内圧を0.1MPa−Gに高めたのち400mm×300mm×50mmの金型に充填し、予備発泡粒子同士を0.3MPa−Gの水蒸気にて加熱、融着させ、型内発泡成形体を得、金型から取り出した。金型から取り出した型内発泡成形体を70℃の乾燥器中で24時間乾燥、養生したのち、型内発泡成形体の物性を測定した。結果を表1に示す。 Next, the obtained pre-expanded particles were charged into a 1 m 3 pressure vessel, pressurized to 0.5 MPa-G, held for 8 hours, and the internal pressure of the pre-expanded particles was increased to 0.1 MPa-G, and then 400 mm × 300 mm. A 50 mm mold was filled, and the pre-expanded particles were heated and fused with water vapor of 0.3 MPa-G to obtain an in-mold foam molded product, which was taken out from the mold. The in-mold foam molded product taken out from the mold was dried and cured in a drier at 70 ° C. for 24 hours, and then the physical properties of the in-mold foam molded product were measured. The results are shown in Table 1.

実施例1〜9に示す通り、炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルに、炭素数が6以上20以下の脂肪族アルコールを加えたものを帯電防止剤として使用した場合、無添加の比較例と対比して表面固有抵抗値が低く、良好な帯電防止性能を有する。また高級アルコールと称される物質でも炭素数22の脂肪族アルコールであるベヘニルアルコールを用いた比較例4では、炭素数が20以下である実施例に比べ表面固有抵抗値が高く、無添加の場合と変わらない帯電防止性能しか有さない。   As shown in Examples 1 to 9, a glycerol ester of a fatty acid having 6 to 24 carbon atoms and / or a polyglycerol ester of a fatty acid having 6 to 24 carbon atoms, an aliphatic alcohol having 6 to 20 carbon atoms. When an antistatic agent is used as an antistatic agent, the surface specific resistance value is low compared to the additive-free comparative example, and the antistatic property is good. Further, in Comparative Example 4 in which behenyl alcohol, which is an aliphatic alcohol having 22 carbon atoms, is a substance called higher alcohol, the surface specific resistance value is higher than that of an example having 20 or less carbon atoms, and no additive is added. It has only the same antistatic performance.

特に、JIS−K6911に記載された温度20℃、湿度65%の高湿度雰囲気ではなく、通常発泡体を使用する温度23℃、湿度50%の通常湿度雰囲気条件において、本特許記載のポリオレフィン系樹脂予備発泡粒子を用いて得られるポリオレフィン系樹脂型内発泡成形体は、表面固有抵抗値1012Ω以下の良好な帯電防止性能を有する。 In particular, the polyolefin-based resin described in this patent is not a high humidity atmosphere having a temperature of 20 ° C. and a humidity of 65% described in JIS-K6911 but a normal humidity atmosphere condition of a temperature of 23 ° C. and a humidity of 50% in which a normal foam is used. The polyolefin resin-in-mold foam-molded product obtained by using the pre-expanded particles has a good antistatic performance with a surface resistivity of 10 12 Ω or less.

Claims (3)

ポリオレフィン系樹脂100重量部に対し、(A)炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを0.1重量部以上5重量部以下と、(B)炭素数が6以上20以下の脂肪族アルコールを0.1重量部以上5重量部以下含んでなるポリオレフィン系樹脂組成物を基材樹脂とすることを特徴とするポリオレフィン系樹脂予備発泡粒子。   0.1 part by weight or more and 5 parts by weight of (A) glycerol ester of fatty acid having 6 to 24 carbon atoms and / or polyglycerol ester of fatty acid having 6 to 24 carbon atoms with respect to 100 parts by weight of polyolefin resin And (B) a polyolefin-based resin composition containing 0.1 to 5 parts by weight of an aliphatic alcohol having 6 to 20 carbon atoms as a base resin. Pre-expanded particles. 炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを構成するポリグリセリンが、下記化5に示す、2以上10以下のグリセリンが重合したものであることを特徴とする請求項1記載のポリオレフィン系樹脂予備発泡粒子。
Figure 0005290027
The polyolefin system according to claim 1, wherein the polyglycerol constituting the polyglycerol ester of a fatty acid having 6 to 24 carbon atoms is a polymer of 2 or more and 10 or less glycerol as shown in the following chemical formula (5). Resin pre-expanded particles.
Figure 0005290027
ポリオレフィン系樹脂100重量部に対し、(A)炭素数が6以上24以下の脂肪酸のグリセリンエステルおよび/または炭素数が6以上24以下の脂肪酸のポリグリセリンエステルを0.1重量部以上5重量部以下と、(B)炭素数が6以上20以下の脂肪族アルコールを0.1重量部以上5重量部以下含んでなるポリオレフィン系樹脂組成物からなるポリオレフィン系樹脂粒子を、耐圧容器内に水、分散剤、発泡剤と共に仕込み水系分散物となし、該ポリオレフィン系樹脂粒子の融点−20℃以上融点+20℃以下の温度範囲で加圧することにより該ポリオレフィン系樹脂粒子に発泡剤を含有させ、該水系分散物を耐圧容器内よりも低圧の雰囲気下に放出してえられることを特徴とする請求項1〜2何れか一項に記載のポリオレフィン系樹脂予備発泡粒子の製造方法。   0.1 part by weight or more and 5 parts by weight of (A) glycerol ester of fatty acid having 6 to 24 carbon atoms and / or polyglycerol ester of fatty acid having 6 to 24 carbon atoms with respect to 100 parts by weight of polyolefin resin And (B) polyolefin resin particles comprising a polyolefin resin composition comprising 0.1 to 5 parts by weight of an aliphatic alcohol having 6 to 20 carbon atoms, water in a pressure vessel, An aqueous dispersion charged together with a dispersant and a foaming agent is used, and the polyolefin resin particles are allowed to contain a foaming agent by pressurizing in a temperature range of the melting point of the polyolefin resin particles to a melting point of −20 ° C. or higher and a melting point of + 20 ° C. or lower. 3. The polyolefin system according to any one of claims 1 to 2, wherein the dispersion is obtained by releasing it in an atmosphere at a lower pressure than in the pressure vessel. Method for producing a fat-expanded particles.
JP2009086731A 2008-06-17 2009-03-31 Polyolefin resin pre-expanded particles and method for producing the same Active JP5290027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009086731A JP5290027B2 (en) 2008-06-17 2009-03-31 Polyolefin resin pre-expanded particles and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008157955 2008-06-17
JP2008157955 2008-06-17
JP2008316672 2008-12-12
JP2008316672 2008-12-12
JP2009086731A JP5290027B2 (en) 2008-06-17 2009-03-31 Polyolefin resin pre-expanded particles and method for producing the same

Publications (2)

Publication Number Publication Date
JP2010159388A JP2010159388A (en) 2010-07-22
JP5290027B2 true JP5290027B2 (en) 2013-09-18

Family

ID=42576789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009086731A Active JP5290027B2 (en) 2008-06-17 2009-03-31 Polyolefin resin pre-expanded particles and method for producing the same

Country Status (1)

Country Link
JP (1) JP5290027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2733164B1 (en) * 2011-07-15 2017-10-25 Kaneka Corporation Antistatic non-crosslinked foamed polyethylene resin particles

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160775A (en) * 1984-08-31 1986-03-28 Lion Corp Antistatic agent composition for plastic
JPS63275648A (en) * 1987-05-06 1988-11-14 Kanegafuchi Chem Ind Co Ltd Production of surface-modified expandable resin particle
JP3358886B2 (en) * 1994-08-23 2002-12-24 株式会社ジエイエスピー Water-permeable foam molding having voids
JP3611949B2 (en) * 1997-07-01 2005-01-19 花王株式会社 Antistatic agent and antistatic resin composition

Also Published As

Publication number Publication date
JP2010159388A (en) 2010-07-22

Similar Documents

Publication Publication Date Title
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JP5410803B2 (en) Expandable thermoplastic resin particles and method for producing the same, pre-expanded particles and foamed molded body
JP5976098B2 (en) In-mold foam molded article comprising polypropylene resin expanded particles, polypropylene resin expanded particles, and methods for producing the same
JP6251409B2 (en) COMPOSITE RESIN PARTICLE AND METHOD FOR PRODUCING THE SAME, FOAMABLE PARTICLE, FOAMED PARTICLE, FOAM MOLDED ARTICLE, AND AUTOMOBILE INTERIOR MATERIAL
JP6473675B2 (en) Styrenic resin foamable particles and method for producing the same, foamed particles, foamed molded article and use thereof
JP5577332B2 (en) Polypropylene resin pre-expanded particles and method for producing the same
JP5324967B2 (en) Thermoplastic resin expanded particles and method for producing the same
JP2009242635A (en) Antistatic styrenic resin foamed molding and its manufacturing method
JPWO2016098698A1 (en) Polypropylene resin foam particles
JP5566634B2 (en) Polyolefin resin multistage expanded particles with excellent mold filling
JP5290027B2 (en) Polyolefin resin pre-expanded particles and method for producing the same
JP5731428B2 (en) Styrene-modified polyethylene resin particles, expandable composite resin particles, pre-expanded particles, foam-molded article and method for producing pre-expanded particles
JP5165521B2 (en) Process for producing expanded polyolefin resin particles with excellent mold filling
WO2017090432A1 (en) Method for producing polypropylene-based resin foamed particles, polypropylene-based resin foamed particles, and in-mold foam molded article
JP6609559B2 (en) Conductive polypropylene resin expanded particles having excellent antifouling property and moldability, method for producing polypropylene resin expanded particles, and polypropylene resin expanded foam
JP5536357B2 (en) Method for producing pre-expanded particles of styrene-modified polyethylene resin and styrene-modified polyethylene resin foam
JP2006022138A (en) Preliminary expanded polypropylene-based resin particle
JP4940688B2 (en) Method for producing polypropylene resin pre-expanded particles
WO2019220994A1 (en) Polypropylene resin foam particles, polypropylene resin in-mold foam molded body, and method for producing polypropylene resin foam particles
JP5216353B2 (en) Method for producing expanded polypropylene resin particles
JP3935849B2 (en) Self-extinguishing styrene resin foam particles and self-extinguishing foam
JP6262114B2 (en) Method for producing composite resin particles
JP2011137172A (en) Polypropylene resin preliminary foamed particle, in-mold foamed molding, and production method thereof
JP2010254894A (en) Manufacturing method of polyolefin resin particles and polyolefin resin foam particles
JP2017132971A (en) Styrenic resin foamed particle and styrenic resin foamed molding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120119

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130605

R150 Certificate of patent or registration of utility model

Ref document number: 5290027

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250