JP6777140B2 - Manufacturing method of high-strength galvanized steel sheet - Google Patents

Manufacturing method of high-strength galvanized steel sheet Download PDF

Info

Publication number
JP6777140B2
JP6777140B2 JP2018246800A JP2018246800A JP6777140B2 JP 6777140 B2 JP6777140 B2 JP 6777140B2 JP 2018246800 A JP2018246800 A JP 2018246800A JP 2018246800 A JP2018246800 A JP 2018246800A JP 6777140 B2 JP6777140 B2 JP 6777140B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
mass
plating
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018246800A
Other languages
Japanese (ja)
Other versions
JP2019143237A (en
Inventor
聖太郎 寺嶋
聖太郎 寺嶋
祐介 伏脇
祐介 伏脇
善継 鈴木
善継 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019143237A publication Critical patent/JP2019143237A/en
Application granted granted Critical
Publication of JP6777140B2 publication Critical patent/JP6777140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は、特に自動車部材用途に好適な高強度溶融亜鉛めっき鋼板などをはじめとする高強度めっき鋼板の製造方法に関する。 The present invention relates to a method for producing a high-strength galvanized steel sheet, including a high-strength hot-dip galvanized steel sheet, which is particularly suitable for use in automobile members.

近年、CO排出量の削減のために自動車の燃費改善が強く求められている。これに伴い、車体部品の薄肉化による車体軽量化の動きが活発となってきており、車体部品材料である鋼板の高強度化ニーズが高まっている。
鋼板の高強度化には、Si、Mn等の固溶強化元素の添加が有効である。しかし、これらの元素はFeよりも易酸化性であるため、これらを多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)の製造において、以下のような問題が生じる。
In recent years, there has been a strong demand for improving the fuel efficiency of automobiles in order to reduce CO 2 emissions. Along with this, the movement to reduce the weight of the vehicle body by thinning the body parts has become active, and the need for increasing the strength of the steel plate, which is the material for the vehicle body parts, is increasing.
Addition of solid solution strengthening elements such as Si and Mn is effective for increasing the strength of the steel sheet. However, since these elements are more easily oxidized than Fe, in the production of hot-dip galvanized steel sheets (including alloyed hot-dip galvanized steel sheets) using a high-strength steel sheet containing a large amount of them as a base material, the following The problem arises.

通常、溶融亜鉛めっき鋼板を製造する場合、鋼板を非酸化性雰囲気又は還元性雰囲気中において600〜900℃程度の温度で加熱焼鈍した後に、溶融亜鉛めっき処理を施す。このめっき処理前の加熱焼鈍において、鋼中の易酸化性元素は、一般的に用いられる非酸化性雰囲気や還元性雰囲気中においても選択酸化され、鋼板表面に濃化して酸化物を形成する。この酸化物は溶融亜鉛めっき処理時に溶融亜鉛の濡れ性を低下させることから、鋼中の易酸化性元素濃度の増加とともにめっき濡れ性が急激に低下し、不めっき多発の原因となる。また、不めっきを生じない場合でも、鋼板とめっき層間に酸化物が存在するため、めっき密着性が劣化する。特にSiは少量の添加であっても溶融亜鉛の濡れ性を顕著に低下させることから、溶融亜鉛めっき鋼板では、より濡れ性への影響が小さいMnが添加されることが多い。しかし、Mn酸化物も溶融亜鉛の濡れ性を低下させるため、多量に添加する場合には上記の不めっきの問題が顕著となる。 Usually, when a hot-dip galvanized steel sheet is produced, the steel sheet is heat-annealed at a temperature of about 600 to 900 ° C. in a non-oxidizing atmosphere or a reducing atmosphere, and then hot-dip galvanized. In the heat annealing before the plating treatment, the easily oxidizing element in the steel is selectively oxidized even in a generally used non-oxidizing atmosphere or reducing atmosphere, and is concentrated on the surface of the steel sheet to form an oxide. Since this oxide lowers the wettability of hot-dip zinc during the hot-dip galvanizing process, the wettability of the hot-dip galvanizes sharply decreases as the concentration of easily oxidizable elements in the steel increases, causing frequent non-plating. Further, even when non-plating does not occur, the plating adhesion deteriorates because the oxide exists between the steel sheet and the plating layer. In particular, since Si significantly reduces the wettability of hot-dip zinc even when added in a small amount, Mn, which has a smaller effect on wettability, is often added to hot-dip galvanized steel sheets. However, since Mn oxide also reduces the wettability of hot-dip zinc, the above-mentioned non-plating problem becomes remarkable when a large amount is added.

以上のような問題に対し、特許文献1では、鋼板を焼鈍した後、酸洗を実施することで表面に形成された酸化物を溶解除去し、その後、再び焼鈍して溶融亜鉛めっきを施す方法が提案されている。
また、特許文献2では、まずFe酸化性雰囲気中で鋼板を加熱し、所定以上の酸化速度にて表面にFe酸化物を急速に生成させることにより、鋼板表面での添加元素の表面選択酸化を抑制し、引き続きFe還元性雰囲気中で加熱してFe酸化物を還元させることにより、鋼板表面の溶融亜鉛との濡れ性を改善する方法が提案されている。
また、特許文献3では、ヒドロキシ酸化合物を含有し、必要に応じて水溶性Fe含有物質と硝酸物質を添加した水系酸性液状組成物を鋼板に接触させてFe酸化物を主体とする薄膜を析出させてから、Fe還元性雰囲気中で焼鈍することにより、Si、Mnの表面選択濃化を抑制し、めっき濡れ性を改善する方法が提案されている。
In response to the above problems, Patent Document 1 describes a method in which a steel sheet is annealed and then pickled to dissolve and remove oxides formed on the surface, and then annealed again to perform hot-dip galvanizing. Has been proposed.
Further, in Patent Document 2, first, the steel sheet is heated in an Fe-oxidizing atmosphere to rapidly generate Fe oxide on the surface at an oxidation rate equal to or higher than a predetermined value, thereby performing surface selective oxidation of the additive element on the surface of the steel sheet. A method has been proposed in which the wettability of the surface of a steel sheet with molten iron is improved by suppressing it and subsequently heating it in a Fe-reducing atmosphere to reduce the Fe oxide.
Further, in Patent Document 3, a water-based acidic liquid composition containing a hydroxy acid compound and, if necessary, a water-soluble Fe-containing substance and a nitric acid substance are brought into contact with a steel sheet to precipitate a thin film mainly composed of Fe oxide. A method has been proposed in which surface selective thickening of Si and Mn is suppressed and plating wettability is improved by baking in a Fe-reducing atmosphere.

特許第3956550号公報Japanese Patent No. 39565550 特許第2587724号公報Japanese Patent No. 2587724 特許第5672127号公報Japanese Patent No. 5672127

しかしながら、上述した従来技術には、それぞれ以下のような問題がある。
特許文献1の方法は、合金元素の添加量が多い場合、再焼鈍時に表面に再び酸化物が形成され、不めっき等の外観欠陥を生じなくても、めっき密着性が劣化する場合がある。また、高Si含有鋼の場合、焼鈍後の形成酸化物が酸に不活性であることから、十分に除去できない場合があり、適用可能なSi量の上限が0.80質量%程度と比較的低い。さらには、焼鈍工程が2回必要であるため生産性が低いという問題もある。
また、特許文献2の方法は、Fe酸化性雰囲気中で加熱可能な設備を有しないCGLでは適用できず、新設には多大なコストがかかる。また、母材鋼板自体の酸化によってFe酸化物を得る方法であるため、高Mn含有鋼の場合はFe酸化物中にMnが固溶し、還元焼鈍時に鋼板表面でMn酸化物を形成しやすいため、十分な効果が得られない場合がある。
However, each of the above-mentioned conventional techniques has the following problems.
In the method of Patent Document 1, when the amount of alloying elements added is large, oxides are formed again on the surface during reannealing, and the plating adhesion may deteriorate even if appearance defects such as non-plating do not occur. Further, in the case of steel containing high Si, since the formed oxide after annealing is inactive to acid, it may not be sufficiently removed, and the upper limit of the applicable amount of Si is relatively 0.80% by mass. Low. Further, there is a problem that the productivity is low because the annealing step is required twice.
Further, the method of Patent Document 2 cannot be applied to a CGL that does not have equipment capable of heating in a Fe-oxidizing atmosphere, and a great cost is required for new installation. Further, since the method is to obtain Fe oxide by oxidizing the base steel sheet itself, in the case of steel containing high Mn, Mn is dissolved in Fe oxide, and Mn oxide is easily formed on the surface of the steel sheet during reduction annealing. Therefore, a sufficient effect may not be obtained.

また、特許文献3の方法では、Fe酸化性雰囲気中で加熱が可能な設備が不要であるが、鋼板表面の液膜が乾燥する際に非晶質のFe酸化物が急速に析出するため、鋼板面内の析出速度差に起因するFe酸化物付着量の不均一が生じ、めっき外観にムラが生じる問題がある。また、ヒドロキシ酸は分子内にカルボキシル基とヒドロキシ基を有していることから、処理液の浴温によっては分子間でエステル結合による重合反応が生じやすくなり、浴組成の管理が工業的に困難になるおそれがある。
また、高強度鋼板表面の酸化物に起因しためっき密着性の低下は、溶融亜鉛めっき以外のめっきでも生じるおそれがある。
Further, the method of Patent Document 3 does not require equipment capable of heating in a Fe-oxidizing atmosphere, but since amorphous Fe oxide is rapidly precipitated when the liquid film on the surface of the steel sheet dries. There is a problem that the Fe oxide adhesion amount becomes non-uniform due to the difference in the precipitation rate in the steel sheet surface, and the plating appearance becomes uneven. In addition, since hydroxy acids have a carboxyl group and a hydroxy group in the molecule, a polymerization reaction due to an ester bond is likely to occur between the molecules depending on the bath temperature of the treatment liquid, and it is industrially difficult to control the bath composition. There is a risk of becoming.
Further, the deterioration of the plating adhesion due to the oxide on the surface of the high-strength steel sheet may occur in plating other than hot-dip galvanizing.

したがって本発明の目的は、以上のような従来技術の課題を解決し、固溶強化元素としてSi、Mnが添加された高強度鋼板を母材とするめっき鋼板を製造する方法において、溶融亜鉛めっきなどのめっき処理前の加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制し、めっき鋼板の表面外観及びめっき密着性を改善することができる製造方法を提供することにある。また、本発明の他の目的は、めっき前の加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制することができる溶液処理用の水性処理剤を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to produce a plated steel sheet using a high-strength steel sheet to which Si and Mn are added as solid solution reinforcing elements as a base material. It is an object of the present invention to provide a manufacturing method capable of effectively suppressing selective oxidation of Si and Mn in heat annealing before a plating treatment such as, and improving the surface appearance and plating adhesion of a plated steel sheet. Another object of the present invention is to provide an aqueous treatment agent for solution treatment capable of effectively suppressing selective oxidation of Si and Mn in heat annealing before plating.

本発明者らは、上記のような従来技術の課題を解決すべく、鋭意検討及び研究を重ねた結果、事前に鋼板に対して、アセチルアセトン又はアセチルアセトン誘導体を配位子として有するFe錯体、酢酸及び硝酸を所定の濃度で含有する水溶液を付着させる溶液処理を施した後、Fe還元性雰囲気中で加熱焼鈍することにより、この加熱焼鈍におけるSi、Mnの選択酸化が効果的に抑制され、めっき鋼板の表面外観及びめっき密着性が改善されることを見出した。 As a result of diligent studies and studies in order to solve the above-mentioned problems of the prior art, the present inventors have obtained Fe complexes, acetic acid and acetic acid having an acetylacetone or an acetylacetone derivative as a ligand with respect to the steel sheet in advance. By subjecting to a solution treatment to attach an aqueous solution containing nitric acid at a predetermined concentration and then heating and annealing in a Fe-reducing atmosphere, selective oxidation of Si and Mn in this heating annealing is effectively suppressed, and the plated steel sheet is plated. It was found that the surface appearance and plating adhesion of the steel sheet were improved.

本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]Si又は/及びMnを含有する鋼板を母材とする高強度めっき鋼板の製造方法であって、
鋼板の表面に、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を付着させる溶液処理工程と、
該溶液処理工程を経た鋼板を、H濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程と、
該焼鈍工程を経た鋼板にめっきを施すめっき処理工程を有することを特徴とする高強度めっき鋼板の製造方法。
[2]上記[1]の製造方法において、鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする高強度めっき鋼板の製造方法。
The present invention has been made based on such findings, and has the following gist.
[1] A method for producing a high-strength plated steel sheet using a steel sheet containing Si or / and Mn as a base material.
An aqueous solution containing acetylacetone or an Fe complex having an acetylacetone derivative as a ligand on the surface of a steel plate at a concentration of 0.10% by mass or more, nitrate of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe. And the solution treatment process to attach
The steel sheet after the solution treatment step, H 2 concentration is 0.05 vol% or more, and annealing steps which dew point is heated at 700 ° C. or higher in a less than 10 ° C. reducing atmosphere,
A method for producing a high-strength plated steel sheet, which comprises a plating process for plating a steel sheet that has undergone the annealing step.
[2] Production of a high-strength galvanized steel sheet according to the above-mentioned production method of [1], wherein the steel sheet contains Si: 0.10% or more and / and Mn: 0.50% or more in mass%. Method.

[3]上記[1]又は[2]の製造方法において、溶液処理工程で付着した水溶液による鋼板表面のFe付着量が0.1〜10.0g/mであることを特徴とする高強度めっき鋼板の製造方法。
[4]上記[1]〜[3]のいずれかの製造方法において、溶液処理工程を経て表面に水溶液が付着した鋼板を、そのまま焼鈍工程に導入することを特徴とする高強度めっき鋼板の製造方法。
[5]上記[1]〜[3]のいずれかの製造方法において、溶液処理工程を経て表面に水溶液が付着した鋼板を加熱処理した後、焼鈍工程に導入することを特徴とする高強度めっき鋼板の製造方法。
[6]上記[1]〜[5]のいずれかの製造方法において、めっき処理工程は、焼鈍工程を経た鋼板に溶融亜鉛めっきを施す工程(但し、溶融亜鉛めっき後に合金化処理する場合を含む。)であることを特徴とする高強度めっき鋼板の製造方法。
[7]上記[6]の製造方法において、連続溶融亜鉛めっきラインにおいて、溶液処理工程、焼鈍工程、めっき処理工程が連続して行われることを特徴とする高強度めっき鋼板の製造方法。
[3] In the production method of the above [1] or [2], the amount of Fe adhered to the surface of the steel sheet by the aqueous solution adhered in the solution treatment step is 0.1 to 10.0 g / m 2. Manufacturing method of plated steel sheet.
[4] In any of the above-mentioned production methods [1] to [3], production of a high-strength galvanized steel sheet characterized by introducing a steel sheet having an aqueous solution adhered to its surface through a solution treatment step into an annealing step as it is. Method.
[5] In any of the above-mentioned production methods [1] to [3], high-strength plating is characterized in that a steel sheet having an aqueous solution adhered to its surface is heat-treated through a solution treatment step and then introduced into an annealing step. Steel sheet manufacturing method.
[6] In any of the above-mentioned manufacturing methods [1] to [5], the plating treatment step includes a step of hot-dip galvanizing a steel sheet that has undergone an annealing step (provided that it is alloyed after hot-dip galvanizing). .) A method for manufacturing a high-strength plated steel sheet.
[7] In the production method of the above [6], a method for producing a high-strength plated steel sheet, characterized in that a solution treatment step, an annealing step, and a plating treatment step are continuously performed in a continuous hot-dip galvanizing line.

[8]上記[1]〜[7]のいずれかの製造方法において、鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高強度めっき鋼板の製造方法。
[9]上記[8]の製造方法において、鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする高強度めっき鋼板の製造方法。
[10]上記[8]又は[9]の製造方法において、鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする高強度めっき鋼板の製造方法。
[11]鋼板の焼鈍時における易酸化性元素の選択酸化を抑制するための溶液処理用の水性処理剤であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液からなることを特徴とする溶液処理用の水性処理剤。
[8] In any of the above-mentioned production methods [1] to [7], the steel sheet is in mass%, C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: Contains 0.50 to 5.00%, P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and the balance is Fe and unavoidable. A method for producing a high-strength plated steel sheet, which comprises a component composition composed of impurities.
[9] In the production method of the above [8], the steel sheet is further increased in mass% by Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, B: 0.0001 to 0. A method for producing a high-strength galvanized steel sheet, which comprises one or more selected from 0050%.
[10] In the production method of the above [8] or [9], the steel sheet is further increased in mass% by Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50%. Below, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, REM: 0.010% or less A method for producing a high-strength galvanized steel sheet, which comprises one or more selected from the above.
[11] An aqueous treatment agent for solution treatment for suppressing selective oxidation of easily oxidizing elements during annealing of steel sheets.
It is characterized by being composed of an aqueous solution containing an Fe complex having acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.10% by mass or more, nitric acid in an amount of 0.5% by mass or more, and acetic acid in an amount of 10% by mass or more in terms of Fe. Aqueous treatment agent for solution treatment.

本発明によれば、易酸化性元素であるSi、Mnを含有する高強度鋼板を母材とするめっき鋼板の製造において、めっき前の加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制し、良好な表面外観を有するとともに、めっき密着性に優れた高強度めっき鋼板を製造することができる。本発明により製造された高強度溶融亜鉛めっき鋼板などの高強度めっき鋼板を、例えば、自動車構造部材に適用することで車体軽量化による燃費改善を図ることができる。 According to the present invention, in the production of a plated steel sheet using a high-strength steel sheet containing Si and Mn, which are easily oxidizing elements, as a base material, selective oxidation of Si and Mn in heat annealing before plating is effectively suppressed. It is possible to produce a high-strength galvanized steel sheet having a good surface appearance and excellent plating adhesion. By applying a high-strength plated steel sheet such as a high-strength hot-dip galvanized steel sheet manufactured by the present invention to, for example, an automobile structural member, it is possible to improve fuel efficiency by reducing the weight of the vehicle body.

表2に示す条件(a)〜(d)で溶液処理及び加熱処理を行った鋼板の表面外観の拡大写真Enlarged photograph of the surface appearance of the steel sheet subjected to solution treatment and heat treatment under the conditions (a) to (d) shown in Table 2.

本発明は、易酸化性元素であるSi又は/及びMnを含有する鋼板を母材とする高強度めっき鋼板の製造方法であって、鋼板の表面に、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体と硝酸と酢酸を所定の濃度で含有する水溶液(x)を付着させる溶液処理工程(A)と、この溶液処理工程(A)を経た鋼板を還元性雰囲気中において加熱処理する焼鈍工程(B)と、この焼鈍工程(B)を経た鋼板にめっきを施すめっき処理工程(C)を有する。
なお、本発明により製造される高強度めっき鋼板の母材となる鋼板(高強度鋼板)の好ましい条件などについては、後に詳述する。
The present invention is a method for producing a high-strength plated steel sheet using a steel sheet containing Si and / and Mn, which are easily oxidizing elements, as a base material, and has an acetylacetone or an acetylacetone derivative as a ligand on the surface of the steel sheet. A solution treatment step (A) for adhering an aqueous solution (x) containing an Fe complex, nitric acid and acetic acid at a predetermined concentration, and an annealing step (a) in which a steel sheet that has undergone this solution treatment step (A) is heat-treated in a reducing atmosphere. It has a B) and a plating treatment step (C) for plating the steel sheet that has undergone the annealing step (B).
The preferable conditions of the steel sheet (high-strength steel sheet) used as the base material of the high-strength plated steel sheet produced by the present invention will be described in detail later.

・溶液処理工程(A)
この溶液処理工程(A)は、必要に応じて鋼板表面を公知の方法で脱脂、洗浄した後に実施する。この溶液処理工程(A)において鋼板表面に付着させる水溶液(x)は、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体(以下、説明の便宜上、単に「Fe錯体」という場合がある。)をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液であり、鋼板表面に付着した水溶液(x)に含まれるFe分(Fe錯体)は、続く焼鈍工程(B)の加熱初期などにおいて鋼板表面に形成させるFe酸化物皮膜の主たる鉄源となる。
-Solution processing step (A)
This solution treatment step (A) is carried out after degreasing and cleaning the surface of the steel sheet by a known method, if necessary. The aqueous solution (x) attached to the surface of the steel sheet in this solution treatment step (A) is an Fe complex having acetylacetone or an acetylacetone derivative as a ligand (hereinafter, may be simply referred to as “Fe complex” for convenience of explanation). An aqueous solution containing 0.10% by mass or more of Fe, 0.5% by mass or more of nitrate, and 10% by mass or more of acetic acid, respectively, and the Fe content (x) contained in the aqueous solution (x) adhering to the surface of the steel sheet. The Fe complex) serves as the main iron source for the Fe oxide film formed on the surface of the steel sheet in the initial heating stage of the subsequent annealing step (B).

本発明において、上記のような特定の成分と濃度の水溶液(x)を用いるのは、ゾル−ゲル法と呼ばれる手法で皮膜形成させることにより、均質かつ均一な厚さのFe酸化物皮膜を形成するためである。すなわち、鋼板表面に付着した水溶液(x)の液膜(ゾル)は、時間経過及び温度上昇に伴って溶媒が蒸発・分解するが、その際に、単に液膜中の溶媒が蒸発して溶質が析出するのではなく、液膜中成分の凝集や重合によって液膜全体が次第に流動性を失い、Fe化合物を含有した皮膜(ゲル)となり、このゲル状皮膜となる過程を経て皮膜(Fe酸化物皮膜)形成がなされるので、均質かつ均一な厚さのFe酸化物皮膜を形成することができ、Fe付着量制御も比較的容易に行うことができる。このようなゲル状皮膜となる過程を経てFe酸化物皮膜を形成するには、焼鈍工程(B)での加熱初期の温度を利用することができるが、その皮膜形成の一部又は全部が、焼鈍工程(B)の前に行われる加熱処理でなされるようにしてもよい。以上の結果、焼鈍工程(B)において、鋼板全面に亘ってSi、Mnの選択酸化が適切に抑制されるとともに、均質かつ均一な厚さのFe酸化物皮膜の還元で生成した還元鉄で鋼板表面が覆われることにより、めっき濡れ性を向上させることができる。 In the present invention, the aqueous solution (x) having a specific component and concentration as described above is used to form a film by a method called a sol-gel method, thereby forming a homogeneous and uniform thickness Fe oxide film. To do. That is, in the liquid film (sol) of the aqueous solution (x) adhering to the surface of the steel plate, the solvent evaporates and decomposes with the passage of time and the temperature rise, but at that time, the solvent in the liquid film simply evaporates and the solute. Rather than precipitating, the entire liquid film gradually loses its fluidity due to aggregation and polymerization of the components in the liquid film, forming a film (gel) containing an Fe compound, and a film (Fe oxidation) through the process of forming this gel-like film. Since the film) is formed, a uniform and uniform thickness of Fe oxide film can be formed, and the amount of Fe adhered can be controlled relatively easily. In order to form the Fe oxide film through the process of forming such a gel-like film, the temperature at the initial stage of heating in the annealing step (B) can be used, but a part or all of the film formation is It may be carried out by the heat treatment performed before the annealing step (B). As a result of the above, in the annealing step (B), selective oxidation of Si and Mn is appropriately suppressed over the entire surface of the steel sheet, and the steel sheet is made of reduced iron produced by reduction of a Fe oxide film having a uniform and uniform thickness. By covering the surface, the wettability of plating can be improved.

また、上述したような一連の皮膜形成が焼鈍工程(B)内でなされる場合には、まず、焼鈍工程(B)の初期加熱において、鋼板表面に付着した水溶液(x)の液膜(ゾル)がゲル状皮膜化し、さらにこのゲル状皮膜の分解が生じることにより、鋼板全面に亘って均質かつ均一な厚さのFe酸化物皮膜が形成され、その後の焼鈍過程において、このFe酸化物皮膜の還元が生じる。このようにFe酸化物皮膜の形成とその還元が連続的に生じるため、焼鈍工程(B)におけるSi、Mnの選択酸化の抑制と、鋼板表面を覆う均質かつ均一な厚さの還元鉄皮膜の生成がより確実になされ、めっき濡れ性を向上させることができる。 When the series of film formation as described above is performed in the annealing step (B), first, in the initial heating of the annealing step (B), the liquid film (sol) of the aqueous solution (x) adhering to the surface of the steel sheet. ) Is formed into a gel-like film, and further decomposition of the gel-like film causes a uniform and uniform thickness of Fe oxide film to be formed over the entire surface of the steel sheet. In the subsequent annealing process, this Fe oxide film is formed. Reduction occurs. Since the formation of the Fe oxide film and its reduction occur continuously in this way, the selective oxidation of Si and Mn in the annealing step (B) is suppressed, and the reduced iron film having a uniform and uniform thickness covering the surface of the steel sheet is formed. The formation is more reliable and the plating wettability can be improved.

ここで、溶液処理用の水溶液(x)の成分について説明すると、まず、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体は、焼鈍工程(B)において生成するFe酸化物の鉄及び酸素源となる。このFe錯体は、Fe原子1つに対して配位子のアセチルアセトン3分子が配位した構造を持ち、また、アセチルアセトンは全てO原子でFeと結合している。したがって、例えば、焼鈍工程(B)においてFe酸化物皮膜が形成される場合を考えると、上記ゲル状皮膜中の炭化水素部分は分解するが、Fe−O結合部分が残るため、Fe還元性雰囲気中であってもFe酸化物皮膜が生成するものと考えられる。また、酢酸と硝酸はいずれも皮膜形成過程において液膜を安定的にゲル化させるのに寄与するものと考えられる。さらに、硝酸はFeに対する酸化剤としても作用し、鋼板表面を溶解させるため、鋼板表面が活性となり、ゲル状皮膜の密着性安定化に寄与する。したがって、水溶液(x)はこれら3成分を所定の濃度で含有することが重要である。
なお、上記のように硝酸は鋼板表面を溶解させるため、鋼板由来のFeイオンが皮膜中に含まれる場合がある。すなわち、鋼板表面に形成されるFe酸化物皮膜の主たるFe源は水溶液(x)中のFe錯体であるが、水溶液(x)中の硝酸成分により鋼板表面のFeが酸化され、このFe酸化物が皮膜の一部として含まれる場合がある。
Here, the components of the aqueous solution (x) for solution treatment will be described. First, the Fe complex having acetylacetone or an acetylacetone derivative as a ligand is the iron and oxygen source of Fe oxide produced in the annealing step (B). Become. This Fe complex has a structure in which three molecules of acetylacetone, which is a ligand, are coordinated with one Fe atom, and all acetylacetone is bonded to Fe by an O atom. Therefore, for example, considering the case where an Fe oxide film is formed in the annealing step (B), the hydrocarbon portion in the gel-like film is decomposed, but the Fe—O bond portion remains, so that the Fe reducing atmosphere It is considered that a Fe oxide film is formed even inside. In addition, both acetic acid and nitric acid are considered to contribute to the stable gelation of the liquid film during the film formation process. Further, nitric acid also acts as an oxidizing agent for Fe and dissolves the surface of the steel sheet, so that the surface of the steel sheet becomes active and contributes to stabilizing the adhesion of the gel-like film. Therefore, it is important that the aqueous solution (x) contains these three components at a predetermined concentration.
Since nitric acid dissolves the surface of the steel sheet as described above, Fe ions derived from the steel sheet may be contained in the film. That is, the main Fe source of the Fe oxide film formed on the surface of the steel sheet is the Fe complex in the aqueous solution (x), but Fe on the surface of the steel sheet is oxidized by the nitrate component in the aqueous solution (x), and this Fe oxide May be included as part of the coating.

水溶液(x)に含まれるFe錯体が配位子として有するアセチルアセトン又はアセチルアセトン誘導体とは、分子内に2,4−ペンタンジオン骨格を有する化合物であり、金属イオンに対して二座配位子として振る舞い、非常に安定な金属錯体を形成する。本発明で使用されるアセチルアセトン又はアセチルアセトン誘導体を配位子とするFe錯体の種類は、工業的に利用可能なものであれば特に限定されないが、水溶性や後の焼鈍工程における不純物低減の観点から比較的低分子量のものが好ましく、例えば、トリス(2,4−ペンタンジオナト)鉄(III)、トリス(2,4−ヘキサンジオナト)鉄(III)、トリス(2,4−ヘプタンジオナト)鉄(III)、トリス(3,5−ヘプタンジオナト)鉄(III)などが好適であり、これらの1種以上を用いることができる。また、そのなかでも、分子量が最も低く、かつ安価な原料であるトリス(2,4−ペンタンジオナト)鉄(III)が特に好適である。
また、水溶液(x)中において、アセチルアセトン及びその誘導体は分子内に有する2つの酸素原子部位でFe原子をキャップする形で結合し、形成されたFe錯体は反応性の低い炭素骨格が外側になることから、分子間重合反応を生じにくく、このためスラッジ発生等の観点から浴管理も比較的容易である。
水溶液(x)にFe錯体を含有させるには、Fe錯体を直接水溶液中に溶解させてもよいし、配位子とFe化合物を水中で混合してFe錯体を形成させてもよい。
The acetylacetone or acetylacetone derivative contained in the Fe complex contained in the aqueous solution (x) as a ligand is a compound having a 2,4-pentandion skeleton in the molecule and behaves as a bidentate ligand with respect to a metal ion. , Forming a very stable metal complex. The type of Fe complex using acetylacetone or an acetylacetone derivative as a ligand used in the present invention is not particularly limited as long as it can be industrially used, but from the viewpoint of water solubility and reduction of impurities in the subsequent annealing step. Those with a relatively low molecular weight are preferable, for example, tris (2,4-pentandionato) iron (III), tris (2,4-hexanedionat) iron (III), tris (2,4-heptandionat) iron. (III), tris (3,5-heptandionato) iron (III) and the like are suitable, and one or more of these can be used. Among them, tris (2,4-pentanedionato) iron (III), which has the lowest molecular weight and is an inexpensive raw material, is particularly preferable.
Further, in the aqueous solution (x), acetylacetone and its derivative are bonded in the form of capping Fe atoms at the two oxygen atom sites in the molecule, and the formed Fe complex has a low-reactivity carbon skeleton on the outside. Therefore, the intermolecular polymerization reaction is unlikely to occur, and therefore, bath management is relatively easy from the viewpoint of sludge generation and the like.
In order to contain the Fe complex in the aqueous solution (x), the Fe complex may be dissolved directly in the aqueous solution, or the ligand and the Fe compound may be mixed in water to form the Fe complex.

上述したように、鋼板表面に付着した液膜からゲル状皮膜を経て均質かつ均一な皮膜(Fe酸化物皮膜)を形成させるには、水溶液の添加成分と濃度が重要であり、このため本発明では、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液(x)を用いる。なお、Fe錯体のFe換算での質量%とは、Fe錯体に含まれるFeのみの質量%のことである。
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体のFe換算での濃度が0.10質量%未満では、加熱過程で形成されるFe酸化物量が不十分となり、めっき後の良好な表面外観が得られない。また、以上の観点から、より好ましいFe錯体の濃度(Fe換算)は1.0質量%以上である。
ここで、水溶液(x)でのFe錯体の濃度(Fe換算)は、ICP質量分析法により測定されたものである。
As described above, in order to form a homogeneous and uniform film (Fe oxide film) from the liquid film adhering to the surface of the steel plate through the gel-like film, the added components and concentration of the aqueous solution are important, and therefore the present invention Then, an aqueous solution (x) containing an Fe complex having an acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.10% by mass or more, nitric acid of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe. Is used. The mass% of the Fe complex in terms of Fe is the mass% of only Fe contained in the Fe complex.
If the concentration of Fe complex having acetylacetone or an acetylacetone derivative as a ligand in terms of Fe is less than 0.10% by mass, the amount of Fe oxide formed in the heating process becomes insufficient, and a good surface appearance after plating can be obtained. I can't. From the above viewpoint, the more preferable concentration of the Fe complex (Fe conversion) is 1.0% by mass or more.
Here, the concentration (Fe conversion) of the Fe complex in the aqueous solution (x) is measured by ICP mass spectrometry.

酢酸は、本発明の水溶液(x)において溶媒の一部であり、その濃度が10質量%未満では、上述した液膜のゲル化が安定的に生じず、加熱過程において形成するFe酸化物皮膜が不均一となり、めっき後の良好な表面外観が得られない場合がある。また、以上の観点から、より好ましい酢酸の濃度は20質量%以上である。
硝酸は、本発明の水溶液(x)において液膜がゲル化する際の重合反応の触媒的役割を果たす成分であり、その濃度が0.5質量%未満では、ゲル化が安定的に生じず、めっき後の良好な表面外観が得られない場合がある。また、以上の観点から、より好ましい硝酸の濃度は5.0質量%以上である。
一方、各成分の上限は特になく、コスト的な不利を生じないように効果が飽和する濃度を上限とすればよいが、一般的には、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体はFe換算での濃度が20質量%程度で、硝酸は20質量%程度で、それぞれ効果が飽和するので、これらを上限としてもよい。また、酢酸は主に溶媒としての役目をするものであることから、単独での上限はなく、Fe錯体及び硝酸の下限濃度によって上限が決まる。
Acetic acid is a part of the solvent in the aqueous solution (x) of the present invention, and if the concentration is less than 10% by mass, the above-mentioned liquid film gelation does not occur stably, and the Fe oxide film formed in the heating process is formed. May become non-uniform and a good surface appearance after plating may not be obtained. From the above viewpoint, the more preferable concentration of acetic acid is 20% by mass or more.
Nitric acid is a component that plays a catalytic role in the polymerization reaction when the liquid film gels in the aqueous solution (x) of the present invention, and if the concentration is less than 0.5% by mass, gelation does not occur stably. , A good surface appearance after plating may not be obtained. From the above viewpoint, the more preferable concentration of nitric acid is 5.0% by mass or more.
On the other hand, there is no particular upper limit for each component, and the concentration at which the effect is saturated may be set as the upper limit so as not to cause a cost disadvantage, but in general, an Fe complex having acetylacetone or an acetylacetone derivative as a ligand is used. The concentration in terms of Fe is about 20% by mass, and nitric acid is about 20% by mass, and the effects are saturated. Therefore, these may be the upper limits. Further, since acetic acid mainly serves as a solvent, there is no upper limit by itself, and the upper limit is determined by the lower limit concentration of the Fe complex and nitric acid.

また、溶液処理工程(A)で付着した水溶液(x)による鋼板表面のFe付着量は0.1〜10.0g/mとすることが好ましい。このようなFe付着量とすることにより、特に、溶融亜鉛めっき後に合金化処理を施す場合、一般に合金化遅延元素として知られるSi等の含有量が多い鋼板についても、めっき皮膜を適正なFe濃度とするのに必要な合金化温度を低くすることが可能である。水溶液(x)による鋼板表面のFe付着量が0.1g/m未満では、合金化温度を十分に低減できない場合がある。一方、水溶液(x)による鋼板表面のFe付着量が10.0g/mを超えると、溶液処理時の液膜厚制御が難しく、また焼鈍工程(B)の加熱初期などにおいて形成されるFe酸化物皮膜の付着量が過剰になり、焼鈍工程(B)後に未還元のFe酸化物が残存するおそれがある。また、以上の観点から、より好ましいFe付着量は0.3〜5.0g/mである。
なお、このFe付着量は、水溶液(x)中のFe錯体濃度、鋼板表面での水溶液(x)の付着量を変えることにより調整することができる。
Further, the amount of Fe adhered to the surface of the steel sheet by the aqueous solution (x) adhered in the solution treatment step (A) is preferably 0.1 to 10.0 g / m 2 . By setting such an Fe adhesion amount, especially when alloying treatment is performed after hot-dip galvanizing, even for a steel sheet having a large content of Si or the like, which is generally known as an alloying delay element, the plating film has an appropriate Fe concentration. It is possible to lower the alloying temperature required for this. If the amount of Fe adhered to the surface of the steel sheet by the aqueous solution (x) is less than 0.1 g / m 2 , the alloying temperature may not be sufficiently reduced. On the other hand, if the amount of Fe adhered to the surface of the steel sheet by the aqueous solution (x) exceeds 10.0 g / m 2 , it is difficult to control the liquid film thickness during the solution treatment, and the Fe formed at the initial stage of heating in the annealing step (B). The amount of the oxide film adhered may become excessive, and unreduced Fe oxide may remain after the annealing step (B). From the above viewpoint, the more preferable Fe adhesion amount is 0.3 to 5.0 g / m 2 .
The Fe adhesion amount can be adjusted by changing the Fe complex concentration in the aqueous solution (x) and the adhesion amount of the aqueous solution (x) on the surface of the steel sheet.

上述した液膜のゲル化の有無が加熱処理時に鋼板表面に形成されるFe酸化物皮膜の面内均一性に及ぼす影響について調べた。この試験では、表1に示す成分組成の鋼板に対して、表2に示す条件(a)〜(d)で溶液処理を行った。なお、使用した水溶液の組成は、表2に示される成分以外の残部は水である。
表2に示す条件(a)〜(d)のうち、(b)、(d)は本発明条件を満足する水溶液で溶液処理を行った試験例、(a)、(c)は硝酸を含まない水溶液(本発明条件を満足しない水溶液)で溶液処理を行った試験例であり、この(a)、(c)では、水溶液が硝酸を含まないため加熱初期における液膜のゲル化は生じない。また、(a)〜(b)のうち、(a)、(b)は溶液処理後の加熱処理を鋼板温度が400℃になった時点で停止、急冷したものであり、(c)、(d)は鋼板温度が800℃になった時点で加熱を停止、急冷したものである。
The effect of the presence or absence of gelation of the liquid film described above on the in-plane uniformity of the Fe oxide film formed on the surface of the steel sheet during the heat treatment was investigated. In this test, the steel sheet having the composition shown in Table 1 was subjected to solution treatment under the conditions (a) to (d) shown in Table 2. As for the composition of the aqueous solution used, the balance other than the components shown in Table 2 is water.
Of the conditions (a) to (d) shown in Table 2, (b) and (d) are test examples obtained by solution treatment with an aqueous solution satisfying the conditions of the present invention, and (a) and (c) contain nitric acid. This is a test example in which the solution was treated with an aqueous solution (an aqueous solution that does not satisfy the conditions of the present invention). In (a) and (c), since the aqueous solution does not contain nitric acid, gelation of the liquid film does not occur at the initial stage of heating. .. Of (a) to (b), (a) and (b) are those in which the heat treatment after the solution treatment is stopped and rapidly cooled when the temperature of the steel sheet reaches 400 ° C., and (c), ( In d), heating was stopped and rapidly cooled when the temperature of the steel sheet reached 800 ° C.

表2の(a)〜(d)による処理後の鋼板表面外観の拡大写真を図1(各写真の(a)〜(d)は表2の(a)〜(d)と対応している)に示す。図1に示されるように、溶液処理後の加熱処理を400℃で行った(a)、(b)では、鋼板表面に黒色のFe酸化物皮膜が形成されている。一方、溶液処理後の加熱処理を800℃で行った(c)、(d)では、400℃の加熱で形成したFe酸化物皮膜がより高温まで加熱されたことで還元され、白色を呈している。ここで、溶液処理用の水溶液が硝酸を含まないために、加熱初期における液膜のゲル化が生じない(a)と、溶液処理用の水溶液が本発明条件を満足するために加熱初期における液膜のゲル化が生じる(b)の外観を比較すると、後者の方がより均一な外観となっている。これは、(b)のFe酸化物皮膜は、(a)のFe酸化物皮膜に較べて付着量の面内分布が格段に均一であるためである。このため、(a)、(b)のFe酸化物皮膜が還元された、めっき処理直前の表面状態に相当する(c)、(d)の外観は、(a)、(b)に対応する優劣関係となっている。外観が劣る(c)では黒点状模様が散在しており、これはFe酸化物の付着量が面内不均一であるため、局所的に高付着量となった部分が還元されずに残ったものと考えられ、めっき処理した場合に不めっき等の外観欠陥の原因となる。 An enlarged photograph of the appearance of the steel sheet surface after the treatment according to (a) to (d) in Table 2 is shown in FIG. 1 ((a) to (d) in each photograph correspond to (a) to (d) in Table 2. ). As shown in FIG. 1, in (a) and (b) where the heat treatment after the solution treatment was performed at 400 ° C., a black Fe oxide film was formed on the surface of the steel sheet. On the other hand, in (c) and (d), in which the heat treatment after the solution treatment was performed at 800 ° C., the Fe oxide film formed by heating at 400 ° C. was reduced by heating to a higher temperature and became white. There is. Here, since the aqueous solution for solution treatment does not contain nitric acid, gelation of the liquid film does not occur in the initial stage of heating (a), and the aqueous solution for solution treatment does not contain the liquid in the initial stage of heating in order to satisfy the conditions of the present invention. Comparing the appearance of (b) where the film gels, the latter has a more uniform appearance. This is because the Fe oxide film of (b) has a much more uniform in-plane distribution of the adhesion amount than the Fe oxide film of (a). Therefore, the appearances of (c) and (d) corresponding to the surface state immediately before the plating treatment in which the Fe oxide films of (a) and (b) are reduced correspond to (a) and (b). There is a superiority or inferiority relationship. In (c), where the appearance is inferior, black spot-like patterns are scattered, and because the amount of Fe oxide adhered is non-uniform in the plane, the locally high adhered portion remains without being reduced. It is considered to be a cause of appearance defects such as non-plating when plating is performed.

以上のように、本発明条件を満足する水溶液(x)で溶液処理を行い、加熱初期における液膜のゲル化を経てFe酸化物皮膜を形成させることによって、Fe酸化物皮膜の付着量の面内均一性が改善し、優れためっき外観を得ることが可能となることが判る。
水溶液(x)を鋼板表面に付着させる方法は特に限定されず、例えば、バーコータ―、スプレー、浸漬、スピンコート、ロールコーターなどの方法を用いることができる。
As described above, the solution treatment is performed with an aqueous solution (x) satisfying the conditions of the present invention, and the Fe oxide film is formed through gelation of the liquid film at the initial stage of heating. It can be seen that the internal uniformity is improved and an excellent plated appearance can be obtained.
The method of adhering the aqueous solution (x) to the surface of the steel sheet is not particularly limited, and for example, a method such as a bar coater, a spray, a dip, a spin coat, or a roll coater can be used.

本発明では、上述したように鋼板表面に付着した水溶液(x)の液膜は、ゲル状皮膜を経て皮膜(Fe酸化物皮膜)となる。このような皮膜化は室温でも生じるが、必要に応じて加熱することで短時間での皮膜化が可能であり、特に本発明では、溶液処理工程(A)に続く焼鈍工程(B)での加熱初期の温度を利用して皮膜化が可能である。すなわち、溶液処理工程(A)を経て表面に水溶液(x)(液膜)が付着した鋼板を、そのまま焼鈍工程(B)に導入することにより、焼鈍工程(B)での加熱初期の比較的低温域(例えば400℃程度)において液膜をゲル状皮膜を経て皮膜(Fe酸化物皮膜)化することができる。したがって、焼鈍工程(B)前に液膜の皮膜化を促進するための加熱処理を行うことは必須ではなく、適宜必要に応じて行えばよい。そのような加熱処理を行う場合、焼鈍工程(B)前に皮膜化を完了させてもよいし、皮膜化する途中の状態(例えば、ゲル状皮膜の状態)まで加熱し、その後は焼鈍工程(B)で加熱されることで皮膜化が完了するようにしてもよい。すなわち、その場合には、溶液処理工程(A)を経て表面に水溶液(x)が付着した鋼板を適当な加熱手段で加熱処理した後、焼鈍工程(B)に導入する。
したがって、例えば、連続溶融亜鉛めっきラインにおいて溶液処理工程(A)、焼鈍工程(B)、めっき処理工程(C)が連続して行われる場合には、溶液処理工程(A)を経て表面に水溶液(x)(液膜)が付着した鋼板を、そのまま焼鈍工程(B)に導入してもよいし、溶液処理工程(A)を経て表面に水溶液(x)が付着した鋼板を適当な加熱手段で加熱処理した後、焼鈍工程(B)に導入してもよい。
In the present invention, the liquid film of the aqueous solution (x) adhering to the surface of the steel sheet as described above becomes a film (Fe oxide film) via a gel-like film. Such film formation occurs even at room temperature, but it is possible to form a film in a short time by heating as necessary. In particular, in the present invention, in the annealing step (B) following the solution treatment step (A). Filming is possible using the temperature at the initial stage of heating. That is, by introducing the steel sheet to which the aqueous solution (x) (liquid film) is attached to the surface through the solution treatment step (A) as it is into the annealing step (B), it is relatively early in the heating in the annealing step (B). In a low temperature range (for example, about 400 ° C.), the liquid film can be formed into a film (Fe oxide film) via a gel-like film. Therefore, it is not essential to perform the heat treatment for promoting the film formation of the liquid film before the annealing step (B), and it may be performed as needed. When performing such a heat treatment, the film formation may be completed before the annealing step (B), or the film may be heated to a state in the middle of filming (for example, a gel-like film state), and then the annealing step (for example, a gel-like film state) is performed. The film formation may be completed by heating in B). That is, in that case, the steel sheet to which the aqueous solution (x) is attached to the surface is heat-treated by an appropriate heating means through the solution treatment step (A), and then introduced into the annealing step (B).
Therefore, for example, when the solution treatment step (A), the annealing step (B), and the plating treatment step (C) are continuously performed in the continuous hot-dip galvanizing line, the surface is subjected to the solution treatment step (A). The steel sheet to which the (x) (liquid film) is attached may be directly introduced into the annealing step (B), or the steel sheet to which the aqueous solution (x) is attached to the surface through the solution treatment step (A) may be appropriately heated. After the heat treatment in, it may be introduced into the annealing step (B).

・焼鈍工程(B)
焼鈍工程(B)では、溶液処理工程(A)を経た鋼板を、H濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理し、その後、所定の温度まで冷却する。この焼鈍工程(B)では、上述したように加熱初期の比較的低温域(例えば400℃程度)において水溶液(x)の液膜を皮膜化し、鋼板表面にFe酸化物皮膜を形成させることができるが、続く最高到達温度までの加熱においてFe酸化物皮膜を還元して還元鉄とする。この焼鈍工程(B)では、鋼板表面に均質かつ均一な厚さで形成されたFe酸化物皮膜が最終的に還元されるので、未還元のFe酸化物が残存することなく、鋼板表面全体が還元鉄で均一に覆われた状態となる。
還元性雰囲気中のH濃度は、Fe酸化物を十分に還元するために、0.05vol%以上、好ましくは1.0vol%以上とする。H濃度の上限は特にないが、H濃度が必要以上に高いとコストアップにつながるため、40.0vol%程度を上限とすることが好ましい。還元性雰囲気の残部ガスは、通常、N、HO及び不可避的不純物である。
・ Annealing process (B)
In the annealing step (B), the steel sheet after the solution treatment step (A), H 2 concentration is 0.05 vol% or more, the dew point is heated at 700 ° C. or higher in a reducing atmosphere of less than 10 ° C., then, predetermined Cool to the temperature of. In this annealing step (B), as described above, the liquid film of the aqueous solution (x) can be filmed in a relatively low temperature region (for example, about 400 ° C.) at the initial stage of heating to form a Fe oxide film on the surface of the steel sheet. However, the Fe oxide film is reduced to reduced iron by subsequent heating to the maximum temperature reached. In this annealing step (B), the Fe oxide film formed on the surface of the steel sheet with a uniform and uniform thickness is finally reduced, so that the entire surface of the steel sheet is covered without leaving unreduced Fe oxide. It will be uniformly covered with reduced iron.
The H 2 concentration in the reducing atmosphere is 0.05 vol% or more, preferably 1.0 vol% or more in order to sufficiently reduce the Fe oxide. There is no particular upper limit of the H 2 concentration, but if the H 2 concentration is higher than necessary, the cost will increase, so it is preferable to set the upper limit to about 40.0 vol%. The residual gas in the reducing atmosphere is usually N 2 , H 2 O and unavoidable impurities.

還元性雰囲気の露点は10℃未満、好ましくは0℃以下とする。露点が10℃以上ではFeの酸化が生じる懸念がある。なお、露点の下限は特にないが、工業的に−60℃未満の露点は実施が難しいことから、−60℃程度が実質的な下限となる。
焼鈍温度(鋼板温度)は700℃以上、好ましくは750℃以上とする。焼鈍温度が700℃未満では、Fe酸化物皮膜の還元が遅くなり、完全に還元鉄とするのに長時間を要し、生産性を損なう。また、Fe酸化物皮膜の還元が不十分となって、めっき後の外観不良やめっき密着性劣化の原因となりやすい。焼鈍温度(鋼板温度)の上限は特にないが、950℃を超えると加熱コストが上昇するため、950℃以下が好ましく、900℃以下がより好ましい。なお、焼鈍工程(B)において、鋼板を上記焼鈍温度に保持する場合、鋼板を一定の温度に保った状態で保持してもよいし、上記温度域を外れない限りは、鋼板の温度を変化させながら保持してもよい。また、保持時間は鋼板表面が十分に還元され、かつ目的とする材質が得られるように設定すれば特に制限されない。
焼鈍工程(B)後の鋼板の冷却条件は特に制限はなく、材質設計等の必要に応じて冷却速度や冷却停止温度を決めればよいが、例えば、続くめっき処理工程(C)において溶融亜鉛めっきを行う場合、めっき浴に浸漬する直前の板温が浴温近傍(例えば470〜500℃程度)となるように管理するのが、浴管理やめっき濡れ性の安定化の観点から好ましい。
The dew point of the reducing atmosphere is less than 10 ° C., preferably 0 ° C. or lower. If the dew point is 10 ° C. or higher, there is a concern that Fe may be oxidized. Although there is no particular lower limit for the dew point, it is industrially difficult to carry out a dew point below -60 ° C, so about -60 ° C is a practical lower limit.
The annealing temperature (steel plate temperature) is 700 ° C. or higher, preferably 750 ° C. or higher. If the annealing temperature is less than 700 ° C., the reduction of the Fe oxide film is delayed, and it takes a long time to completely convert the reduced iron, which impairs productivity. In addition, the reduction of the Fe oxide film becomes insufficient, which tends to cause poor appearance after plating and deterioration of plating adhesion. There is no particular upper limit to the annealing temperature (steel plate temperature), but if it exceeds 950 ° C, the heating cost increases, so that it is preferably 950 ° C or lower, more preferably 900 ° C or lower. When the steel sheet is held at the annealing temperature in the annealing step (B), the steel sheet may be held at a constant temperature, or the temperature of the steel sheet is changed as long as the temperature does not deviate from the above temperature range. You may hold it while letting it. Further, the holding time is not particularly limited as long as the surface of the steel sheet is sufficiently reduced and the desired material can be obtained.
The cooling conditions of the steel sheet after the annealing step (B) are not particularly limited, and the cooling rate and the cooling stop temperature may be determined according to the material design and other needs. For example, hot dip galvanizing in the subsequent plating process (C). From the viewpoint of bath management and stabilization of plating wettability, it is preferable to control the plate temperature immediately before immersion in the plating bath so as to be close to the bath temperature (for example, about 470 to 500 ° C.).

・めっき処理工程(C)
このめっき処理工程(C)では、焼鈍工程(B)で焼鈍された鋼板にめっき処理を施す。鋼板が溶液処理工程(A)と焼鈍工程(B)を経ることにより、鋼板表面でのSi、Mnの選択酸化が抑制され、かつ鋼板表面が活性な還元鉄で均一に覆われているため、酸化物に起因しためっき密着性の低下が抑えられる。
めっき処理工程(C)で行うめっきの種類は特に限定されず、溶融めっき、電気めっき、無電解めっき、気相めっきなどのいずれでもよく、また、亜鉛又は亜鉛合金めっき、錫又は錫合金めっき、アルミニウム又はアルミニウム合金めっきなど、めっき成分(金属又は合金)の種類も問わない。
-Plating process (C)
In this plating process (C), the steel sheet annealed in the annealing step (B) is plated. Since the steel sheet undergoes the solution treatment step (A) and the annealing step (B), selective oxidation of Si and Mn on the surface of the steel sheet is suppressed, and the surface of the steel sheet is uniformly covered with active reduced iron. Deterioration of plating adhesion due to oxide is suppressed.
The type of plating performed in the plating treatment step (C) is not particularly limited, and may be any of hot-dip plating, electroplating, electroless plating, vapor phase plating, etc., and zinc or zinc alloy plating, tin or tin alloy plating, The type of plating component (metal or alloy) such as aluminum or aluminum alloy plating does not matter.

めっき処理のなかでも、各種用途の鋼板に広く適用され、自動車部材用途の鋼板にも好適なめっきは溶融亜鉛めっき(但し、溶融亜鉛めっき後に合金化処理する場合を含む。)であるので、以下、めっき処理工程(C)で溶融亜鉛めっきを行う場合について説明する。
焼鈍工程(B)で焼鈍後、所定温度まで冷却された鋼板を溶融亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施す。上述したように鋼板が溶液処理工程(A)と焼鈍工程(B)を経ることによって鋼板表面でのSi、Mnの選択酸化が抑制され、かつ鋼板表面が活性な還元鉄で均一に覆われているため、溶融亜鉛の良好な濡れ性が得られ、酸化物に起因しためっき密着性の低下が抑えられる。
また、必要に応じて、溶融亜鉛めっき後に合金化処理してもよい。
溶融亜鉛めっき条件に特別な制限はないが、溶融亜鉛めっき浴の浴温は440〜550℃程度が好ましい。溶融亜鉛めっき浴の浴温が440℃未満では、めっき浴内における温度変動により低温部でZnの凝固が生じ、溶融めっき浴として不適切になる場合がある。一方、浴温が550℃を超えると浴の蒸発が激しく、気化したZnが炉内へ付着し、操業が困難になる場合があり、また、めっき時に合金化が進行して過合金となる場合がある。
Among the plating treatments, hot-dip galvanizing (including the case of alloying after hot-dip galvanizing) is widely applied to steel sheets for various purposes and is also suitable for steel sheets for automobile parts. , The case where hot-dip galvanizing is performed in the plating treatment step (C) will be described.
After annealing in the annealing step (B), the steel sheet cooled to a predetermined temperature is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing treatment. As described above, when the steel sheet undergoes the solution treatment step (A) and the annealing step (B), selective oxidation of Si and Mn on the surface of the steel sheet is suppressed, and the surface of the steel sheet is uniformly covered with active reduced iron. Therefore, good wettability of hot-dip zinc can be obtained, and deterioration of plating adhesion due to oxides can be suppressed.
Further, if necessary, alloying treatment may be performed after hot dip galvanizing.
The hot-dip galvanizing conditions are not particularly limited, but the bath temperature of the hot-dip galvanizing bath is preferably about 440 to 550 ° C. If the bath temperature of the hot-dip galvanizing bath is less than 440 ° C., Zn solidifies in the low temperature portion due to temperature fluctuations in the plating bath, which may make the hot-dip galvanizing bath unsuitable. On the other hand, if the bath temperature exceeds 550 ° C, the bath evaporates violently, vaporized Zn may adhere to the inside of the furnace, making operation difficult, and alloying may proceed during plating to result in overalloying. There is.

めっき処理後に合金化処理を行わない場合には、溶融亜鉛めっき浴の浴中Al濃度は、0.13〜0.24質量%程度とすることが好ましい。浴中Al濃度が0.13質量%未満では、Fe−Zn合金化が進んでめっき密着性が悪化する場合があり、一方、0.24質量%を超えるとAl酸化物による欠陥が発生する場合がある。
また、めっき処理後に合金化処理を行う場合には、溶融亜鉛めっき浴の浴中Al濃度は、0.10〜0.20質量%程度とすることが好ましい。浴中Al濃度が0.10質量%未満では、めっき皮膜の合金化によりΓ相が多量に生成してめっき密着性が劣化する場合がある。一方、0.20質量%を超えるとFe−Zn合金化が進行しない場合がある。
When the alloying treatment is not performed after the plating treatment, the Al concentration in the hot-dip galvanizing bath is preferably about 0.13 to 0.24% by mass. If the Al concentration in the bath is less than 0.13% by mass, Fe-Zn alloying may proceed and the plating adhesion may deteriorate, while if it exceeds 0.24% by mass, defects due to Al oxide may occur. There is.
When the alloying treatment is performed after the plating treatment, the Al concentration in the hot-dip galvanizing bath is preferably about 0.10 to 0.20% by mass. If the Al concentration in the bath is less than 0.10% by mass, a large amount of Γ phase may be generated due to alloying of the plating film, and the plating adhesion may deteriorate. On the other hand, if it exceeds 0.20% by mass, Fe—Zn alloying may not proceed.

溶融亜鉛めっき後に合金化処理する場合、合金化処理条件に特別な制限はないが、合金化処理温度は460℃超600℃未満が好ましい。合金化処理温度が460℃以下では合金化の進行が遅く、十分に合金化させるまでに長時間を要してしまい、効率的でない。一方、600℃以上では、合金化が進行し過ぎてしまい、地鉄界面に硬くて脆いZn−Fe合金層が過剰に生成してめっき密着性を劣化させる場合がある。
また、合金化処理時に母材鋼板の材質が劣化するような場合は、必要に応じて処理温度を低めにするのがよく、例えば460℃超560℃未満とする。
なお、本発明の製造方法は、上述したように全部の工程を連続設備(例えば、連続溶融亜鉛めっきライン)で実施してもよいし、各工程を別々の独立した設備でそれぞれ単独で実施し、或いは一部の工程を独立した設備で単独で実施してもよい。
When the alloying treatment is performed after hot-dip galvanizing, the alloying treatment conditions are not particularly limited, but the alloying treatment temperature is preferably more than 460 ° C and less than 600 ° C. When the alloying treatment temperature is 460 ° C. or lower, the progress of alloying is slow, and it takes a long time to sufficiently alloy, which is not efficient. On the other hand, at 600 ° C. or higher, alloying proceeds too much, and a hard and brittle Zn—Fe alloy layer may be excessively formed at the base iron interface to deteriorate the plating adhesion.
When the material of the base steel sheet deteriorates during the alloying treatment, the treatment temperature should be lowered as necessary, for example, more than 460 ° C and less than 560 ° C.
In the manufacturing method of the present invention, as described above, all the steps may be carried out in a continuous facility (for example, a continuous hot-dip galvanizing line), or each step may be carried out independently in a separate and independent facility. Alternatively, some steps may be carried out independently in an independent facility.

次に、本発明により製造されるめっき鋼板の母材鋼板について説明する。なお、以下の説明において、各元素の含有量の単位は「質量%」であるが、便宜上「%」で示す。
本発明においてめっき(例えば、溶融亜鉛めっき)される母材鋼板は、固溶強化元素としてSi又は/及びMnを含有する鋼板であり、一般に引張強さTSが340MPa以上の高強度鋼板である。また、そのなかでも、Si:0.10%以上又は/及びMn:0.50%以上を含有する鋼板が焼鈍時にSi、Mnの選択酸化を生じやすいので、そのような成分組成の鋼板を対象とすることが好ましい。
Next, the base steel sheet of the plated steel sheet manufactured by the present invention will be described. In the following description, the unit of the content of each element is "mass%", but it is indicated by "%" for convenience.
The base steel sheet to be plated (for example, hot dip galvanized) in the present invention is a steel sheet containing Si or / and Mn as a solid solution reinforcing element, and is generally a high-strength steel sheet having a tensile strength TS of 340 MPa or more. Among them, steel sheets containing Si: 0.10% or more and / and Mn: 0.50% or more are likely to cause selective oxidation of Si and Mn during annealing. Therefore, steel sheets having such a component composition are targeted. Is preferable.

また、母材鋼板のより具体的な成分組成としては、基本成分として、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有することが好ましく、さらに必要に応じて、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することができる。以下、これらの限定理由について説明する。 Further, as a more specific composition of the base material steel plate, as basic components, C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: 0.50 to 5.00. %, P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and if necessary, Ti: 0. One or more selected from 010 to 0.100%, Nb: 0.010 to 0.100%, B: 0.0001 to 0.0050%, Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0. It can contain one or more selected from 0100% or less and REM: 0.010% or less. The reasons for these limitations will be described below.

・C:0.040〜0.500%
Cはオーステナイト安定化元素であり、強度と延性の向上に有効な元素である。このような効果を得るために、C含有量は0.040%以上とすることが好ましい。一方、C含有量が0.500%を超えると、溶接性の劣化が著しく、また、過度に硬質化したマルテンサイト相によって優れた強度−伸びバランスが得られない場合がある。このためC含有量は0.500%以下とすることが好ましい。
・Si:0.10〜3.00%
Siはフェライト安定化元素であり、また、鋼の固溶強化に有効であり、強度と伸びのバランスを向上させる元素である。このような効果を得るために、Si含有量は0.10%以上とすることが好ましい。一方、Si含有量が3.00%を超えると、本発明を適用しても焼鈍中に鋼板表面でSiが酸化物を形成し、めっき時に溶融亜鉛の濡れ性を劣化させるなどにより、めっき密着性が低下するおそれがある。このためSi含有量は3.0%以下とすることが好ましい。
・ C: 0.040 to 0.500%
C is an austenite stabilizing element, which is an effective element for improving strength and ductility. In order to obtain such an effect, the C content is preferably 0.040% or more. On the other hand, if the C content exceeds 0.500%, the weldability is significantly deteriorated, and an excellent strength-elongation balance may not be obtained due to the excessively hardened martensite phase. Therefore, the C content is preferably 0.500% or less.
-Si: 0.10 to 3.00%
Si is a ferrite stabilizing element, which is effective for solid solution strengthening of steel and improves the balance between strength and elongation. In order to obtain such an effect, the Si content is preferably 0.10% or more. On the other hand, when the Si content exceeds 3.00%, even if the present invention is applied, Si forms an oxide on the surface of the steel sheet during annealing, which deteriorates the wettability of hot-dip zinc during plating, resulting in adhesion to plating. There is a risk of reduced sex. Therefore, the Si content is preferably 3.0% or less.

・Mn:0.50〜5.00%
Mnは、オーステナイト安定化元素であり、焼鈍板の強度確保に有効な元素である。この強度確保のためには、Mn含有量は0.50%以上とすることが好ましい。ただし、Mn含有量が5.00%を超えると、本発明を適用しても焼鈍中に鋼板表面で多量の酸化物を形成し、めっき時に溶融亜鉛の濡れ性を劣化させるなどにより、めっき密着性が低下するおそれがある。このためMn含有量は5.00%以下とすることが好ましい。
・P:0.100%以下
Pは、鋼の強化に有効な元素であるが、含有量が多すぎると粒界偏析により脆化を引き起こし、耐衝撃性を劣化させるおそれがあり、また、溶融亜鉛めっき後に合金化処理を施す場合、合金化反応を遅延させる場合がある。このためP含有量は0.100%以下とすることが好ましい。なお、鋼の強化の観点からは、P含有量は0.001%以上であることが好ましい。
-Mn: 0.50 to 5.00%
Mn is an austenite stabilizing element and is an element effective for ensuring the strength of the annealed plate. In order to secure this strength, the Mn content is preferably 0.50% or more. However, if the Mn content exceeds 5.00%, even if the present invention is applied, a large amount of oxide is formed on the surface of the steel sheet during annealing, and the wettability of hot-dip zinc is deteriorated during plating. There is a risk of reduced sex. Therefore, the Mn content is preferably 5.00% or less.
-P: 0.100% or less P is an element effective for strengthening steel, but if the content is too large, it may cause embrittlement due to grain boundary segregation, which may deteriorate the impact resistance, and melt. When the alloying treatment is performed after galvanizing, the alloying reaction may be delayed. Therefore, the P content is preferably 0.100% or less. From the viewpoint of strengthening steel, the P content is preferably 0.001% or more.

・S:0.0100%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。このため、S含有量は極力低い方がよく、0.0100%以下とすることが好ましい。
・Al:0.100%以下
Alの過剰な添加は、酸化物系介在物の増加による表面性状や成形性の劣化を招き、また、コスト高にもつながる。このためAl含有量は0.100%以下とすることが好ましく、0.050%以下とすることがより好ましい。
・N:0.0100%以下
Nは、鋼の耐時効性を劣化させる元素であるので、N含有量は少ないほど好ましく、0.0100%以下とすることが好ましい。
-S: 0.0100% or less S becomes an inclusion such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, the S content should be as low as possible, preferably 0.0100% or less.
-Al: 0.100% or less Excessive addition of Al causes deterioration of surface properties and moldability due to an increase in oxide-based inclusions, and also leads to high cost. Therefore, the Al content is preferably 0.100% or less, and more preferably 0.050% or less.
-N: 0.0100% or less N is an element that deteriorates the aging resistance of steel. Therefore, the smaller the N content, the more preferably 0.0100% or less.

・Ti:0.010〜0.100%
Tiは鋼板中でCやNと微細炭化物や微細窒化物を形成することにより、鋼板の強度向上に寄与する元素である。この効果を得るためには、Ti含有量は0.010%以上とすることが好ましい。一方、Ti含有量が0.100%を超えるとこの効果が飽和するので、Ti含有量は0.100%以下とすることが好ましい。
・Nb:0.010〜0.100%
Nbは固溶強化や析出強化により強度向上に寄与する元素である。この効果を得るためには、Nb含有量は0.010%以上とすることが好ましい。一方、Nbの含有量が0.100%を超えると鋼板の延性を低下させ、加工性が劣化する場合があるので、Nb含有量は0.100%以下とすることが好ましい。
・B:0.0001〜0.0050%
Bは焼入れ性を高め、鋼板の強度向上に寄与する元素である。この効果を得るためには、B含有量は0.0001%以上とすることが好ましい。一方、Bを過剰に含有すると延性の低下を招き、加工性が劣化する場合がある。また、Bの過剰な含有はコストアップの原因ともなる。このためB含有量は0.0050%以下とすることが好ましい。
-Ti: 0.010 to 0.100%
Ti is an element that contributes to improving the strength of the steel sheet by forming fine carbides and fine nitrides with C and N in the steel sheet. In order to obtain this effect, the Ti content is preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.100%, this effect is saturated, so the Ti content is preferably 0.100% or less.
・ Nb: 0.010 to 0.100%
Nb is an element that contributes to strength improvement by strengthening solid solution and strengthening precipitation. In order to obtain this effect, the Nb content is preferably 0.010% or more. On the other hand, if the Nb content exceeds 0.100%, the ductility of the steel sheet may be lowered and the workability may be deteriorated. Therefore, the Nb content is preferably 0.100% or less.
-B: 0.0001 to 0.0050%
B is an element that enhances hardenability and contributes to improving the strength of the steel sheet. In order to obtain this effect, the B content is preferably 0.0001% or more. On the other hand, if B is excessively contained, the ductility may be lowered and the workability may be deteriorated. In addition, the excessive content of B also causes an increase in cost. Therefore, the B content is preferably 0.0050% or less.

・Mo:0.01〜0.50%
Moは、オーステナイト生成元素であり、焼鈍板の強度確保に有効な元素である。強度確保の観点から、Mo含有量は0.01%以上とすることが好ましい。一方、Moは合金コストが高いため、添加量が多いとコストアップの要因になるので、Mo含有量は0.50%以下とすることが好ましい。
・Cr:1.00%以下
Crは、オーステナイト生成元素であり、焼鈍板の強度確保に有効な元素であるが、添加量が多すぎると焼鈍中に鋼板表面で酸化物を形成し、めっき外観を劣化させる場合がある。このためCr含有量は1.00%以下とすることが好ましい。
・ Mo: 0.01 to 0.50%
Mo is an austenite-forming element and is an element effective for ensuring the strength of the annealed plate. From the viewpoint of ensuring strength, the Mo content is preferably 0.01% or more. On the other hand, since Mo has a high alloy cost, a large amount of Mo added causes an increase in cost. Therefore, the Mo content is preferably 0.50% or less.
-Cr: 1.00% or less Cr is an austenite-forming element and is an element effective for ensuring the strength of the annealed sheet. However, if the amount added is too large, an oxide is formed on the surface of the steel sheet during annealing, and the plating appearance May deteriorate. Therefore, the Cr content is preferably 1.00% or less.

・Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下
Ni、Cu、Vは鋼の強化に有効な元素であるが、過剰に添加すると著しい強度上昇による延性の低下が生じる場合があり、また、これらの元素の過剰な添加は、コストアップの要因にもなる。このため、これらの元素を添加する場合には、Ni含有量は0.50%以下、Cu含有量は1.00%以下、V含有量は0.500%以下とすることが好ましい。なお、鋼を強化するためには、Ni含有量は0.05%以上、Cu含有量は0.05%以上、V含有量は0.005%以上とすることが好ましい。
・Sb:0.10%以下、Sn:0.10%以下
SbとSnには、鋼板表面付近の窒化を抑制する作用があるが、過剰に添加しても効果が飽和する。このため、これらの元素を添加する場合には、Sb含有量は0.10%以下、Sn含有量は0.10%以下とすることが好ましい。なお、窒化の抑制のためには、Sb含有量は0.005%以上、Sn含有量は0.005%以上とすることが好ましい。
-Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% or less Ni, Cu, V are effective elements for strengthening steel, but if added excessively, ductility due to a significant increase in strength In addition, excessive addition of these elements may cause an increase in cost. Therefore, when these elements are added, it is preferable that the Ni content is 0.50% or less, the Cu content is 1.00% or less, and the V content is 0.500% or less. In order to reinforce the steel, it is preferable that the Ni content is 0.05% or more, the Cu content is 0.05% or more, and the V content is 0.005% or more.
-Sb: 0.10% or less, Sn: 0.10% or less Sb and Sn have an effect of suppressing nitriding near the surface of the steel sheet, but the effect is saturated even if they are added excessively. Therefore, when these elements are added, the Sb content is preferably 0.10% or less, and the Sn content is preferably 0.10% or less. In order to suppress nitriding, the Sb content is preferably 0.005% or more, and the Sn content is preferably 0.005% or more.

・Ca:0.0100%以下
Caには、MnSなど硫化物の形状制御によって延性を向上させる効果があるが、過剰に添加しても上記効果は飽和するため、Ca含有量は0.0100%以下とすることが好ましい。なお、上記の効果を得るためには、Ca含有量は0.0010%以上とすることが好ましい。
・REM:0.010%以下
REM(レアアースメタル:希土類金属)は、硫化物系介在物の形態を制御し、加工性の向上に寄与するが、過剰に添加すると介在物の増加を引き起こし、加工性を劣化させる場合があるので、REM含有量は0.010%以下とすることが好ましい。なお、加工性向上の効果を得るためには、REM含有量は0.001%以上とすることが好ましい。
以上述べた基本成分および任意添加成分以外の残部はFe及び不可避的不純物である。
-Ca: 0.0100% or less Ca has the effect of improving ductility by controlling the shape of sulfides such as MnS, but the above effect is saturated even if it is added in excess, so the Ca content is 0.0100%. The following is preferable. In order to obtain the above effect, the Ca content is preferably 0.0010% or more.
REM: 0.010% or less REM (rare earth metal: rare earth metal) controls the morphology of sulfide-based inclusions and contributes to the improvement of workability, but when added in excess, it causes an increase in inclusions and is processed. The REM content is preferably 0.010% or less because it may deteriorate the properties. In order to obtain the effect of improving workability, the REM content is preferably 0.001% or more.
The rest other than the basic component and the optional additive component described above are Fe and unavoidable impurities.

また、母材鋼板の製造条件にも特別な制限はない。通常、上記成分組成からなる鋼スラブを、熱間圧延工程において粗圧延及び仕上圧延した後、酸洗工程で熱延板表層のスケールを除去し、必要に応じて冷間圧延する。熱間圧延条件、酸洗条件、冷間圧延条件は特に限定されない。すなわち、母材鋼板は熱延鋼板、冷延鋼板のいずれでもよい。
本発明の溶液処理工程(A)で使用される水溶液(x)は、鋼板の焼鈍時における易酸化性元素の選択酸化を抑制するための溶液処理用の水性処理剤であり、アセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液からなる溶液処理用の水性処理剤である。この水性処理剤の好ましい組成などは、さきに水溶液(x)について述べた通りである。
In addition, there are no special restrictions on the manufacturing conditions of the base steel sheet. Usually, a steel slab having the above composition is roughly rolled and finished rolled in a hot rolling step, then the scale of the surface layer of a hot rolled plate is removed in a pickling step, and cold rolling is performed if necessary. The hot rolling conditions, pickling conditions, and cold rolling conditions are not particularly limited. That is, the base steel sheet may be either a hot-rolled steel sheet or a cold-rolled steel sheet.
The aqueous solution (x) used in the solution treatment step (A) of the present invention is an aqueous treatment agent for solution treatment for suppressing selective oxidation of easily oxidizing elements during quenching of a steel plate, and contains an acetylacetone derivative. An aqueous treatment agent for solution treatment, which comprises an aqueous solution containing an Fe complex contained in a position at a concentration of 0.10% by mass or more, nitric acid in an amount of 0.5% by mass or more, and acetic acid in an amount of 10% by mass or more in terms of Fe. .. The preferable composition of this aqueous treatment agent is as described above for the aqueous solution (x).

表3に示す成分組成を有し、残部がFe及び不可避的不純物からなる鋼を溶製してスラブとした。このスラブを1200℃まで加熱して熱間圧延し、巻き取りを実施した。この熱延板を酸洗し、圧下率50%で冷間圧延を行った。得られた冷延鋼板について、表4〜表7に示す条件にて溶液処理工程、焼鈍工程及びめっき処理工程を順次実施した。各工程は、それぞれを単独で実施する実験設備を用いて行った。
溶液処理工程では、ロールコーターにより鋼板表面に水溶液を塗布した。Fe付着量は液膜厚さ(ロールコーターのロールギャップ及びロール周速を調整することで液膜厚さを調整した)又は水溶液中のFe濃度を変えることにより調整した。なお、Fe付着量は水溶液を塗布した後、乾燥させた鋼板の蛍光X線分析により定量した。
A steel having the component composition shown in Table 3 and having the balance of Fe and unavoidable impurities was melted to form a slab. The slab was heated to 1200 ° C., hot-rolled, and wound. This hot-rolled plate was pickled and cold-rolled at a reduction ratio of 50%. The obtained cold-rolled steel sheet was subjected to a solution treatment step, an annealing step, and a plating treatment step in sequence under the conditions shown in Tables 4 to 7. Each step was carried out using an experimental facility in which each was carried out independently.
In the solution treatment step, an aqueous solution was applied to the surface of the steel sheet by a roll coater. The amount of Fe adhered was adjusted by changing the liquid film thickness (the liquid film thickness was adjusted by adjusting the roll gap and the roll peripheral speed of the roll coater) or the Fe concentration in the aqueous solution. The amount of Fe adhered was quantified by fluorescent X-ray analysis of the dried steel sheet after applying the aqueous solution.

焼鈍工程は、雰囲気調整が可能な炉において実施し、溶液処理工程で水溶液が塗布された鋼板を、そのまま液膜を有する状態で炉に入れ、焼鈍を行った。
めっき処理工程では、鋼板に溶融亜鉛めっき又は電気亜鉛めっきを施した。溶融亜鉛めっきは、浴中Al濃度が0.132質量%の溶融亜鉛めっき浴で行った。また、電気亜鉛めっきでは、ZnSO・7HOを440g/L溶解させたpH2.5の水溶液をめっき液とし、電流密度100A/dmで10秒間カソード電解処理した。
また、溶融亜鉛めっきを施した鋼板の一部には、引き続き合金化処理を施した。この合金化処理では、保持時間を20秒とし、めっき皮膜中のFe濃度が10質量%に到達する温度を合金化処理温度とした。めっき皮膜中のFe濃度は、誘導結合プラズマ発光分光分析で測定した。
The annealing step was carried out in a furnace capable of adjusting the atmosphere, and the steel sheet coated with the aqueous solution in the solution treatment step was placed in the furnace as it was with a liquid film and annealed.
In the plating process, the steel sheet was hot-dip galvanized or electrogalvanized. Hot-dip galvanizing was performed in a hot-dip galvanizing bath having an Al concentration of 0.132% by mass in the bath. Further, in the electro-galvanized, and the aqueous solution of pH2.5 to a ZnSO 4 · 7H 2 O were dissolved 440 g / L the plating solution, current density 100A / dm 2 in the cathodic electrolysis treatment 10 seconds.
In addition, a part of the hot-dip galvanized steel sheet was continuously alloyed. In this alloying treatment, the holding time was set to 20 seconds, and the temperature at which the Fe concentration in the plating film reached 10% by mass was defined as the alloying treatment temperature. The Fe concentration in the plating film was measured by inductively coupled plasma emission spectroscopy.

以上のようにして得られた溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)及び電気亜鉛めっき鋼板(EG)について、以下に示す方法で表面外観、めっき密着性を評価した。
・表面外観
不めっき、ムラ、ピンホール、クラックなどの外観不良の有無を目視にて判定し、下記基準により評価を行い、○と△を合格とした。
〇:不めっき、ムラ、ピンホール、クラックはいずれも認められない。
△:不めっき、ピンホール、クラックはいずれも認められないが、軽微なムラが認められる。
×:不めっき、明瞭なムラ、ピンホール、クラックのいずれか1種以上が認められる。
The surface appearance and plating adhesion of the hot-dip galvanized steel sheet (GI), alloyed hot-dip galvanized steel sheet (GA), and electrogalvanized steel sheet (EG) obtained as described above were evaluated by the following methods.
-Surface appearance The presence or absence of appearance defects such as non-plating, unevenness, pinholes, and cracks was visually judged, and evaluation was performed according to the following criteria, and ○ and Δ were passed.
〇: No non-plating, unevenness, pinholes, or cracks are observed.
Δ: No non-plating, pinholes, or cracks were observed, but slight unevenness was observed.
X: One or more of non-plating, clear unevenness, pinholes, and cracks are observed.

・溶融亜鉛めっき鋼板(GI)及び電気亜鉛めっき鋼板(EG)のめっき密着性評価(GI,EG密着性):ボールインパクト試験
溶融亜鉛めっき鋼板(GI)及び電気亜鉛めっき鋼板(EG)のめっき密着性の評価には、ボールインパクト試験を用い、加工部をセロハンテープ(登録商標。以下同様)剥離後、めっき層剥離の有無を目視判定することで下記基準により評価し、○及び△を合格とした。なお、本試験ではボール質量1.8kg、落下高さ100cmとした。
○:めっき層の剥離なし
△:めっき層に軽微な剥離あり
×:めっき層に軽微でない剥離あり
-Evaluation of galvanized steel sheet (GI) and electrogalvanized steel sheet (EG) plating adhesion (GI, EG adhesion): Ball impact test Plating adhesion of hot-dip galvanized steel sheet (GI) and electrogalvanized steel sheet (EG) To evaluate the properties, a ball impact test is used, and after peeling the cellophane tape (registered trademark; the same applies hereinafter), the processed part is evaluated according to the following criteria by visually determining the presence or absence of peeling of the plating layer, and ○ and △ are passed. did. In this test, the ball mass was 1.8 kg and the drop height was 100 cm.
◯: No peeling of the plating layer Δ: Slight peeling of the plating layer ×: Non-slight peeling of the plating layer

・合金化溶融亜鉛めっき鋼板(GA)のめっき密着性(GAめっき密着性):パウダリング試験
合金化溶融亜鉛めっき鋼板(GA)のめっき密着性は、耐パウダリング性により評価した。具体的には、合金化溶融亜鉛めっき鋼板にセロハンテープを貼り、テープ面について90度曲げ・曲げ戻しをし、加工部の内側(圧縮加工側)に、曲げ加工部と平行に巾24mmのセロハンテープを押し当てて引き離し、セロハンテープの長さ40mmの部分に付着した亜鉛量を蛍光X線によるZnカウント数として測定し、Znカウント数を単位長さ(1m)当たりに換算した量を、下記基準の通りランク付けした。ランク1〜2のものを良好(○)、ランク3のものを概ね良好(△)、ランク4以上のものを不良(×)とし、○と△を合格とした。
ランク1:蛍光X線カウント数が0以上〜2000未満
ランク2:蛍光X線カウント数が2000以上〜5000未満
ランク3:蛍光X線カウント数が5000以上〜8000未満
ランク4:蛍光X線カウント数が8000以上〜10000未満
ランク5:蛍光X線カウント数が10000以上
-Plating adhesion (GA plating adhesion) of alloyed hot-dip galvanized steel sheet (GA): powdering test The plating adhesion of alloyed hot-dip galvanized steel sheet (GA) was evaluated by the powdering resistance. Specifically, cellophane tape is attached to the alloyed hot-dip zinc-plated steel plate, the tape surface is bent and bent back 90 degrees, and the cellophane with a width of 24 mm is placed inside the processed portion (compression processed side) in parallel with the bent portion. The tape is pressed and pulled apart, the amount of zinc adhering to the 40 mm length part of the cellophane tape is measured as the Zn count number by fluorescent X-ray, and the amount obtained by converting the Zn count number per unit length (1 m) is as follows. Ranked according to the criteria. Ranks 1 and 2 were good (◯), rank 3 was generally good (Δ), rank 4 and above were bad (x), and ○ and Δ were passed.
Rank 1: X-ray fluorescence count is 0 or more and less than 2000 Rank 2: X-ray fluorescence count is 2000 or more and less than 5000 Rank 3: X-ray fluorescence count is 5000 or more and less than 8000 Rank 4: X-ray fluorescence count Is 8000 or more and less than 10000 Rank 5: Fluorescent X-ray count is 10000 or more

以上の結果を、製造条件とともに表4〜表7に示す。なお、使用した水溶液の組成は、表4〜表7に示される成分以外の残部は水である。
表4〜表7によれば、本発明例の高強度めっき鋼板は、いずれも表面外観及びめっき密着性に優れていることが判る。これに対して比較例の高強度めっき鋼板は、表面外観、めっき密着性のいずれか又は両方が劣っている。
The above results are shown in Tables 4 to 7 together with the manufacturing conditions. As for the composition of the aqueous solution used, the balance other than the components shown in Tables 4 to 7 is water.
According to Tables 4 to 7, it can be seen that the high-strength plated steel sheets of the examples of the present invention are all excellent in surface appearance and plating adhesion. On the other hand, the high-strength plated steel sheet of the comparative example is inferior in surface appearance, plating adhesion, or both.

Claims (11)

Si又は/及びMnを含有する鋼板を母材とする高強度めっき鋼板の製造方法であって、
鋼板の表面に、アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液を付着させる溶液処理工程と、
該溶液処理工程を経た鋼板を、H濃度が0.05vol%以上、露点が10℃未満の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程と、
該焼鈍工程を経た鋼板にめっきを施すめっき処理工程を有することを特徴とする高強度めっき鋼板の製造方法。
A method for producing a high-strength plated steel sheet using a steel sheet containing Si or / and Mn as a base material.
An aqueous solution containing acetylacetone or an Fe complex having an acetylacetone derivative as a ligand on the surface of a steel plate at a concentration of 0.10% by mass or more, nitrate of 0.5% by mass or more, and acetic acid of 10% by mass or more in terms of Fe. And the solution treatment process to attach
The steel sheet after the solution treatment step, H 2 concentration is 0.05 vol% or more, and annealing steps which dew point is heated at 700 ° C. or higher in a less than 10 ° C. reducing atmosphere,
A method for producing a high-strength plated steel sheet, which comprises a plating process for plating a steel sheet that has undergone the annealing step.
鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする請求項1に記載の高強度めっき鋼板の製造方法。 The method for producing a high-strength plated steel sheet according to claim 1, wherein the steel sheet contains Si: 0.10% or more and / and Mn: 0.50% or more in mass%. 溶液処理工程で付着した水溶液による鋼板表面のFe付着量が0.1〜10.0g/mであることを特徴とする請求項1又は2に記載の高強度めっき鋼板の製造方法。 The method for producing a high-strength plated steel sheet according to claim 1 or 2, wherein the amount of Fe adhered to the surface of the steel sheet due to the aqueous solution adhered in the solution treatment step is 0.1 to 10.0 g / m 2 . 溶液処理工程を経て表面に水溶液が付着した鋼板を、そのまま焼鈍工程に導入することを特徴とする請求項1〜3のいずれかに記載の高強度めっき鋼板の製造方法。 The method for producing a high-strength plated steel sheet according to any one of claims 1 to 3, wherein the steel sheet to which the aqueous solution is adhered to the surface through the solution treatment step is directly introduced into the annealing step. 溶液処理工程を経て表面に水溶液が付着した鋼板を加熱処理した後、焼鈍工程に導入することを特徴とする請求項1〜3のいずれかに記載の高強度めっき鋼板の製造方法。 The method for producing a high-strength galvanized steel sheet according to any one of claims 1 to 3, wherein a steel sheet having an aqueous solution adhered to its surface is heat-treated through a solution treatment step and then introduced into an annealing step. めっき処理工程は、焼鈍工程を経た鋼板に溶融亜鉛めっきを施す工程(但し、溶融亜鉛めっき後に合金化処理する場合を含む。)であることを特徴とする請求項1〜5のいずれかに記載の高強度めっき鋼板の製造方法。 The method according to any one of claims 1 to 5, wherein the plating treatment step is a step of hot-dip galvanizing a steel sheet that has undergone an annealing step (provided that the alloying treatment is performed after hot-dip galvanizing). High-strength plated steel sheet manufacturing method. 連続溶融亜鉛めっきラインにおいて、溶液処理工程、焼鈍工程、めっき処理工程が連続して行われることを特徴とする請求項6に記載の高強度めっき鋼板の製造方法。 The method for producing a high-strength plated steel sheet according to claim 6, wherein the solution treatment step, the annealing step, and the plating treatment step are continuously performed in the continuous hot-dip galvanizing line. 鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする請求項1〜7のいずれかに記載の高強度めっき鋼板の製造方法。 The weight of the steel sheet is C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: 0.50 to 5.00%, P: 0.100% or less, S: Any of claims 1 to 7, which contains 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and has a component composition in which the balance is composed of Fe and unavoidable impurities. Method for manufacturing high-strength plated steel sheet described in Crab. 鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、B:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする請求項8に記載の高強度めっき鋼板の製造方法。 Further, the steel sheet is one or more selected from Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, and B: 0.0001 to 0.0050% in mass%. The method for producing a high-strength plated steel sheet according to claim 8, wherein the high-strength plated steel sheet is contained. 鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、REM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする請求項8又は9に記載の高強度めっき鋼板の製造方法。 Further, the steel sheet is, in terms of mass%, Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500%. Hereinafter, the claim is characterized by containing one or more selected from Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, and REM: 0.010% or less. Item 8. The method for producing a high-strength galvanized steel sheet according to Item 8. 鋼板の焼鈍時における易酸化性元素の選択酸化を抑制するための溶液処理用の水性処理剤であって、
アセチルアセトン又はアセチルアセトン誘導体を配位子に有するFe錯体をFe換算で0.10質量%以上、硝酸を0.5質量%以上、酢酸を10質量%以上の濃度でそれぞれ含有する水溶液からなることを特徴とする溶液処理用の水性処理剤。
An aqueous treatment agent for solution treatment for suppressing selective oxidation of easily oxidizing elements during annealing of steel sheets.
It is characterized by being composed of an aqueous solution containing an Fe complex having acetylacetone or an acetylacetone derivative as a ligand at a concentration of 0.10% by mass or more, nitric acid in an amount of 0.5% by mass or more, and acetic acid in an amount of 10% by mass or more in terms of Fe. Aqueous treatment agent for solution treatment.
JP2018246800A 2018-02-16 2018-12-28 Manufacturing method of high-strength galvanized steel sheet Active JP6777140B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018026226 2018-02-16
JP2018026226 2018-02-16

Publications (2)

Publication Number Publication Date
JP2019143237A JP2019143237A (en) 2019-08-29
JP6777140B2 true JP6777140B2 (en) 2020-10-28

Family

ID=67770956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018246800A Active JP6777140B2 (en) 2018-02-16 2018-12-28 Manufacturing method of high-strength galvanized steel sheet

Country Status (1)

Country Link
JP (1) JP6777140B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863404B2 (en) * 2018-06-08 2021-04-21 Jfeスチール株式会社 Manufacturing method of high-strength galvanized steel sheet
JP7054067B2 (en) * 2019-03-22 2022-04-13 Jfeスチール株式会社 High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent

Also Published As

Publication number Publication date
JP2019143237A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP5720856B2 (en) Galvanized steel sheet for hot forming
CN108291283B (en) High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet
CN108603263B (en) High yield ratio type high strength galvanized steel sheet and method for producing same
JP6094649B2 (en) Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet
JPWO2016002141A1 (en) Method for producing high-strength hot-dip galvanized steel sheet
CN113272466A (en) Method for producing hot-dip galvanized steel sheet
JP6777140B2 (en) Manufacturing method of high-strength galvanized steel sheet
KR101543876B1 (en) Manufacturing Method of High Strength Zn-Al-Mg Hot-dip Galvanized Steel Sheet Having Excellent Zn Adhesion Property
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JPH08170159A (en) Hot dip galvanization of silicon added high tensile strength steel material
JP2004323944A (en) Hot dip galvanized steel sheet for quenching, its production method, and its use
JP2018090879A (en) Steel plate for hot press molding, method for producing hot press molding, and hot press molding
JP6863404B2 (en) Manufacturing method of high-strength galvanized steel sheet
JP2023553616A (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing method thereof
JP2023554307A (en) High-strength hot-dip galvanized steel sheet with excellent plating quality, steel sheet for plating, and manufacturing method thereof
CN111936649B (en) High-strength galvanized steel sheet, high-strength member, and method for producing same
JP7054067B2 (en) High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent
JP6673290B2 (en) Manufacturing method of high strength galvanized steel sheet
JPH05148604A (en) Manufacture of galvanized steel sheet
JP5481868B2 (en) Method for producing hot-dip galvanized steel sheet and method for producing alloyed hot-dip galvanized steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP3875958B2 (en) High strength and high ductility hot dip galvanized steel sheet with excellent workability and manufacturing method thereof
WO2021193038A1 (en) Raw cold-rolled steel plate with iron-based coating, method for manufacturing raw cold-rolled steel plate with iron-based coating, method for manufacturing cold-rolled steel plate with iron-based coating, method for manufacturing steel plate plated with molten zinc, and method for manufacturing steel plate plated with alloyed molten zinc
JP4507813B2 (en) Method for producing galvannealed steel sheet
JP2017066497A (en) Hot-press steel component and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6777140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250