JP2020161655A - Cooling system - Google Patents

Cooling system Download PDF

Info

Publication number
JP2020161655A
JP2020161655A JP2019059913A JP2019059913A JP2020161655A JP 2020161655 A JP2020161655 A JP 2020161655A JP 2019059913 A JP2019059913 A JP 2019059913A JP 2019059913 A JP2019059913 A JP 2019059913A JP 2020161655 A JP2020161655 A JP 2020161655A
Authority
JP
Japan
Prior art keywords
flow path
cooling medium
evaporator
cooling
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019059913A
Other languages
Japanese (ja)
Inventor
英喜 佐々木
Hideki Sasaki
英喜 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keihin Corp
Original Assignee
Keihin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Corp filed Critical Keihin Corp
Priority to JP2019059913A priority Critical patent/JP2020161655A/en
Publication of JP2020161655A publication Critical patent/JP2020161655A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

To provide a cooling system stabilizing cooling performance.SOLUTION: A cooling system includes: a vaporizer 2 having ducts of cooling medium formed internally, and cooling multiple heating components by evaporating the cooling medium in a liquid state; a condenser for condensing the cooling medium; a first duct R1 for guiding the cooling medium from the condenser to the vaporizer 2; and a second duct R2 for guiding the cooling medium from the vaporizer 2 to the condenser. The vaporizer 2 is formed with: a preheating chamber R4 connected with the first duct R1 and provided with low temperature electronic components 200 on an external surface; and multiple micro-channels 2c connected with the preheating chamber R4 and the second duct R2, and provided with high temperature semiconductor chips 100 on an external surface, wherein the multiple micro-channels are provided respectively correspondingly to the high temperature semiconductor chips 100.SELECTED DRAWING: Figure 2

Description

本発明は、冷却システムに関するものである。 The present invention relates to a cooling system.

例えば、特許文献1には、複数の発熱体を冷却する潜熱利用型冷却装置が開示されている。この潜熱利用型冷却装置(冷却システム)においては、発熱体に接して配置される液体冷媒を蒸発させ、液体冷媒の潜熱により発熱体を冷却する。このような潜熱利用型冷却装置においては、蒸発室において蒸発して気体状態となった冷媒を凝縮室において再度液体状態とし、再び蒸発室へと循環させている。 For example, Patent Document 1 discloses a latent heat utilization type cooling device that cools a plurality of heating elements. In this latent heat utilization type cooling device (cooling system), the liquid refrigerant arranged in contact with the heating element is evaporated, and the heating element is cooled by the latent heat of the liquid refrigerant. In such a latent heat utilization type cooling device, the refrigerant evaporated in the evaporation chamber and turned into a gaseous state is put into a liquid state again in the condensation chamber and circulated to the evaporation chamber again.

特開2000−216578号公報Japanese Unexamined Patent Publication No. 2000-216578

上記の潜熱利用型冷却装置においては、冷媒の流れ方向に沿って発熱体が配置されている。このような配置とすると、冷媒の流れ方向の上流側に配置される発熱体と、下流側に配置される発熱体とでは、接触する冷媒の温度が異なることとなり、冷媒の沸騰するタイミングがそれぞれ異なり、冷却性能が安定しない。 In the above latent heat utilization type cooling device, heating elements are arranged along the flow direction of the refrigerant. With such an arrangement, the temperature of the refrigerant in contact differs between the heating element arranged on the upstream side in the flow direction of the refrigerant and the heating element arranged on the downstream side, and the timing at which the refrigerant boils is different. Unlike, the cooling performance is not stable.

本発明は、上述する問題点に鑑みてなされたもので、冷却システムにおいて、冷却性能を安定させることを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to stabilize the cooling performance in a cooling system.

上記目的を達成するために、本発明では、第1の手段として、冷却媒体の流路が内部に形成されると共に液体状態の冷却媒体を蒸発させることにより複数の高温の電子部品を冷却する蒸発器と、前記冷却媒体を凝縮させる凝縮器と、前記凝縮器から前記蒸発器へと前記冷却媒体を案内する第1流路と、前記蒸発器から前記凝縮器へと前記冷却媒体を案内する第2流路とを備え、前記蒸発器は、前記第1流路と接続されると共に低温の電子部品が外面に設けられる予熱室と、前記予熱室及び第2流路に接続され、高温の電子部品が外面に設けられると共に前記高温の電子部品のそれぞれに対応して複数設けられる蒸発室とが形成される、という構成を採用する。 In order to achieve the above object, in the present invention, as a first means, evaporation is performed to cool a plurality of high-temperature electronic components by forming a flow path of the cooling medium inside and evaporating the cooling medium in a liquid state. A device, a condenser for condensing the cooling medium, a first flow path for guiding the cooling medium from the condenser to the evaporator, and a first flow path for guiding the cooling medium from the evaporator to the condenser. The evaporator is provided with two flow paths, and the evaporator is connected to the first flow path and a preheating chamber in which a low-temperature electronic component is provided on an outer surface, and is connected to the preheating chamber and the second flow path to generate high-temperature electrons. A configuration is adopted in which the parts are provided on the outer surface and a plurality of evaporation chambers are provided corresponding to each of the high-temperature electronic parts.

第2の手段として、上記第1の手段において、前記蒸発器は、前記蒸発室に、流路面の表面積を拡張させる表面積拡張部材を備える、という構成を採用する。 As a second means, in the first means, the evaporator adopts a configuration in which the evaporation chamber is provided with a surface area expanding member for expanding the surface area of the flow path surface.

本発明によれば、各高温の電子部品に対応して蒸発室を設けており、さらに蒸発室の上流側に低温の電子部品が配置された予熱室が設けられている。これにより、冷却媒体は、予熱された状態で各高温の電子部品と個別に熱接触することとなる。したがって、冷却媒体が沸騰するタイミングのバラツキを抑制すると共に、早期に冷却媒体を沸騰させることができ、冷却性能を安定させることが可能である。 According to the present invention, an evaporation chamber is provided corresponding to each high-temperature electronic component, and a preheating chamber in which low-temperature electronic components are arranged is provided on the upstream side of the evaporation chamber. As a result, the cooling medium is in thermal contact with each high-temperature electronic component in a preheated state. Therefore, it is possible to suppress the variation in the timing at which the cooling medium boils, and to boil the cooling medium at an early stage, thereby stabilizing the cooling performance.

本発明の一実施形態に係る冷却システムの模式図である。It is a schematic diagram of the cooling system which concerns on one Embodiment of this invention. 本発明の一実施形態に係る冷却システムにおける蒸発器の内部構成を示す模式図である。It is a schematic diagram which shows the internal structure of the evaporator in the cooling system which concerns on one Embodiment of this invention.

以下、図面を参照して、本発明に係る冷却システムの一実施形態について説明する。 Hereinafter, an embodiment of the cooling system according to the present invention will be described with reference to the drawings.

本実施形態に係る冷却システム1は、図1に示すように、蒸発器2と、凝縮器3と、ポンプ4と、蒸発器流入流路R1(第1流路)と、蒸発器排出流路R2(第2流路)と、戻り流路R3とを有している。 As shown in FIG. 1, the cooling system 1 according to the present embodiment includes an evaporator 2, a condenser 3, a pump 4, an evaporator inflow flow path R1 (first flow path), and an evaporator discharge flow path. It has R2 (second flow path) and a return flow path R3.

蒸発器2は、図2に示すように、ケーシング2aと、流路部材2bと、マイクロチャネル2c(表面積拡張部材)とを有している。ケーシング2aは、熱伝導率の高い素材により形成された略直方体形状の中空部材である。ケーシング2aは、互いに対向する2つの伝熱面を有しており、一方の面にはパワー半導体チップ100(高温の電子部品)が複数設けられ、他方の面には他の電子部品200(低温の電子部品)が複数設けられる。なお、電子部品200は、パワー半導体チップ100よりも発熱温度が低い特性を有している。また、ケーシング2aには、蒸発器流入流路R1、蒸発器排出流路R2及び戻り流路R3が接続され、内部に冷却媒体が流入する。 As shown in FIG. 2, the evaporator 2 has a casing 2a, a flow path member 2b, and a microchannel 2c (surface area expansion member). The casing 2a is a hollow member having a substantially rectangular parallelepiped shape and is made of a material having high thermal conductivity. The casing 2a has two heat transfer surfaces facing each other, one surface is provided with a plurality of power semiconductor chips 100 (high temperature electronic components), and the other surface is provided with another electronic component 200 (low temperature electronic component). Electronic components) are provided. The electronic component 200 has a characteristic that the heat generation temperature is lower than that of the power semiconductor chip 100. Further, the evaporator inflow flow path R1, the evaporator discharge flow path R2, and the return flow path R3 are connected to the casing 2a, and the cooling medium flows into the casing 2a.

流路部材2bは、ケーシング2aの内部空間に設けられ、冷却媒体を一定の方向へと案内する仕切り部材である。この流路部材2bは、各パワー半導体チップ100及び各電子部品200の間を区切るように設けられている。ケーシング2aの内部には、流路部材2bにより、電子部品200が外面に設けられる予熱室R4と、パワー半導体チップ100が外面に設けられると共に各パワー半導体チップ100に対応した複数の蒸発室R5とが形成されている。予熱室R4は、蒸発器流入流路R1と接続されている。蒸発室R5は、予熱室R4及び蒸発器排出流路R2と接続されている。 The flow path member 2b is a partition member provided in the internal space of the casing 2a and guides the cooling medium in a certain direction. The flow path member 2b is provided so as to partition between each power semiconductor chip 100 and each electronic component 200. Inside the casing 2a, a preheating chamber R4 in which the electronic component 200 is provided on the outer surface by the flow path member 2b, and a plurality of evaporation chambers R5 corresponding to each power semiconductor chip 100 while the power semiconductor chip 100 is provided on the outer surface. Is formed. The preheating chamber R4 is connected to the evaporator inflow flow path R1. The evaporation chamber R5 is connected to the preheating chamber R4 and the evaporator discharge flow path R2.

マイクロチャネル2cは、内部に微細流路が形成された部材であり、ケーシング2aにおけるパワー半導体チップ100が設けられる面の内側に、パワー半導体チップ100と重なるようにして配置される。 The microchannel 2c is a member in which a fine flow path is formed inside, and is arranged inside the surface of the casing 2a where the power semiconductor chip 100 is provided so as to overlap the power semiconductor chip 100.

図1に戻り、凝縮器3は、不図示の熱交換器と、内部流路とを有しており、蒸発器2において気体状態となった冷却媒体を冷却することにより凝縮させる。このような凝縮器3は、蒸発器流入流路R1及び蒸発器排出流路R2と接続されている。すなわち、蒸発器流入流路R1には、凝縮器3において液体状態とされた冷却媒体が流れ、蒸発器排出流路R2には蒸発器2において気体状態(または気液混合状態)とされた冷却媒体が流れる。なお、戻り流路R3は、蒸発器流入流路R1に下流端が接続されており、排出された冷却媒体を蒸発器2へと戻している。 Returning to FIG. 1, the condenser 3 has a heat exchanger (not shown) and an internal flow path, and condenses the cooling medium in a gaseous state in the evaporator 2 by cooling it. Such a condenser 3 is connected to the evaporator inflow flow path R1 and the evaporator discharge flow path R2. That is, the cooling medium in the liquid state in the condenser 3 flows through the evaporator inflow flow path R1, and the cooling in the gaseous state (or gas-liquid mixed state) in the evaporator 2 flows in the evaporator discharge flow path R2. The medium flows. The return flow path R3 has a downstream end connected to the evaporator inflow flow path R1 and returns the discharged cooling medium to the evaporator 2.

ポンプ4は、蒸発器流入流路R1上に設けられ、凝縮器3から蒸発器2へと液体状態の冷却媒体を圧送する。 The pump 4 is provided on the evaporator inflow flow path R1 and pumps a liquid cooling medium from the condenser 3 to the evaporator 2.

このような冷却システム1においては、凝縮器3より供給される液体状態の冷却媒体が、ポンプ4により圧送されることにより、蒸発器流入流路R1を介して蒸発器2へと流入する。そして、液体状態の冷却媒体は、蒸発器2内部において、予熱室R4へと案内される。冷却媒体は、予熱室R4において電子部品200と熱交換される。これにより、冷却媒体の温度は、凝縮器3から排出された直後よりも上昇する。 In such a cooling system 1, the liquid cooling medium supplied from the condenser 3 is pumped by the pump 4 and flows into the evaporator 2 through the evaporator inflow flow path R1. Then, the cooling medium in the liquid state is guided to the preheating chamber R4 inside the evaporator 2. The cooling medium exchanges heat with the electronic component 200 in the preheating chamber R4. As a result, the temperature of the cooling medium rises from that immediately after being discharged from the condenser 3.

そして、冷却媒体は、予熱室R4から蒸発室R5へと案内される。冷却媒体は、蒸発室R5において、マイクロチャネル2c内を通過することによりパワー半導体チップ100と熱交換され、沸騰して蒸発する。このときの蒸発潜熱により、パワー半導体チップ100が冷却される。気体状態となった冷却媒体は、蒸発室R5から蒸発器排出流路R2へと排出され、再び凝縮器3へと流入する。また、一部の冷却媒体は、蒸発室R5から戻り流路R3へと排出され、蒸発器流入流路R1を介して再び蒸発器2へと流入する。すなわち、蒸発器流入流路R1と戻り流路R3とにより、冷却媒体の一部が凝縮器3を介さずに循環している。なお、蒸発器排出流路R2から遠い側に位置する蒸発室R5から排出される冷却媒体は、蒸発器排出流路R2から近い側に位置する蒸発室R5の外側を通り、蒸発器排出流路R2へと排出される。 Then, the cooling medium is guided from the preheating chamber R4 to the evaporation chamber R5. The cooling medium exchanges heat with the power semiconductor chip 100 by passing through the microchannel 2c in the evaporation chamber R5, and boils and evaporates. The latent heat of vaporization at this time cools the power semiconductor chip 100. The cooling medium in the gaseous state is discharged from the evaporation chamber R5 to the evaporator discharge flow path R2, and flows into the condenser 3 again. Further, a part of the cooling medium is discharged from the evaporation chamber R5 to the return flow path R3, and flows into the evaporator 2 again through the evaporator inflow flow path R1. That is, a part of the cooling medium is circulated by the evaporator inflow flow path R1 and the return flow path R3 without passing through the condenser 3. The cooling medium discharged from the evaporation chamber R5 located on the side far from the evaporator discharge flow path R2 passes outside the evaporation chamber R5 located on the side closer to the evaporator discharge flow path R2, and passes through the outside of the evaporation chamber R5. It is discharged to R2.

このような本実施形態によれば、パワー半導体チップ100と冷却媒体との熱交換よりも上流において、電子部品200と冷却媒体との熱交換が行われる。これにより、冷却媒体が予熱された状態で蒸発室R5においてパワー半導体チップ100と熱交換される。これにより、冷却媒体がパワー半導体チップ100との熱交換時に蒸発しやすくなり、蒸発潜熱による冷却性能を安定させることが可能である。 According to this embodiment, heat exchange between the electronic component 200 and the cooling medium is performed upstream of heat exchange between the power semiconductor chip 100 and the cooling medium. As a result, the cooling medium is preheated and heat exchanged with the power semiconductor chip 100 in the evaporation chamber R5. As a result, the cooling medium is likely to evaporate during heat exchange with the power semiconductor chip 100, and it is possible to stabilize the cooling performance due to the latent heat of vaporization.

また、本実施形態によれば、蒸発器2は、パワー半導体チップ100と対応する位置において、マイクロチャネル2cを有している。これにより、蒸発器2は、内側の表面積を増加させることができ、蒸発器2による冷却効率を向上させることが可能である。 Further, according to the present embodiment, the evaporator 2 has a microchannel 2c at a position corresponding to the power semiconductor chip 100. As a result, the evaporator 2 can increase the surface area inside, and the cooling efficiency of the evaporator 2 can be improved.

また、本実施形態によれば、蒸発器2は、予熱室R4と蒸発室R5とに分割されており、蒸発器2に流入した冷却媒体を容易に案内することが可能である。したがって、蒸発器2内における冷却媒体の温度分布を容易に管理することができ、冷却性能を安定させることが可能である。 Further, according to the present embodiment, the evaporator 2 is divided into a preheating chamber R4 and an evaporation chamber R5, and it is possible to easily guide the cooling medium flowing into the evaporator 2. Therefore, the temperature distribution of the cooling medium in the evaporator 2 can be easily controlled, and the cooling performance can be stabilized.

また、本実施形態によれば、蒸発器2は、蒸発室R5について、各パワー半導体チップ100に対応して複数設けられている。したがって、各蒸発室R5には概略等しい温度の冷却媒体が供給されることとなり、パワー半導体チップ100ごとに冷却効率が異なることがない。したがって、これによっても冷却性能を安定させることが可能である。 Further, according to the present embodiment, a plurality of evaporators 2 are provided in the evaporation chamber R5 corresponding to each power semiconductor chip 100. Therefore, cooling media having substantially the same temperature are supplied to each evaporation chamber R5, and the cooling efficiency does not differ for each power semiconductor chip 100. Therefore, it is possible to stabilize the cooling performance by this as well.

以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の趣旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 Although the preferred embodiment of the present invention has been described above with reference to the drawings, the present invention is not limited to the above embodiment. The various shapes and combinations of the constituent members shown in the above-described embodiment are examples, and can be variously changed based on design requirements and the like without departing from the spirit of the present invention.

上記実施形態においては、高温の電子部品としてパワー半導体チップ100を一例に挙げたが、本発明はこれに限定されない。また、低温の電子部品200は、例えば、リアクトルや、発熱温度の低い半導体等とすることが可能である。 In the above embodiment, the power semiconductor chip 100 is given as an example as a high-temperature electronic component, but the present invention is not limited thereto. Further, the low temperature electronic component 200 can be, for example, a reactor, a semiconductor having a low heat generation temperature, or the like.

上記実施形態においては、表面積拡張部材として、マイクロチャネル2cを有するものとしたが、本発明はこれに限定されない。例えば、表面積拡張部材は、複数のフィンが立設された形状としてもよい。 In the above embodiment, the surface area expanding member is assumed to have the microchannel 2c, but the present invention is not limited thereto. For example, the surface area expansion member may have a shape in which a plurality of fins are erected.

1 冷却システム
2 蒸発器
2b 流路部材
2c マイクロチャネル
3 凝縮器
100 パワー半導体チップ
200 電子部品
R1 蒸発器流入流路
R2 蒸発器排出流路
R3 流路
R4 予熱室
R5 蒸発室
1 Cooling system 2 Evaporator 2b Flow path member 2c Microchannel 3 Condenser 100 Power semiconductor chip 200 Electronic component R1 Evaporator Inflow flow path R2 Evaporator discharge flow path R3 Flow path R4 Preheating chamber R5 Evaporation chamber

Claims (2)

冷却媒体の流路が内部に形成されると共に液体状態の冷却媒体を蒸発させることにより複数の高温の電子部品を冷却する蒸発器と、
前記冷却媒体を凝縮させる凝縮器と、
前記凝縮器から前記蒸発器へと前記冷却媒体を案内する第1流路と、
前記蒸発器から前記凝縮器へと前記冷却媒体を案内する第2流路と
を備え、
前記蒸発器は、
前記第1流路と接続されると共に低温の電子部品が外面に設けられる予熱室と、
前記予熱室及び第2流路に接続され、高温の電子部品が外面に設けられると共に前記高温の電子部品のそれぞれに対応して複数設けられる蒸発室と
が形成されることを特徴とする冷却システム。
An evaporator that cools a plurality of high-temperature electronic components by forming a flow path of the cooling medium inside and evaporating the cooling medium in a liquid state.
A condenser that condenses the cooling medium and
A first flow path that guides the cooling medium from the condenser to the evaporator,
A second flow path for guiding the cooling medium from the evaporator to the condenser is provided.
The evaporator is
A preheating chamber connected to the first flow path and provided with low-temperature electronic components on the outer surface,
A cooling system connected to the preheating chamber and the second flow path, in which high-temperature electronic components are provided on the outer surface and a plurality of evaporation chambers are provided corresponding to each of the high-temperature electronic components. ..
前記蒸発器は、前記蒸発室に、流路面の表面積を拡張させる表面積拡張部材を備えることを特徴とする請求項1記載の冷却システム。 The cooling system according to claim 1, wherein the evaporator is provided with a surface area expanding member for expanding the surface area of the flow path surface in the evaporation chamber.
JP2019059913A 2019-03-27 2019-03-27 Cooling system Pending JP2020161655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019059913A JP2020161655A (en) 2019-03-27 2019-03-27 Cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019059913A JP2020161655A (en) 2019-03-27 2019-03-27 Cooling system

Publications (1)

Publication Number Publication Date
JP2020161655A true JP2020161655A (en) 2020-10-01

Family

ID=72639861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019059913A Pending JP2020161655A (en) 2019-03-27 2019-03-27 Cooling system

Country Status (1)

Country Link
JP (1) JP2020161655A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046677A1 (en) * 2000-12-04 2002-06-13 Fujitsu Limited Cooling system and heat absorbing device
JP2004266247A (en) * 2003-02-12 2004-09-24 Denso Corp Cooling structure for heat generating component
JP2015129594A (en) * 2014-01-06 2015-07-16 株式会社東芝 Airlift pump cooling device
US20180338391A1 (en) * 2017-05-22 2018-11-22 Pfannenberg Gmbh Heat exchanger for cooling an electronic enclosure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046677A1 (en) * 2000-12-04 2002-06-13 Fujitsu Limited Cooling system and heat absorbing device
JP2004266247A (en) * 2003-02-12 2004-09-24 Denso Corp Cooling structure for heat generating component
JP2015129594A (en) * 2014-01-06 2015-07-16 株式会社東芝 Airlift pump cooling device
US20180338391A1 (en) * 2017-05-22 2018-11-22 Pfannenberg Gmbh Heat exchanger for cooling an electronic enclosure

Similar Documents

Publication Publication Date Title
US6990816B1 (en) Hybrid capillary cooling apparatus
JP7137555B2 (en) Active/passive cooling system
US8833435B2 (en) Microscale cooling apparatus and method
JP2013016589A (en) Boil cooling device, and cooling system for vehicle using boil cooling device
JP2008311399A (en) Heat sink
JP2007278572A (en) Absorption type refrigerating device
JP2020161655A (en) Cooling system
WO2016051569A1 (en) Evaporator, cooling device, and electronic device
JP2007248024A (en) Absorption-type refrigerating device
CN114901056A (en) Heat dissipation device and electronic equipment
US11280556B2 (en) Fast heat-sinking, current stabilization and pressure boosting device for condenser
KR101461057B1 (en) Apparatus for cooling and heating with one circulating loop using thermoelectric element
JP2021027245A (en) Cooling system
WO2017046986A1 (en) Cooling device and electronic device equipped with same
US11747091B2 (en) Fast heat-sinking device for evaporators
WO2016208180A1 (en) Cooling device and electronic apparatus having same mounted thereon
WO2017082127A1 (en) Electronic equipment cooling device
KR100431500B1 (en) Micro cooler device
RU2639635C1 (en) Heat-transfer device for cooling electronic components
CN212393122U (en) Thermal siphon type heat exchanger
KR100497819B1 (en) Manufacture method and it's manufacture goods of micro cooler device
TWI657226B (en) Two-phase fluid heat transfer structure
RU175949U1 (en) HEAT TRANSFER DEVICE FOR COOLING ELECTRONIC COMPONENTS
JP2017133728A (en) Temperature control device
Giradkar et al. High heat flux micro-electronics cooling

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210408

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230323

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230613