JP2020166371A - 情報処理方法、情報処理装置、物体検出装置およびロボットシステム - Google Patents

情報処理方法、情報処理装置、物体検出装置およびロボットシステム Download PDF

Info

Publication number
JP2020166371A
JP2020166371A JP2019064127A JP2019064127A JP2020166371A JP 2020166371 A JP2020166371 A JP 2020166371A JP 2019064127 A JP2019064127 A JP 2019064127A JP 2019064127 A JP2019064127 A JP 2019064127A JP 2020166371 A JP2020166371 A JP 2020166371A
Authority
JP
Japan
Prior art keywords
data
imaging
unit
information processing
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2019064127A
Other languages
English (en)
Inventor
博光 水上
Hiromitsu Mizukami
博光 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019064127A priority Critical patent/JP2020166371A/ja
Priority to CN202010219335.8A priority patent/CN111745639B/zh
Priority to US16/831,961 priority patent/US11158080B2/en
Publication of JP2020166371A publication Critical patent/JP2020166371A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • B25J9/1697Vision controlled systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/163Programme controls characterised by the control loop learning, adaptive, model based, rule based expert control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/217Validation; Performance evaluation; Active pattern learning techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/70Arrangements for image or video recognition or understanding using pattern recognition or machine learning
    • G06V10/77Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
    • G06V10/776Validation; Performance evaluation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/10Terrestrial scenes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/64Three-dimensional objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40053Pick 3-D object from pile of objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/08Indexing scheme for image data processing or generation, in general involving all processing steps from image acquisition to 3D model generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10028Range image; Depth image; 3D point clouds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30164Workpiece; Machine component
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30244Camera pose
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/06Recognition of objects for industrial automation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/12Acquisition of 3D measurements of objects

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Manipulator (AREA)
  • Image Analysis (AREA)
  • Image Processing (AREA)

Abstract

【課題】ばら積みの物体を検出するための学習データを効率よく生成可能な情報処理方法および情報処理装置、かかる情報処理装置を備える物体検出装置、ならびに、かかる物体検出装置を備えるロボットシステムを提供すること。【解決手段】物体の設計データを受け付ける工程と、設計データから、物体の形状データと物体の位置姿勢情報とを含む物体データを生成する工程と、シミュレーションにより、物体データを積み上げて、第1ばら積みデータを生成する工程と、最表面に配置されている物体データを抽出する工程と、物体を撮像部により撮像した場合に、抽出した物体データが得られる撮像角度を探して、撮像部を配置する工程と、物体を前記撮像角度から撮像部により撮像し、第1撮像データを取得する工程と、抽出した物体データに含まれている形状データを第1撮像データに置き換えて、学習データを生成する工程と、を有することを特徴とする情報処理方法。【選択図】図1

Description

本発明は、情報処理方法、情報処理装置、物体検出装置およびロボットシステムに関するものである。
ロボットが作業を行う際には、ワーク等の対象物体の位置姿勢をロボットに認識させる必要がある。
例えば、特許文献1には、対象物体に関する学習データの生成に必要な学習情報として、対象物体の位置、向き、大きさおよび種類の少なくとも1つを取得する第一の取得手段と、取得された学習情報に基づいて、対象物体を撮像する撮像位置姿勢を決定する決定手段と、決定された撮像位置姿勢にて対象物体が撮像された画像を取得する第二の取得手段と、取得された学習情報と、撮像された画像と、に基づいて学習データを生成する生成手段と、を備える情報処理装置が開示されている。このような情報処理装置によれば、対象物体の認識用途に応じた学習データを容易に生成することができる。そして、学習データを用いて物体認識のためのモデルを生成し、そのモデルに基づいて対象物体の例えば中心位置を認識することにより、ロボットのエンドエフェクターにその中心位置を吸着させることができる。
特開2018−116599号公報
しかしながら、特許文献1に記載の情報処理装置では、学習データの生成に際し、ばら積みされた対象物体を撮像した画像からでは、対象物体を高精度に検出するための学習データを生成することができないという課題がある。
本発明の適用例に係る情報処理方法は、物体の位置姿勢を検出するための学習データを生成する情報処理方法であって、
前記物体の設計データを受け付ける工程と、
前記設計データから、前記物体の形状データと、前記物体の位置姿勢情報と、を含む物体データを生成する工程と、
シミュレーションにより、前記物体データを積み上げて、第1ばら積みデータを生成する工程と、
前記第1ばら積みデータにおいて、最表面に配置されている前記物体データを最表面物体データとして抽出する工程と、
単独で置かれている前記物体を撮像部により撮像した場合に、前記最表面物体データの位置姿勢が得られる撮像角度および撮像距離に基づいて、前記撮像部を配置する工程と、
単独で置かれている前記物体を前記撮像角度および撮像距離から前記撮像部により撮像し、第1撮像データを取得する工程と、
前記第1ばら積みデータにおいて、前記最表面物体データに含まれている前記形状データを前記第1撮像データに置き換えて、前記学習データを生成する工程と、
を有することを特徴とする。
第1実施形態に係るロボットシステムを示す機能ブロック図である。 図1に示す情報処理装置のハードウェア構成の一例を示す図である。 第1実施形態に係る情報処理方法を示すフローチャートである。 対象物を撮像することができない範囲の一例を示す概念図である。 図4に示す2つのステーブルポーズで対象物をテーブル上においたとき、撮像部によって撮像することができない範囲を、対象物を基準にして合成した図である。 第1実施形態に係る情報処理方法で生成される学習データの一例を示す概念図である。 図6に示す学習データに含まれる最表面の物体データについて、表面点群データのみを図示した概念図である。 第2実施形態に係る情報処理装置を含むロボットシステムを示す機能ブロック図である。 第2実施形態に係る情報処理方法を示すフローチャートである。 互いに異なる第1撮像条件および第2撮像条件で対象物を撮像する様子を説明するための側面図である。 図10に示す複数条件撮像データD11、D12のうち、背景部分を除去して、対象物に対応する表面点群データD21、D22を抜き出した図である。 図11に示す2つの表面点群データD21、D22を重なりなく並べた例C1と、2つの表面点群データD21、D22のうち、一部が重なるように並べた例C2と、を示す図である。 第3実施形態に係る情報処理装置を含むロボットシステムを示す機能ブロック図である。 第3実施形態に係る情報処理方法を示すフローチャートである。 第4実施形態に係る情報処理装置を含むロボットシステムを示す機能ブロック図である。 第4実施形態に係る情報処理方法を示すフローチャートである。
以下、本発明の情報処理方法、情報処理装置、物体検出装置およびロボットシステムを添付図面に示す実施形態に基づいて詳細に説明する。
1.第1実施形態
1.1 ロボットシステム
まず、第1実施形態に係るロボットシステムについて説明する。
図1は、第1実施形態に係るロボットシステムを示す機能ブロック図である。
なお、図1では、互いに直交する3軸として、X軸、Y軸およびZ軸を図示している。また、説明の便宜上、Z軸の先端方向を「上」とし、Z軸の基端方向を「下」とする。
図1に示すロボットシステム100は、例えば、電子部品等の対象物91(物体)の保持、搬送および組立て等の作業に用いられる。このロボットシステム100は、ロボットアーム10を備えるロボット1と、ロボットアーム10に設置されている撮像機能を有する撮像部3と、対象物91を検出する物体検出装置4と、物体検出装置4の検出結果に基づいてロボット1の駆動を制御するロボット制御装置5と、を有する。以下、各部について順次説明する。
1.1.1 ロボット
図1に示すロボット1は、いわゆる6軸の垂直多関節ロボットであり、基台110と、基台110に接続されたロボットアーム10と、を有する。
基台110は、ロボット1を任意の設置箇所に取り付ける部分である。本実施形態では、基台110は、例えば床等の設置箇所に設置されている。なお、基台110の設置箇所は、床等に限定されず、例えば、壁、天井、移動可能な台車上等であってもよい。したがって、図1のZ軸は、鉛直軸に限定されない。
図1に示すロボットアーム10は、その基端が基台110に接続されており、アーム11、アーム12、アーム13、アーム14、アーム15およびアーム16を有する。これらアーム11〜16は、基端から先端に向かってこの順に連結されている。各アーム11〜16は、隣り合うアームまたは基台110に対して回動可能になっている。
また、ロボット1は、それぞれ図示しないものの、基台110に対してアーム11を回動させる駆動装置、アーム11に対してアーム12を回動させる駆動装置、アーム12に対してアーム13を回動させる駆動装置、アーム13に対してアーム14を回動させる駆動装置、アーム14に対してアーム15を回動させる駆動装置、およびアーム15に対してアーム16を回動させる駆動装置を有している。各駆動装置は、モーターと、モーターの駆動を制御するコントローラーと、モーターの回転量を検出するエンコーダーと、を備えており、ロボット制御装置5によって互いに独立に制御される。
ロボットアーム10の先端には、図1に示すように、対象物91を吸着可能なエンドエフェクター17が装着されている。エンドエフェクター17は、例えば把持ハンド、吸着ハンド、磁気ハンド等を備えており、対象物91を保持して、各種作業を行う。
1.1.2 撮像部
図1に示す撮像部3は、ロボットアーム10の先端部に装着されている。図1に示す撮像部3は、ロボットアーム10の駆動によって撮像位置が変更されるようになっており、例えばテーブル92上に置かれている対象物91およびテーブル93上に置かれている対象物91を撮像することができる。
撮像部3は、物体検出装置4と通信可能に接続されている。なお、撮像部3と物体検出装置4との接続は、有線による接続の他、無線による接続であってもよい。
撮像部3は、対象物91やその周囲について、カラー画像、モノクロ画像、赤外線画像等の2次元画像データと、デプス画像等の表面点群データと、を含む三次元形状データを撮像可能なデバイスである。このような撮像部3としては、例えば、位相シフト法、アクティブステレオ法等により、撮像対象の三次元形状を計測する三次元計測装置等が挙げられる。
1.1.3 物体検出装置
物体検出装置4は、撮像部3およびロボット制御装置5と通信可能に接続されている。なお、物体検出装置4とロボット制御装置5との接続は、有線による接続の他、無線による接続であってもよい。
また、図1に示す物体検出装置4は、情報処理装置42と、ばら積み撮像データ取得部44と、物体位置姿勢検出部46と、を有している。物体検出装置4は、例えば図1のテーブル93上にばら積みされた対象物91をエンドエフェクター17で保持するため、物体認識アルゴリズム、すなわちディープラーニングによって対象物91のモデルを学習し、その学習データに基づいて個々の対象物91を検出する。この検出結果に基づいて、ロボット制御装置5は、ロボット1の動作を制御し、エンドエフェクター17に対象物91を保持させる。
以下、物体検出装置4の各部について説明する。
1.1.3.1 情報処理装置
図1に示す情報処理装置42は、座標校正用データ取得部420と、設計データ受付部421と、物体データ生成部422と、第1ばら積みデータ生成部423と、最表面抽出部424と、撮像角度算出部426と、単独撮像データ取得部427(第1撮像データ取得部)と、学習データ生成部428と、を有する。
座標校正用データ取得部420は、撮像部3と接続され、テーブル92上に単独で置かれている対象物91を撮像させ、その撮像データを座標校正用データとして取得する。座標校正用データは、後述するが、設計データ受付部421で受け付ける設計データとの対応付けにより、対象物91が置かれている空間におけるロボット座標と、後述するシミュレーションで用いるシミュレーション座標と、を一致させる。
設計データ受付部421は、例えばキーボード、タッチパネル、着脱式の外部記憶装置、ネットワーク等の図示しないデータ入力部と接続され、ユーザーが入力した対象物91(物体)の設計データを受け付ける。設計データは、対象物91の三次元幾何モデルである。具体的には、三次元設計図ソフトで取り扱うことができる三次元CAD(Computer-Aided Design)のデータや、点、線、面といったモデルの構成要素で構成され、三次元コンピューターグラフィックスソフトで取り扱うことができる三次元CG(Computer Graphics)のデータ等が挙げられる。
このうち、設計データとしては、三次元CADのデータが好ましい。三次元CADのデータは、対象物91の製造の際に作成されることが多いため、入手が容易であり、かつ、データ容量が小さいため、設計データとして利用しやすい。
物体データ生成部422は、設計データから、対象物91の形状データと、対象物91の位置姿勢情報と、を含む物体データを生成する。対象物91の形状データとは、2次元画像データと、表面点群データと、を含む三次元形状データである。また、対象物91の位置姿勢情報とは、例えば6自由度の位置姿勢情報であり、具体的には、X軸に沿った位置の情報、Y軸に沿った位置の情報、Z軸に沿った位置の情報、方位角(Azimuth)についての姿勢の情報、仰角(Elevation)についての姿勢の情報、および回転角(Rotation)についての姿勢の情報である。
第1ばら積みデータ生成部423は、シミュレーションにより、複数の物体データを積み上げて、第1ばら積みデータを生成する。具体的には、ばら積み状態にあるときの対象物91の位置姿勢を、物体データを積み上げることによってシミュレーションする。このシミュレーションについては、後に詳述するが、演算によって大量の物体データを取り扱うことができるので、規模の大きな学習データを効率よく生成することができる。
最表面抽出部424は、第1ばら積みデータにおいて、最表面に配置されている物体データ(最表面物体データ)を抽出する。最表面の物体データとは、第1ばら積みデータにおいて、例えばZ座標が周囲よりも大きい値を示している物体データのことをいう。最表面の物体データを抽出することにより、例えば、ばら積み状態にある対象物91を最表面側から順次保持する作業を実行する際に最適な学習データを生成することができる。
撮像角度算出部426は、テーブル92上に単独で置かれている対象物91を撮像部3により撮像させるとき、抽出した最表面の物体データに対応する撮像角度および撮像距離を算出する。
単独撮像データ取得部427(第1撮像データ取得部)は、撮像角度算出部426によって算出した撮像角度および撮像距離で、テーブル92上に単独で置かれている対象物91を撮像部3により撮像させる。これにより、単独撮像データ(第1撮像データ)を取得する。単独撮像データは、対象物91の2次元画像データと、対象物91の表面点群データと、を含む実測データである。
学習データ生成部428は、第1ばら積みデータにおいて、抽出した最表面の物体データに含まれている対象物91の形状データを、実測データである単独撮像データに置き換える。これにより、対象物91の実測データである単独撮像データと、それに対応付けられた対象物91の位置姿勢情報と、を含む学習データが生成される。
以上、第1実施形態に係る情報処理装置42の構成について説明したが、情報処理装置42の作動、すなわち情報処理方法については後に詳述する。
図2は、図1に示す情報処理装置42のハードウェア構成の一例を示す図である。
図2に示す情報処理装置42は、プロセッサー42aと、記憶部42bと、外部インターフェース42cと、を含んでいる。そして、これらの各要素は、システムバス42dを介して相互に通信可能に接続されている。
プロセッサー42aは、CPU(Central Processing Unit)等を備えている。そして、記憶部42bに記憶されている各種プログラム等を読み出し、実行する。これにより、情報処理装置42における各種演算や各種処理等を実現する。
記憶部42bは、プロセッサー42aで実行可能な各種プログラム等を保存する。記憶部42bとしては、例えば、RAM(Random Access Memory)等の揮発性メモリー、ROM(Read Only Memory)等の不揮発性メモリー、着脱式の外部記憶装置等が挙げられる。なお、記憶部42bには、プログラムの他に、前述した各部から出力されたデータや設定値等についても記憶される。
外部インターフェース42cは、例えば有線LAN(Local Area Network)、無線LAN等が挙げられる。
なお、情報処理装置42の各部の機能は、プロセッサー42aがプログラムを実行することにより実現されるが、少なくとも一部がハードウェア上で実現されるようになっていてもよい。
また、情報処理装置42は、ロボット1の筐体内に配置されていてもよく、筐体外に配置されていてもよく、ネットワーク等を介して遠隔地に設けられていてもよい。
1.1.3.2 ばら積み撮像データ取得部
ばら積み撮像データ取得部44(第2撮像データ取得部)は、テーブル93上にばら積みされている対象物91を、撮像部3により撮像させ、ばら積み撮像データ(第2撮像データ)を取得する。また、ばら積み撮像データ取得部44は、ばら積みされている対象物91を撮像可能な位置に撮像部3を配置するように、ロボット制御装置5に制御信号を出力する。
1.1.3.3 物体位置姿勢検出部
物体位置姿勢検出部46は、ばら積み撮像データと、学習データと、に基づいて、テーブル93上にばら積みされている対象物91の位置姿勢を検出する。これにより、ばら積みされている状態でも、個々の対象物91を検出し、エンドエフェクター17によって保持等の作業を行うことができる。
1.1.4 ロボット制御装置
ロボット制御装置5は、ロボット1の作動を制御する機能を有し、図1に示すように、ロボット1および物体検出装置4に対して通信可能に接続されている。なお、ロボット制御装置5と、ロボット1および物体検出装置4との間は、それぞれ、有線で接続されていてもよいし、無線で接続されていてもよい。また、ロボット制御装置5には、モニター等の表示装置、キーボード、タッチパネル等の入力装置等が接続されていてもよい。
ロボット制御装置5は、図示しないものの、プロセッサーと、記憶部と、外部インターフェースと、を含み、これらの各要素が、種々のバスを介して相互通信可能に接続されている。
プロセッサーは、CPU(Central Processing Unit)等のプロセッサーを備え、記憶部に記憶された各種プログラム等を実行する。これにより、ロボット1の駆動の制御や各種演算および判断等の処理を実現できる。
1.2 情報処理方法
次に、第1実施形態に係る情報処理方法について説明する。
図3は、第1実施形態に係る情報処理方法を示すフローチャートである。
図3に示す情報処理方法は、対象物91の設計データを用いて対象物91のモデルを学習し、学習データを効率的に生成する方法である。図3に示す情報処理方法では、大量の学習データの生成を効率よく行うことができ、学習データの生成に要する負荷を軽減することができる。
図3に示す情報処理方法は、設計データを受け付ける工程S11と、座標の校正を行う工程S12と、物体データを生成する工程S13と、物体データを積み上げて第1ばら積みデータを生成する工程S14と、第1ばら積みデータの最表面を抽出する工程S15と、抽出した最表面の物体データに基づいて撮像部3の撮像角度および撮像距離を算出し、その撮像角度および撮像距離になるように撮像部3を配置する工程S16と、撮像部3により単独撮像データ(第1撮像データ)を取得する工程S17と、物体データと単独撮像データとに基づいて学習データを生成する工程S18と、を有する。以下、各工程について順次説明する。
1.2.1 設計データの受け付け(工程S11)
まず、設計データ受付部421により、対象物91の設計データを受け付ける。設計データの受け付けは、図示しないデータ入力部に設計データを入力することにより行う。設計データは、前述したように、例えば、三次元CADのデータ、三次元CGのデータ等である。
1.2.2 座標の校正(工程S12)
次に、対象物91が置かれている空間におけるロボット座標と、後述する工程S14で行うシミュレーションで用いるシミュレーション座標と、を一致させる。すなわち、座標の校正を行う。
具体的には、対象物91を単独でテーブル92上に置く。このとき、ユーザーは、対象物91を平面上に置いた際に安定するポーズ(ステーブルポーズ)で置くのが好ましい。
次に、撮像部3をあらかじめ定められた位置に配置し、テーブル92上に置いた対象物91を撮像する。これにより、座標校正用データ取得部420において、座標校正用データとなる撮像データを取得する。座標校正用データは、例えば2次元画像データと表面点群データとを含む三次元形状データとされるが、2次元画像データが省略されていてもよい。
次に、設計データから表面点群データを抽出する。そして、座標校正用データに含まれる表面点群データと、設計データから抽出された表面点群データと、の対応付けを行う。この対応付けには、例えばICP(Iterative Closest Point)法が用いられる。これにより、ステーブルポーズで置かれた対象物91が撮像されている座標校正用データに、設計データに含まれた一意の位置姿勢情報を付与することができる。このようにして、座標の校正を行うとともに、基準姿勢の登録が完了する。この基準姿勢は、後述する工程S16において撮像部3の撮像角度および撮像距離を算出する際に、撮像角度および撮像距離を算出するための基準となる。
また、対象物91に複数のステーブルポーズがある場合には、ステーブルポーズごとに基準姿勢として登録する。なお、このようにして基準姿勢を登録すると、対象物91を撮像することができない空間上の範囲が存在することがある。そこで、次のような手順で、その範囲をあらかじめ求めておく。
図4は、対象物91を撮像することができない範囲の一例を示す概念図である。
図4に示す例では、対象物91に2つのステーブルポーズがあるものと仮定する。図4に示すように、2つのポーズであるステーブルポーズP1およびステーブルポーズP2で対象物91をテーブル92上においたとき、撮像部3によって撮像可能な空間上の範囲は、テーブル92上の範囲となる。なお、図4では、撮像部3によって撮像することができない範囲、つまりテーブル92の上面より下方にドットを付している。
図5は、図4に示す2つのステーブルポーズP1、P2で対象物91をテーブル92上においたとき、撮像部3によって撮像することができない範囲を、対象物91を基準にして合成した図である。合成の結果、図5では、ステーブルポーズP1、P2間で、撮像部3によって撮像することができない範囲の大部分を互いに補完することができるものの、一部、撮像部3によって撮像することができない範囲Nが存在している。この範囲Nは、図4においてドットを付した領域同士の重複部分である。このような範囲Nが存在する場合には、登録した基準姿勢において、撮像部3の撮像角度および撮像距離に制限を付与しておく。つまり、この範囲Nに撮像部3を配置したとしても、撮像データを取得することができないため、あらかじめ制限をかけておく。
なお、ステーブルポーズの数が多い場合、登録する基準姿勢の数を増やすことにより、範囲Nを十分に狭くすることができる。
また、座標の校正が完了しており、校正が不要な場合は、本工程を省略することができる。
1.2.3 物体データの生成(工程S13)
次に、物体データ生成部422において、設計データから物体データを生成する。物体データは、前述したように、対象物91の形状データと、対象物91の位置姿勢情報と、を含むデータである。設計データが例えば三次元CADのデータである場合には、データ変換により、モデルの2次元画像データと、表面点群データと、を含む対象物91の形状データを生成することができる。また、三次元CADのデータは、対象物91の位置姿勢情報を有していることから、それを物体データに付与することができる。
1.2.4 第1ばら積みデータの生成(工程S14)
次に、第1ばら積みデータ生成部423において、シミュレーションにより、複数の物体データを積み上げて、第1ばら積みデータを生成する。第1ばら積みデータは、複数の物体データを積み上げて、合成してなる合成物体データである。このシミュレーションでは、まず、ばら積みに関する初期条件として、ばら積みする箱の大きさ、ばら積みする対象物91の数、第1ばら積みデータにおける撮像部3の位置等の条件を入力する。この入力は、第1ばら積みデータ生成部423に接続された図示しないデータ入力部を用いて行うようにすればよい。次に、対象物91を単体で落下させたときの対象物91の三次元姿勢をシミュレートする。これにより、第1ばら積みデータにおける各物体データを多数生成することができる。なお、このようなシミュレーションは、例えば対象物91についての物理演算ライブラリーを用いて行うことができる。
また、シミュレーションによって積み上げられた物体データのうち、前述した工程S12において求められた、対象物91を撮像することができない範囲に撮像部3が位置してしまうことになる物体データについては、削除しておくのが好ましい。
1.2.5 最表面の抽出(工程S15)
次に、最表面抽出部424において、第1ばら積みデータのうち、最表面に位置する物体データ(最表面物体データ)を抽出する。最表面に位置する物体データとは、第1ばら積みデータにおいて、例えばZ座標が周囲よりも大きい値を示している物体データである。シミュレーションによって求められた第1ばら積みデータでは、各物体データの位置姿勢が既知であるため、最表面に位置する物体データの抽出は容易である。なお、最表面に位置する物体データは、必ずしも、撮像部3によって対象物91の外形の全体を撮像できるような位置姿勢で配置されている物体データに限定されず、一部、撮像できない部分が存在するような位置姿勢で配置されている物体データを含んでいてもよい。
なお、このような物体データの抽出は、第1ばら積みデータにおいて最表面に位置する全ての物体データについて行う。
1.2.6 撮像部の配置(工程S16)
次に、撮像角度算出部426において、最表面に位置する物体データに対応する撮像部3の撮像角度および撮像距離を算出する。
具体的には、まず、テーブル92上に単独で置かれた対象物91を、撮像部3により撮像した場合に、工程S15で抽出した最表面に位置する物体データに含まれる位置姿勢情報を特定する。そして、シミュレーション上において、そのように特定した位置姿勢情報と同一の位置姿勢で対象物91を撮像することができる撮像角度および撮像距離を算出する。つまり、設計データから合成した対象物91の画像データや表面点群データと同じ写り方をする撮像角度および撮像距離を算出する。この算出にあたっては、工程S12で登録した基準姿勢と、その基準姿勢を求める際の撮像部3の撮像角度および撮像距離と、の関係を利用することができる。
続いて、撮像部3が算出した撮像角度および撮像距離になるように、撮像角度算出部426からロボット制御装置5に制御信号を出力する。そして、ロボットアーム10を駆動して、撮像部3の配置を変更する。なお、配置を変更する必要がない場合には、撮像部3の配置はそのままでよい。
1.2.7 単独撮像データの取得(工程S17)
次に、単独撮像データ取得部427(第1撮像データ取得部)からの制御信号に基づき、撮像部3により、テーブル92上に単独で置かれた対象物91を撮像させる。そして、単独撮像データ取得部427において、単独撮像データ(第1撮像データ)を取得する。単独撮像データは、対象物91の2次元画像データと、対象物91の表面点群データと、を含む実測データである。
なお、単独撮像データは、実測データであるため、対象物91の形状データに加え、その背景の形状データも含んでいる。そこで、本工程では、背景の形状データを除去して、対象物91の形状データのみを抜き出し、それを単独撮像データとする。なお、背景はテーブル92であり、上面は平坦面であることから、対象物91の形状データと容易に区別することが可能である。
1.2.8 学習データの生成(工程S18)
次に、学習データ生成部428により、第1ばら積みデータにおいて、抽出した最表面の物体データに含まれている対象物91の形状データを、工程S17で取得した単独撮像データに置き換える工程S181を行う。これにより、抽出した物体データに含まれた合成画像に基づく形状データを、実測データである単独撮像データに入れ替えることができる。また、それとともに、入れ替えられた単独撮像データに、物体データに含まれていた位置姿勢情報を対応づけることができる。このようにして、学習データの1つの要素が得られる。
次に、工程S182として、抽出した物体データの全てについて、形状データを置き換えたか否か判断する。そして、置き換えが完了していない場合には、残る物体データについて、再び、工程S16における撮像部3の配置、工程S17における単独撮像データの取得、および本工程におけるデータの置き換え、を行う。また、置き換えが完了している場合には、学習データが生成されたものとする。
図6は、第1実施形態に係る情報処理方法で生成される学習データの一例を示す概念図である。なお、図6は、鉛直上方から見た図である。また、図7は、図6に示す学習データに含まれる最表面の物体データ901〜906について、表面点群データのみを図示した概念図である。なお、図7は、水平面内から見た図である。
図6および図7に示す学習データ900は、最表面の物体データとして、物体データ901、902、903、904、905、906の6つを含んでいる。また、図6では、これらの物体データ901〜906の背景に存在する、背景の物体データ907についても図示している。そして、学習データ900は、これらの物体データ901〜907がほぼランダムに積み上げられたデータになっている。なお、最表面に位置する物体データ901〜906にはドットを付している。
また、図6には、物体データ901〜906が含む位置姿勢情報のイメージも示している。具体的には、物体データ901には、位置姿勢情報(X1,Y1,Z1,A1,E1,R1)が含まれている。これらは、例えば、X1がX軸に沿った位置の情報、Y1がY軸に沿った位置の情報、Z1がZ軸に沿った位置の情報、A1が方位角についての姿勢の情報、E1が仰角についての姿勢の情報、R1が回転角についての姿勢の情報である。これと同様に、物体データ902には、位置姿勢情報(X2,Y2,Z2,A2,E2,R2)が含まれ、物体データ903〜906にも、位置姿勢情報(X3,Y3,Z3,A3,E3,R3)、(X4,Y4,Z4,A4,E4,R4)、(X5,Y5,Z5,A5,E5,R5)、(X6,Y6,Z6,A6,E6,R6)が含まれている。
さらに、図7には、物体データ901〜906が含む表面点群データのイメージを図示している。
物体データ901〜907のようなデータを多数含んだ学習データ900を生成することにより、学習データの規模を拡大することができ、物体検出装置4における対象物91の検出精度をより高めることができる。
なお、学習データ900には、同じ位置姿勢の物体データが含まれていてもよい。例えば、照明条件を変えた場合には、単独撮像データも変わるため、異なる照明条件で取得した、同じ位置姿勢の単独撮像データを用いて、個別の学習データを生成するようにしてもよい。
また、工程S17において単独撮像データを撮像する際には、撮像部3の同一視野内に、同一の位置姿勢の対象物91を複数配置し、単独撮像データを取得するたびに、撮像対象の対象物91をランダムに変更するようにしてもよい。これにより、対象物91に映り込む環境光の影響が異なる単独撮像データを取得することができるので、そのような影響も加味した学習データ900を生成することができる。その結果、物体検出装置4における対象物91の検出精度をさらに高めることができる。
以上の説明のように、本実施形態に係る情報処理方法は、対象物91(物体)の位置姿勢を検出するための学習データを生成する方法であって、対象物91の設計データを受け付ける工程S11と、設計データから、対象物91の形状データと対象物91の位置姿勢情報とを含む物体データを生成する工程S13と、シミュレーションにより、複数の物体データを積み上げて、第1ばら積みデータを生成する工程S14と、第1ばら積みデータにおいて、最表面に配置されている物体データを最表面物体データとして抽出する工程S15と、単独で置かれている対象物91を撮像部3により撮像した場合に、最表面物体データの位置姿勢が得られる撮像角度および撮像距離に基づいて、撮像部3を配置する工程S16と、単独で置かれている対象物91を前記撮像角度および前記撮像距離から撮像部3により撮像し、単独撮像データ(第1撮像データ)を取得する工程S17と、第1ばら積みデータにおいて、最表面物体データに含まれている形状データを単独撮像データに置き換えて、学習データを生成する工程S18と、を有する。
このような情報処理方法によれば、シミュレーションにより第1ばら積みデータを生成し、それに基づいて学習データを生成していることから、ばら積み状態にある対象物91の学習データを効率よく短時間で生成することができる。また、データの置き換えを行うことにより、対象物91の形状データとして実測データを利用することができる。このため、実環境に即した学習データを生成することができる。つまり、シミュレーションによって効率よく学習データを生成する一方、シミュレーション結果と実環境とのギャップを小さくすることができる。その結果、実環境におけるノイズやデータの欠損等についても反映した学習データを効率よく生成することができる。その結果、学習データを利用して対象物91を検出する際、その検出率を高めることができるので、ロボット1による対象物91を対象にした作業の効率を高めることができる。
また、本実施形態に係る情報処理装置42は、対象物91(物体)の位置姿勢を検出するための学習データを生成する装置であって、対象物91の設計データを受け付ける設計データ受付部421と、設計データから、対象物91の形状データと対象物91の位置姿勢情報とを含む物体データを生成する物体データ生成部422と、シミュレーションにより、複数の物体データを積み上げて、第1ばら積みデータを生成する第1ばら積みデータ生成部423と、第1ばら積みデータにおいて、最表面に配置されている物体データを最表面物体データとして抽出する最表面抽出部424と、単独で置かれている対象物91を撮像部3により撮像させるときの、最表面物体データに対応する撮像角度および撮像距離を算出する撮像角度算出部426と、単独で置かれている対象物91を撮像部3により前記撮像角度および前記撮像距離で撮像させ、単独撮像データ(第1撮像データ)を取得する単独撮像データ取得部427(第1撮像データ取得部)と、第1ばら積みデータにおいて、最表面物体データに含まれている形状データを単独撮像データに置き換えて、学習データを生成する学習データ生成部428と、を有する。
このような情報処理装置42によれば、シミュレーションにより第1ばら積みデータを生成し、それに基づいて学習データを生成していることから、ばら積み状態にある対象物91の学習データを効率よく生成することができる。このため、規模の大きな学習データを生成する際の情報処理装置42の負荷を軽減することができる。また、データの置き換えを行うことにより、対象物91の形状データとして実測データを利用することができる。このため、実環境に即した学習データを生成することができる。
さらに、本実施形態に係る物体検出装置4は、対象物91(物体)の位置姿勢を検出する装置であって、前述した情報処理装置42と、対象物91を、撮像部3により撮像させ、ばら積み撮像データ(第2撮像データ)を取得するばら積み撮像データ取得部44(第2撮像データ取得部)と、ばら積み撮像データおよび学習データに基づいて、対象物91の位置姿勢を検出する物体位置姿勢検出部46と、を有する。
このような物体検出装置4によれば、情報処理装置42において学習データを効率よく生成することができるので、物体検出装置4の負荷を軽減することができる。また、情報処理装置42において実環境に即した学習データを生成することができるので、この学習データを利用して対象物91を検出する際、その検出率を高めることができる。その結果、例えば対象物91がばら積みされている場合でも、ロボット1のエンドエフェクター17において対象物91を精度よく保持することができる。
また、本実施形態に係るロボットシステム100は、ロボットアーム10を備えるロボット1と、ロボットアーム10に設置されている撮像部3と、前述した物体検出装置4と、物体検出装置4の検出結果に基づいてロボット1の駆動を制御するロボット制御装置5と、を有する。
このようなロボットシステム100によれば、対象物91の位置姿勢を検出するための学習データを効率よく生成することができるので、作業効率を高めることができる。
2.第2実施形態
2.1 情報処理装置
次に、第2実施形態に係る情報処理装置について説明する。
図8は、第2実施形態に係る情報処理装置を含むロボットシステムを示す機能ブロック図である。
以下、第2実施形態に係る情報処理装置について説明するが、以下の説明では、第1実施形態に係る情報処理装置との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図8において、第1実施形態と同様の構成については、同一の符号を付している。
第2実施形態に係る情報処理装置42は、対象物91の設計データを用いるのではなく、対象物91について互いに異なる複数の撮像条件で撮像した複数条件撮像データ(第3撮像データ)を用いて学習データを生成する以外、第1実施形態に係る情報処理装置42と同様である。すなわち、本実施形態は、対象物91についての三次元CADのデータ等が存在しない場合にも適用可能である点で、第1実施形態と相違している。
図8に示す情報処理装置42は、複数条件撮像データ取得部431(第3撮像データ取得部)と、第2ばら積みデータ生成部432と、最表面位置姿勢情報付与部433と、撮像角度算出部426と、単独撮像データ取得部434(第4撮像データ取得部)と、学習データ生成部428と、を有する。
複数条件撮像データ取得部431は、撮像部3と接続され、テーブル92上に単独で置かれている対象物91を撮像部3により撮像させる。このとき、複数の撮像条件で対象物91を撮像させる。これにより、複数条件撮像データ(第3撮像データ)を複数取得する。複数条件撮像データは、1つの対象物91を、互いに異なる複数の撮像条件で撮像して得られた形状データである。これにより、対象物91の形状データを生成する。なお、撮像条件とは、対象物91に対する撮像角度、撮像距離、撮像時の照明条件等が挙げられる。
第2ばら積みデータ生成部432は、シミュレーションにより、複数条件撮像データを積み上げて、第2ばら積みデータを生成する。具体的には、ばら積み状態にあるときの対象物91の位置姿勢を、複数条件撮像データを積み上げることによってシミュレートする。本実施形態では、複数条件撮像データをランダムに並べることにより、ばら積み状態をシミュレートする。
最表面位置姿勢情報付与部433は、第2ばら積みデータにおいて、最表面に配置されている複数条件撮像データに位置姿勢情報を付与する。最表面の複数条件撮像データとは、第2ばら積みデータにおいて、例えばZ座標が周囲よりも大きい値を示している複数条件撮像データのことをいう。また、この複数条件撮像データに付与する位置姿勢情報は、例えば対象物91においてエンドエフェクター17によって吸着可能な吸着面の位置と、その吸着面の法線の方向と、を含む情報である。最表面位置姿勢情報付与部433は、複数条件撮像データからこのような位置姿勢情報を抽出し、これを正解データとして付与する。これにより、設計データがなくても、エンドエフェクター17が対象物91を保持する際に利用可能な学習データを生成するための正解データを付与することができる。
撮像角度算出部426は、テーブル92上に単独で置かれている対象物91を撮像部3で撮像させるとき、前述した最表面の複数条件撮像データに対応する撮像角度および撮像距離を算出する。
単独撮像データ取得部434(第4撮像データ取得部)は、撮像角度算出部426によって算出した撮像角度および撮像距離で、テーブル92上に単独で置かれている対象物91を撮像部3により撮像させる。これにより、単独撮像データ(第4撮像データ)を取得する。
学習データ生成部428は、第2ばら積みデータにおいて、位置姿勢情報が付与された複数条件撮像データに含まれている対象物91の形状データを、実測データである単独撮像データに置き換える。これにより、対象物91の実測データである単独撮像データと、対象物91の位置姿勢情報と、を含む学習データが生成される。
以上、第2実施形態に係る情報処理装置42の構成について説明したが、続いて、情報処理装置42の作動、すなわち情報処理方法について説明する。
2.2 情報処理方法
次に、第2実施形態に係る情報処理方法について説明する。
図9は、第2実施形態に係る情報処理方法を示すフローチャートである。
以下、第2実施形態に係る情報処理方法について説明するが、以下の説明では、第1実施形態に係る情報処理方法との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図9において、前記実施形態と同様の構成については、同一の符号を付している。
第2実施形態に係る情報処理方法は、対象物91の設計データを用いるのではなく、互いに異なる複数の撮像条件で撮像した複数条件撮像データ(第3撮像データ)を用いて学習データを生成する以外、第1実施形態に係る情報処理方法と同様である。
図9に示す情報処理方法は、複数条件撮像データ(第3撮像データ)を取得する工程S21と、複数条件撮像データを積み上げて第2ばら積みデータを生成する工程S22と、最表面の複数条件撮像データに位置姿勢情報を付与する工程S23と、最表面の複数条件撮像データに基づいて撮像部3の撮像角度を算出し、その撮像角度になるように撮像部3を配置する工程S24と、撮像部3により単独撮像データ(第4撮像データ)を取得する工程S25と、複数条件撮像データと単独撮像データとに基づいて学習データを生成する工程S26と、を有する。以下、各工程について順次説明する。
2.2.1 複数条件撮像データの取得(工程S21)
まず、対象物91を単独でテーブル92上に置く。次に、互いに異なる複数の撮像条件で対象物91を撮像する。そして、複数条件撮像データ取得部431により、複数の複数条件撮像データ(第3撮像データ)を取得する。なお、以下では、説明を簡単にするため、2つの撮像条件で対象物91を撮像する。
図10は、互いに異なる第1撮像条件および第2撮像条件で対象物91を撮像する様子を説明するための側面図である。なお、図10では、対象物91の輪郭およびテーブル92の上面を実線で示している。また、各撮像条件で撮像することにより表面点群データが得られる面を破線にて示している。
図10に示す第1撮像条件および第2撮像条件は、対象物91に対する撮像角度が異なっている。図10では、第1撮像条件で得られた複数条件撮像データをD11とし、第2撮像条件で得られた複数条件撮像データをD12とする。複数条件撮像データD11および複数条件撮像データD12は、互いに異なるデータとなる。
図11は、図10に示す複数条件撮像データD11、D12のうち、背景部分を除去して、対象物91に対応する表面点群データD21、D22を抜き出した図である。図10において、対象物91の背景はテーブル92であるため、表面点群データD21、D22の内容に基づけば、背景部分の識別は容易である。したがって、図10に示す複数条件撮像データD11、D12から背景部分を除去することにより、図11に示すような、対象物91に対応する表面点群データD21、D22を抜き出すことができる。
なお、図11の表面点群データD21、D22のうち、第2撮像条件で得た表面点群データD22は、図10に示す表面点群データD12を並進および回転させてなるデータである。前述したように、複数条件撮像データD11を取得する際の撮像角度と、複数条件撮像データD12を取得する際の撮像角度と、が異なっているため、それに応じて、図11に示すように、表面点群データD22を並進および回転させる。これにより、図11に示す表面点群データD22が得られる。
以上のようにして互いに異なる撮像条件で対象物91を撮像することにより、互いに位置姿勢が異なる複数条件撮像データD11、D12を取得することができる。すなわち、対象物91の様々な位置姿勢に対応した表面点群データD21、D22を含む複数条件撮像データD11、D12を取得することができる。そして、このようにして多数の複数条件撮像データを取得する
続いて、複数条件撮像データD11、D12の一部を欠損させる。これにより、後述する第2ばら積みデータにおいて、最表面に位置するデータの背景部分に位置するデータをシミュレートすることができる。
図12は、図11に示す2つの表面点群データD21、D22を重なりなく並べた例C1と、2つの表面点群データD21、D22のうち、一部が重なるように並べた例C2と、を示す図である。例C1では重なりが生じていないが、例C2では重なりが生じており、表面点群データD21の一部D21Aが表面点群データD22の陰に隠れている。このため、複数条件撮像データD11、D12の一部を欠損させることにより、背景部分に位置するデータをシミュレートすることが可能になる。
2.2.2 第2ばら積みデータの生成(工程S22)
次に、第2ばら積みデータ生成部432において、シミュレーションにより、複数条件撮像データを積み上げて、第2ばら積みデータを生成する。具体的には、ばら積み状態にあるときの対象物91の位置姿勢を、複数条件撮像データを積み上げることによってシミュレートする。本実施形態では、複数条件撮像データを平面上にランダムに並べることにより、ばら積み状態をシミュレートする。
まず、一部を欠損させた複数条件撮像データD11、D12をランダムに並べることにより、第2ばら積みデータの背景部分を生成する。なお、欠損位置や欠損形状については、任意に設定すればよい。
次に、背景部分において、周囲よりも高くなる位置を決定する。この決定は、任意に行えばよい。そして、その位置に複数条件撮像データD11、D12をランダムに並べる。これにより、第2ばら積みデータの最表面部分を生成する。つまり、平面上において多層に重ねるように複数条件撮像データD11、D12を並べ、第2ばら積みデータを生成するが、例えば全体で3層重なっていると仮定した場合、平面に近い1層目と2層目とが背景部分であり、3層目が最表面部分となる。
このように、本実施形態に係る第2ばら積みデータを生成する工程S22は、複数条件撮像データ(第3撮像データ)の形状データの一部を欠損させた欠損撮像データを、第2ばら積みデータの最表面部分以外の領域、つまり最表面部分の背景に配置されるデータとする処理を含んでいる。これにより、第2ばら積みデータの背景部分を効率よく生成することができる。
また、本実施形態に係る第2ばら積みデータを生成する工程S22は、欠損させていない複数条件撮像データ、すなわちオクルージョンがない複数条件撮像データ(第3撮像データ)を、第2ばら積みデータの最表面部分、つまり最表面に配置されている複数条件撮像データとする処理を含んでいる。これにより、第2ばら積みデータの最表面部分を効率よく生成することができる。
2.2.3 位置姿勢情報の付与(工程S23)
次に、最表面位置姿勢情報付与部433により、第2ばら積みデータの最表面部分に位置姿勢情報を付与する。本実施形態に係る第2ばら積みデータは、第1実施形態とは異なり、設計データに基づく位置姿勢情報を保有していない。そこで、本工程において位置姿勢情報を付与する。位置姿勢情報は、学習データの利用方法に応じて様々な形態があるが、一例として、吸着方式のエンドエフェクター17によって対象物91を吸着する作業に用いる学習データを生成する際には、対象物91を吸着する吸着点とその吸着点の法線とを含む情報を位置姿勢情報として付与する。具体的には、例えば、複数条件撮像データD11、D12の中心位置をそれぞれ吸着点とし、その吸着点の位置とその法線方向と、を位置姿勢情報とすればよい。なお、吸着点は、中心位置に限定されず、それ以外の位置であってもよい。
2.2.4 撮像部の配置(工程S24)
次に、撮像角度算出部426において、第2ばら積みデータの最表面に位置する複数条件撮像データに基づいて、その複数条件撮像データに対応する撮像部3の撮像角度および撮像距離を算出する。本工程は、第1実施形態に係る工程S16と同様である。
2.2.5 単独撮像データの取得(工程S25)
次に、単独撮像データ取得部434(第4撮像データ取得部)からの制御信号に基づき、撮像部3により、テーブル92上に単独で置かれた対象物91を撮像させる。そして、単独撮像データ取得部434において、単独撮像データ(第4撮像データ)を取得する。単独撮像データは、対象物91の2次元画像データと、対象物91の表面点群データと、を含む実測データである。なお、本工程は、第1実施形態に係る工程S17と同様である。
2.2.6 学習データの生成(工程S26)
次に、学習データ生成部428により、第2ばら積みデータにおいて、最表面に位置する複数条件撮像データに含まれている対象物91の形状データを、工程S25で取得した単独撮像データに置き換える工程S261を行う。これにより、最表面の複数条件撮像データにおいて、実測データである単独撮像データと、複数条件撮像データに含まれていた対象物91の位置姿勢情報と、を対応づけることができる。
次に、工程S262として、最表面の複数条件撮像データの全てについて、形状データを置き換えたか否か判断する。そして、置き換えが完了していない場合には、残る複数条件撮像データについて、再び、工程S24における撮像部3の配置、工程S25における単独撮像データの取得、および本工程におけるデータの置き換え、を行う。また、置き換えが完了している場合には、学習データが生成されたものとする。
以上の説明のように、本実施形態に係る情報処理方法は、対象物91(物体)の位置姿勢を検出するための学習データを生成する方法であって、単独で置かれている対象物91を、撮像部3により、互いに異なる複数の撮像条件で撮像し、対象物91の形状データを含む複数条件撮像データ(第3撮像データ)を複数取得する工程S21と、シミュレーションにより、複数条件撮像データを積み上げて、第2ばら積みデータを生成する工程S22と、第2ばら積みデータの最表面部分に配置されている複数条件撮像データに位置姿勢情報を付与する工程S23と、単独で置かれている対象物91を撮像部3により撮像した場合に、最表面部分に配置された複数条件撮像データ(第3撮像データ)の位置姿勢が得られる撮像角度および撮像距離に基づいて、撮像部3を配置する工程S24と、単独で置かれている対象物91を前記撮像角度および前記撮像距離から撮像部3により撮像し、単独撮像データ(第4撮像データ)を取得する工程S25と、第2ばら積みデータにおいて、位置姿勢情報が付与された複数条件撮像データに含まれている形状データを単独撮像データに置き換えて、学習データを生成する工程S26と、を有する。
このような情報処理方法によれば、シミュレーションにより第2ばら積みデータを生成し、それに基づいて学習データを生成していることから、ばら積み状態にある対象物91の学習データを効率よく短時間で生成することができる。また、データの置き換えを行うことにより、対象物91の形状データとして実測データを利用することができる。このため、実環境に即した学習データを生成することができる。その結果、学習データを利用して対象物91を検出する際、その検出率を高めることができる。
また、第1実施形態のような設計データを用意する必要がないため、未知の対象物91について作業を行う場合にも、学習データの生成が可能になる。
また、本実施形態に係る情報処理装置42は、単独で置かれている対象物91(物体)を、撮像部3により、互いに異なる複数の撮像条件で撮像させ、対象物91の形状データを含む複数条件撮像データ(第3撮像データ)を複数取得する複数条件撮像データ取得部431(第3撮像データ取得部)と、シミュレーションにより、複数条件撮像データを積み上げて、第2ばら積みデータを生成する第2ばら積みデータ生成部432と、第2ばら積みデータにおいて、最表面に配置されている複数条件撮像データに位置姿勢情報を付与する最表面位置姿勢情報付与部433と、単独で置かれている対象物91を撮像部3により撮像させるときの、位置姿勢情報を付与した複数条件撮像データに対応する撮像角度および撮像距離を算出する撮像角度算出部426と、単独で置かれている対象物91を撮像部3により前記撮像角度および前記撮像距離で撮像させ、単独撮像データ(第4撮像データ)を取得する単独撮像データ取得部434(第4撮像データ取得部)と、第2ばら積みデータにおいて、位置姿勢情報が付与された複数条件撮像データに含まれる形状データを単独撮像データに置き換えて、学習データを生成する学習データ生成部428と、を有する。
このような情報処理装置42によれば、シミュレーションにより第2ばら積みデータを生成し、それに基づいて学習データを生成していることから、ばら積み状態にある対象物91の学習データを効率よく短時間で生成することができる。また、データの置き換えを行うことにより、対象物91の形状データとして実測データを利用することができる。このため、実環境に即した学習データを生成することができる。
また、第1実施形態のような設計データを用意する必要がないため、未知の対象物91について作業を行う場合にも、学習データの生成が可能になる。
3.第3実施形態
3.1 情報処理装置
次に、第3実施形態に係る情報処理装置について説明する。
図13は、第3実施形態に係る情報処理装置を含むロボットシステムを示す機能ブロック図である。
以下、第3実施形態に係る情報処理装置について説明するが、以下の説明では、第1、第2実施形態に係る情報処理装置との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図13において、前記実施形態と同様の構成については、同一の符号を付している。
第3実施形態に係る情報処理装置42は、第1実施形態と第2実施形態とを組み合わせたものである。具体的には、対象物91の物体データを用いるとともに、対象物91について互いに異なる複数の撮像条件で撮像した第5撮像データを用いて学習データを生成する以外、前記実施形態に係る情報処理装置42と同様である。
すなわち、第3実施形態に係る情報処理装置42は、第1実施形態に係る第1ばら積みデータの生成にあたり、第2実施形態と同様の複数条件撮像データ(第5撮像データ)に、第1実施形態に係る物体データを対応付けてなるデータを使用する点で、第1、第2実施形態と相違している。
具体的には、図13に示す情報処理装置42は、図1に示す情報処理装置42に加え、複数条件撮像データ取得部435(第5撮像データ取得部)を有している。
そして、第1ばら積みデータ生成部423は、設計データから生成した物体データが対応付けられた複数条件撮像データを積み上げて、第1ばら積みデータを生成する。
このようにして、物体データが対応付けられた複数条件撮像データを用いて第1ばら積みデータを生成することにより、第1ばら積みデータの背景部分については、第2実施形態の工程S22等で行うデータの欠損等の作業が不要になる。このため、背景部分のデータの生成を比較的短時間で行うことができ、学習データの生成をより短時間で行うことができる。
3.2 情報処理方法
次に、第3実施形態に係る情報処理方法について説明する。
図14は、第3実施形態に係る情報処理方法を示すフローチャートである。
以下、第3実施形態に係る情報処理方法について説明するが、以下の説明では、第1、第2実施形態に係る情報処理方法との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図14において、前記実施形態と同様の構成については、同一の符号を付している。
第3実施形態に係る情報処理方法は、第1実施形態に係る第1ばら積みデータの生成にあたり、第2実施形態に係る複数条件撮像データ(第3撮像データ)に、第1実施形態に係る設計データを対応付けてなるデータを使用する点で、第1、第2実施形態と相違している。
図14に示す情報処理方法は、対象物91の設計データを受け付ける工程S11と、座標の校正を行う工程S12と、設計データから、対象物91の形状データと対象物91の位置姿勢情報とを含む物体データを生成する工程S13と、単独で置かれている対象物91を、撮像部3により、複数の撮像条件で撮像し、対象物91の形状データを含む複数条件撮像データ(第5撮像データ)を複数取得する工程S31と、物体データを複数条件撮像データに対応付けた後、シミュレーションにより、複数条件撮像データを積み上げて、第1ばら積みデータを生成する工程S14と、第1ばら積みデータにおいて、最表面に配置されている物体データ(最表面物体データ)を抽出する工程S15と、単独で置かれている対象物91を撮像部3により撮像した場合に、抽出した物体データに対応する撮像角度および撮像距離に基づいて、撮像部3を配置する工程S16と、単独で置かれている対象物91を前記撮像角度および前記撮像距離から撮像部3により撮像し、単独撮像データ(第1撮像データ)を取得する工程S17と、第1ばら積みデータにおいて、抽出した物体データに含まれている形状データを単独撮像データに置き換えて、学習データを生成する工程S18と、を有する。
すなわち、本実施形態に係る情報処理方法は、第1実施形態に係る情報処理方法に対し、単独で置かれている対象物91を、撮像部3により、複数の撮像条件で撮像し、対象物91の形状データを含む複数条件撮像データ(第5撮像データ)を複数取得する工程S21がさらに追加されている。そして、第1ばら積みデータを生成する工程S14は、設計データから生成した物体データを複数条件撮像データに対応付け、物体データが対応付けられた複数条件撮像データを積み上げて、第1ばら積みデータを得る工程である。
このようにして、物体データが対応付けられた複数条件撮像データを用いて第1ばら積みデータを生成することにより、第1ばら積みデータの背景部分については、第2実施形態の工程S22等で行うデータの欠損等の作業が不要になる。このため、背景部分のデータの生成を比較的短時間で行うことができ、学習データの生成をより短時間で行うことができる。
4.第4実施形態
4.1 情報処理装置
次に、第4実施形態に係る情報処理装置について説明する。
図15は、第4実施形態に係る情報処理装置を含むロボットシステムを示す機能ブロック図である。
以下、第4実施形態に係る情報処理装置について説明するが、以下の説明では、第1〜第3実施形態に係る情報処理装置との相違点を中心に説明し、同様の事項についてはその説明を省略する。なお、図15において、前記実施形態と同様の構成については、同一の符号を付している。
第4実施形態に係る情報処理装置42は、前述した第2実施形態に係る複数条件撮像データ(第3撮像データ)から設計データを生成し、その設計データを用いる以外、第1実施形態と同様である。すなわち、本実施形態は、設計データ受付部421に代えて、設計データ生成部429を有しているとともに、複数条件撮像データ取得部431(第3撮像データ取得部)を有している以外、第1実施形態と同様である。
図15に示す複数条件撮像データ取得部431は、複数条件撮像データを取得し、設計データ生成部429に出力する。設計データ生成部429では、複数条件撮像データから設計データを生成する。すなわち、複数条件撮像データに含まれた表面点群データを、三次元CADのデータ等、設計データに変換する。表面点群データから設計データへの変換には、公知の変換技術を用いることができる。例えば、表面点群データからメッシュデータまたはポリゴンデータを生成した後、メッシュデータからサーフェスデータまたはソリッドデータを生成し、最終的に設計データを生成するようにすればよい。
このような情報処理装置42によれば、対象物91の設計データを入手することができない場合でも、対象物91の設計データを生成することができる。これにより、未知の対象物91についても、設計データに基づいた位置姿勢情報の付与が可能になり、例えば対象物91の検出率が高い学習データを効率よく生成することができる。
4.2 情報処理方法
次に、第4実施形態に係る情報処理方法について説明する。
図16は、第4実施形態に係る情報処理方法を示すフローチャートである。
以下、第4実施形態に係る情報処理方法について説明するが、以下の説明では、第1〜第3実施形態に係る情報処理方法との相違点を中心に説明し、同様の事項についてはその説明を省略する。
第4実施形態に係る情報処理方法は、設計データの受け付け(工程S11)に代えて、設計データの生成(工程S41)を有しているとともに、第2実施形態に係る複数条件撮像データの取得(工程S21)を有している以外、第1実施形態と同様である。
設計データを生成する工程S41では、複数条件撮像データを取得する工程S21において取得した複数条件撮像データに基づいて、設計データを生成する。設計データの生成方法は、4.1で前述した通りである。これにより、対象物91の設計データを入手することができない場合でも、対象物91の設計データを生成することができる。そして、この工程以降は、図16に示すように、第1実施形態と同様にして行うことができる。
以上のような第4実施形態においても、第1、第2実施形態と同様の効果が得られる。
なお、第4実施形態では、第1実施形態と同様にするのではなく、上記相違点以外、第3実施形態と同様であってもよい。
以上、本発明の情報処理方法、情報処理装置、物体検出装置およびロボットシステムを図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、本発明に、他の任意の構成物が付加されていてもよい。さらに、前記実施形態に係るロボットシステムは、6軸の垂直多関節ロボットを備えたシステムであるが、垂直多関節ロボットの軸数は、5軸以下であっても7軸以上であってもよい。また、垂直多関節ロボットに代えて、水平多関節ロボットであってもよい。
1…ロボット、3…撮像部、4…物体検出装置、5…ロボット制御装置、10…ロボットアーム、11…アーム、12…アーム、13…アーム、14…アーム、15…アーム、16…アーム、17…エンドエフェクター、42…情報処理装置、42a…プロセッサー、42b…記憶部、42c…外部インターフェース、42d…システムバス、44…ばら積み撮像データ取得部、46…物体位置姿勢検出部、91…対象物、92…テーブル、93…テーブル、100…ロボットシステム、110…基台、420…座標校正用データ取得部、421…設計データ受付部、422…物体データ生成部、423…第1ばら積みデータ生成部、424…最表面抽出部、426…撮像角度算出部、427…単独撮像データ取得部、428…学習データ生成部、429…設計データ生成部、431…複数条件撮像データ取得部、432…第2ばら積みデータ生成部、433…最表面位置姿勢情報付与部、434…単独撮像データ取得部、435…複数条件撮像データ取得部、900…学習データ、901…物体データ、902…物体データ、903…物体データ、904…物体データ、905…物体データ、906…物体データ、907…物体データ、D11…複数条件撮像データ、D12…複数条件撮像データ、D21…表面点群データ、D21A…一部、D22…表面点群データ、N…範囲、P1…ステーブルポーズ、P2…ステーブルポーズ

Claims (10)

  1. 物体の位置姿勢を検出するための学習データを生成する情報処理方法であって、
    前記物体の設計データを受け付ける工程と、
    前記設計データから、前記物体の形状データと、前記物体の位置姿勢情報と、を含む物体データを生成する工程と、
    シミュレーションにより、前記物体データを積み上げて、第1ばら積みデータを生成する工程と、
    前記第1ばら積みデータにおいて、最表面に配置されている前記物体データを最表面物体データとして抽出する工程と、
    単独で置かれている前記物体を撮像部により撮像した場合に、前記最表面物体データの位置姿勢が得られる撮像角度および撮像距離に基づいて、前記撮像部を配置する工程と、
    単独で置かれている前記物体を前記撮像角度および撮像距離から前記撮像部により撮像し、第1撮像データを取得する工程と、
    前記第1ばら積みデータにおいて、前記最表面物体データに含まれている前記形状データを前記第1撮像データに置き換えて、前記学習データを生成する工程と、
    を有することを特徴とする情報処理方法。
  2. 前記設計データは、前記物体の三次元CADのデータである請求項1に記載の情報処理方法。
  3. 単独で置かれている前記物体を、前記撮像部により、複数の撮像条件で撮像し、前記物体の前記形状データを含む第5撮像データを取得する工程をさらに有し、
    前記第1ばら積みデータを生成する工程は、前記物体データを前記第5撮像データに対応付け、前記物体データが対応付けられた前記第5撮像データを積み上げて、前記第1ばら積みデータを得る工程である請求項1または2に記載の情報処理方法。
  4. 物体の位置姿勢を検出するための学習データを生成する情報処理方法であって、
    単独で置かれている前記物体を、撮像部により、複数の撮像条件で撮像し、前記物体の形状データを含む複数の第3撮像データを取得する工程と、
    シミュレーションにより、前記第3撮像データを積み上げて、第2ばら積みデータを生成する工程と、
    前記第2ばら積みデータの最表面部分に配置されている前記第3撮像データに位置姿勢情報を付与する工程と、
    単独で置かれている前記物体を前記撮像部により撮像した場合に、前記最表面部分に配置された前記第3撮像データの位置姿勢が得られる撮像角度および撮像距離に基づいて、前記撮像部を配置する工程と、
    単独で置かれている前記物体を前記撮像角度および前記撮像距離から前記撮像部により撮像し、第4撮像データを取得する工程と、
    前記第2ばら積みデータにおいて、前記位置姿勢情報が付与された前記第3撮像データに含まれている前記形状データを前記第4撮像データに置き換えて、前記学習データを生成する工程と、
    を有することを特徴とする情報処理方法。
  5. 前記第2ばら積みデータを生成する工程は、前記第3撮像データの前記形状データの一部を欠損させた欠損撮像データを、前記最表面部分の背景に配置されるデータとする処理を含む請求項4に記載の情報処理方法。
  6. 前記第2ばら積みデータを生成する工程は、オクルージョンがない前記第3撮像データを、前記最表面部分とする処理を含む請求項4または5に記載の情報処理方法。
  7. 物体の位置姿勢を検出するための学習データを生成する情報処理装置であって、
    前記物体の設計データを受け付ける設計データ受付部と、
    前記設計データから、前記物体の形状データと前記物体の位置姿勢情報とを含む物体データを生成する物体データ生成部と、
    シミュレーションにより、前記物体データを積み上げて、第1ばら積みデータを生成する第1ばら積みデータ生成部と、
    前記第1ばら積みデータにおいて、最表面に配置されている前記物体データを最表面物体データとして抽出する最表面抽出部と、
    単独で置かれている前記物体を撮像部により撮像させるときの、前記最表面物体データに対応する撮像角度および撮像距離を算出する撮像角度算出部と、
    単独で置かれている前記物体を撮像部により前記撮像角度および撮像距離で撮像させ、第1撮像データを取得する第1撮像データ取得部と、
    前記第1ばら積みデータにおいて、前記最表面物体データに含まれている前記形状データを前記第1撮像データに置き換えて、学習データを生成する学習データ生成部と、
    を有することを特徴とする情報処理装置。
  8. 物体の位置姿勢を検出するための学習データを生成する情報処理装置であって、
    単独で置かれている前記物体を、撮像部により、複数の撮像条件で撮像させ、前記物体の形状データを含む複数の第3撮像データを取得する第3撮像データ取得部と、
    シミュレーションにより、前記第3撮像データを積み上げて、第2ばら積みデータを生成する第2ばら積みデータ生成部と、
    前記第2ばら積みデータにおいて、最表面に配置されている前記第3撮像データに位置姿勢情報を付与する最表面位置姿勢情報付与部と、
    単独で置かれている前記物体を撮像部により撮像させるときの、前記位置姿勢情報を付与した前記第3撮像データに対応する撮像角度および撮像距離を算出する撮像角度算出部と、
    単独で置かれている前記物体を撮像部により前記撮像角度および前記撮像距離で撮像させ、第4撮像データを取得する第4撮像データ取得部と、
    前記第2ばら積みデータにおいて、前記位置姿勢情報が付与された前記第3撮像データに含まれている前記形状データを前記第4撮像データに置き換えて、学習データを生成する学習データ生成部と、
    を有することを特徴とする情報処理装置。
  9. 物体の位置姿勢を検出する物体検出装置であって、
    請求項7または8に記載の情報処理装置と、
    前記物体を、撮像部により撮像させ、第2撮像データを取得する第2撮像データ取得部と、
    前記第2撮像データおよび前記学習データに基づいて、前記物体の位置姿勢を検出する物体位置姿勢検出部と、
    を有することを特徴とする物体検出装置。
  10. ロボットアームを備えるロボットと、
    前記ロボットアームに設置されている撮像部と、
    請求項9に記載の物体検出装置と、
    前記物体検出装置の検出結果に基づいて前記ロボットの駆動を制御するロボット制御装置と、
    を有することを特徴とするロボットシステム。
JP2019064127A 2019-03-28 2019-03-28 情報処理方法、情報処理装置、物体検出装置およびロボットシステム Withdrawn JP2020166371A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019064127A JP2020166371A (ja) 2019-03-28 2019-03-28 情報処理方法、情報処理装置、物体検出装置およびロボットシステム
CN202010219335.8A CN111745639B (zh) 2019-03-28 2020-03-25 信息处理方法及装置、物体检测装置以及机器人系统
US16/831,961 US11158080B2 (en) 2019-03-28 2020-03-27 Information processing method, information processing device, object detection apparatus, and robot system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064127A JP2020166371A (ja) 2019-03-28 2019-03-28 情報処理方法、情報処理装置、物体検出装置およびロボットシステム

Publications (1)

Publication Number Publication Date
JP2020166371A true JP2020166371A (ja) 2020-10-08

Family

ID=72606132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064127A Withdrawn JP2020166371A (ja) 2019-03-28 2019-03-28 情報処理方法、情報処理装置、物体検出装置およびロボットシステム

Country Status (3)

Country Link
US (1) US11158080B2 (ja)
JP (1) JP2020166371A (ja)
CN (1) CN111745639B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024161891A1 (ja) * 2023-01-31 2024-08-08 京セラ株式会社 処理装置及びプログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10906188B1 (en) 2019-10-25 2021-02-02 Dexterity, Inc. Singulation of arbitrary mixed items
WO2022036261A1 (en) * 2020-08-13 2022-02-17 Opsis Health, Inc. Object-recognition training

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083882A (ja) * 2009-10-19 2011-04-28 Yaskawa Electric Corp ロボットシステム
JP2013117795A (ja) * 2011-12-01 2013-06-13 Canon Inc 画像処理装置、画像処理方法
JP2018161692A (ja) * 2017-03-24 2018-10-18 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3377465B2 (ja) * 1999-04-08 2003-02-17 ファナック株式会社 画像処理装置
JP2007101197A (ja) * 2005-09-30 2007-04-19 Nachi Fujikoshi Corp 物体探索装置,物体探索装置を備えるロボットシステム及び物体探索方法
PT2828830T (pt) * 2012-03-20 2018-03-13 Siemens Corp Visualização de bagagem e desembalamento virtual
DE102016015936B4 (de) * 2015-07-31 2024-08-29 Fanuc Corporation Vorrichtung für maschinelles Lernen, Robotersystem und maschinelles Lernsysem zum Lernen eines Werkstückaufnahmevorgangs
JP7071054B2 (ja) 2017-01-20 2022-05-18 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム
JP6526100B2 (ja) * 2017-04-28 2019-06-05 ファナック株式会社 物品取出システム
JP6549644B2 (ja) * 2017-06-27 2019-07-24 ファナック株式会社 機械学習装置、ロボット制御システム及び機械学習方法
JP6895563B2 (ja) * 2017-09-25 2021-06-30 ファナック株式会社 ロボットシステム、モデル生成方法、及びモデル生成プログラム
US20200311855A1 (en) * 2018-05-17 2020-10-01 Nvidia Corporation Object-to-robot pose estimation from a single rgb image
CN109255813B (zh) * 2018-09-06 2021-03-26 大连理工大学 一种面向人机协作的手持物体位姿实时检测方法
JP7467041B2 (ja) * 2018-09-27 2024-04-15 キヤノン株式会社 情報処理装置、情報処理方法及びシステム
JP7263878B2 (ja) * 2019-03-27 2023-04-25 セイコーエプソン株式会社 光スキャナー、三次元計測装置およびロボットシステム
KR102198851B1 (ko) * 2019-11-12 2021-01-05 네이버랩스 주식회사 물체의 3차원 모델 데이터 생성 방법
JP7364439B2 (ja) * 2019-11-25 2023-10-18 ファナック株式会社 Tofセンサを用いた物体検出システム
JP7409848B2 (ja) * 2019-12-04 2024-01-09 ファナック株式会社 表示装置及び表示プログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083882A (ja) * 2009-10-19 2011-04-28 Yaskawa Electric Corp ロボットシステム
JP2013117795A (ja) * 2011-12-01 2013-06-13 Canon Inc 画像処理装置、画像処理方法
JP2018161692A (ja) * 2017-03-24 2018-10-18 キヤノン株式会社 情報処理装置、情報処理方法およびプログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024161891A1 (ja) * 2023-01-31 2024-08-08 京セラ株式会社 処理装置及びプログラム

Also Published As

Publication number Publication date
CN111745639A (zh) 2020-10-09
US11158080B2 (en) 2021-10-26
CN111745639B (zh) 2023-07-07
US20200311965A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP6546618B2 (ja) 学習装置、学習方法、学習モデル、検出装置及び把持システム
JP5977544B2 (ja) 情報処理装置、情報処理方法
JP5743499B2 (ja) 画像生成装置、画像生成方法、およびプログラム
JP5624394B2 (ja) 位置姿勢計測装置、その計測処理方法及びプログラム
JP6427972B2 (ja) ロボット、ロボットシステム及び制御装置
JP6892286B2 (ja) 画像処理装置、画像処理方法、及びコンピュータプログラム
CN111745639B (zh) 信息处理方法及装置、物体检测装置以及机器人系统
US11654571B2 (en) Three-dimensional data generation device and robot control system
JP2017170571A (ja) ロボット、ロボット制御装置、及びロボットシステム
JP4889928B2 (ja) 基準座標算出方法、基準座標算出プログラム、その記録媒体、定盤および形状測定装置
WO2012091144A4 (en) Information processing apparatus and method
JP2012026974A (ja) 3次元物体認識装置及び3次元物体認識方法
JP2018122376A (ja) 画像処理装置、ロボット制御装置、及びロボット
JP7439410B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP5083715B2 (ja) 三次元位置姿勢計測方法および装置
JP6237122B2 (ja) ロボット、画像処理方法及びロボットシステム
JP2017042897A (ja) ロボットシステム、ロボット、及びロボット制御装置
JP2013072857A (ja) 3次元位置・姿勢認識装置およびその方法、プログラム
JP2018017610A (ja) 三次元計測装置、ロボット、ロボット制御装置、及びロボットシステム
JP7161857B2 (ja) 情報処理装置、情報処理方法、及びプログラム
JP2021061014A (ja) 学習装置、学習方法、学習モデル、検出装置及び把持システム
JP2017219359A (ja) 形状測定装置、ロボット制御装置、及びロボット
JP2013158845A (ja) ロボット装置、画像生成装置、画像生成方法、および画像生成プログラム
JP2010186219A (ja) テンプレート生成システム、テンプレートマッチングシステムおよびテンプレート生成方法
JP7533265B2 (ja) 支援システム、画像処理装置、支援方法およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20230927