JP2020158883A - High-strength cold-rolled steel sheet, method for manufacturing same, and water treatment agent - Google Patents

High-strength cold-rolled steel sheet, method for manufacturing same, and water treatment agent Download PDF

Info

Publication number
JP2020158883A
JP2020158883A JP2020047608A JP2020047608A JP2020158883A JP 2020158883 A JP2020158883 A JP 2020158883A JP 2020047608 A JP2020047608 A JP 2020047608A JP 2020047608 A JP2020047608 A JP 2020047608A JP 2020158883 A JP2020158883 A JP 2020158883A
Authority
JP
Japan
Prior art keywords
steel sheet
less
strength cold
rolled steel
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020047608A
Other languages
Japanese (ja)
Other versions
JP7054067B2 (en
Inventor
聖太郎 寺嶋
Seitaro Terajima
聖太郎 寺嶋
祐介 伏脇
Yusuke Fushiwaki
祐介 伏脇
善継 鈴木
Yoshitsugu Suzuki
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020158883A publication Critical patent/JP2020158883A/en
Application granted granted Critical
Publication of JP7054067B2 publication Critical patent/JP7054067B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

To provide a method for producing a high-strength cold-rolled steel sheet to which Si and Mn are added as solid solution strengthening elements, in which selective oxidation of Si and Mn in heating annealing is effectively suppressed, and the chemical convertibility of the cold-rolled steel sheet is improved.SOLUTION: A surface of a steel sheet is subjected to a solution treatment in which an aqueous solution containing an Fe complex having acetylacetone or an acetylacetone derivative in an amount of 0.1 mass% or more, nitric acid in an amount of 0.5 mass% or more, and acetic acid in a concentration of 10 mass% or more is contacted to the surface of the steel sheet, and then annealing is performed in a reducing atmosphere under a predetermined condition. A liquid film of the aqueous solution contacting to the surface of the steel sheet by the solution treatment is formed into a film through a process of forming a gel film, and thus it is possible to form a uniform Fe oxide film having a uniform thickness. As a result, in the annealing, the selective oxidation of Si and Mn is appropriately suppressed over the entire surface of the steel sheet.SELECTED DRAWING: None

Description

本発明は、リン酸塩処理や黒染め処理などの化成処理を施して使用される高強度冷延鋼板の製造方法、特に、リン酸塩処理などの化成処理を施した後、塗装して使用される自動車部材用途に好適な高強度冷延鋼板の製造方法に関する。 The present invention is a method for producing a high-strength cold-rolled steel sheet used by undergoing chemical conversion treatment such as phosphate treatment or black dyeing treatment, and in particular, it is used by painting after performing chemical conversion treatment such as phosphate treatment. The present invention relates to a method for producing a high-strength cold-rolled steel sheet suitable for automobile member applications.

近年、CO排出量の削減のために自動車の燃費改善が強く求められている。これに伴い、車体部品の薄肉化による車体軽量化の動きが活発となってきており、車体部品材料である鋼板の高強度化ニーズが高まっている。
鋼板の高強度化には、Si、Mn等の固溶強化元素の添加が有効である。しかし、これらの元素はFeよりも易酸化性であるため、これらを多量に含有する高強度鋼板の製造において、以下のような問題が生じる。
In recent years, there has been a strong demand for improving the fuel efficiency of automobiles in order to reduce CO 2 emissions. Along with this, the movement to reduce the weight of the vehicle body by thinning the body parts has become active, and the need for increasing the strength of the steel plate, which is the material for the vehicle body parts, is increasing.
Addition of solid solution strengthening elements such as Si and Mn is effective for increasing the strength of the steel sheet. However, since these elements are more easily oxidized than Fe, the following problems occur in the production of high-strength steel sheets containing a large amount of these elements.

通常、高強度鋼板を製造する場合、冷延鋼板を非酸化性雰囲気又は還元性雰囲気中において600〜900℃程度の温度で加熱焼鈍することによって材質調整を行う。この加熱焼鈍において、鋼中のSi、Mn等の易酸化性元素は、一般的に用いられる非酸化性雰囲気や還元性雰囲気中においても選択酸化され、鋼板表面に濃化して酸化物を形成する。一般に自動車部材用途の鋼板には、塗装前処理としてリン酸塩処理などの化成処理が施されるが、上記酸化物は化成処理による化成処理皮膜の生成反応を阻害し、化成処理性を著しく劣化させる。冷延鋼板の化成処理は、塗装後耐食性を確保するための重要な処理の一つであることから、高強度冷延鋼板における化成処理性の改善は重量な課題である。 Usually, when a high-strength steel sheet is manufactured, the material is adjusted by heating and annealing the cold-rolled steel sheet in a non-oxidizing atmosphere or a reducing atmosphere at a temperature of about 600 to 900 ° C. In this heat annealing, easily oxidizing elements such as Si and Mn in steel are selectively oxidized even in a generally used non-oxidizing atmosphere or reducing atmosphere, and are concentrated on the surface of the steel sheet to form an oxide. .. Generally, steel sheets used for automobile parts are subjected to chemical conversion treatment such as phosphate treatment as a pre-coating treatment, but the above oxides inhibit the formation reaction of the chemical conversion treatment film by the chemical conversion treatment and significantly deteriorate the chemical conversion treatment property. Let me. Since the chemical conversion treatment of a cold-rolled steel sheet is one of the important treatments for ensuring corrosion resistance after painting, improving the chemical conversion treatment of a high-strength cold-rolled steel sheet is a heavy issue.

従来、高強度鋼板の化成処理性を改善するために、例えば、以下のような提案がなされている。
特許文献1には、鋼板をFe酸化雰囲気中で400℃以上に加熱して鋼板表面にFe酸化膜を形成させた後、これをFe還元雰囲気中で還元することにより、高強度冷延鋼板の化成処理性を改善する方法が提案されている。
特許文献2には、鋼板をFe酸化雰囲気中で酸化処理した後、所定の還元雰囲気で焼鈍する方法であって、酸化処理後におけるFe酸化量及び最終的に表面に形成される還元Feの被覆面積率を制御することにより、高強度冷延鋼板の化成処理性を改善する方法が提案されている。
特許文献3には、鋼板内部にSi酸化物を形成させ、最終的な鋼板表面におけるSi酸化物形成を抑制することで、高強度冷延鋼板の化成処理性を改善するようにした技術が提案されている。
Conventionally, in order to improve the chemical conversion processability of high-strength steel sheets, for example, the following proposals have been made.
In Patent Document 1, a steel sheet is heated to 400 ° C. or higher in an Fe-oxidizing atmosphere to form an Fe oxide film on the surface of the steel sheet, and then reduced in an Fe-reducing atmosphere to form a high-strength cold-rolled steel sheet. A method for improving chemical conversion processability has been proposed.
Patent Document 2 describes a method in which a steel sheet is oxidized in an Fe-oxidizing atmosphere and then annealed in a predetermined reducing atmosphere, wherein the amount of Fe oxidation after the oxidation treatment and the coating of reduced Fe finally formed on the surface are provided. A method for improving the chemical conversion processability of a high-strength cold-rolled steel sheet by controlling the area ratio has been proposed.
Patent Document 3 proposes a technique for improving the chemical conversion processability of a high-strength cold-rolled steel sheet by forming a Si oxide inside the steel sheet and suppressing the formation of the Si oxide on the final surface of the steel sheet. Has been done.

特開2006−45615号公報Japanese Unexamined Patent Publication No. 2006-45615 国際公開第2011/078412号International Publication No. 2011/078412 特許第3386657号公報Japanese Patent No. 3386657

しかしながら、上述した従来技術には、それぞれ以下のような問題がある。
特許文献1、2の方法は、鋼板をFe酸化雰囲気中で加熱するための設備が必要であり、そのような設備の新設には多大なコストがかかる。また、鋼板のSi含有量が多い場合(例えば0.5質量%以上の場合)、Fe酸化雰囲気中で加熱する際にSiが優先的に酸化され、生成したSi系酸化物がFeの酸化を阻害することによりFe酸化物の生成量が減少する。この結果、Fe還元雰囲気中での加熱時に生成する還元Feの減少及び表面Si系酸化物の生成を招き、十分な化成処理性を得られない場合がある。
また、特許文献3の技術は、熱間圧延時に高温巻き取りを行うことにより、巻き取り後の鋼板内部でのSi酸化物形成を促進するものであるが、巻き取られたコイルの内外周で冷却速度に差が生じるため、コイル全長において均一な表面品質を得るのが難しいという問題がある。
However, each of the above-mentioned conventional techniques has the following problems.
The methods of Patent Documents 1 and 2 require equipment for heating the steel sheet in an Fe-oxidizing atmosphere, and the construction of such equipment requires a great deal of cost. Further, when the Si content of the steel sheet is high (for example, when it is 0.5% by mass or more), Si is preferentially oxidized when heated in an Fe-oxidizing atmosphere, and the generated Si-based oxide oxidizes Fe. By inhibiting, the amount of Fe oxide produced decreases. As a result, the amount of reduced Fe produced during heating in an Fe-reducing atmosphere is reduced and surface Si-based oxides are produced, which may result in insufficient chemical conversion treatment.
Further, the technique of Patent Document 3 promotes the formation of Si oxide inside the steel sheet after winding by performing high-temperature winding during hot rolling, but on the inner and outer circumferences of the wound coil. Since there is a difference in the cooling rate, there is a problem that it is difficult to obtain uniform surface quality over the entire length of the coil.

したがって本発明の目的は、以上のような従来技術の課題を解決し、固溶強化元素としてSi、Mnが添加された高強度冷延鋼板を製造する方法において、加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制し、冷延鋼板の化成処理性を改善することができる製造方法を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art, and to select Si and Mn in heat annealing in a method for producing a high-strength cold-rolled steel sheet to which Si and Mn are added as solid solution reinforcing elements. It is an object of the present invention to provide a manufacturing method capable of effectively suppressing oxidation and improving the chemical conversion processability of a cold-rolled steel sheet.

本発明者らは、上記のような従来技術の課題を解決すべく、鋭意検討及び研究を重ねた結果、事前に鋼板に対して、アセチルアセトン又はアセチルアセトン誘導体を配位子として有するFe錯体、酢酸及び硝酸を所定の濃度で含有する水溶液を付着させる溶液処理を施した後、Fe還元性雰囲気中で加熱焼鈍することにより、この加熱焼鈍におけるSi、Mnの選択酸化が効果的に抑制され、化成処理性に優れた高強度冷延鋼板が得られることを見出した。 As a result of diligent studies and studies in order to solve the above-mentioned problems of the prior art, the present inventors have obtained an Fe complex, acetic acid and acetic acid having an acetylacetone or an acetylacetone derivative as a ligand for a steel sheet in advance. After performing a solution treatment to attach an aqueous solution containing nitric acid at a predetermined concentration, heat annealing is performed in an Fe-reducing atmosphere, whereby selective oxidation of Si and Mn in this heat annealing is effectively suppressed, and a chemical conversion treatment is performed. It has been found that a high-strength cold-rolled steel sheet having excellent properties can be obtained.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]Si又は/及びMnを含有する高強度冷延鋼板の製造方法であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を鋼板の表面に付着させる溶液処理工程と、
該溶液処理工程を経た鋼板を、H濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程を有することを特徴とする高強度冷延鋼板の製造方法。
[2]上記[1]の製造方法において、化成処理用の高強度冷延鋼板を製造することを特徴とする高強度冷延鋼板の製造方法。
[3]上記[1]又は[2]の製造方法において、鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする高強度冷延鋼板の製造方法。
The present invention has been made based on such findings, and has the following gist.
[1] A method for producing a high-strength cold-rolled steel sheet containing Si or / and Mn.
An aqueous solution containing acetylacetone or an Fe complex having an acetylacetone derivative as a ligand at a concentration of 0.1% by mass or more, nitrate of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe is applied to the surface of the steel plate. The solution treatment process to be attached and
The steel sheet after the solution treatment step, H 2 concentration is 0.05 vol% or more, high-strength cold-rolled, characterized in that it comprises an annealing step of dew point heat treatment at 700 ° C. or higher in a reducing atmosphere of less than 10 ° C. Steel sheet manufacturing method.
[2] A method for producing a high-strength cold-rolled steel sheet according to the above-mentioned [1], wherein a high-strength cold-rolled steel sheet for chemical conversion treatment is produced.
[3] In the production method of the above [1] or [2], the steel sheet contains Si: 0.10% or more and / and Mn: 0.50% or more in mass%. Manufacturing method of cold-rolled steel sheet.

[4]上記[1]〜[3]のいずれかの製造方法において、溶液処理工程で付着した水溶液による鋼板表面のFe付着量が0.1〜10.0g/mであることを特徴とする高強度冷延鋼板の製造方法。
[5]上記[1]〜[4]のいずれかの製造方法において、溶液処理工程を経て表面に水溶液が付着した鋼板を、そのまま焼鈍工程に導入することを特徴とする高強度冷延鋼板の製造方法。
[6]上記[1]〜[4]のいずれかの製造方法において、溶液処理工程を経て表面に水溶液が付着した鋼板を加熱処理した後、焼鈍工程に導入することを特徴とする高強度冷延鋼板の製造方法。
[7]上記[1]〜[6]のいずれかの製造方法において、連続焼鈍ラインにおいて、溶液処理工程と焼鈍工程が連続して行われることを特徴とする高強度冷延鋼板の製造方法。
[4] In any of the above-mentioned production methods [1] to [3], the amount of Fe adhered to the surface of the steel sheet due to the aqueous solution adhered in the solution treatment step is 0.1 to 10.0 g / m 2. A method for manufacturing a high-strength cold-rolled steel sheet.
[5] In any of the above-mentioned production methods [1] to [4], a high-strength cold-rolled steel sheet characterized in that a steel sheet having an aqueous solution adhered to its surface after a solution treatment step is directly introduced into an annealing step. Production method.
[6] In any of the above-mentioned production methods [1] to [4], a steel sheet having an aqueous solution adhered to its surface is heat-treated through a solution treatment step, and then introduced into an annealing step. Manufacturing method of rolled steel sheet.
[7] In any of the above-mentioned production methods [1] to [6], a method for producing a high-strength cold-rolled steel sheet, characterized in that a solution treatment step and an annealing step are continuously performed in a continuous annealing line.

[8]上記[1]〜[7]のいずれかの製造方法において、鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高強度冷延鋼板の製造方法。
[9]上記[8]の製造方法において、鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする高強度冷延鋼板の製造方法。
[10]上記[8]又は[9]の製造方法において、鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする高強度冷延鋼板の製造方法。
[8] In any of the above-mentioned production methods [1] to [7], the steel sheet is in mass%, C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: Contains 0.50 to 5.00%, P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and the balance is Fe and unavoidable. A method for producing a high-strength cold-rolled steel sheet, which comprises a component composition composed of impurities.
[9] In the production method of the above [8], the steel sheet is further made of Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, B: 0.0001 to 0 in mass%. A method for producing a high-strength cold-rolled steel sheet, which comprises one or more selected from 0050%.
[10] In the production method of the above [8] or [9], the steel sheet is further increased in mass% by Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50%. Below, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, REM: 0.010% or less A method for producing a high-strength cold-rolled steel sheet, which comprises one or more selected from the above.

[11]上記[1]〜[10]のいずれかの製造方法において、さらに、焼鈍工程を経た鋼板を化成処理する化成処理工程を有することを特徴とする高強度冷延鋼板の製造方法。
[12]上記[11]の製造方法において、化成処理工程では、鋼板をリン酸塩処理することを特徴とする高強度冷延鋼板の製造方法。
[13]上記[11]の製造方法において、化成処理工程では、鋼板を黒染め処理することを特徴とする高強度冷延鋼板の製造方法。
[14]Si又は/及びMnを含有する高強度冷延鋼板であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を鋼板表面に付着させる溶液処理工程と、該溶液処理工程を経た鋼板をH濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程を経ることにより生成した還元鉄により、鋼板表面が覆われていることを特徴とする高強度冷延鋼板。
[11] A method for producing a high-strength cold-rolled steel sheet, which comprises any of the above-mentioned production methods [1] to [10], further comprising a chemical conversion treatment step for chemical conversion treatment of a steel sheet that has undergone an annealing step.
[12] In the production method of the above [11], a method for producing a high-strength cold-rolled steel sheet, characterized in that the steel sheet is phosphate-treated in the chemical conversion treatment step.
[13] In the production method of the above [11], a method for producing a high-strength cold-rolled steel sheet, which comprises black-dying a steel sheet in a chemical conversion treatment step.
[14] A high-strength cold-rolled steel sheet containing Si or / and Mn.
An aqueous solution containing an Fe complex having an acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.1% by mass or more, nitrate of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe is attached to the surface of the steel sheet. a solution treatment step of, the steel plate of H 2 concentration after the solution treatment step 0.05 vol% or more, the dew point was generated by passing through an annealing step of heat treatment at 700 ° C. or higher in a reducing atmosphere of less than 10 ° C. A high-strength cold-rolled steel sheet characterized in that the surface of the steel sheet is covered with reduced iron.

[15]上記[14]の高強度冷延鋼板において、鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする高強度冷延鋼板。
[16]上記[14]又は[15]の高強度冷延鋼板において、鋼板表面を覆う還元鉄のFe付着量が0.1〜10.0g/mであることを特徴とする高強度冷延鋼板。
[17]上記[14]〜[16]のいずれかの高強度冷延鋼板において、鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高強度冷延鋼板。
[18]上記[17]の高強度冷延鋼板において、鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする高強度冷延鋼板。
[15] In the high-strength cold-rolled steel sheet of the above [14], the steel sheet contains Si: 0.10% or more and / and Mn: 0.50% or more in mass%. Rolled steel plate.
[16] In the high-strength cold-rolled steel sheet of the above [14] or [15], the Fe adhesion amount of the reduced iron covering the surface of the steel sheet is 0.1 to 10.0 g / m 2. Rolled steel plate.
[17] In the high-strength cold-rolled steel sheet according to any one of [14] to [16] above, the steel sheet is C: 0.040 to 0.500% and Si: 0.10 to 3.00% in mass%. , Mn: 0.50 to 5.00%, P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and the balance is Fe. A high-strength cold-rolled steel sheet having a component composition composed of unavoidable impurities.
[18] In the high-strength cold-rolled steel sheet of the above [17], the steel sheet is further increased in mass% by Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, B: 0. A high-strength cold-rolled steel sheet containing at least one selected from 0001 to 0.0050%.

[19]上記[17]又は[18]の高強度冷延鋼板において、鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする高強度冷延鋼板。
[20]上記[14]〜[19]のいずれかの高強度冷延鋼板において、鋼板表面を覆う還元鉄の上部に化成処理皮膜を有することを特徴とする高強度冷延鋼板。
[21]上記[20]の高強度冷延鋼板において、化成処理皮膜がリン酸塩皮膜であることを特徴とする高強度冷延鋼板。
[22]上記[20]の高強度冷延鋼板において、化成処理皮膜が黒染め処理によるFe皮膜であることを特徴とする高強度冷延鋼板。
[23]化成処理用鋼板の化成処理性改善のための溶液処理に用いる水性処理剤であって、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液からなることを特徴とする溶液処理用の水性処理剤。
[19] In the high-strength cold-rolled steel sheet of the above [17] or [18], the steel sheet is further increased in mass% by Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0. .50% or less, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, REM: 0.010 A high-strength cold-rolled steel sheet containing at least one selected from% or less.
[20] The high-strength cold-rolled steel sheet according to any one of [14] to [19] above, wherein a chemical conversion-treated film is provided on the upper portion of the reduced iron covering the surface of the steel sheet.
[21] The high-strength cold-rolled steel sheet according to the above [20], wherein the chemical conversion-treated film is a phosphate film.
[22] In the high-strength cold-rolled steel sheet of the above [20], the high-strength cold-rolled steel sheet is characterized in that the chemical conversion treatment film is an Fe 3 O 4 film obtained by black dyeing treatment.
[23] An aqueous treatment agent used for solution treatment for improving the chemical conversion processability of a steel sheet for chemical conversion treatment, wherein an Fe complex having acetylacetone or an acetylacetone derivative as a ligand is 0.1% by mass or more in terms of Fe, nitrate. An aqueous treatment agent for solution treatment, which comprises an aqueous solution containing 0.5% by mass or more of acetic acid and 10% by mass or more of acetic acid.

本発明によれば、易酸化性元素であるSi、Mnを含有する高強度冷延鋼板の製造において、加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制し、化成処理性に優れた鋼板を製造することができる。本発明により製造された高強度冷延鋼板を、例えば、自動車構造部材に適用することで車体軽量化による燃費改善を図ることができる。 According to the present invention, in the production of a high-strength cold-rolled steel sheet containing Si and Mn, which are easily oxidizing elements, the selective oxidation of Si and Mn in heat annealing is effectively suppressed, and the steel sheet has excellent chemical conversion treatment properties. Can be manufactured. By applying the high-strength cold-rolled steel sheet produced by the present invention to, for example, an automobile structural member, it is possible to improve fuel efficiency by reducing the weight of the vehicle body.

表2に示す条件(a)〜(d)で溶液処理及び加熱処理を行った鋼板の表面外観の拡大写真Enlarged photograph of the surface appearance of the steel sheet subjected to solution treatment and heat treatment under the conditions (a) to (d) shown in Table 2.

本発明は、易酸化性元素であるSi又は/及びMnを含有する高強度冷延鋼板の製造方法であって、鋼板の表面に、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体と硝酸と酢酸を所定の濃度で含有する水溶液(x)を付着させる溶液処理工程(A)と、この溶液処理工程(A)を経た鋼板を還元性雰囲気中において加熱処理する焼鈍工程(B)を有する。
なお、本発明により製造される高強度冷延鋼板の好ましい成分組成などについては、後に詳述する。
The present invention is a method for producing a high-strength cold-rolled steel sheet containing Si and / and Mn, which are easily oxidizing elements, and a Fe complex having an acetylacetone or an acetylacetone derivative as a ligand and nitrate on the surface of the steel sheet. It has a solution treatment step (A) for adhering an aqueous solution (x) containing acetic acid at a predetermined concentration, and an annealing step (B) for heat-treating the steel sheet that has undergone this solution treatment step (A) in a reducing atmosphere.
The preferable composition of the high-strength cold-rolled steel sheet produced by the present invention will be described in detail later.

・溶液処理工程(A)
この溶液処理工程(A)は、必要に応じて鋼板表面を公知の方法で脱脂、洗浄した後に実施する。この溶液処理工程(A)において鋼板表面に付着させる水溶液(x)は、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体(以下、説明の便宜上、単に「Fe錯体」という場合がある。)をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液であり、鋼板表面に付着した水溶液(x)に含まれるFe分(Fe錯体)は、続く焼鈍工程(B)の加熱初期などにおいて鋼板表面に形成させるFe酸化物皮膜の主たる鉄源となる。
-Solution processing step (A)
This solution treatment step (A) is carried out after degreasing and cleaning the surface of the steel sheet by a known method, if necessary. The aqueous solution (x) attached to the surface of the steel sheet in this solution treatment step (A) is an Fe complex having acetylacetone or an acetylacetone derivative as a ligand (hereinafter, may be simply referred to as “Fe complex” for convenience of explanation). An aqueous solution containing 0.1% by mass or more of Fe, 0.5% by mass or more of nitrate, and 10% by mass or more of acetic acid, respectively, and the Fe content (x) contained in the aqueous solution (x) adhering to the surface of the steel sheet. The Fe complex) serves as the main iron source for the Fe oxide film formed on the surface of the steel sheet in the initial heating stage of the subsequent annealing step (B).

本発明において、上記のような特定の成分と濃度の水溶液(x)を用いるのは、ゾル−ゲル法と呼ばれる手法で皮膜形成させることにより、均質かつ均一な厚さのFe酸化物皮膜を形成するためである。すなわち、鋼板表面に付着した水溶液(x)の液膜(ゾル)は、時間経過及び温度上昇に伴って溶媒が蒸発・分解するが、その際に、単に液膜中の溶媒が蒸発して溶質が析出するのではなく、液膜中成分の凝集や重合によって液膜全体が次第に流動性を失い、Fe化合物を含有した皮膜(ゲル)となり、このゲル状皮膜となる過程を経て皮膜(Fe酸化物皮膜)形成がなされるので、均質かつ均一な厚さのFe酸化物皮膜を形成することができ、Fe付着量制御も比較的容易に行うことができる。このようなゲル状皮膜となる過程を経てFe酸化物皮膜を形成するには、焼鈍工程(B)での加熱初期の温度を利用することができるが、その皮膜形成の一部又は全部が、焼鈍工程(B)の前に行われる加熱処理でなされるようにしてもよい。以上の結果、焼鈍工程(B)において、鋼板全面に亘ってSi、Mnの選択酸化が適切に抑制されるとともに、均質かつ均一な厚さのFe酸化物皮膜の還元で生成した還元鉄で鋼板表面が覆われることにより、リン酸塩処理や黒染め処理などの化成処理時の反応性を向上させることができる。 In the present invention, the aqueous solution (x) having a specific component and concentration as described above is used to form a film by a method called a sol-gel method, thereby forming a homogeneous and uniform thickness Fe oxide film. To do. That is, the solvent of the aqueous solution (x) liquid film (sol) adhering to the surface of the steel plate evaporates and decomposes with the passage of time and the temperature rise, but at that time, the solvent in the liquid film simply evaporates and the solute. Rather than precipitating, the entire liquid film gradually loses its fluidity due to aggregation and polymerization of the components in the liquid film, forming a film (gel) containing an Fe compound, and a film (Fe oxidation) through the process of forming this gel-like film. Since the film) is formed, a uniform and uniform thickness of Fe oxide film can be formed, and the amount of Fe adhered can be controlled relatively easily. In order to form the Fe oxide film through the process of forming such a gel-like film, the temperature at the initial stage of heating in the annealing step (B) can be used, but a part or all of the film formation is It may be done by the heat treatment performed before the annealing step (B). As a result of the above, in the annealing step (B), selective oxidation of Si and Mn is appropriately suppressed over the entire surface of the steel sheet, and the steel sheet is made of reduced iron produced by reduction of a Fe oxide film having a uniform and uniform thickness. By covering the surface, it is possible to improve the reactivity at the time of chemical conversion treatment such as phosphate treatment and black dyeing treatment.

また、上述したような一連の皮膜形成が焼鈍工程(B)内でなされる場合には、まず、焼鈍工程(B)の初期加熱において、鋼板表面に付着した水溶液(x)の液膜(ゾル)がゲル状皮膜化し、さらにこのゲル状皮膜の分解が生じることにより、鋼板全面に亘って均質かつ均一な厚さのFe酸化物皮膜が形成され、その後の焼鈍過程において、このFe酸化物皮膜の還元が生じる。このようにFe酸化物皮膜の形成とその還元が連続的に生じるため、焼鈍工程(B)におけるSi、Mnの選択酸化の抑制と、鋼板表面を覆う均質かつ均一な厚さの還元鉄皮膜の生成がより確実になされ、鋼板の化成処理性を向上させることができる。 When the series of film formation as described above is performed in the annealing step (B), first, in the initial heating of the annealing step (B), the liquid film (sol) of the aqueous solution (x) adhering to the surface of the steel sheet. ) Is formed into a gel-like film, and further decomposition of the gel-like film causes a uniform and uniform thickness of Fe oxide film to be formed over the entire surface of the steel sheet. In the subsequent annealing process, this Fe oxide film is formed. Reduction occurs. Since the formation of the Fe oxide film and its reduction occur continuously in this way, the selective oxidation of Si and Mn in the annealing step (B) is suppressed, and the reduced iron film having a uniform and uniform thickness covering the surface of the steel sheet is formed. The formation is more reliable, and the chemical conversion processability of the steel sheet can be improved.

ここで、溶液処理用の水溶液(x)の成分について説明すると、まず、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体は、焼鈍工程(B)において生成するFe酸化物の鉄及び酸素源となる。このFe錯体は、Fe原子1つに対して配位子のアセチルアセトン3分子が配位した構造を持ち、また、アセチルアセトンは全てO原子でFeと結合している。したがって、例えば、焼鈍工程(B)においてFe酸化物皮膜が形成される場合を考えると、上記ゲル状皮膜中の炭化水素部分は分解するが、Fe−O結合部分が残るため、Fe還元性雰囲気中であってもFe酸化物皮膜が生成するものと考えられる。また、酢酸と硝酸はいずれも皮膜形成過程において液膜を安定的にゲル化させるのに寄与するものと考えられる。さらに、硝酸はFeに対する酸化剤としても作用し、鋼板表面を溶解させるため、鋼板表面が活性となり、ゲル状皮膜の密着性安定化に寄与する。したがって、水溶液(x)はこれら3成分を所定の濃度で含有することが重要である。
なお、上記のように硝酸は鋼板表面を溶解させるため、鋼板由来のFeイオンが皮膜中に含まれる場合がある。すなわち、鋼板表面に形成されるFe酸化物皮膜の主たるFe源は水溶液(x)中のFe錯体であるが、水溶液(x)中の硝酸成分により鋼板表面のFeが酸化され、このFe酸化物が皮膜の一部として含まれる場合がある。
Here, the components of the aqueous solution (x) for solution treatment will be described. First, the Fe complex having acetylacetone or an acetylacetone derivative as a ligand is the iron and oxygen source of Fe oxide produced in the annealing step (B). Become. This Fe complex has a structure in which three molecules of acetylacetone, which is a ligand, are coordinated with one Fe atom, and all acetylacetone is bonded to Fe by an O atom. Therefore, for example, considering the case where an Fe oxide film is formed in the annealing step (B), the hydrocarbon portion in the gel-like film is decomposed, but the Fe—O bond portion remains, so that the Fe reducing atmosphere It is considered that a Fe oxide film is formed even inside. In addition, both acetic acid and nitric acid are considered to contribute to the stable gelation of the liquid film during the film formation process. Further, nitric acid also acts as an oxidizing agent for Fe and dissolves the surface of the steel sheet, so that the surface of the steel sheet becomes active and contributes to stabilizing the adhesion of the gel-like film. Therefore, it is important that the aqueous solution (x) contains these three components at a predetermined concentration.
Since nitric acid dissolves the surface of the steel sheet as described above, Fe ions derived from the steel sheet may be contained in the film. That is, the main Fe source of the Fe oxide film formed on the surface of the steel sheet is the Fe complex in the aqueous solution (x), but Fe on the surface of the steel sheet is oxidized by the nitrate component in the aqueous solution (x), and this Fe oxide May be included as part of the coating.

水溶液(x)に含まれるFe錯体が配位子として有するアセチルアセトン又はアセチルアセトン誘導体とは、分子内に2,4−ペンタンジオン骨格を有する化合物であり、金属イオンに対して二座配位子として振る舞い、非常に安定な金属錯体を形成する。本発明で使用されるアセチルアセトン又はアセチルアセトン誘導体を配位子とするFe錯体の種類は、工業的に利用可能なものであれば特に限定されないが、水溶性や後の焼鈍工程における不純物低減の観点から比較的低分子量のものが好ましく、例えば、トリス(2,4−ペンタンジオナト)鉄(III)、トリス(2,4−ヘキサンジオナト)鉄(III)、トリス(2,4−ヘプタンジオナト)鉄(III)、トリス(3,5−ヘプタンジオナト)鉄(III)などが好適であり、これらの1種以上を用いることができる。また、そのなかでも、分子量が最も低く、かつ安価な原料であるトリス(2,4−ペンタンジオナト)鉄(III)が特に好適である。 The acetylacetone or acetylacetone derivative contained in the Fe complex contained in the aqueous solution (x) as a ligand is a compound having a 2,4-pentandion skeleton in the molecule and behaves as a bidentate ligand for a metal ion. , Form a very stable metal complex. The type of Fe complex using acetylacetone or an acetylacetone derivative as a ligand used in the present invention is not particularly limited as long as it can be industrially used, but from the viewpoint of water solubility and reduction of impurities in the subsequent annealing step. Those with a relatively low molecular weight are preferable, and for example, tris (2,4-pentandionato) iron (III), tris (2,4-hexanedionat) iron (III), tris (2,4-heptandionato) iron. (III), tris (3,5-heptandionato) iron (III) and the like are suitable, and one or more of these can be used. Among them, tris (2,4-pentanedionato) iron (III), which has the lowest molecular weight and is an inexpensive raw material, is particularly preferable.

水溶液(x)にFe錯体を含有させるには、Fe錯体を直接水溶液中に溶解させてもよいし、配位子とFe化合物を水中で混合してFe錯体を形成させてもよい。
この水溶液(x)は、水溶液中において、アセチルアセトン及びその誘導体は分子内に有する2つの酸素原子部位でFe原子をキャップする形で結合し、形成したFe錯体は反応性の低い炭素骨格が外側になることから分子間重合反応を生じにくく、スラッジ発生等の観点から浴管理も比較的容易である。
In order to contain the Fe complex in the aqueous solution (x), the Fe complex may be dissolved directly in the aqueous solution, or the ligand and the Fe compound may be mixed in water to form the Fe complex.
In this aqueous solution (x), acetylacetone and its derivatives are bonded in the form of capping Fe atoms at the two oxygen atom sites in the molecule, and the formed Fe complex has a low-reactivity carbon skeleton on the outside. Therefore, the intermolecular polymerization reaction is unlikely to occur, and bath management is relatively easy from the viewpoint of sludge generation and the like.

上述したように、鋼板表面に付着した液膜からゲル状皮膜を経て均質かつ均一な皮膜(Fe酸化物皮膜)を形成させるには、水溶液の添加成分と濃度が重要であり、このため本発明では、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液(x)を用いる。なお、Fe錯体のFe換算での質量%とは、Fe錯体に含まれるFeのみの質量%のことである。
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体のFe換算での濃度が0.1質量%未満では、加熱過程で形成されるFe酸化物量が不十分となり、良好な化成処理性が得られない。また、以上の観点から、より好ましいFe錯体の濃度(Fe換算)は1.0質量%以上である。
ここで、水溶液(x)でのFe錯体の濃度(Fe換算)は、ICP質量分析法により測定されたものである。
As described above, in order to form a homogeneous and uniform film (Fe oxide film) from the liquid film adhering to the surface of the steel plate through the gel-like film, the added components and concentration of the aqueous solution are important, and therefore the present invention Then, an aqueous solution (x) containing an Fe complex having an acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.1% by mass or more, nitric acid of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe. Is used. The mass% of the Fe complex in terms of Fe is the mass% of only Fe contained in the Fe complex.
If the concentration of the Fe complex having acetylacetone or an acetylacetone derivative as a ligand in terms of Fe is less than 0.1% by mass, the amount of Fe oxide formed in the heating process becomes insufficient, and good chemical conversion treatment cannot be obtained. .. From the above viewpoint, the more preferable concentration of the Fe complex (Fe conversion) is 1.0% by mass or more.
Here, the concentration (Fe conversion) of the Fe complex in the aqueous solution (x) is measured by ICP mass spectrometry.

酢酸は、本発明の水溶液(x)において溶媒の一部であり、その濃度が10質量%未満では、上述した液膜のゲル化が安定的に生じず、加熱過程において形成するFe酸化物皮膜が不均一となり、良好な化成処理性が得られない場合がある。また、以上の観点から、より好ましい酢酸の濃度は20質量%以上である。
硝酸は、本発明の水溶液(x)において液膜がゲル化する際の重合反応の触媒的役割を果たす成分であり、その濃度が0.5質量%未満では、ゲル化が安定的に生じず、良好な化成処理性が得られない場合がある。また、以上の観点から、より好ましい硝酸の濃度は5.0質量%以上である。
一方、各成分の上限は特になく、コスト的な不利を生じないように効果が飽和する濃度を上限とすればよいが、一般的には、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体はFe換算での濃度が20質量%程度で、硝酸は20質量%程度で、それぞれ効果が飽和するので、これらを上限としてもよい。また、酢酸は主に溶媒としての役割であることから、単独での上限はなく、Fe錯体及び硝酸の下限濃度によって上限が決まる。
Acetic acid is a part of the solvent in the aqueous solution (x) of the present invention, and if the concentration is less than 10% by mass, gelation of the above-mentioned liquid film does not stably occur, and an Fe oxide film formed in the heating process. May become non-uniform and good chemical conversion processability may not be obtained. From the above viewpoint, the more preferable concentration of acetic acid is 20% by mass or more.
Nitric acid is a component that plays a catalytic role in the polymerization reaction when the liquid film gels in the aqueous solution (x) of the present invention, and if the concentration is less than 0.5% by mass, gelation does not occur stably. , Good chemical conversion processability may not be obtained. From the above viewpoint, the more preferable concentration of nitric acid is 5.0% by mass or more.
On the other hand, there is no particular upper limit for each component, and the concentration at which the effect is saturated may be set as the upper limit so as not to cause a cost disadvantage, but in general, an Fe complex having acetylacetone or an acetylacetone derivative as a ligand is used. The concentration in terms of Fe is about 20% by mass, and the concentration of nitrate is about 20% by mass. Since the effects are saturated, these may be the upper limits. Further, since acetic acid mainly plays a role as a solvent, there is no upper limit by itself, and the upper limit is determined by the lower limit concentration of Fe complex and nitric acid.

また、溶液処理工程(A)で付着した水溶液(x)による鋼板表面のFe付着量は0.1〜10.0g/mとすることが好ましい。水溶液(x)による鋼板表面のFe付着量が0.1g/m未満では、化成処理性を十分に向上させることができない場合がある。一方、水溶液(x)による鋼板表面のFe付着量が10.0g/mを超えると、溶液処理時の液膜厚制御が難しく、また焼鈍工程(B)の加熱初期などにおいて形成されるFe酸化物皮膜の付着量が過剰になり、焼鈍工程(B)後に未還元のFe酸化物が残存するおそれがある。また、以上の観点から、より好ましいFe付着量は0.3〜5.0g/mである。
なお、このFe付着量は、水溶液(x)中のFe錯体濃度、鋼板表面での水溶液(x)の付着量を変えることにより調整することができる。
Further, the amount of Fe adhered to the surface of the steel sheet by the aqueous solution (x) adhered in the solution treatment step (A) is preferably 0.1 to 10.0 g / m 2 . If the amount of Fe adhered to the surface of the steel sheet by the aqueous solution (x) is less than 0.1 g / m 2 , the chemical conversion processability may not be sufficiently improved. On the other hand, if the amount of Fe adhered to the surface of the steel sheet by the aqueous solution (x) exceeds 10.0 g / m 2 , it is difficult to control the liquid film thickness during the solution treatment, and the Fe formed at the initial stage of heating in the annealing step (B). The amount of the oxide film adhered may become excessive, and unreduced Fe oxide may remain after the annealing step (B). From the above viewpoint, the more preferable Fe adhesion amount is 0.3 to 5.0 g / m 2 .
The Fe adhesion amount can be adjusted by changing the Fe complex concentration in the aqueous solution (x) and the adhesion amount of the aqueous solution (x) on the surface of the steel sheet.

上述した液膜のゲル化の有無が加熱処理時に鋼板表面に形成されるFe酸化物皮膜の面内均一性に及ぼす影響について調べた。この試験では、表1に示す成分組成の鋼板に対して、表2に示す条件(a)〜(d)で溶液処理を行った。なお、使用した水溶液の組成は、表2に示される成分以外の残部は水である。
表2に示す条件(a)〜(d)のうち、(b)、(d)は本発明条件を満足する水溶液で溶液処理を行った試験例、(a)、(c)は硝酸を含まない水溶液(本発明条件を満足しない水溶液)で溶液処理を行った試験例であり、この(a)、(c)では、水溶液が硝酸を含まないため加熱初期における液膜のゲル化は生じない。また、(a)〜(b)のうち、(a)、(b)は溶液処理後の加熱処理を鋼板温度が400℃になった時点で停止、急冷したものであり、(c)、(d)は鋼板温度が800℃になった時点で加熱を停止、急冷したものである。
The effect of the presence or absence of gelation of the liquid film described above on the in-plane uniformity of the Fe oxide film formed on the surface of the steel sheet during the heat treatment was investigated. In this test, the steel sheet having the composition shown in Table 1 was subjected to solution treatment under the conditions (a) to (d) shown in Table 2. As for the composition of the aqueous solution used, the balance other than the components shown in Table 2 is water.
Of the conditions (a) to (d) shown in Table 2, (b) and (d) are test examples obtained by solution treatment with an aqueous solution satisfying the conditions of the present invention, and (a) and (c) contain nitric acid. This is a test example in which the solution was treated with an aqueous solution (an aqueous solution that does not satisfy the conditions of the present invention). In (a) and (c), since the aqueous solution does not contain nitric acid, gelation of the liquid film does not occur at the initial stage of heating. .. Of (a) to (b), (a) and (b) are those in which the heat treatment after the solution treatment is stopped and rapidly cooled when the temperature of the steel sheet reaches 400 ° C., and (c), ( In d), heating was stopped and rapidly cooled when the temperature of the steel sheet reached 800 ° C.

表2の(a)〜(d)による処理後の鋼板表面外観の拡大写真を図1(各写真の(a)〜(d)は表2の(a)〜(d)と対応している)に示す。図1に示されるように、溶液処理後の加熱処理を400℃で行った(a)、(b)では、鋼板表面に黒色のFe酸化物皮膜が形成されている。一方、溶液処理後の加熱処理を800℃で行った(c)、(d)では、400℃の加熱で形成したFe酸化物皮膜がより高温まで加熱されたことで還元され、白色を呈している。ここで、溶液処理用の水溶液が硝酸を含まないために、加熱初期における液膜のゲル化が生じない(a)と、溶液処理用の水溶液が本発明条件を満足するために加熱初期における液膜のゲル化が生じる(b)の外観を比較すると、後者の方がより均一な外観となっている。これは、(b)のFe酸化物皮膜は、(a)のFe酸化物皮膜に較べて付着量の面内分布が格段に均一であるためである。このため、(a)、(b)のFe酸化物皮膜が還元された、化成処理直前の表面状態に相当する(c)、(d)の外観は、(a)、(b)に対応する優劣関係となっている。外観が劣る(c)では黒点状模様が散在しており、これはFe酸化物の付着量が面内不均一であるため、局所的に高付着量となった部分が還元されずに残ったものと考えられ、化成処理した場合にスケ発生等の化成処理性劣化の原因となる。 An enlarged photograph of the appearance of the steel sheet surface after the treatment according to (a) to (d) in Table 2 is shown in FIG. 1 ((a) to (d) in each photograph correspond to (a) to (d) in Table 2. ). As shown in FIG. 1, in (a) and (b) where the heat treatment after the solution treatment was performed at 400 ° C., a black Fe oxide film was formed on the surface of the steel sheet. On the other hand, in (c) and (d), in which the heat treatment after the solution treatment was performed at 800 ° C., the Fe oxide film formed by heating at 400 ° C. was reduced by being heated to a higher temperature and became white. There is. Here, since the aqueous solution for solution treatment does not contain nitric acid, gelation of the liquid film does not occur in the initial stage of heating (a), and the aqueous solution for solution treatment does not contain the liquid in the initial stage of heating in order to satisfy the conditions of the present invention. Comparing the appearance of (b) where the film gels, the latter has a more uniform appearance. This is because the Fe oxide film of (b) has a much more uniform in-plane distribution of the adhesion amount than the Fe oxide film of (a). Therefore, the appearances of (c) and (d) corresponding to the surface state immediately before the chemical conversion treatment in which the Fe oxide films of (a) and (b) are reduced correspond to (a) and (b). There is a superiority or inferiority relationship. In (c), where the appearance is inferior, black spot-like patterns are scattered, and because the amount of Fe oxide adhered is non-uniform in the plane, the locally high adhered portion remains without being reduced. It is considered that this is the case, and when the chemical conversion treatment is performed, it causes deterioration of the chemical conversion processability such as occurrence of scale.

以上のように、本発明条件を満足する水溶液(x)で溶液処理を行い、加熱初期における液膜のゲル化を経てFe酸化物皮膜を形成させることによって、Fe酸化物皮膜の付着量の面内均一性が改善し、優れた化成処理性を得ることが可能となることが判る。
水溶液(x)を鋼板表面に付着させる方法は特に限定されず、例えば、バーコータ―、スプレー、浸漬、スピンコート、ロールコーターなどの方法を用いることができる。
As described above, the solution treatment is performed with an aqueous solution (x) satisfying the conditions of the present invention, and the Fe oxide film is formed through gelation of the liquid film at the initial stage of heating. It can be seen that the internal uniformity is improved and excellent chemical conversion processability can be obtained.
The method of adhering the aqueous solution (x) to the surface of the steel sheet is not particularly limited, and for example, a method such as a bar coater, a spray, a dip, a spin coat, or a roll coater can be used.

本発明では、上述したように鋼板表面に付着した水溶液(x)の液膜は、ゲル状皮膜を経て皮膜(Fe酸化物皮膜)となる。このような皮膜化は室温でも生じるが、必要に応じて加熱することで短時間での皮膜化が可能であり、特に本発明では、溶液処理工程(A)に続く焼鈍工程(B)での加熱初期の温度を利用して皮膜化が可能である。すなわち、溶液処理工程(A)を経て表面に水溶液(x)(液膜)が付着した鋼板を、そのまま焼鈍工程(B)に導入することにより、焼鈍工程(B)での加熱初期の比較的低温域(例えば400℃程度)において液膜をゲル状皮膜経由で皮膜(Fe酸化物皮膜)化することができる。したがって、焼鈍工程(B)前に液膜の皮膜化を促進するための加熱処理を行うことは必須ではなく、適宜必要に応じて行えばよい。そのような加熱処理を行う場合、焼鈍工程(B)前に皮膜化を完了させてもよいし、皮膜化する途中の状態(例えば、ゲル状皮膜の状態)まで加熱し、その後は焼鈍工程(B)で加熱されることで皮膜化が完了するようにしてもよい。すなわち、その場合には、溶液処理工程(A)を経て表面に水溶液(x)が付着した鋼板を適当な加熱手段で加熱処理した後、焼鈍工程(B)に導入する。
したがって、例えば、連続焼鈍ラインにおいて溶液処理工程(A)と焼鈍工程(B)が連続して行われる場合には、溶液処理工程(A)を経て表面に水溶液(x)(液膜)が付着した鋼板を、そのまま焼鈍工程(B)に導入してもよいし、溶液処理工程(A)を経て表面に水溶液(x)が付着した鋼板を適当な加熱手段で加熱処理した後、焼鈍工程(B)に導入してもよい。
In the present invention, the liquid film of the aqueous solution (x) adhering to the surface of the steel sheet as described above becomes a film (Fe oxide film) via a gel-like film. Although such film formation occurs even at room temperature, it is possible to form a film in a short time by heating as necessary. In particular, in the present invention, in the annealing step (B) following the solution treatment step (A). Filming is possible using the temperature at the initial stage of heating. That is, by introducing the steel sheet to which the aqueous solution (x) (liquid film) is attached to the surface through the solution treatment step (A) as it is into the annealing step (B), it is relatively early in the heating in the annealing step (B). The liquid film can be formed into a film (Fe oxide film) via a gel-like film in a low temperature range (for example, about 400 ° C.). Therefore, it is not essential to perform the heat treatment for promoting the film formation of the liquid film before the annealing step (B), and it may be performed as needed. When performing such a heat treatment, the film formation may be completed before the annealing step (B), or the film may be heated to a state in the middle of filming (for example, a gel-like film state), and then the annealing step (for example, a gel-like film state) is performed. The film formation may be completed by heating in B). That is, in that case, the steel sheet to which the aqueous solution (x) is attached to the surface is heat-treated by an appropriate heating means through the solution treatment step (A), and then introduced into the annealing step (B).
Therefore, for example, when the solution treatment step (A) and the annealing step (B) are continuously performed in the continuous annealing line, the aqueous solution (x) (liquid film) adheres to the surface through the solution treatment step (A). The steel sheet may be introduced into the annealing step (B) as it is, or after the steel sheet having the aqueous solution (x) adhered to the surface through the solution treatment step (A) is heat-treated by an appropriate heating means, the annealing step ( It may be introduced in B).

・焼鈍工程(B)
焼鈍工程(B)では、溶液処理工程(A)を経た鋼板を、H濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理し、その後、所定の温度まで冷却する。この焼鈍工程(B)では、上述したように加熱初期の比較的低温域(例えば400℃程度)において水溶液(x)の液膜を皮膜化し、鋼板表面にFe酸化物皮膜を形成させることができるが、続く最高到達温度までの加熱においてFe酸化物皮膜を還元して還元鉄とする。この焼鈍工程(B)では、鋼板表面に均質かつ均一な厚さで形成されたFe酸化物皮膜が最終的に還元されるので、未還元のFe酸化物が残存することなく、鋼板表面全体が還元鉄で均一に覆われた状態となる。
・ Annealing process (B)
In the annealing step (B), the steel sheet after the solution treatment step (A), H 2 concentration is 0.05 vol% or more, the dew point is heated at 700 ° C. or higher in a reducing atmosphere of less than 10 ° C., then, predetermined Cool to the temperature of. In this annealing step (B), as described above, the liquid film of the aqueous solution (x) can be formed into a film in a relatively low temperature region (for example, about 400 ° C.) at the initial stage of heating to form an Fe oxide film on the surface of the steel sheet. However, the Fe oxide film is reduced to reduced iron by subsequent heating to the maximum temperature reached. In this annealing step (B), the Fe oxide film formed on the surface of the steel sheet with a uniform and uniform thickness is finally reduced, so that the entire surface of the steel sheet is covered without leaving unreduced Fe oxide. It will be uniformly covered with reduced iron.

還元性雰囲気中のH濃度は、Fe酸化物を十分に還元するために、0.05vol%以上、好ましくは1.0vol%以上とする。H濃度の上限は特になく、例えば100vol%としてもよいが、H濃度が必要以上に高いとコストアップにつながるため、40.0vol%程度を上限とすることが好ましい。還元性雰囲気の残部ガスは、通常、N、HO及び不可避的不純物である。
還元性雰囲気の露点は10℃未満、好ましくは0℃以下とする。露点が10℃以上ではFeの酸化が生じる懸念がある。なお、露点の下限は特にないが、工業的に−60℃未満の露点は実施が難しいことから、−60℃程度が実質的な下限となる。
The H 2 concentration in the reducing atmosphere is set to 0.05 vol% or more, preferably 1.0 vol% or more in order to sufficiently reduce the Fe oxide. There is no particular upper limit of the H 2 concentration, for example, 100 vol% may be used, but if the H 2 concentration is higher than necessary, the cost will increase. Therefore, the upper limit is preferably about 40.0 vol%. The residual gas in the reducing atmosphere is usually N 2 , H 2 O and unavoidable impurities.
The dew point of the reducing atmosphere is less than 10 ° C., preferably 0 ° C. or lower. If the dew point is 10 ° C. or higher, there is a concern that Fe will be oxidized. Although there is no particular lower limit for the dew point, it is industrially difficult to carry out a dew point below -60 ° C, so about -60 ° C is a practical lower limit.

焼鈍温度(鋼板温度)は700℃以上、好ましくは750℃以上とする。焼鈍温度が700℃未満では、Fe酸化物皮膜の還元が遅くなり、完全に還元鉄とするのに長時間を要し、生産性を損なう。また、Fe酸化物皮膜の還元が不十分となって、化成処理性劣化の原因となりやすい。焼鈍温度(鋼板温度)の上限は特にないが、950℃を超えると加熱コストが上昇するため、950℃以下が好ましく、900℃以下がより好ましい。なお、焼鈍工程(B)において、鋼板を上記焼鈍温度に保持する場合、鋼板を一定の温度に保った状態で保持してもよいし、上記温度域を外れない限りは、鋼板の温度を変化させながら保持してもよい。また、保持時間は鋼板表面が十分に還元され、かつ目的とする材質が得られるように設定すれば特に制限されない。
焼鈍工程(B)後の鋼板の冷却条件は特に制限はなく、材質設計等の必要に応じて冷却速度や冷却停止温度を決めればよい。
The annealing temperature (steel plate temperature) is 700 ° C. or higher, preferably 750 ° C. or higher. If the annealing temperature is less than 700 ° C., the reduction of the Fe oxide film is delayed, and it takes a long time to completely convert the reduced iron, which impairs productivity. In addition, the reduction of the Fe oxide film becomes insufficient, which tends to cause deterioration in chemical conversion treatment. There is no particular upper limit to the annealing temperature (steel plate temperature), but if it exceeds 950 ° C, the heating cost increases, so that it is preferably 950 ° C or lower, more preferably 900 ° C or lower. When the steel sheet is held at the annealing temperature in the annealing step (B), the steel sheet may be held at a constant temperature, or the temperature of the steel sheet is changed as long as the temperature does not deviate from the above temperature range. You may hold it while letting it. Further, the holding time is not particularly limited as long as the surface of the steel sheet is sufficiently reduced and the desired material can be obtained.
The cooling conditions of the steel sheet after the annealing step (B) are not particularly limited, and the cooling rate and the cooling stop temperature may be determined as necessary for material design and the like.

・化成処理工程(C)
本発明の製造方法は、さらに、焼鈍工程(B)を経た鋼板を化成処理する化成処理工程(C)を有することができる。この化成処理工程(C)では、さきに述べた理由により、化成処理皮膜の生成反応が適正化され、優れた化成処理性が得られる。
化成処理の種類は特に制限はないが、リン酸亜鉛処理などのリン酸塩処理が代表的なものとして挙げられる。また、その他にも、例えば、鋼板表面に黒色皮膜であるFe皮膜を形成させる黒染め処理などを適用することもできる。
なお、本発明の製造方法は、上述したように全部の工程を連続設備(例えば、連続焼鈍ライン)で実施してもよいし、各工程を別々の独立した設備でそれぞれ単独で実施し、或いは一部の工程を独立した設備で単独で実施してもよい。
・ Chemical conversion process (C)
The production method of the present invention can further include a chemical conversion treatment step (C) for chemical conversion treatment of the steel sheet that has undergone the annealing step (B). In this chemical conversion treatment step (C), for the reason described above, the formation reaction of the chemical conversion treatment film is optimized, and excellent chemical conversion treatment property can be obtained.
The type of chemical conversion treatment is not particularly limited, but phosphate treatment such as zinc phosphate treatment is a typical example. In addition, for example, a black dyeing treatment for forming a Fe 3 O 4 film, which is a black film, on the surface of the steel sheet can also be applied.
In the manufacturing method of the present invention, as described above, all the steps may be carried out in continuous equipment (for example, continuous annealing line), each step may be carried out independently in separate and independent equipment, or Some steps may be carried out independently in an independent facility.

次に、本発明により製造される高強度冷延鋼板の成分組成などについて説明する。なお、以下の説明において、各元素の含有量の単位は「質量%」であるが、便宜上「%」で示す。
本発明が製造の対象とする高強度冷延鋼板は、固溶強化元素としてSi又は/及びMnを含有する鋼板であり、一般に引張強さTSが340MPa以上の高強度鋼板である。また、そのなかでも、Si:0.10%以上又は/及びMn:0.50%以上を含有する鋼板が焼鈍時にSi、Mnの選択酸化を生じやすいので、そのような成分組成の鋼板を対象とすることが好ましい。
Next, the composition of the high-strength cold-rolled steel sheet produced according to the present invention will be described. In the following description, the unit of the content of each element is "mass%", but it is indicated by "%" for convenience.
The high-strength cold-rolled steel sheet to be manufactured by the present invention is a steel sheet containing Si or / and Mn as a solid solution reinforcing element, and is generally a high-strength steel sheet having a tensile strength TS of 340 MPa or more. Among them, steel sheets containing Si: 0.10% or more and / and Mn: 0.50% or more are likely to cause selective oxidation of Si and Mn during annealing. Therefore, steel sheets having such a component composition are targeted. Is preferable.

また、鋼板のより具体的な成分組成としては、基本成分として、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有することが好ましく、さらに必要に応じて、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することができる。以下、これらの限定理由について説明する。 Further, as a more specific component composition of the steel plate, as basic components, C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: 0.50 to 5.00%, It is preferable to contain P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and if necessary, Ti: 0.010 to One or more selected from 0.100%, Nb: 0.010 to 0.100%, B: 0.0001 to 0.0050%, Mo: 0.01 to 0.50%, Cr: 1. 00% or less, Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% Hereinafter, one or more selected from REM: 0.010% or less can be contained. The reasons for these limitations will be described below.

・C:0.040〜0.500%
Cはオーステナイト安定化元素であり、強度と延性の向上に有効な元素である。このような効果を得るために、C含有量は0.040%以上とすることが好ましい。一方、C含有量が0.500%を超えると、溶接性の劣化が著しく、また、過度に硬質化したマルテンサイト相によって優れた強度−伸びバランスが得られない場合がある。このためC含有量は0.500%以下とすることが好ましい。
・Si:0.10〜3.00%
Siはフェライト安定化元素であり、また、鋼の固溶強化に有効であり、強度と伸びのバランスを向上させる元素である。このような効果を得るために、Si含有量は0.10%以上とすることが好ましい。一方、Si含有量が3.00%を超えると、本発明を適用しても焼鈍中に鋼板表面でSiが酸化物を形成し、化成処理時に局所的な未反応部(以下、これを「スケ」という)が発生することで化成処理性を劣化させるおそれがある。このためSi含有量は3.0%以下とすることが好ましい。
・ C: 0.040 to 0.500%
C is an austenite stabilizing element, which is an effective element for improving strength and ductility. In order to obtain such an effect, the C content is preferably 0.040% or more. On the other hand, if the C content exceeds 0.500%, the weldability is significantly deteriorated, and an excellent strength-elongation balance may not be obtained due to the excessively hardened martensite phase. Therefore, the C content is preferably 0.500% or less.
-Si: 0.10 to 3.00%
Si is a ferrite stabilizing element, which is effective for solid solution strengthening of steel and improves the balance between strength and elongation. In order to obtain such an effect, the Si content is preferably 0.10% or more. On the other hand, when the Si content exceeds 3.00%, Si forms an oxide on the surface of the steel sheet during annealing even when the present invention is applied, and a local unreacted portion during chemical conversion treatment (hereinafter, this is referred to as "this". The occurrence of "scale") may deteriorate the chemical conversion processability. Therefore, the Si content is preferably 3.0% or less.

・Mn:0.50〜5.00%
Mnは、オーステナイト安定化元素であり、焼鈍板の強度確保に有効な元素である。この強度確保のためには、Mn含有量は0.50%以上とすることが好ましい。ただし、Mn含有量が5.00%を超えると、本発明を適用しても焼鈍中に鋼板表面で多量の酸化物を形成し、化成処理時にスケが発生することで化成処理性を劣化させるおそれがある。このためMn含有量は5.00%以下とすることが好ましい。
・P:0.100%以下
Pは、鋼の強化に有効な元素であるが、含有量が多すぎると粒界偏析により脆化を引き起こし、耐衝撃性を劣化させるおそれがある。このためP含有量は0.100%以下とすることが好ましい。なお、鋼の強化の観点からは、P含有量は0.001%以上であることが好ましい。
-Mn: 0.50 to 5.00%
Mn is an austenite stabilizing element and is an element effective for ensuring the strength of the annealed plate. In order to secure this strength, the Mn content is preferably 0.50% or more. However, if the Mn content exceeds 5.00%, even if the present invention is applied, a large amount of oxide is formed on the surface of the steel sheet during annealing, and scale is generated during the chemical conversion treatment, which deteriorates the chemical conversion processability. There is a risk. Therefore, the Mn content is preferably 5.00% or less.
-P: 0.100% or less P is an element effective for strengthening steel, but if the content is too large, embrittlement may occur due to grain boundary segregation and the impact resistance may be deteriorated. Therefore, the P content is preferably 0.100% or less. From the viewpoint of strengthening steel, the P content is preferably 0.001% or more.

・S:0.0100%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。このため、S含有量は極力低い方がよく、0.0100%以下とすることが好ましい。
・Al:0.100%以下
Alの過剰な添加は、酸化物系介在物の増加による表面性状や成形性の劣化を招き、また、コスト高にもつながる。このためAl含有量は0.100%以下とすることが好ましく、0.050%以下とすることがより好ましい。
・N:0.0100%以下
Nは、鋼の耐時効性を劣化させる元素であるので、N含有量は少ないほど好ましく、0.0100%以下とすることが好ましい。
-S: 0.0100% or less S becomes an inclusion such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, the S content should be as low as possible, preferably 0.0100% or less.
-Al: 0.100% or less Excessive addition of Al causes deterioration of surface properties and moldability due to an increase in oxide-based inclusions, and also leads to high cost. Therefore, the Al content is preferably 0.100% or less, and more preferably 0.050% or less.
-N: 0.0100% or less N is an element that deteriorates the aging resistance of steel. Therefore, the smaller the N content, the more preferably 0.0100% or less.

・Ti:0.010〜0.100%
Tiは鋼板中でCやNと微細炭化物や微細窒化物を形成することにより、鋼板の強度向上に寄与する元素である。この効果を得るためには、Ti含有量は0.010%以上とすることが好ましい。一方、Ti含有量が0.100%を超えるとこの効果が飽和するので、Ti含有量は0.100%以下とすることが好ましい。
・Nb:0.010〜0.100%
Nbは固溶強化や析出強化により強度向上に寄与する元素である。この効果を得るためには、Nb含有量は0.010%以上とすることが好ましい。一方、Nbの含有量が0.100%を超えると鋼板の延性を低下させ、加工性が劣化する場合があるので、Nb含有量は0.100%以下とすることが好ましい。
・B:0.0001〜0.0050%
Bは焼入れ性を高め、鋼板の強度向上に寄与する元素である。この効果を得るためには、B含有量は0.0001%以上とすることが好ましい。一方、Bを過剰に含有すると延性の低下を招き、加工性が劣化する場合がある。また、Bの過剰な含有はコストアップの原因ともなる。このためB含有量は0.0050%以下とすることが好ましい。
-Ti: 0.010 to 0.100%
Ti is an element that contributes to improving the strength of the steel sheet by forming fine carbides and fine nitrides with C and N in the steel sheet. In order to obtain this effect, the Ti content is preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.100%, this effect is saturated, so the Ti content is preferably 0.100% or less.
・ Nb: 0.010 to 0.100%
Nb is an element that contributes to strength improvement by strengthening solid solution and strengthening precipitation. In order to obtain this effect, the Nb content is preferably 0.010% or more. On the other hand, if the Nb content exceeds 0.100%, the ductility of the steel sheet may be lowered and the workability may be deteriorated. Therefore, the Nb content is preferably 0.100% or less.
-B: 0.0001 to 0.0050%
B is an element that enhances hardenability and contributes to improving the strength of the steel sheet. In order to obtain this effect, the B content is preferably 0.0001% or more. On the other hand, if B is excessively contained, the ductility may be lowered and the workability may be deteriorated. In addition, the excessive content of B also causes an increase in cost. Therefore, the B content is preferably 0.0050% or less.

・Mo:0.01〜0.50%
Moは、鋼の焼入れ性を向上し、ベイナイトやマルテンサイトの生成を促進するので、焼鈍板の強度確保に有効な元素である。強度確保の観点から、Mo含有量は0.01%以上とすることが好ましい。一方、Moは合金コストが高いため、添加量が多いとコストアップの要因になるので、Mo含有量は0.50%以下とすることが好ましい。
・Cr:1.00%以下
Crは、鋼の焼入れ性を向上し、ベイナイトやマルテンサイトの生成を促進するので、焼鈍板の強度確保に有効な元素であるが、添加量が多すぎると化成処理性を劣化させる場合がある。このためCr含有量は1.00%以下とすることが好ましい。
・ Mo: 0.01 to 0.50%
Mo is an element effective for ensuring the strength of the annealed plate because it improves the hardenability of steel and promotes the formation of bainite and martensite. From the viewpoint of ensuring strength, the Mo content is preferably 0.01% or more. On the other hand, since Mo has a high alloy cost, a large amount of Mo added causes an increase in cost. Therefore, the Mo content is preferably 0.50% or less.
-Cr: 1.00% or less Cr is an effective element for ensuring the strength of the annealed plate because it improves the hardenability of steel and promotes the formation of bainite and martensite, but if the amount added is too large, it will be converted. It may deteriorate the processability. Therefore, the Cr content is preferably 1.00% or less.

・Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下
Ni、Cu、Vは鋼の強化に有効な元素であるが、過剰に添加すると著しい強度上昇による延性の低下が生じる場合があり、また、これらの元素の過剰な添加は、コストアップの要因にもなる。このため、これらの元素を添加する場合には、Ni含有量は0.50%以下、Cu含有量は1.00%以下、V含有量は0.500%以下とすることが好ましい。なお、鋼を強化するためには、Ni含有量は0.05%以上、Cu含有量は0.05%以上、V含有量は0.005%以上とすることが好ましい。
・Sb:0.10%以下、Sn:0.10%以下
SbとSnには、鋼板表面付近の窒化を抑制する作用があるが、過剰に添加しても効果が飽和する。このため、これらの元素を添加する場合には、Sb含有量は0.10%以下、Sn含有量は0.10%以下とすることが好ましい。なお、窒化の抑制のためには、Sb含有量は0.005%以上、Sn含有量は0.005%以上とすることが好ましい。
-Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% or less Ni, Cu, V are effective elements for strengthening steel, but if added excessively, ductility due to a significant increase in strength In addition, excessive addition of these elements may cause an increase in cost. Therefore, when these elements are added, it is preferable that the Ni content is 0.50% or less, the Cu content is 1.00% or less, and the V content is 0.500% or less. In order to reinforce the steel, it is preferable that the Ni content is 0.05% or more, the Cu content is 0.05% or more, and the V content is 0.005% or more.
-Sb: 0.10% or less, Sn: 0.10% or less Sb and Sn have an action of suppressing nitriding near the surface of the steel sheet, but the effect is saturated even if they are added excessively. Therefore, when these elements are added, the Sb content is preferably 0.10% or less, and the Sn content is preferably 0.10% or less. In order to suppress nitriding, the Sb content is preferably 0.005% or more, and the Sn content is preferably 0.005% or more.

・Ca:0.0100%以下
Caには、MnSなど硫化物の形状制御によって延性を向上させる効果があるが、過剰に添加しても上記効果は飽和するため、Ca含有量は0.0100%以下とすることが好ましい。なお、上記の効果を得るためには、Ca含有量は0.0010%以上とすることが好ましい。
・REM:0.010%以下
REM(レアアースメタル:希土類金属)は、硫化物系介在物の形態を制御し、加工性の向上に寄与するが、過剰に添加すると介在物の増加を引き起こし、加工性を劣化させる場合があるので、REM含有量は0.010%以下とすることが好ましい。なお、加工性向上の効果を得るためには、REM含有量は0.001%以上とすることが好ましい。
以上述べた基本成分および任意添加成分以外の残部はFe及び不可避的不純物である。
-Ca: 0.0100% or less Ca has the effect of improving ductility by controlling the shape of sulfides such as MnS, but the above effect is saturated even if it is added in excess, so the Ca content is 0.0100%. The following is preferable. In order to obtain the above effect, the Ca content is preferably 0.0010% or more.
-REM: 0.010% or less REM (rare earth metal: rare earth metal) controls the morphology of sulfide-based inclusions and contributes to the improvement of workability, but when added in excess, it causes an increase in inclusions and is processed. The REM content is preferably 0.010% or less because it may deteriorate the properties. In order to obtain the effect of improving workability, the REM content is preferably 0.001% or more.
The rest other than the basic component and the optional additive component described above are Fe and unavoidable impurities.

本発明法の溶液処理工程が施される冷延鋼板の製造条件にも特別な制限はない。通常、上記成分組成からなる鋼スラブを、熱間圧延工程において粗圧延及び仕上圧延した後、酸洗工程で熱延板表層のスケールを除去し、次いで冷間圧延する。熱間圧延条件、酸洗条件、冷間圧延条件は特に限定されない。
本発明の溶液処理工程(A)において使用される水溶液(x)は、化成処理用鋼板の化成処理性改善のための溶液処理に用いる水性処理剤であり、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液からなる水性処理剤である。この水性処理剤の好ましい組成などは、さきに水溶液(x)について述べた通りである。
There are no particular restrictions on the manufacturing conditions of the cold-rolled steel sheet to which the solution treatment step of the present invention is applied. Usually, a steel slab having the above composition is roughly rolled and finished rolled in a hot rolling step, then the scale of the surface layer of a hot rolled plate is removed in a pickling step, and then cold rolling is performed. The hot rolling conditions, pickling conditions, and cold rolling conditions are not particularly limited.
The aqueous solution (x) used in the solution treatment step (A) of the present invention is an aqueous treatment agent used for solution treatment for improving the chemical conversion processability of the chemical conversion steel plate, and uses acetylacetone or an acetylacetone derivative as a ligand. It is an aqueous treatment agent consisting of an aqueous solution containing the Fe complex having a concentration of 0.1% by mass or more, nitric acid in an amount of 0.5% by mass or more, and acetic acid in an amount of 10% by mass or more in terms of Fe. The preferable composition of this aqueous treatment agent is as described above for the aqueous solution (x).

本発明法により製造される高強度冷延鋼板は、Si又は/及びMnを含有する鋼板であって、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を鋼板表面に付着させる溶液処理工程(A)と、この溶液処理工程(A)を経た鋼板をH濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程(B)を経ることにより生成した還元鉄により、鋼板表面が覆われている高強度冷延鋼板である。この鋼板の好ましい成分組成はさきに述べたとおりである。また、鋼板表面を覆う還元鉄のFe付着量は0.1〜10.0g/mであることが好ましく、その理由はさきに述べたとおりである。また、この高強度冷延鋼板は、化成処理工程(C)を経ることで、鋼板表面を覆う還元鉄の上部にリン酸塩皮膜や黒染め処理によるFe皮膜などの化成処理皮膜を有することができる。 The high-strength cold-rolled steel sheet produced by the method of the present invention is a steel sheet containing Si or / and Mn, and contains an Fe complex having an acetylacetone or an acetylacetone derivative as a ligand in an Fe equivalent of 0.1% by mass or more. nitric acid 0.5 wt% or more, the solution treatment step of depositing an aqueous solution containing each at a concentration of at least 10 wt% of acetic acid on the steel sheet surface (a), the steel sheet and H 2 concentration after the solution treatment step (a) The surface of the steel sheet is covered with reduced iron produced by undergoing the annealing step (B) of heat treatment at 700 ° C. or higher in a reducing atmosphere having a dew point of 0.05 vol% or more and a dew point of less than 10 ° C. It is a rolled steel plate. The preferable composition of the steel sheet is as described above. Further, the Fe adhesion amount of the reduced iron covering the surface of the steel sheet is preferably 0.1 to 10.0 g / m 2 , and the reason is as described above. In addition, this high-strength cold-rolled steel sheet undergoes a chemical conversion treatment step (C), and a chemical conversion treatment film such as a phosphate film or a Fe 3 O 4 film by black dyeing treatment is applied to the upper part of the reduced iron covering the surface of the steel sheet. Can have.

[実施例1]
表3に示す成分組成を有し、残部がFe及び不可避的不純物からなる鋼を溶製してスラブとした。このスラブを1200℃まで加熱して熱間圧延し、巻き取りを実施した。この熱延板を酸洗し、圧下率50%で冷間圧延を行った。得られた冷延鋼板について、表4〜表6に示す条件にて溶液処理工程と焼鈍工程を順次実施した。
溶液処理工程では、ロールコーターにより鋼板表面に水溶液を塗布した。Fe付着量は水溶液中のFe濃度、またはロールギャップ及びロール周速を調整して液膜厚さを変えることにより制御した。なお、Fe付着量は水溶液を塗布した後、乾燥させた鋼板の蛍光X線分析により定量した。
焼鈍工程は、雰囲気調整が可能な炉において実施し、溶液処理工程で水溶液が塗布された鋼板を、そのまま液膜を有する状態で炉に入れ、焼鈍を行った。
[Example 1]
Steel having the component composition shown in Table 3 and having the balance of Fe and unavoidable impurities was melted to form a slab. The slab was heated to 1200 ° C., hot rolled, and wound. This hot-rolled plate was pickled and cold-rolled at a reduction ratio of 50%. The obtained cold-rolled steel sheet was subjected to a solution treatment step and an annealing step in sequence under the conditions shown in Tables 4 to 6.
In the solution treatment step, an aqueous solution was applied to the surface of the steel sheet by a roll coater. The amount of Fe adhered was controlled by adjusting the Fe concentration in the aqueous solution, the roll gap, and the peripheral peripheral speed of the roll to change the liquid film thickness. The amount of Fe adhered was quantified by fluorescent X-ray analysis of the dried steel sheet after applying the aqueous solution.
The annealing step was carried out in a furnace capable of adjusting the atmosphere, and the steel sheet coated with the aqueous solution in the solution treatment step was placed in the furnace as it was with a liquid film and annealed.

以上のようにして得られた冷延鋼板について、以下に示す方法で化成処理を施し、化成処理性を評価した。
鋼板から70mm×150mmサイズの試験片を採取し、脱脂剤(日本ペイント(株)製「サーフクリーナーEC90」(商品名))で脱脂し、水洗した後、表面調整剤(日本ペイント(株)製「5N−10」(商品名))で30秒間表面調整を行い、しかる後、リン酸亜鉛処理液(日本ペイント(株)製「サーフダインEC1000」(商品名))に浸漬して温度40℃で90秒の処理を行い、水洗・乾燥した。
走査型電子顕微鏡(SEM)を用い、化成皮膜を倍率1000で無作為に5視野を観察し、リン酸亜鉛結晶で覆われている面積率(被覆率)を評価した。また、視野内のリン酸亜鉛結晶を無作為に10個選び、平均結晶サイズを求めた。得られた結果を元に、化成処理性を下記の判定基準に従い3段階で評価した。
◎:特に良好(被覆率100%、平均結晶サイズ3μm以下)
○:良好(被覆率100%、平均結晶サイズ3μm超)
×:不十分(被覆率100%未満)
The cold-rolled steel sheet obtained as described above was subjected to chemical conversion treatment by the method shown below, and the chemical conversion processability was evaluated.
A 70 mm x 150 mm size test piece is collected from a steel plate, degreased with a degreasing agent (Nippon Paint Co., Ltd. "Surf Cleaner EC90" (trade name)), washed with water, and then surface-conditioned (Nippon Paint Co., Ltd.). The surface is adjusted with "5N-10" (trade name) for 30 seconds, and then immersed in a zinc phosphate treatment solution ("Surfdyne EC1000" (trade name) manufactured by Nippon Paint Co., Ltd.) at a temperature of 40 ° C. After 90 seconds of treatment, it was washed with water and dried.
Using a scanning electron microscope (SEM), the chemical conversion film was randomly observed in 5 fields at a magnification of 1000, and the area ratio (coverage ratio) covered with zinc phosphate crystals was evaluated. In addition, 10 zinc phosphate crystals in the field of view were randomly selected, and the average crystal size was determined. Based on the obtained results, the chemical conversion processability was evaluated in three stages according to the following criteria.
⊚: Especially good (coverage 100%, average crystal size 3 μm or less)
◯: Good (coverage 100%, average crystal size over 3 μm)
X: Insufficient (coverage less than 100%)

以上の結果を、製造条件とともに表4〜表6に示す。なお、使用した水溶液の組成は、表4〜表6に示される成分以外の残部は水である。
表4〜表6によれば、本発明例の高強度冷延鋼板は、いずれも化成処理性に優れていることが判る。これに対して比較例の高強度冷延鋼板は、化成処理性が劣っている。
The above results are shown in Tables 4 to 6 together with the manufacturing conditions. As for the composition of the aqueous solution used, the balance other than the components shown in Tables 4 to 6 is water.
According to Tables 4 to 6, it can be seen that the high-strength cold-rolled steel sheets of the examples of the present invention are all excellent in chemical conversion treatment. On the other hand, the high-strength cold-rolled steel sheet of the comparative example is inferior in chemical conversion processability.

[実施例2]
実施例1と同様の条件で得られた冷延鋼板に、表7及び表8に示す条件にて溶液処理工程と焼鈍工程を順次実施した。溶液処理工程と焼鈍工程の実施方法、溶液処理によるFe付着量の定量方法は[実施例1]と同様とした。
以上のようにして得られた冷延鋼板について、以下に示す方法で化成処理を施し、化成処理性を評価した。
鋼板から70mm×150mmサイズの試験片を採取し、脱脂剤(日本ペイント(株)製「サーフクリーナーEC90」(商品名))で脱脂し、水洗した後、鉄黒染め剤(メルテックス(株)製「エボノール S−34」(商品名))に浸漬し、液温140℃で1200秒の処理を行い、水洗・乾燥した。
[Example 2]
A solution treatment step and an annealing step were sequentially carried out on the cold-rolled steel sheet obtained under the same conditions as in Example 1 under the conditions shown in Tables 7 and 8. The method for carrying out the solution treatment step and the annealing step, and the method for quantifying the amount of Fe adhered by the solution treatment were the same as in [Example 1].
The cold-rolled steel sheet obtained as described above was subjected to chemical conversion treatment by the method shown below, and the chemical conversion processability was evaluated.
A 70 mm x 150 mm size test piece is collected from a steel plate, degreased with a degreasing agent ("Surf Cleaner EC90" (trade name) manufactured by Nippon Paint Co., Ltd.), washed with water, and then iron black dyeing agent (Meltex Co., Ltd.). It was immersed in "Evonol S-34" (trade name) manufactured by Japan, treated at a liquid temperature of 140 ° C. for 1200 seconds, washed with water and dried.

上記化成処理後の鋼板表面の面内から無作為に10点(箇所)を選び、1点につき6mmφの範囲でL値を測定し、10点で測定されたL値の平均値Lave及び最大値Lmaxと最小値Lminの差Lmax−Lminを求めた。本実施例における化成処理である黒染め処理は、鋼板表面にFe皮膜を形成することによって鋼板表面を黒色化させるものである。したがって、リン酸亜鉛処理の場合と同様に、鋼板未反応部が少ないほど面内均一なFe皮膜が形成され、鋼板表面の明度は小さくなる。以上を前提として、得られた結果を元に、L値の大小によって化成処理性の優劣を下記の判定基準に従い3段階で評価した。なお、化成処理前の鋼板表面のL値は60程度であった。
◎:特に良好(Lave:30未満、Lmax−Lmin:10未満)
○:良好(Lave:30未満、Lmax−Lmin:10以上)
×:不十分(Lave:30以上)
Select randomly 10 (the position) from the plane of the steel sheet surface after the chemical conversion treatment, the L value was measured in the range of 6mmφ per point, the mean value L ave and the maximum of the measured L value 10 It was determined difference L max -L min value L max and the minimum value L min. The black dyeing treatment, which is a chemical conversion treatment in this embodiment, blackens the surface of the steel sheet by forming an Fe 3 O 4 film on the surface of the steel sheet. Therefore, as in the case of zinc phosphate treatment, the smaller the unreacted portion of the steel sheet, the more uniform Fe 3 O 4 film is formed in the plane, and the lightness of the surface of the steel sheet becomes smaller. Based on the above results, the superiority or inferiority of chemical conversion processability was evaluated on a three-point scale according to the magnitude of the L value according to the following criteria. The L value of the surface of the steel sheet before the chemical conversion treatment was about 60.
⊚: Especially good (L ave : less than 30, L max −L min : less than 10)
◯: Good (L ave : less than 30, L max −L min : 10 or more)
×: Insufficient ( Lave : 30 or more)

以上の結果を、製造条件とともに表7及び表8に示す。なお、使用した水溶液の組成は、表7及び表8に示される成分以外の残部は水である。
表7及び表8によれば、本発明例の高強度冷延鋼板は、いずれも化成処理性に優れていることが判る。これに対して比較例の高強度冷延鋼板は、化成処理性が劣っている。
The above results are shown in Tables 7 and 8 together with the manufacturing conditions. As for the composition of the aqueous solution used, the balance other than the components shown in Tables 7 and 8 is water.
According to Tables 7 and 8, it can be seen that the high-strength cold-rolled steel sheets of the examples of the present invention are all excellent in chemical conversion treatment. On the other hand, the high-strength cold-rolled steel sheet of the comparative example is inferior in chemical conversion processability.

Claims (23)

Si又は/及びMnを含有する高強度冷延鋼板の製造方法であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を鋼板の表面に付着させる溶液処理工程と、
該溶液処理工程を経た鋼板を、H濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程を有することを特徴とする高強度冷延鋼板の製造方法。
A method for producing a high-strength cold-rolled steel sheet containing Si or / and Mn.
An aqueous solution containing acetylacetone or an Fe complex having an acetylacetone derivative as a ligand at a concentration of 0.1% by mass or more, nitrate of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe is applied to the surface of the steel plate. The solution treatment process to be attached and
The steel sheet after the solution treatment step, H 2 concentration is 0.05 vol% or more, high-strength cold-rolled, characterized in that it comprises an annealing step of dew point heat treatment at 700 ° C. or higher in a reducing atmosphere of less than 10 ° C. Steel sheet manufacturing method.
化成処理用の高強度冷延鋼板を製造することを特徴とする請求項1に記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to claim 1, wherein a high-strength cold-rolled steel sheet for chemical conversion treatment is produced. 鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする請求項1又は2に記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to claim 1 or 2, wherein the steel sheet contains Si: 0.10% or more and / and Mn: 0.50% or more in mass%. 溶液処理工程で付着した水溶液による鋼板表面のFe付着量が0.1〜10.0g/mであることを特徴とする請求項1〜3のいずれかに記載の高強度冷延鋼板の製造方法。 The production of a high-strength cold-rolled steel sheet according to any one of claims 1 to 3, wherein the amount of Fe adhered to the surface of the steel sheet due to the aqueous solution adhered in the solution treatment step is 0.1 to 10.0 g / m 2. Method. 溶液処理工程を経て表面に水溶液が付着した鋼板を、そのまま焼鈍工程に導入することを特徴とする請求項1〜4のいずれかに記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to any one of claims 1 to 4, wherein the steel sheet to which the aqueous solution is attached to the surface through the solution treatment step is directly introduced into the annealing step. 溶液処理工程を経て表面に水溶液が付着した鋼板を加熱処理した後、焼鈍工程に導入することを特徴とする請求項1〜4のいずれかに記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to any one of claims 1 to 4, wherein the steel sheet to which the aqueous solution is attached to the surface is heat-treated through the solution treatment step and then introduced into the annealing step. 連続焼鈍ラインにおいて、溶液処理工程と焼鈍工程が連続して行われることを特徴とする請求項1〜6のいずれかに記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to any one of claims 1 to 6, wherein the solution treatment step and the annealing step are continuously performed in the continuous annealing line. 鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1〜7のいずれかに記載の高強度冷延鋼板の製造方法。 The weight of the steel sheet is C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: 0.50 to 5.00%, P: 0.100% or less, S: Any of claims 1 to 7, which contains 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and has a component composition in which the balance is composed of Fe and unavoidable impurities. A method for manufacturing a high-strength cold-rolled steel sheet described in Crab. 鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする請求項8に記載の高強度冷延鋼板の製造方法。 Further, the steel sheet is one or more selected from Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, and B: 0.0001 to 0.0050% in mass%. The method for producing a high-strength cold-rolled steel sheet according to claim 8, wherein the steel sheet is contained. 鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする請求項8又は9に記載の高強度冷延鋼板の製造方法。 Further, the steel sheet has Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% in mass%. Hereinafter, the claim is characterized by containing one or more selected from Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, and REM: 0.010% or less. Item 8. The method for producing a high-strength cold-rolled steel sheet according to Item 8 or 9. さらに、焼鈍工程を経た鋼板を化成処理する化成処理工程を有することを特徴とする請求項1〜10のいずれかに記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to any one of claims 1 to 10, further comprising a chemical conversion treatment step of forming a steel sheet that has undergone an annealing step. 化成処理工程では、鋼板をリン酸塩処理することを特徴とする請求項11に記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to claim 11, wherein in the chemical conversion treatment step, the steel sheet is phosphate-treated. 化成処理工程では、鋼板を黒染め処理することを特徴とする請求項11に記載の高強度冷延鋼板の製造方法。 The method for producing a high-strength cold-rolled steel sheet according to claim 11, wherein in the chemical conversion treatment step, the steel sheet is dyed black. Si又は/及びMnを含有する高強度冷延鋼板であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を鋼板表面に付着させる溶液処理工程と、該溶液処理工程を経た鋼板をH濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程を経ることにより生成した還元鉄により、鋼板表面が覆われていることを特徴とする高強度冷延鋼板。
A high-strength cold-rolled steel sheet containing Si or / and Mn.
An aqueous solution containing an Fe complex having an acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.1% by mass or more, nitrate of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe is attached to the surface of the steel sheet. a solution treatment step of, the steel plate of H 2 concentration after the solution treatment step 0.05 vol% or more, the dew point was generated by passing through an annealing step of heat treatment at 700 ° C. or higher in a reducing atmosphere of less than 10 ° C. A high-strength cold-rolled steel sheet characterized in that the surface of the steel sheet is covered with reduced iron.
鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする請求項14に記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to claim 14, wherein the steel sheet contains Si: 0.10% or more and / and Mn: 0.50% or more in mass%. 鋼板表面を覆う還元鉄のFe付着量が0.1〜10.0g/mであることを特徴とする請求項14又は15に記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to claim 14 or 15, wherein the Fe adhesion amount of the reduced iron covering the surface of the steel sheet is 0.1 to 10.0 g / m 2 . 鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項14〜16のいずれかに記載の高強度冷延鋼板。 The weight of the steel sheet is C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: 0.50 to 5.00%, P: 0.100% or less, S: Any of claims 14 to 16, which contains 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and has a component composition in which the balance is composed of Fe and unavoidable impurities. High-strength cold-rolled steel sheet described in Crab. 鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする請求項17に記載の高強度冷延鋼板。 Further, the steel sheet is one or more selected from Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, and B: 0.0001 to 0.0050% in mass%. The high-strength cold-rolled steel sheet according to claim 17, wherein the steel sheet is contained. 鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする請求項17又は18に記載の高強度冷延鋼板。 Further, the steel sheet has Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% in mass%. Hereinafter, the claim is characterized by containing one or more selected from Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, and REM: 0.010% or less. Item 17. The high-strength cold-rolled steel sheet according to Item 17 or 18. 鋼板表面を覆う還元鉄の上部に化成処理皮膜を有することを特徴とする請求項14〜19のいずれかに記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to any one of claims 14 to 19, wherein a chemical conversion treatment film is provided on the upper portion of the reduced iron covering the surface of the steel sheet. 化成処理皮膜がリン酸塩皮膜であることを特徴とする請求項20に記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to claim 20, wherein the chemical conversion coating is a phosphate coating. 化成処理皮膜が黒染め処理によるFe皮膜であることを特徴とする請求項20に記載の高強度冷延鋼板。 The high-strength cold-rolled steel sheet according to claim 20, wherein the chemical conversion-treated film is a Fe 3 O 4 film obtained by black-dying treatment. 化成処理用鋼板の化成処理性改善のための溶液処理に用いる水性処理剤であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.1質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液からなることを特徴とする溶液処理用の水性処理剤。
An aqueous treatment agent used for solution treatment for improving chemical conversion treatment of steel sheets for chemical conversion treatment.
It is characterized by consisting of an aqueous solution containing an Fe complex having acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.1% by mass or more, nitric acid in an amount of 0.5% by mass or more, and acetic acid in an amount of 10% by mass or more in terms of Fe. Aqueous treatment agent for solution treatment.
JP2020047608A 2019-03-22 2020-03-18 High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent Active JP7054067B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019055720 2019-03-22
JP2019055720 2019-03-22

Publications (2)

Publication Number Publication Date
JP2020158883A true JP2020158883A (en) 2020-10-01
JP7054067B2 JP7054067B2 (en) 2022-04-13

Family

ID=72642119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020047608A Active JP7054067B2 (en) 2019-03-22 2020-03-18 High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent

Country Status (1)

Country Link
JP (1) JP7054067B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138216A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
JP2007297648A (en) * 2006-04-27 2007-11-15 Sumitomo Metal Ind Ltd Coated steel panel excellent in coating film adhesion
JP2011058032A (en) * 2009-09-08 2011-03-24 Nippon Parkerizing Co Ltd Surface-treated black ferrous metal material and manufacturing method thereof
JP2012224887A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Ind Ltd Hot-dip galvanizing steel plate and method for manufacturing the same
JP2018104794A (en) * 2016-12-28 2018-07-05 日本パーカライジング株式会社 Chemical conversion coating agent, method of manufacturing chemical coating, metallic material with chemical coating, and coated metallic material
JP2019143237A (en) * 2018-02-16 2019-08-29 Jfeスチール株式会社 Production method of high strength plated steel sheet

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007138216A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Cold-rolled steel sheet superior in chemical conversion treatment property and galling resistance, and manufacturing method therefor
JP2007297648A (en) * 2006-04-27 2007-11-15 Sumitomo Metal Ind Ltd Coated steel panel excellent in coating film adhesion
JP2011058032A (en) * 2009-09-08 2011-03-24 Nippon Parkerizing Co Ltd Surface-treated black ferrous metal material and manufacturing method thereof
JP2012224887A (en) * 2011-04-15 2012-11-15 Sumitomo Metal Ind Ltd Hot-dip galvanizing steel plate and method for manufacturing the same
JP2018104794A (en) * 2016-12-28 2018-07-05 日本パーカライジング株式会社 Chemical conversion coating agent, method of manufacturing chemical coating, metallic material with chemical coating, and coated metallic material
JP2019143237A (en) * 2018-02-16 2019-08-29 Jfeスチール株式会社 Production method of high strength plated steel sheet

Also Published As

Publication number Publication date
JP7054067B2 (en) 2022-04-13

Similar Documents

Publication Publication Date Title
CN111433380B (en) High-strength galvanized steel sheet and method for producing same
CN108291283B (en) High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet
CN108603263B (en) High yield ratio type high strength galvanized steel sheet and method for producing same
JP3956550B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility
CN107109588A (en) Material inhomogeneities is low and mouldability is excellent high strength cold rolled steel plate, hot-dip galvanized steel sheet and manufacture method
JP6715824B2 (en) Method for producing coated steel sheet with improved strength, ductility and formability
JP4631241B2 (en) High-tensile hot-dip galvanized steel sheet and high-tensile alloyed hot-dip galvanized steel sheet with excellent strength ductility balance, plating adhesion and corrosion resistance
CN106661657A (en) Method for manufacturing high-strength hot-dip galvanized steel sheet
JP6882531B2 (en) Hot-dip galvanized high manganese steel and its manufacturing method
EP4180547A1 (en) Hot-pressed member and manufacturing method therefor
JP2023027288A (en) Galvannealed steel sheet
JP3855678B2 (en) Manufacturing method of thin steel sheet with excellent room temperature aging resistance, workability, and paint bake hardenability
JP2000309824A (en) Cold rolled steel sheet, hot dip plated steel sheet and their production
JP6874163B2 (en) Hot-dip galvanized medium manganese steel and its manufacturing method
JP5853884B2 (en) Hot-dip galvanized steel sheet and manufacturing method thereof
JP6777140B2 (en) Manufacturing method of high-strength galvanized steel sheet
KR101505274B1 (en) Manufacturing method of transformation induced plasticity steel with excellent coatability and coating adhesion
JP4781577B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
JP5499984B2 (en) Hot-rolled hot-rolled steel sheet and manufacturing method thereof
JP4283408B2 (en) Hot-dip galvanized high-strength thin steel sheet with excellent formability and its manufacturing method
JP7054067B2 (en) High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent
JPH09176815A (en) High strength hot dip galvanized steel sheet excellent in plating adhesion
JP2003105486A (en) High strength steel sheet and galvanized steel sheet having excellent formability, and production method therefor
JP6863404B2 (en) Manufacturing method of high-strength galvanized steel sheet
JP3494133B2 (en) Manufacturing method of hot-dip coated high strength steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220315

R150 Certificate of patent or registration of utility model

Ref document number: 7054067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150