JP2020160011A - Sample measuring device - Google Patents

Sample measuring device Download PDF

Info

Publication number
JP2020160011A
JP2020160011A JP2019062735A JP2019062735A JP2020160011A JP 2020160011 A JP2020160011 A JP 2020160011A JP 2019062735 A JP2019062735 A JP 2019062735A JP 2019062735 A JP2019062735 A JP 2019062735A JP 2020160011 A JP2020160011 A JP 2020160011A
Authority
JP
Japan
Prior art keywords
flow path
sample
liquid
measuring device
liquid sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019062735A
Other languages
Japanese (ja)
Other versions
JP7281320B2 (en
Inventor
内田 哲也
Tetsuya Uchida
内田  哲也
土屋 広司
Koji Tsuchiya
広司 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2019062735A priority Critical patent/JP7281320B2/en
Publication of JP2020160011A publication Critical patent/JP2020160011A/en
Application granted granted Critical
Publication of JP7281320B2 publication Critical patent/JP7281320B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Filtration Of Liquid (AREA)

Abstract

To provide a sample measuring device which can avoid complication of a structure and can reduce influence of foreign substances on a circulation system.SOLUTION: A sample measuring device 1A includes: a circulation system 3 for circulating a liquid sample S by a pump 11; at least one filter 4 arranged in the circulation system 3, the at least one filter capturing a foreign substances C in the liquid sample S; a measurement unit 5 for measuring the liquid sample S circulating in the circulation system 3; and a switching unit (6) for switching the direction of flow of the liquid sample S in the circulation system 3. The circulation system 3 has a common flow passage 13 in which the liquid sample S always flows in one direction alone regardless of switch of the direction of flow of the liquid sample S by the switching unit. In the circulation system 3, the pump is arranged in the common flow passage 13 and the filter is arranged in a flow passage other than the common flow passage 13.SELECTED DRAWING: Figure 1

Description

本開示は、試料計測装置に関する。 The present disclosure relates to a sample measuring device.

従来、流路系において液体試料の成分計測等を行う試料計測装置が知られている。例えば特許文献1に記載の植物育成管理装置は、養液を供給する流路と、排液を排出する流路と、これらの流路の開閉弁とを備えている。この装置では、排液の流路に導電率やpH等を検出するセンサが設けられており、センサの検出信号に基づいて養液の流路の開閉弁が制御される。 Conventionally, a sample measuring device for measuring the components of a liquid sample in a flow path system has been known. For example, the plant growth management device described in Patent Document 1 includes a flow path for supplying a nutrient solution, a flow path for discharging a drainage solution, and an on-off valve for these flow paths. In this device, a sensor for detecting conductivity, pH, etc. is provided in the drainage flow path, and the on-off valve of the nutrient solution flow path is controlled based on the detection signal of the sensor.

特開2012−231721号公報Japanese Unexamined Patent Publication No. 2012-231721

上述したような試料計測装置では、液体試料の吸光度や蛍光強度などを指標とする計測が行われる場合が多い。計測の実施にあたっては、液体試料中の夾雑物(計測対象となる物質以外の物質)の存在が問題となる。例えば光学計測を行う場合には、夾雑物が光の散乱の要因となり、光学計測の精度を低下させるおそれがある。また、環境計測の分野では、液体試料をサンプリングして時間的に断続した計測を行うよりも、細かい時間分解能で連続的かつ長期的に成分変動の計測を行うことで、得られる情報量を格段に増加させることができる。 In the sample measuring device as described above, measurement is often performed using the absorbance or fluorescence intensity of the liquid sample as an index. In carrying out the measurement, the presence of impurities (substances other than the substance to be measured) in the liquid sample becomes a problem. For example, when optical measurement is performed, impurities may cause light scattering and reduce the accuracy of optical measurement. In addition, in the field of environmental measurement, the amount of information that can be obtained is significantly increased by continuously and long-term measurement of component fluctuations with fine time resolution, rather than sampling liquid samples and performing time-intermittent measurements. Can be increased to.

かかる計測を実施するには、ポンプ等を含む循環系の構築が必要となるが、装置構成の複雑化の回避が課題となる。また、夾雑物の存在は、循環系の目詰まりなどを引き起こすため、循環系の連続運転の妨げになり得る。このため、循環系に対する夾雑物の影響を緩和する工夫が必要となる。 In order to carry out such measurement, it is necessary to construct a circulatory system including a pump and the like, but it is an issue to avoid complication of the device configuration. In addition, the presence of impurities causes clogging of the circulatory system and the like, which may hinder the continuous operation of the circulatory system. Therefore, it is necessary to devise ways to mitigate the influence of impurities on the circulatory system.

本開示は、上記課題の解決のためになされたものであり、構成の複雑化を回避でき、かつ循環系に対する夾雑物の影響を緩和できる試料計測装置を提供することを目的とする。 The present disclosure has been made to solve the above problems, and an object of the present invention is to provide a sample measuring device capable of avoiding complicated configuration and mitigating the influence of impurities on the circulatory system.

本開示の一側面に係る試料計測装置は、液体試料を計測する試料計測装置であって、液体試料をポンプにより循環させる循環系と、循環系に配置され、液体試料中の夾雑物を捕捉する少なくとも一つのフィルタと、循環系における液体試料の流れ方向を切り替える切替部と、循環系を循環する液体試料を計測する計測部と、を備え、循環系は、切替部による液体試料の流れ方向の切り替えに依らずに液体試料の流れ方向が常に一定となる共通流路を有し、循環系において、ポンプは共通流路に配置され、フィルタは共通流路以外の流路に配置されている。 The sample measuring device according to one aspect of the present disclosure is a sample measuring device for measuring a liquid sample, which is arranged in a circulation system for circulating the liquid sample by a pump and a circulation system, and captures impurities in the liquid sample. The circulation system includes at least one filter, a switching unit for switching the flow direction of the liquid sample in the circulation system, and a measurement unit for measuring the liquid sample circulating in the circulation system. It has a common flow path in which the flow direction of the liquid sample is always constant regardless of switching, and in the circulation system, the pump is arranged in the common flow path and the filter is arranged in the flow path other than the common flow path.

この試料計測装置では、切替部によって循環系における液体試料の流れ方向が切り替えられる。これにより、フィルタを通過する液体試料の流れ方向が反転し、フィルタに捕捉された夾雑物を剥離することができる。したがって、フィルタの目詰まりを抑制でき、循環系の連続運転が可能となる。また、この試料計測装置では、液体試料の流れ方向が常に一定となる共通流路にポンプが配置されている。これにより、循環系において、切替部によって液体試料の流れ方向が切り替えられる流路と、液体試料の流れ方向が常に一定となる共通流路とを単体のポンプで形成できる。したがって、装置構成の複雑化を回避できる。 In this sample measuring device, the flow direction of the liquid sample in the circulatory system is switched by the switching unit. As a result, the flow direction of the liquid sample passing through the filter is reversed, and the contaminants trapped in the filter can be separated. Therefore, clogging of the filter can be suppressed, and continuous operation of the circulatory system becomes possible. Further, in this sample measuring device, the pump is arranged in a common flow path in which the flow direction of the liquid sample is always constant. As a result, in the circulatory system, a flow path in which the flow direction of the liquid sample is switched by the switching portion and a common flow path in which the flow direction of the liquid sample is always constant can be formed by a single pump. Therefore, it is possible to avoid complication of the device configuration.

フィルタは、共通流路を挟むように配置されていてもよい。この場合、共通流路を流れる液体試料は、常にフィルタで濾過された状態となる。したがって、共通流路に配置されたポンプに対する夾雑物の影響を緩和することができ、循環系をより長期間にわたって連続運転することが可能となる。 The filters may be arranged so as to sandwich the common flow path. In this case, the liquid sample flowing through the common flow path is always in a state of being filtered by the filter. Therefore, the influence of impurities on the pumps arranged in the common flow path can be mitigated, and the circulatory system can be continuously operated for a longer period of time.

計測部は、共通流路に配置されていてもよい。共通流路では、液体試料の流れ方向が常に一定となる。この場合、例えばクロマトグラフィのように、流れ方向が常に一定である条件下のみで実施できる実験を行うことが可能となる。また、液体試料の流れ方向が一定であることを利用し、計測部の配置や向き等を変えることなく計測部から気泡を押し出すことが可能となり、計測部における気泡の滞留を抑制できる。フィルタが共通流路を挟むように配置される場合には、光学計測の際の夾雑物による光の散乱等の影響が抑えられる。したがって、計測精度の向上が図られる。 The measuring unit may be arranged in a common flow path. In the common flow path, the flow direction of the liquid sample is always constant. In this case, it is possible to carry out an experiment that can be performed only under conditions in which the flow direction is always constant, such as chromatography. Further, by utilizing the fact that the flow direction of the liquid sample is constant, it is possible to push out air bubbles from the measurement unit without changing the arrangement or direction of the measurement unit, and it is possible to suppress the retention of air bubbles in the measurement unit. When the filters are arranged so as to sandwich the common flow path, the influence of light scattering due to contaminants during optical measurement can be suppressed. Therefore, the measurement accuracy can be improved.

計測部は、共通流路以外の流路に接続された計測流路に配置されていてもよい。この場合、溶媒を添加する液体クロマトグラフィのように、ポンプを通すことができない液体試料に対する計測を行うことが可能となる。 The measuring unit may be arranged in a measuring flow path connected to a flow path other than the common flow path. In this case, it is possible to perform measurement on a liquid sample that cannot be pumped, such as liquid chromatography in which a solvent is added.

試料計測装置は、循環系に洗浄液を導入する洗浄液導入流路を更に備えていてもよい。これにより、循環系の全体の洗浄を実施できる。 The sample measuring device may further include a cleaning liquid introduction flow path for introducing the cleaning liquid into the circulatory system. This makes it possible to wash the entire circulatory system.

洗浄液導入流路は、共通流路に接続されていてもよい。この場合、洗浄液をポンプの近傍から導入できるので、ポンプの洗浄が容易なものとなる。 The cleaning liquid introduction flow path may be connected to a common flow path. In this case, since the cleaning liquid can be introduced from the vicinity of the pump, the pump can be easily cleaned.

洗浄液導入流路は、共通流路以外の流路に接続されていてもよい。この場合、洗浄液をフィルタの近傍から導入できるので、フィルタの洗浄が容易なものとなる。 The cleaning liquid introduction flow path may be connected to a flow path other than the common flow path. In this case, since the cleaning liquid can be introduced from the vicinity of the filter, the cleaning of the filter becomes easy.

試料計測装置は、循環系に校正液を導入する校正液導入流路を更に備えていてもよい。校正液は、既知の計測値を有する液体である。校正液を実際に計測した計測値を既知の計測値と比較し、誤差を補正することで、計測の精度を向上させることが可能となる。 The sample measuring device may further include a calibration liquid introduction flow path for introducing the calibration liquid into the circulation system. The calibration liquid is a liquid having a known measured value. It is possible to improve the accuracy of measurement by comparing the measured value actually measured with the calibration solution with the known measured value and correcting the error.

試料計測装置は、循環系を流れる液体を貯留するタンクを更に備えていてもよい。この場合、例えば循環系からの排液をタンクに回収することができる。 The sample measuring device may further include a tank for storing the liquid flowing through the circulatory system. In this case, for example, the drainage from the circulatory system can be collected in the tank.

計測部は、鉛直方向に設けられていてもよい。計測部に気泡が滞留すると、光学計測の際に気泡による光の散乱等が生じることが考えられる。計測部を鉛直方向に設けることで、気泡の滞留が抑制され、計測精度の向上が図られる。 The measuring unit may be provided in the vertical direction. If bubbles stay in the measuring unit, it is possible that light is scattered by the bubbles during optical measurement. By providing the measuring unit in the vertical direction, the retention of air bubbles is suppressed and the measurement accuracy is improved.

本開示によれば、構成の複雑化を回避でき、かつ循環系に対する夾雑物の影響を緩和できる。 According to the present disclosure, it is possible to avoid complication of the configuration and mitigate the influence of impurities on the circulatory system.

試料計測装置の第1実施形態を示す概略図である。It is the schematic which shows the 1st Embodiment of the sample measuring apparatus. 液体試料の連続計測の一例を示す図である。It is a figure which shows an example of the continuous measurement of a liquid sample. 連続計測の計測結果の一例を示す図である。It is a figure which shows an example of the measurement result of continuous measurement. 試料計測装置の第2実施形態を示す概略図である。It is the schematic which shows the 2nd Embodiment of the sample measuring apparatus. 試料計測装置の第3実施形態を示す概略図である。It is the schematic which shows the 3rd Embodiment of a sample measuring apparatus. 試料計測装置の第4実施形態を示す概略図である。It is the schematic which shows the 4th Embodiment of a sample measuring apparatus. 試料計測装置の第5実施形態を示す概略図である。It is the schematic which shows the 5th Embodiment of a sample measuring apparatus. 試料計測装置の第6実施形態を示す概略図である。It is the schematic which shows the 6th Embodiment of a sample measuring apparatus.

以下、図面を参照しながら、本開示の一側面に係る試料計測装置の好適な実施形態について詳細に説明する。
[第1実施形態]
Hereinafter, a preferred embodiment of the sample measuring device according to one aspect of the present disclosure will be described in detail with reference to the drawings.
[First Embodiment]

図1は、試料計測装置の第1実施形態を示す概略図である。試料計測装置1Aは、環境計測の分野において、細かい時間分解能で連続的かつ長期的に液体試料Sの成分変動の計測を行う装置として構成されている。試料計測装置1Aは、図1に示すように、試料貯留部2と、循環系3と、フィルタ4と、計測部5と、切替部6と、を備えている。 FIG. 1 is a schematic view showing a first embodiment of a sample measuring device. In the field of environmental measurement, the sample measuring device 1A is configured as a device that continuously and long-term measures the component fluctuation of the liquid sample S with a fine time resolution. As shown in FIG. 1, the sample measuring device 1A includes a sample storage unit 2, a circulation system 3, a filter 4, a measuring unit 5, and a switching unit 6.

試料貯留部2は、例えば液体試料Sを貯留する大型のタンクである。液体試料Sは、例えば土壌に有機物を混入させた有機養液である。このため、液体試料Sには、多量の夾雑物(計測対象となる物質以外の物質)Cが含まれ得る。夾雑物Cとしては、例えば植物の枝葉、種、砂利、虫などが挙げられる。試料貯留部2は、タンクのような閉鎖系に限られず、河川のような非閉鎖系であってもよい。 The sample storage unit 2 is, for example, a large tank for storing the liquid sample S. The liquid sample S is, for example, an organic nutrient solution in which an organic substance is mixed in the soil. Therefore, the liquid sample S may contain a large amount of contaminants (substances other than the substance to be measured) C. Examples of the contaminant C include branches and leaves of plants, seeds, gravel, insects and the like. The sample storage unit 2 is not limited to a closed system such as a tank, and may be a non-closed system such as a river.

循環系3は、液体試料Sをポンプ11により循環させる部分である。循環系3は、管状流路12と、管状流路12の2点を繋ぐ共通流路13と、管状流路12と試料貯留部2とを繋ぐ一対の接続流路14(14A,14B)とによって構成されている。循環系3における液体試料Sの流れは、ポンプ11によって形成される。ポンプ11は、共通流路13の上流側に設けられている。ポンプ11は、共通流路13の下流側に設けられていてもよい。 The circulation system 3 is a portion in which the liquid sample S is circulated by the pump 11. The circulation system 3 includes a tubular flow path 12, a common flow path 13 connecting two points of the tubular flow path 12, and a pair of connection flow paths 14 (14A, 14B) connecting the tubular flow path 12 and the sample storage portion 2. It is composed of. The flow of the liquid sample S in the circulatory system 3 is formed by the pump 11. The pump 11 is provided on the upstream side of the common flow path 13. The pump 11 may be provided on the downstream side of the common flow path 13.

フィルタ4は、液体試料S中の夾雑物Cを捕捉する部分である。フィルタ4は、循環系3において少なくとも一つ配置される。本実施形態では、フィルタ4は、液体試料Sの流れ方向について、共通流路13を挟むように配置されている。具体的には、フィルタ4は、接続流路14において管状流路12との接続部分に近接した位置に設けられている。これにより、試料貯留部2から流れる液体試料Sは、常にフィルタ4を通過した後に共通流路13に向かうようになっている。夾雑物Cは、液体試料Sの流れ方向が接続流路14から管状流路12に向かう方向である場合には、フィルタ4において管状流路12から見て外側、つまり、試料貯留部2側に堆積する。夾雑物Cは、液体試料Sの流れ方向が接続流路14から管状流路12に向かう方向である場合には、フィルタ4から剥離し、液体試料Sと共に試料貯留部2に流れる。 The filter 4 is a portion that captures the contaminant C in the liquid sample S. At least one filter 4 is arranged in the circulatory system 3. In the present embodiment, the filter 4 is arranged so as to sandwich the common flow path 13 in the flow direction of the liquid sample S. Specifically, the filter 4 is provided at a position close to the connection portion with the tubular flow path 12 in the connection flow path 14. As a result, the liquid sample S flowing from the sample storage unit 2 always passes through the filter 4 and then heads toward the common flow path 13. When the flow direction of the liquid sample S is from the connecting flow path 14 to the tubular flow path 12, the contaminant C is on the outside of the tubular flow path 12 in the filter 4, that is, on the sample storage portion 2. accumulate. When the flow direction of the liquid sample S is from the connecting flow path 14 to the tubular flow path 12, the contaminant C is peeled off from the filter 4 and flows to the sample storage unit 2 together with the liquid sample S.

計測部5は、循環系3を循環する液体試料Sを計測する部分である。計測部5は、共通流路13においてポンプ11よりも下流側に設けられている。本実施形態では、計測部5は、フローセルを備えた光学計測装置によって構成され、所定波長に対する液体試料Sの吸光度を連続計測する。フローセルの材質及び形状に特に制限はなく、石英やガラス等から目的に応じて適宜選択される。光学計測の手法及び計測する光学特性についても特に制限はなく、目的に応じて適宜選択される。 The measuring unit 5 is a part that measures the liquid sample S circulating in the circulatory system 3. The measuring unit 5 is provided on the downstream side of the pump 11 in the common flow path 13. In the present embodiment, the measuring unit 5 is composed of an optical measuring device including a flow cell, and continuously measures the absorbance of the liquid sample S with respect to a predetermined wavelength. The material and shape of the flow cell are not particularly limited, and are appropriately selected from quartz, glass and the like according to the purpose. The optical measurement method and the optical characteristics to be measured are not particularly limited, and are appropriately selected according to the purpose.

計測部5は、鉛直方向に設けられている。すなわち、計測部5を流れる液体試料Sの流れ方向は鉛直方向となっている。計測部5を鉛直方向に設けることで、液体試料Sに含まれる気泡が鉛直方向において下から上に移動する。このため、計測部5を鉛直方向に設け、計測部5の鉛直方向の上側に流路を接続することで、気泡が計測部5から排出され易くなる。したがって、計測部5における気泡の滞留が抑制され、計測精度の向上が図られる。また、この構成において、計測部5内の液体試料Sを鉛直方向において下から上に流すことで、気泡の下から上への移動を促進できる。計測部5は、完全に鉛直方向に設けられている必要はない。計測部5は、気泡が重力方向において下から上に移動可能な範囲において一定の傾斜で配置されていてもよい。 The measuring unit 5 is provided in the vertical direction. That is, the flow direction of the liquid sample S flowing through the measuring unit 5 is the vertical direction. By providing the measuring unit 5 in the vertical direction, the bubbles contained in the liquid sample S move from the bottom to the top in the vertical direction. Therefore, by providing the measuring unit 5 in the vertical direction and connecting the flow path to the upper side of the measuring unit 5 in the vertical direction, air bubbles can be easily discharged from the measuring unit 5. Therefore, the retention of air bubbles in the measuring unit 5 is suppressed, and the measurement accuracy is improved. Further, in this configuration, by flowing the liquid sample S in the measuring unit 5 from the bottom to the top in the vertical direction, the movement of the bubbles from the bottom to the top can be promoted. The measuring unit 5 does not have to be provided in the completely vertical direction. The measuring unit 5 may be arranged at a constant inclination within a range in which the bubbles can move from the bottom to the top in the direction of gravity.

切替部6は、循環系3における液体試料Sの流れ方向を切り替える部分である。本実施形態では、切替部6は、管状流路12において、接続流路14との接続位置及び共通流路13との接続位置との間に設けられた4つのバルブ15A〜15Dによって構成されている。バルブ15A〜15Dの開閉は、タイマーなどを用いることにより、一定の期間ごとに切り替えられる。この切り替えは、図示しない制御部により自動で行われてもよく、手動で行われてもよい。切替部6によって液体試料Sの流れ方向の切り替えが行われると、管状流路12及び接続流路14を流れる液体試料Sの流れ方向が反転する。一方、共通流路13を流れる液体試料Sの流れ方向は、切替部6による切り替えに依らずに常に一定となる。 The switching unit 6 is a portion that switches the flow direction of the liquid sample S in the circulatory system 3. In the present embodiment, the switching portion 6 is composed of four valves 15A to 15D provided between the connection position with the connection flow path 14 and the connection position with the common flow path 13 in the tubular flow path 12. There is. The opening and closing of the valves 15A to 15D can be switched at regular intervals by using a timer or the like. This switching may be performed automatically by a control unit (not shown) or may be performed manually. When the flow direction of the liquid sample S is switched by the switching unit 6, the flow direction of the liquid sample S flowing through the tubular flow path 12 and the connecting flow path 14 is reversed. On the other hand, the flow direction of the liquid sample S flowing through the common flow path 13 is always constant regardless of the switching by the switching unit 6.

バルブ15A,15Bが開状態で、かつバルブ15C,15Dが閉状態である場合、循環系3における液体試料Sの流れ方向は、図1の実線の矢印で示す循環パターン1に沿う方向となる。循環パターン1では、試料貯留部2からの液体試料Sは、接続流路14Aを流れ、フィルタ4を通って管状流路12に流れる。管状流路12に流れた液体試料Sは、ポンプ11、計測部5の順に共通流路13を流れ、計測部5による計測を受けた後、再び管状流路12に流れる。その後、液体試料Sは、管状流路12から接続流路14Bに流れ、フィルタ4を通って試料貯留部2に戻る。 When the valves 15A and 15B are in the open state and the valves 15C and 15D are in the closed state, the flow direction of the liquid sample S in the circulation system 3 is the direction along the circulation pattern 1 indicated by the solid arrow in FIG. In the circulation pattern 1, the liquid sample S from the sample storage unit 2 flows through the connecting flow path 14A, passes through the filter 4, and flows into the tubular flow path 12. The liquid sample S that has flowed into the tubular flow path 12 flows through the common flow path 13 in the order of the pump 11 and the measurement unit 5, receives measurement by the measurement unit 5, and then flows back into the tubular flow path 12. After that, the liquid sample S flows from the tubular flow path 12 to the connection flow path 14B, passes through the filter 4, and returns to the sample storage unit 2.

バルブ15A,15Bが閉状態で、かつバルブ15C,15Dが開状態である場合、循環系3における液体試料Sの流れ方向は、図1の破線の矢印で示す循環パターン2に沿う方向となる。循環パターン2では、試料貯留部2からの液体試料Sは、接続流路14Bを流れ、循環パターン1とは反対向きにフィルタ4を通って管状流路12に流れる。管状流路12に流れた液体試料Sは、循環パターン1と同じ流れ方向で共通流路13を流れ、計測部5による計測を受けた後、再び管状流路12に流れる。その後、液体試料Sは、管状流路12から接続流路14Bに流れ、循環パターン1とは反対向きにフィルタ4を通って試料貯留部2に戻る。 When the valves 15A and 15B are closed and the valves 15C and 15D are open, the flow direction of the liquid sample S in the circulation system 3 is along the circulation pattern 2 indicated by the broken line arrow in FIG. In the circulation pattern 2, the liquid sample S from the sample storage unit 2 flows through the connection flow path 14B, passes through the filter 4 in the direction opposite to the circulation pattern 1, and flows into the tubular flow path 12. The liquid sample S that has flowed through the tubular flow path 12 flows through the common flow path 13 in the same flow direction as the circulation pattern 1, receives measurement by the measuring unit 5, and then flows back into the tubular flow path 12. After that, the liquid sample S flows from the tubular flow path 12 to the connection flow path 14B, passes through the filter 4 in the direction opposite to the circulation pattern 1, and returns to the sample storage unit 2.

以上説明したように、試料計測装置1Aでは、切替部6によって循環系3における液体試料Sの流れ方向が切り替えられる。これにより、フィルタ4を通過する液体試料Sの流れ方向が反転し、フィルタ4に捕捉された夾雑物Cを剥離することができる。したがって、フィルタ4の目詰まりを抑制でき、循環系3の連続運転が可能となる。 As described above, in the sample measuring device 1A, the flow direction of the liquid sample S in the circulatory system 3 is switched by the switching unit 6. As a result, the flow direction of the liquid sample S passing through the filter 4 is reversed, and the contaminants C captured by the filter 4 can be peeled off. Therefore, clogging of the filter 4 can be suppressed, and continuous operation of the circulatory system 3 becomes possible.

本実施形態では、フィルタ4から夾雑物Cが剥離する際、夾雑物Cと共にフィルタ4に捕捉されている微粒子養分、ごみ、微生物なども液体試料S中にリリースされる。これらを再び液体試料S中に戻すことで、試料貯留部2内のバイオプロセスへの影響を抑えながら液体試料Sの計測を実施することができる。また、試料計測装置1Aでは、液体試料Sの流れ方向が常に一定となる共通流路13にポンプ11が配置されている。これにより、循環系3において、切替部6によって液体試料Sの流れ方向が切り替えられる流路と、液体試料Sの流れ方向が常に一定となる共通流路13とを単体のポンプ11で形成できる。したがって、装置構成の複雑化を回避できる。 In the present embodiment, when the contaminant C is peeled off from the filter 4, fine particle nutrients, dust, microorganisms and the like trapped in the filter 4 together with the contaminant C are also released into the liquid sample S. By returning these to the liquid sample S again, the measurement of the liquid sample S can be performed while suppressing the influence on the bioprocess in the sample storage unit 2. Further, in the sample measuring device 1A, the pump 11 is arranged in the common flow path 13 in which the flow direction of the liquid sample S is always constant. As a result, in the circulatory system 3, a flow path in which the flow direction of the liquid sample S is switched by the switching unit 6 and a common flow path 13 in which the flow direction of the liquid sample S is always constant can be formed by the single pump 11. Therefore, it is possible to avoid complication of the device configuration.

試料計測装置1Aでは、フィルタ4が共通流路13を挟むように配置されている。この場合、共通流路13を流れる液体試料Sは、常にフィルタ4で濾過された状態となる。したがって、共通流路13に配置されたポンプ11に対する夾雑物Cの影響を緩和することができ、循環系3をより長期間にわたって連続運転することが可能となる。 In the sample measuring device 1A, the filters 4 are arranged so as to sandwich the common flow path 13. In this case, the liquid sample S flowing through the common flow path 13 is always in a state of being filtered by the filter 4. Therefore, the influence of the contaminant C on the pump 11 arranged in the common flow path 13 can be mitigated, and the circulatory system 3 can be continuously operated for a longer period of time.

試料計測装置1Aでは、計測部5が共通流路13に配置されている。共通流路13では、液体試料Sの流れ方向が常に一定となるため、液体試料Sの流れ方向が常に一定である条件下のみで実施できる実験を行うことが可能となる。また、液体試料Sの流れ方向が一定であることを利用し、計測部5の配置や向き等を変えることなく計測部5から気泡を押し出すことが可能となり、計測部5における気泡の滞留を抑制できる。さらに、試料計測装置1Aでは、フィルタ4が共通流路13を挟むように配置されているので、光学計測の際の夾雑物Cによる光の散乱等の影響が抑えられる。したがって、計測精度の向上が図られる。 In the sample measuring device 1A, the measuring unit 5 is arranged in the common flow path 13. In the common flow path 13, since the flow direction of the liquid sample S is always constant, it is possible to carry out an experiment that can be carried out only under the condition that the flow direction of the liquid sample S is always constant. Further, by utilizing the fact that the flow direction of the liquid sample S is constant, it is possible to push out air bubbles from the measurement unit 5 without changing the arrangement or direction of the measurement unit 5, and the retention of air bubbles in the measurement unit 5 is suppressed. it can. Further, in the sample measuring device 1A, since the filter 4 is arranged so as to sandwich the common flow path 13, the influence of light scattering by the contaminant C at the time of optical measurement can be suppressed. Therefore, the measurement accuracy can be improved.

図2は、液体試料の連続計測の一例を示す図である。この連続計測は、土壌性有機物の中心吸光波長帯である270nmの光に対する液体試料の吸光度を上記の試料計測装置を用いて長期に計測したものである。液体試料としては、水に土と植物残差由来の有機物を所定の量で溶かし込んだ養液を用いた。従来の試料計測装置では、夾雑物が原因と推察されるトラブル(フィルタの目詰まりやポンプの駆動停止など)により、半日も持たずに計測が不能となっていた。 FIG. 2 is a diagram showing an example of continuous measurement of a liquid sample. In this continuous measurement, the absorbance of a liquid sample with respect to light of 270 nm, which is the central absorption wavelength band of soil organic matter, is measured for a long period of time using the above-mentioned sample measuring device. As the liquid sample, a nutrient solution in which soil and organic matter derived from plant residues were dissolved in water in a predetermined amount was used. With the conventional sample measuring device, it was impossible to measure in less than half a day due to troubles (such as clogging of the filter and stopping of driving of the pump) that are presumed to be caused by impurities.

これに対し、本開示の試料計測装置では、夾雑物が原因と推察されるトラブルは生じず、図2に示すように、5日以上の連続計測を実施することができた。また、連続計測の途中で有機物を追加で添加しても、循環系にトラブルは生じず、計測を継続することができた。また、計測結果においても、図3に示すように、同時刻でサンプリングし、別装置で吸光度計測を行った値との間で高い相関が得られており、十分な計測精度が確保できていることが分かる。
[第2実施形態]
On the other hand, in the sample measuring device of the present disclosure, no trouble presumed to be caused by impurities occurred, and as shown in FIG. 2, continuous measurement for 5 days or more could be performed. In addition, even if an additional organic substance was added during the continuous measurement, no trouble occurred in the circulatory system, and the measurement could be continued. In addition, as shown in FIG. 3, the measurement results also show a high correlation with the values obtained by sampling at the same time and measuring the absorbance with another device, and sufficient measurement accuracy can be ensured. You can see that.
[Second Embodiment]

図4は、試料計測装置の第2実施形態を示す概略図である。同図に示すように、第2実施形態に係る試料計測装置1Bは、循環系3の流路の構成が第1実施形態と異なっている。具体的には、試料計測装置1Bでは、フィルタ4の配置により夾雑物Cを捕捉する捕捉流路21(21A,21B)が管状流路12に対して独立に設けられている。また、液体試料Sの流れ方向が常に一定となる共通流路13(13A,13B)が管状流路12の外側及び内側にそれぞれ設けられている。 FIG. 4 is a schematic view showing a second embodiment of the sample measuring device. As shown in the figure, the sample measuring device 1B according to the second embodiment has a different flow path configuration from the first embodiment in the circulation system 3. Specifically, in the sample measuring device 1B, the trapping flow paths 21 (21A, 21B) for capturing the contaminants C are provided independently of the tubular flow path 12 by arranging the filter 4. Further, common flow paths 13 (13A, 13B) in which the flow direction of the liquid sample S is always constant are provided on the outside and inside of the tubular flow path 12, respectively.

共通流路13A,13B、接続流路14A,14B、及び捕捉流路21A,21Bは、いずれも切替部6を介して管状流路12と接続されている。切替部6は、第1実施形態と同様に、例えばバルブによって構成されている。循環系3における液体試料Sの流れ方向は、第1実施形態と同様に、切替部6によって循環パターン1と循環パターン2との間で切り替えられる。 The common flow paths 13A and 13B, the connection flow paths 14A and 14B, and the capture flow paths 21A and 21B are all connected to the tubular flow path 12 via the switching portion 6. The switching unit 6 is composed of, for example, a valve, as in the first embodiment. The flow direction of the liquid sample S in the circulation system 3 is switched between the circulation pattern 1 and the circulation pattern 2 by the switching unit 6 as in the first embodiment.

循環パターン1では、試料貯留部2からの液体試料Sは、接続流路14Aから管状流路12に流れる。次に、液体試料Sは、捕捉流路21Aに流れ、フィルタ4を通って管状流路12に戻った後、管状流路12の外側の共通流路13Aに流れる。次いで、液体試料Sは、ポンプ11、計測部5の順に共通流路13Aを流れ、計測部5による計測を受けた後、再び管状流路12に流れる。さらに、液体試料Sは、捕捉流路21Bに流れ、フィルタ4を通った後、再び管状流路12に流れる。その後、液体試料Sは、管状流路12の内側の共通流路13B及び管状流路12を流れ、接続流路14Bを通って試料貯留部2に戻る。 In the circulation pattern 1, the liquid sample S from the sample storage unit 2 flows from the connecting flow path 14A to the tubular flow path 12. Next, the liquid sample S flows into the capture flow path 21A, returns to the tubular flow path 12 through the filter 4, and then flows into the common flow path 13A outside the tubular flow path 12. Next, the liquid sample S flows through the common flow path 13A in the order of the pump 11 and the measurement unit 5, receives measurement by the measurement unit 5, and then flows back into the tubular flow path 12. Further, the liquid sample S flows into the capture flow path 21B, passes through the filter 4, and then flows back into the tubular flow path 12. After that, the liquid sample S flows through the common flow path 13B and the tubular flow path 12 inside the tubular flow path 12, passes through the connection flow path 14B, and returns to the sample storage unit 2.

循環パターン2では、試料貯留部2からの液体試料Sは、接続流路14Aから循環パターン1とは反対向きに管状流路12に流れる。次に、液体試料Sは、捕捉流路21Bに流れ、循環パターン1とは反対向きにフィルタ4を通って管状流路12に戻った後、管状流路12の外側の共通流路13Aに流れる。次いで、液体試料Sは、循環パターン1と同じ流れ方向でポンプ11、計測部5の順に共通流路13Aを流れ、計測部5による計測を受けた後、再び管状流路12に流れる。さらに、液体試料Sは、管状流路12の内側の共通流路13B及び管状流路12を流れた後、捕捉流路21Aに流れ、循環パターン1とは反対向きにフィルタ4を通った後、再び管状流路12に流れる。管状流路12に流れた液体試料Sは、接続流路14Bを通って試料貯留部2に戻る。 In the circulation pattern 2, the liquid sample S from the sample storage unit 2 flows from the connection flow path 14A to the tubular flow path 12 in the direction opposite to the circulation pattern 1. Next, the liquid sample S flows into the capture flow path 21B, returns to the tubular flow path 12 through the filter 4 in the direction opposite to the circulation pattern 1, and then flows into the common flow path 13A outside the tubular flow path 12. .. Next, the liquid sample S flows through the common flow path 13A in the order of the pump 11 and the measurement unit 5 in the same flow direction as the circulation pattern 1, receives measurement by the measurement unit 5, and then flows back into the tubular flow path 12. Further, the liquid sample S flows through the common flow path 13B and the tubular flow path 12 inside the tubular flow path 12, then flows into the capture flow path 21A, passes through the filter 4 in the direction opposite to the circulation pattern 1, and then passes through the filter 4. It flows into the tubular flow path 12 again. The liquid sample S that has flowed into the tubular flow path 12 returns to the sample storage unit 2 through the connection flow path 14B.

このような試料計測装置1Bにおいても、第1実施形態と同様の作用効果が奏され、構成の複雑化を回避でき、かつ循環系3に対する夾雑物Cの影響を緩和できる。
[第3実施形態]
In such a sample measuring device 1B, the same action and effect as in the first embodiment can be obtained, the complexity of the configuration can be avoided, and the influence of the contaminant C on the circulatory system 3 can be mitigated.
[Third Embodiment]

図5は、試料計測装置の第3実施形態を示す概略図である。同図に示すように、第3実施形態に係る試料計測装置1Cは、計測部5が共通流路13以外の流路に接続された計測流路31に配置されている点で第1実施形態と異なっている。具体的には、試料計測装置1Cでは、計測部5が配置された計測流路31が共通流路13よりも下流側となる位置で管状流路12に接続されている。計測流路31と管状流路12との接続部分には、液体試料Sの流れを分岐させる分岐部32が配置されている。 FIG. 5 is a schematic view showing a third embodiment of the sample measuring device. As shown in the figure, the sample measuring device 1C according to the third embodiment is arranged in a measuring flow path 31 connected to a flow path other than the common flow path 13 in that the measuring unit 5 is arranged in the first embodiment. Is different. Specifically, in the sample measuring device 1C, the measuring flow path 31 in which the measuring unit 5 is arranged is connected to the tubular flow path 12 at a position downstream of the common flow path 13. A branch portion 32 for branching the flow of the liquid sample S is arranged at the connection portion between the measurement flow path 31 and the tubular flow path 12.

この試料計測装置1Cでは、循環パターン1及び循環パターン2のいずれにおいても、分岐部32から計測流路31に向かって液体試料Sの一部が流れ、計測部5において液体試料Sの計測を実施できる。計測部5による計測を受けた液体試料Sは、計測流路31を通って試料貯留部2に戻る。このような試料計測装置1Cにおいても、第1実施形態と同様の作用効果が奏され、構成の複雑化を回避でき、かつ循環系3に対する夾雑物Cの影響を緩和できる。また、計測流路31が管状流路12から独立した流路となっているため、溶媒を添加する液体クロマトグラフィのように、ポンプ11を通すことができない液体試料Sに対する計測を行うことが可能となる。 In this sample measuring device 1C, in both the circulation pattern 1 and the circulation pattern 2, a part of the liquid sample S flows from the branch portion 32 toward the measurement flow path 31, and the measurement unit 5 measures the liquid sample S. it can. The liquid sample S measured by the measuring unit 5 returns to the sample storage unit 2 through the measuring flow path 31. In such a sample measuring device 1C, the same action and effect as those in the first embodiment can be obtained, the complexity of the configuration can be avoided, and the influence of the contaminant C on the circulatory system 3 can be mitigated. Further, since the measurement flow path 31 is a flow path independent of the tubular flow path 12, it is possible to perform measurement on the liquid sample S that cannot be passed through the pump 11 as in liquid chromatography in which a solvent is added. Become.

なお、試料計測装置1Cでは、管状流路12を流れる液体試料Sの圧力と、計測流路31を液体試料Sの圧力との調整が容易となるように、これらの流路に圧力センサ等を設けることが好適である。また、試料計測装置1Cにおいては、計測部5による計測を受けた液体試料Sを試料貯留部2に戻さず、排液タンク等で回収する構成としてもよい。液体試料Sを回収する排液タンクは、液体試料Sが試料貯留部2に戻る流路の任意の位置に接続され得る。排液タンクは、例えば計測流路31に接続されていてもよく、接続流路14に接続されていてもよい。この場合、環境に影響を与えるような溶媒等を計測に用いたとしても、試料貯留部2内の液体試料Sが当該溶媒等で汚染されることを抑止できる。
[第4実施形態]
In the sample measuring device 1C, a pressure sensor or the like is provided in these flow paths so that the pressure of the liquid sample S flowing through the tubular flow path 12 and the pressure of the liquid sample S in the measurement flow path 31 can be easily adjusted. It is preferable to provide it. Further, the sample measuring device 1C may be configured to collect the liquid sample S measured by the measuring unit 5 in a drainage tank or the like without returning it to the sample storage unit 2. The drainage tank for collecting the liquid sample S can be connected to an arbitrary position in the flow path where the liquid sample S returns to the sample storage unit 2. The drainage tank may be connected to, for example, the measurement flow path 31 or may be connected to the connection flow path 14. In this case, even if a solvent or the like that affects the environment is used for the measurement, it is possible to prevent the liquid sample S in the sample storage unit 2 from being contaminated with the solvent or the like.
[Fourth Embodiment]

図6は、試料計測装置の第4実施形態を示す概略図である。同図に示すように、第4実施形態に係る試料計測装置1Dは、循環系3に洗浄液Wを導入する洗浄液導入流路41と、循環系3に校正液Rを導入する校正液導入流路42と、循環系を流れる液体を貯留するタンク43とが設けられている点で第1実施形態と異なっている。 FIG. 6 is a schematic view showing a fourth embodiment of the sample measuring device. As shown in the figure, the sample measuring device 1D according to the fourth embodiment has a cleaning liquid introduction flow path 41 for introducing the cleaning liquid W into the circulation system 3 and a calibration liquid introduction flow path for introducing the calibration liquid R into the circulation system 3. It differs from the first embodiment in that the 42 and the tank 43 for storing the liquid flowing through the circulatory system are provided.

図6の例では、洗浄液タンク44に繋がる洗浄液導入流路41は、共通流路13においてポンプ11よりも上流側となる位置に接続されている。また、校正液タンク45に繋がる校正液導入流路42は、共通流路13において洗浄液導入流路41の接続位置と同位置に接続されている。共通流路13と洗浄液導入流路41及び校正液導入流路42との接続位置には、バルブ46が設けられている。バルブ46の開閉により、共通流路13への洗浄液W及び校正液Rの導入/停止の切り替えが行われる。洗浄液Wは、例えばエタノールであり、ここではポンプ11及び計測部5の洗浄に用いられる。また、校正液Rは、既知の計測値を有する液体である。校正液Rを実際に計測した計測値を既知の計測値と比較し、誤差を補正することで、計測の精度を向上させることが可能となる。 In the example of FIG. 6, the cleaning liquid introduction flow path 41 connected to the cleaning liquid tank 44 is connected to a position on the common flow path 13 on the upstream side of the pump 11. Further, the calibration liquid introduction flow path 42 connected to the calibration liquid tank 45 is connected at the same position as the connection position of the cleaning liquid introduction flow path 41 in the common flow path 13. A valve 46 is provided at a connection position between the common flow path 13, the cleaning liquid introduction flow path 41, and the calibration liquid introduction flow path 42. By opening and closing the valve 46, the cleaning liquid W and the calibration liquid R are introduced / stopped in the common flow path 13. The cleaning liquid W is, for example, ethanol, and is used here for cleaning the pump 11 and the measuring unit 5. Further, the calibration liquid R is a liquid having a known measured value. It is possible to improve the accuracy of the measurement by comparing the measured value actually measured with the calibration liquid R with the known measured value and correcting the error.

図6の例では、タンク43は、共通流路13において計測部5よりも下流側となる位置に接続されている。ここでは、タンク43は、洗浄液W及び校正液Rの排液を回収する排液タンクである。タンク43と共通流路13とは、排液流路47によって接続されている。排液流路47と共通流路13との接続位置には、バルブ48が設けられている。バルブ48の開閉により、共通流路13からタンク43への洗浄液W及び校正液Rの排出/停止の切り替えが行われる。 In the example of FIG. 6, the tank 43 is connected to the common flow path 13 at a position downstream of the measuring unit 5. Here, the tank 43 is a drainage tank for collecting the drainage of the cleaning liquid W and the calibration liquid R. The tank 43 and the common flow path 13 are connected by a drainage flow path 47. A valve 48 is provided at the connection position between the drainage flow path 47 and the common flow path 13. By opening and closing the valve 48, the discharge / stop of the cleaning liquid W and the calibration liquid R from the common flow path 13 to the tank 43 is switched.

このような試料計測装置1Dにおいても、第1実施形態と同様の作用効果が奏され、構成の複雑化を回避でき、かつ循環系3に対する夾雑物Cの影響を緩和できる。また、洗浄液Wをポンプ11の近傍から導入できるので、洗浄液Wによるポンプ11の洗浄が容易なものとなる。さらに、校正液Rにより誤差の補正が可能となり、計測精度の向上が図られる。洗浄液W及び校正液Rの排液は、タンク43によって容易に回収することができる。液体試料Sの流れ及び洗浄液W・校正液Rの流れを一つのポンプ11で形成できるので、簡素な構成が維持される。
[第5実施形態]
In such a sample measuring device 1D, the same action and effect as in the first embodiment can be obtained, the complexity of the configuration can be avoided, and the influence of the contaminant C on the circulatory system 3 can be mitigated. Further, since the cleaning liquid W can be introduced from the vicinity of the pump 11, the pump 11 can be easily cleaned by the cleaning liquid W. Further, the calibration liquid R makes it possible to correct the error and improve the measurement accuracy. The drainage of the cleaning liquid W and the calibration liquid R can be easily recovered by the tank 43. Since the flow of the liquid sample S and the flow of the cleaning liquid W and the calibration liquid R can be formed by one pump 11, a simple configuration is maintained.
[Fifth Embodiment]

図7は、試料計測装置の第5実施形態を示す概略図である。同図に示すように、第5実施形態に係る試料計測装置1Eは、循環系3に洗浄液Wを導入する洗浄液導入流路41と、循環系3に校正液Rを導入する校正液導入流路42と、循環系を流れる液体を貯留するタンク43とが設けられている点で第2実施形態と異なっている。ここでは、洗浄液導入流路41と校正液導入流路42とが共通となっており、管状流路12の外側の共通流路13Aにおいてポンプ11の上流側となる位置に接続されている。また、タンク43への排液流路47は、接続流路14Bに接続されている。 FIG. 7 is a schematic view showing a fifth embodiment of the sample measuring device. As shown in the figure, the sample measuring device 1E according to the fifth embodiment has a cleaning liquid introduction flow path 41 for introducing the cleaning liquid W into the circulation system 3 and a calibration liquid introduction flow path for introducing the calibration liquid R into the circulation system 3. It differs from the second embodiment in that 42 and a tank 43 for storing the liquid flowing through the circulatory system are provided. Here, the cleaning liquid introduction flow path 41 and the calibration liquid introduction flow path 42 are common, and are connected to a position on the upstream side of the pump 11 in the common flow path 13A outside the tubular flow path 12. Further, the drainage flow path 47 to the tank 43 is connected to the connection flow path 14B.

このような試料計測装置1Eにおいても、第2実施形態と同様の作用効果が奏され、構成の複雑化を回避でき、かつ循環系3に対する夾雑物Cの影響を緩和できる。また、洗浄液Wをポンプ11の近傍から導入できるので、洗浄液Wによるポンプ11の洗浄が容易なものとなる。さらに、校正液Rにより誤差の補正が可能となり、計測精度の向上が図られる。洗浄液W及び校正液Rの排液は、タンク43によって容易に回収することができる。液体試料Sの流れ及び洗浄液W・校正液Rの流れを単体のポンプ11で形成できるので、簡素な構成が維持される。
[第6実施形態]
In such a sample measuring device 1E, the same action and effect as those in the second embodiment can be obtained, the complexity of the configuration can be avoided, and the influence of the contaminant C on the circulatory system 3 can be mitigated. Further, since the cleaning liquid W can be introduced from the vicinity of the pump 11, the pump 11 can be easily cleaned by the cleaning liquid W. Further, the calibration liquid R makes it possible to correct the error and improve the measurement accuracy. The drainage of the cleaning liquid W and the calibration liquid R can be easily recovered by the tank 43. Since the flow of the liquid sample S and the flow of the cleaning liquid W and the calibration liquid R can be formed by the single pump 11, a simple configuration is maintained.
[Sixth Embodiment]

図8は、試料計測装置の第6実施形態を示す概略図である。同図に示すように、第6実施形態に係る試料計測装置1Fは、主に循環系3に洗浄液Wを導入する洗浄液導入流路41が共通流路13以外の流路に接続されている点で第5実施形態と異なっている。 FIG. 8 is a schematic view showing a sixth embodiment of the sample measuring device. As shown in the figure, in the sample measuring device 1F according to the sixth embodiment, the cleaning liquid introduction flow path 41 that mainly introduces the cleaning liquid W into the circulation system 3 is connected to a flow path other than the common flow path 13. Is different from the fifth embodiment.

具体的には、試料計測装置1Fでは、洗浄液導入流路41は、接続流路14及び捕捉流路21と交わらずに独立して管状流路12に接続されている。洗浄液導入流路41には、洗浄液Wを管状流路12に向けて流すためのポンプ51がポンプ11とは別体に設けられている。洗浄液導入流路41と共通流路13との接続位置には、バルブ52が設けられている。バルブ52の開閉により、洗浄液導入流路41からの洗浄液Wの導入/停止の切り替えが行われる。 Specifically, in the sample measuring device 1F, the cleaning liquid introduction flow path 41 is independently connected to the tubular flow path 12 without intersecting with the connection flow path 14 and the capture flow path 21. A pump 51 for flowing the cleaning liquid W toward the tubular flow path 12 is provided in the cleaning liquid introduction flow path 41 separately from the pump 11. A valve 52 is provided at the connection position between the cleaning liquid introduction flow path 41 and the common flow path 13. By opening and closing the valve 52, the introduction / stop of the cleaning liquid W from the cleaning liquid introduction flow path 41 is switched.

試料計測装置1Fでは、循環系3に校正液Rを導入する校正液導入流路42は省略されている。試料計測装置1Fでは、接続流路14Bが設けられておらず、その代わりに、管状流路12の外側の共通流路13Aの下流側が試料貯留部2に接続されている。また、試料計測装置1Fでは、タンク43への排液流路47が接続流路14及び捕捉流路21と交わらずに独立して管状流路12に接続されている。排液流路47と管状流路12との接続位置には、バルブ53が設けられている。バルブ53の開閉により、管状流路12からの洗浄液Wの排出/停止の切り替えが行われる。 In the sample measuring device 1F, the calibration liquid introduction flow path 42 for introducing the calibration liquid R into the circulation system 3 is omitted. In the sample measuring device 1F, the connecting flow path 14B is not provided, and instead, the downstream side of the common flow path 13A outside the tubular flow path 12 is connected to the sample storage unit 2. Further, in the sample measuring device 1F, the drainage flow path 47 to the tank 43 is independently connected to the tubular flow path 12 without intersecting with the connection flow path 14 and the capture flow path 21. A valve 53 is provided at the connection position between the drainage flow path 47 and the tubular flow path 12. By opening and closing the valve 53, the discharge / stop of the cleaning liquid W from the tubular flow path 12 is switched.

このような試料計測装置1Eにおいても、第2実施形態と同様の作用効果が奏され、構成の複雑化を回避でき、かつ循環系3に対する夾雑物Cの影響を緩和できる。また、洗浄液Wをフィルタ4の近傍から導入できるので、洗浄液Wによるフィルタ4の洗浄が容易なものとなる。洗浄液Wの排液は、タンク43によって容易に回収することができる。 In such a sample measuring device 1E, the same action and effect as those in the second embodiment can be obtained, the complexity of the configuration can be avoided, and the influence of the contaminant C on the circulatory system 3 can be mitigated. Further, since the cleaning liquid W can be introduced from the vicinity of the filter 4, the cleaning liquid W can easily clean the filter 4. The drainage of the cleaning liquid W can be easily recovered by the tank 43.

1A〜1F…試料計測装置、3…循環系、4…フィルタ、5…計測部、6…切替部、11…ポンプ、13…共通流路、31…計測流路、41…洗浄液導入流路、42…校正液導入流路、43…タンク、C…夾雑物、S…液体試料、R…校正液、W…洗浄液。 1A-1F ... Sample measuring device, 3 ... Circulatory system, 4 ... Filter, 5 ... Measuring unit, 6 ... Switching unit, 11 ... Pump, 13 ... Common flow path, 31 ... Measuring flow path, 41 ... Cleaning liquid introduction flow path, 42 ... Calibration liquid introduction flow path, 43 ... Tank, C ... Contamination, S ... Liquid sample, R ... Calibration liquid, W ... Cleaning liquid.

Claims (10)

液体試料を計測する試料計測装置であって、
前記液体試料をポンプにより循環させる循環系と、
前記循環系に配置され、前記液体試料中の夾雑物を捕捉する少なくとも一つのフィルタと、
前記循環系を循環する前記液体試料を計測する計測部と、
前記循環系における前記液体試料の流れ方向を切り替える切替部と、を備え、
前記循環系は、前記切替部による前記液体試料の流れ方向の切り替えに依らずに前記液体試料の流れ方向が常に一定となる共通流路を有し、
前記循環系において、前記ポンプは前記共通流路に配置され、前記フィルタは前記共通流路以外の流路に配置されている試料計測装置。
A sample measuring device that measures liquid samples.
A circulatory system that circulates the liquid sample by a pump,
With at least one filter located in the circulatory system and capturing contaminants in the liquid sample,
A measuring unit that measures the liquid sample that circulates in the circulatory system,
A switching unit for switching the flow direction of the liquid sample in the circulatory system is provided.
The circulatory system has a common flow path in which the flow direction of the liquid sample is always constant regardless of the switching of the flow direction of the liquid sample by the switching unit.
In the circulation system, the sample measuring device in which the pump is arranged in the common flow path and the filter is arranged in a flow path other than the common flow path.
前記フィルタは、前記共通流路を挟むように配置されている請求項1記載の試料計測装置。 The sample measuring device according to claim 1, wherein the filter is arranged so as to sandwich the common flow path. 前記計測部は、前記共通流路に配置されている請求項1又は2記載の試料計測装置。 The sample measuring device according to claim 1 or 2, wherein the measuring unit is arranged in the common flow path. 前記計測部は、前記共通流路以外の流路に接続された計測流路に配置されている請求項1又は2記載の試料計測装置。 The sample measuring device according to claim 1 or 2, wherein the measuring unit is arranged in a measuring flow path connected to a flow path other than the common flow path. 前記循環系に洗浄液を導入する洗浄液導入流路を更に備える請求項1〜4のいずれか一項記載の試料計測装置。 The sample measuring device according to any one of claims 1 to 4, further comprising a cleaning liquid introduction flow path for introducing the cleaning liquid into the circulatory system. 前記洗浄液導入流路は、前記共通流路に接続されている請求項5記載の試料計測装置。 The sample measuring device according to claim 5, wherein the cleaning liquid introduction flow path is connected to the common flow path. 前記洗浄液導入流路は、前記共通流路以外の流路に接続されている請求項5記載の試料計測装置。 The sample measuring device according to claim 5, wherein the cleaning liquid introduction flow path is connected to a flow path other than the common flow path. 前記循環系に校正液を導入する校正液導入流路を更に備える請求項1〜7のいずれか一項記載の試料計測装置。 The sample measuring device according to any one of claims 1 to 7, further comprising a calibration liquid introduction flow path for introducing the calibration liquid into the circulatory system. 前記循環系を流れる液体を貯留するタンクを更に備える請求項1〜8のいずれか一項記載の試料計測装置。 The sample measuring device according to any one of claims 1 to 8, further comprising a tank for storing a liquid flowing through the circulatory system. 前記計測部は、鉛直方向に設けられている請求項1〜9のいずれか一項記載の試料計測装置。
The sample measuring device according to any one of claims 1 to 9, wherein the measuring unit is provided in the vertical direction.
JP2019062735A 2019-03-28 2019-03-28 Sample measuring device Active JP7281320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062735A JP7281320B2 (en) 2019-03-28 2019-03-28 Sample measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062735A JP7281320B2 (en) 2019-03-28 2019-03-28 Sample measuring device

Publications (2)

Publication Number Publication Date
JP2020160011A true JP2020160011A (en) 2020-10-01
JP7281320B2 JP7281320B2 (en) 2023-05-25

Family

ID=72643001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062735A Active JP7281320B2 (en) 2019-03-28 2019-03-28 Sample measuring device

Country Status (1)

Country Link
JP (1) JP7281320B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111479U (en) * 1974-07-11 1976-01-28
US5372722A (en) * 1992-03-25 1994-12-13 Gutling Gmbh Oil separator with integrated microfiltration device
JP2001050927A (en) * 1999-08-10 2001-02-23 Nishikawa Keisoku Kk Cleaning apparatus for residual chlorine analyzer of discharge water in sewer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5111479U (en) * 1974-07-11 1976-01-28
US5372722A (en) * 1992-03-25 1994-12-13 Gutling Gmbh Oil separator with integrated microfiltration device
JP2001050927A (en) * 1999-08-10 2001-02-23 Nishikawa Keisoku Kk Cleaning apparatus for residual chlorine analyzer of discharge water in sewer

Also Published As

Publication number Publication date
JP7281320B2 (en) 2023-05-25

Similar Documents

Publication Publication Date Title
US20160018380A1 (en) Automated soil measurement device
JP4445569B2 (en) Filtrated water monitoring device and filtered water monitoring system
CN101384342A (en) Method and system for monitoring reverse osmosis membranes
KR101698000B1 (en) Online and real time measurement for cyanotoxin and off flavour compounds in water by multipurpose sample injection apparatus
CN109444028A (en) A kind of particle analyzer and its liquid channel system, discharging of waste liquid method
CN107843460A (en) Micro- plastics sampling system and method in seawater
US20110102790A1 (en) Zero angle photon spectrophotometer for monitoring of water systems
US20090046287A1 (en) Zero angle photo spectrophotometer for monitoring of water systems
WO2019164436A1 (en) A device intended for recycling of water or discarding of water not suitable to recycle
CN109856121A (en) A kind of device of water quality biological toxicity on-line checking
JP2009240274A (en) Plankton concentration device and plankton concentration system
EP2746751A1 (en) Device for optical monitoring of a parameter of a liquid sample
JP2003305454A (en) Intake water quality controller
JP2020160011A (en) Sample measuring device
US6093566A (en) Flow-through system and method for toxicity testing
US20230022069A1 (en) Passive sampler deployment housing
DE102020100237B4 (en) PROCEDURE FOR QUALITY CONTROL OF FLUID FLOWING IN A FLUID LINE
KR101033542B1 (en) Multiplexer measuring system for monitering partcles of several sampling water and method thereof
JPH1090134A (en) Method and analyzer for analyzing water for trace volatile organic compound
JPH0894608A (en) Intake water quality control device
KR20130127830A (en) A filter self-cleaning system for measuring contaminated substance
KR20130127831A (en) A filter self-cleaning system for measuring contaminated substance
TWI551849B (en) Dyeing machine dyeing liquid color detection device
NO894161L (en) LIQUID LIQUID SYSTEM FOR LIQUID FLOW CYT PHOTOMETER.
CN209280528U (en) A kind of particle analyzer and its liquid channel system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230515

R150 Certificate of patent or registration of utility model

Ref document number: 7281320

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150