JP6863404B2 - Manufacturing method of high-strength galvanized steel sheet - Google Patents
Manufacturing method of high-strength galvanized steel sheet Download PDFInfo
- Publication number
- JP6863404B2 JP6863404B2 JP2019094591A JP2019094591A JP6863404B2 JP 6863404 B2 JP6863404 B2 JP 6863404B2 JP 2019094591 A JP2019094591 A JP 2019094591A JP 2019094591 A JP2019094591 A JP 2019094591A JP 6863404 B2 JP6863404 B2 JP 6863404B2
- Authority
- JP
- Japan
- Prior art keywords
- steel sheet
- solution
- less
- plating
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 46
- 229910001335 Galvanized steel Inorganic materials 0.000 title claims description 25
- 239000008397 galvanized steel Substances 0.000 title claims description 25
- 229910000831 Steel Inorganic materials 0.000 claims description 176
- 239000010959 steel Substances 0.000 claims description 176
- 238000011282 treatment Methods 0.000 claims description 115
- 229910052751 metal Inorganic materials 0.000 claims description 113
- 239000002184 metal Substances 0.000 claims description 113
- 238000007747 plating Methods 0.000 claims description 98
- 238000000137 annealing Methods 0.000 claims description 89
- 150000004703 alkoxides Chemical class 0.000 claims description 61
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 60
- 238000000034 method Methods 0.000 claims description 33
- 238000005246 galvanizing Methods 0.000 claims description 29
- 150000002739 metals Chemical class 0.000 claims description 25
- 238000005275 alloying Methods 0.000 claims description 21
- 229910052742 iron Inorganic materials 0.000 claims description 21
- 229910052748 manganese Inorganic materials 0.000 claims description 21
- 230000003647 oxidation Effects 0.000 claims description 14
- 238000007254 oxidation reaction Methods 0.000 claims description 14
- 239000003795 chemical substances by application Substances 0.000 claims description 13
- 230000008569 process Effects 0.000 claims description 13
- 230000033116 oxidation-reduction process Effects 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 11
- 230000001590 oxidative effect Effects 0.000 claims description 10
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- 229910052802 copper Inorganic materials 0.000 claims description 8
- 239000000203 mixture Substances 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052720 vanadium Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 229910052758 niobium Inorganic materials 0.000 claims description 3
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 92
- 239000010410 layer Substances 0.000 description 64
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 50
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 35
- 239000010949 copper Substances 0.000 description 27
- 229910044991 metal oxide Inorganic materials 0.000 description 25
- 150000004706 metal oxides Chemical class 0.000 description 25
- 238000010438 heat treatment Methods 0.000 description 24
- 238000012360 testing method Methods 0.000 description 24
- 239000007788 liquid Substances 0.000 description 23
- 230000000694 effects Effects 0.000 description 14
- 239000011701 zinc Substances 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 9
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 8
- 229910052761 rare earth metal Inorganic materials 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 5
- 239000006104 solid solution Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 229920000298 Cellophane Polymers 0.000 description 4
- 125000004429 atom Chemical group 0.000 description 4
- 229910017053 inorganic salt Inorganic materials 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000005977 Ethylene Substances 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- BTANRVKWQNVYAZ-UHFFFAOYSA-N butan-2-ol Chemical compound CCC(C)O BTANRVKWQNVYAZ-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- -1 copper (II) tetrafluoroborate Chemical compound 0.000 description 3
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- RKDVKSZUMVYZHH-UHFFFAOYSA-N 1,4-dioxane-2,5-dione Chemical compound O=C1COC(=O)CO1 RKDVKSZUMVYZHH-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical class [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910001566 austenite Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- QTMDXZNDVAMKGV-UHFFFAOYSA-L copper(ii) bromide Chemical compound [Cu+2].[Br-].[Br-] QTMDXZNDVAMKGV-UHFFFAOYSA-L 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 2
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 2
- ZXEKIIBDNHEJCQ-UHFFFAOYSA-N isobutanol Chemical compound CC(C)CO ZXEKIIBDNHEJCQ-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005121 nitriding Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000003014 reinforcing effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910021590 Copper(II) bromide Inorganic materials 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- VKEQBMCRQDSRET-UHFFFAOYSA-N Methylone Chemical compound CNC(C)C(=O)C1=CC=C2OCOC2=C1 VKEQBMCRQDSRET-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- 229910021585 Nickel(II) bromide Inorganic materials 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 102100040160 Rabankyrin-5 Human genes 0.000 description 1
- 101710086049 Rabankyrin-5 Proteins 0.000 description 1
- 229910001128 Sn alloy Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 150000001868 cobalt Chemical class 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- XLJKHNWPARRRJB-UHFFFAOYSA-N cobalt(2+) Chemical compound [Co+2] XLJKHNWPARRRJB-UHFFFAOYSA-N 0.000 description 1
- BZRRQSJJPUGBAA-UHFFFAOYSA-L cobalt(ii) bromide Chemical compound Br[Co]Br BZRRQSJJPUGBAA-UHFFFAOYSA-L 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 229910001497 copper(II) tetrafluoroborate Inorganic materials 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- IMBKASBLAKCLEM-UHFFFAOYSA-L ferrous ammonium sulfate (anhydrous) Chemical compound [NH4+].[NH4+].[Fe+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O IMBKASBLAKCLEM-UHFFFAOYSA-L 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- ALDOUWLIYKWJTN-UHFFFAOYSA-N fluoro(dioxido)borane;nickel(2+) Chemical compound [Ni+2].[O-]B([O-])F ALDOUWLIYKWJTN-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 229910000358 iron sulfate Inorganic materials 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- BQZGVMWPHXIKEQ-UHFFFAOYSA-L iron(ii) iodide Chemical compound [Fe+2].[I-].[I-] BQZGVMWPHXIKEQ-UHFFFAOYSA-L 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 229940046892 lead acetate Drugs 0.000 description 1
- RLJMLMKIBZAXJO-UHFFFAOYSA-N lead nitrate Chemical compound [O-][N+](=O)O[Pb]O[N+]([O-])=O RLJMLMKIBZAXJO-UHFFFAOYSA-N 0.000 description 1
- HWSZZLVAJGOAAY-UHFFFAOYSA-L lead(II) chloride Chemical compound Cl[Pb]Cl HWSZZLVAJGOAAY-UHFFFAOYSA-L 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002815 nickel Chemical class 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- IPLJNQFXJUCRNH-UHFFFAOYSA-L nickel(2+);dibromide Chemical compound [Ni+2].[Br-].[Br-] IPLJNQFXJUCRNH-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- BFSQJYRFLQUZKX-UHFFFAOYSA-L nickel(ii) iodide Chemical compound I[Ni]I BFSQJYRFLQUZKX-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- FAKFSJNVVCGEEI-UHFFFAOYSA-J tin(4+);disulfate Chemical compound [Sn+4].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O FAKFSJNVVCGEEI-UHFFFAOYSA-J 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
Description
本発明は、特に自動車部材用途に好適な高強度溶融亜鉛めっき鋼板などをはじめとする高強度めっき鋼板の製造方法に関する。 The present invention relates to a method for manufacturing a high-strength galvanized steel sheet, including a high-strength hot-dip galvanized steel sheet, which is particularly suitable for automobile member applications.
近年、CO2排出量の削減のために自動車の燃費改善が強く求められている。これに伴い、車体部品の薄肉化による車体軽量化の動きが活発となってきており、車体部品材料である鋼板の高強度化ニーズが高まっている。
鋼板の高強度化には、Si、Mn等の固溶強化元素の添加が有効である。しかし、これらの元素はFeよりも易酸化性であるため、これらを多量に含有する高強度鋼板を母材とする溶融亜鉛めっき鋼板(合金化溶融亜鉛めっき鋼板を含む。)の製造において、以下のような問題が生じる。
In recent years, there has been a strong demand for improving the fuel efficiency of automobiles in order to reduce CO 2 emissions. Along with this, the movement to reduce the weight of the vehicle body by thinning the thickness of the vehicle body parts has become active, and the need for increasing the strength of the steel plate, which is the material for the vehicle body parts, is increasing.
Addition of solid solution strengthening elements such as Si and Mn is effective for increasing the strength of the steel sheet. However, since these elements are more easily oxidized than Fe, in the production of hot-dip galvanized steel sheets (including alloyed hot-dip galvanized steel sheets) using a high-strength steel sheet containing a large amount of them as a base material, the following Problems arise.
通常、溶融亜鉛めっき鋼板を製造する場合、鋼板を非酸化性雰囲気又は還元性雰囲気中において600〜900℃程度の温度で加熱焼鈍した後に、溶融亜鉛めっき処理を施す。このめっき処理前の加熱焼鈍において、鋼中の易酸化性元素は、一般的に用いられる非酸化性雰囲気や還元性雰囲気中においても選択酸化され、鋼板表面に濃化して酸化物を形成する。この酸化物は溶融亜鉛めっき処理時に溶融亜鉛の濡れ性を低下させることから、鋼中の易酸化性元素濃度の増加とともにめっき濡れ性が急激に低下し、不めっき多発の原因となる。また、不めっきを生じない場合でも、鋼板とめっき層間に酸化物が存在するため、めっき密着性が劣化する。特にSiは少量の添加であっても溶融亜鉛の濡れ性を顕著に低下させることから、溶融亜鉛めっき鋼板では、より濡れ性への影響が小さいMnが添加されることが多い。しかし、Mn酸化物も溶融亜鉛の濡れ性を低下させるため、多量に添加する場合には上記の不めっきの問題が顕著となる。 Usually, when a hot-dip galvanized steel sheet is manufactured, the hot-dip galvanized steel sheet is subjected to hot-dip galvanizing treatment after being heat-annealed at a temperature of about 600 to 900 ° C. in a non-oxidizing atmosphere or a reducing atmosphere. In the heat annealing before the plating treatment, the easily oxidizing element in the steel is selectively oxidized even in a generally used non-oxidizing atmosphere or reducing atmosphere, and is concentrated on the surface of the steel sheet to form an oxide. Since this oxide lowers the wettability of hot-dip galvanized during the hot-dip galvanizing treatment, the wettability of the hot-dip galvanized sharply decreases as the concentration of easily oxidizable elements in the steel increases, causing frequent non-plating. Further, even when non-plating does not occur, the plating adhesion deteriorates because the oxide exists between the steel sheet and the plating layer. In particular, since Si significantly reduces the wettability of hot-dip zinc even when added in a small amount, Mn, which has a smaller effect on wettability, is often added to hot-dip galvanized steel sheets. However, since Mn oxide also reduces the wettability of hot-dip zinc, the above-mentioned non-plating problem becomes remarkable when a large amount is added.
以上のような問題に対し、特許文献1では、鋼板を焼鈍した後、酸洗を実施することで表面に形成された酸化物を溶解除去し、その後、再び焼鈍して溶融亜鉛めっきを施す方法が提案されている。
また、特許文献2では、まずFe酸化性雰囲気中で鋼板を加熱し、所定以上の酸化速度にて表面にFe酸化物を急速に生成させることにより、鋼板表面での添加元素の表面選択酸化を抑制し、引き続きFe還元性雰囲気中で加熱してFe酸化物を還元させることにより、鋼板表面の溶融亜鉛との濡れ性を改善する方法が提案されている。
また、特許文献3〜5には、鋼板に対して電気めっきによるプレNiめっき処理を施してから溶融亜鉛めっき処理することで、表面外観とめっき密着性を向上させる技術が開示されている。
In response to the above problems, Patent Document 1 describes a method in which a steel sheet is annealed and then pickled to dissolve and remove oxides formed on the surface, and then annealed again to perform hot-dip galvanizing. Has been proposed.
Further, in Patent Document 2, first, the steel sheet is heated in an Fe-oxidizing atmosphere to rapidly generate Fe oxide on the surface at an oxidation rate equal to or higher than a predetermined value, thereby performing surface selective oxidation of additive elements on the surface of the steel sheet. A method has been proposed in which the wettability of the surface of a steel sheet with molten iron is improved by suppressing it and subsequently heating it in a Fe-reducing atmosphere to reduce the Fe oxide.
Further, Patent Documents 3 to 5 disclose a technique for improving the surface appearance and plating adhesion by subjecting a steel sheet to a pre-Ni plating treatment by electroplating and then a hot-dip galvanizing treatment.
しかしながら、上述した従来技術には、それぞれ以下のような問題がある。
特許文献1の方法は、合金元素の添加量が多い場合、再焼鈍時に表面に再び酸化物が形成され、不めっき等の外観欠陥を生じなくても、めっき密着性が劣化する場合がある。また、高Si含有鋼の場合、焼鈍後の形成酸化物が酸に不活性であることから、十分に除去できない場合があり、適用可能なSi量の上限が0.80質量%程度と比較的低い。さらには、焼鈍工程が2回必要であるため生産性が低いという問題もある。
また、特許文献2の方法は、Fe酸化性雰囲気中で加熱可能な設備を有しないCGLでは適用できず、新設には多大なコストがかかる。
また、特許文献3〜5の方法では、焼鈍工程前に電気めっきによりNiめっき処理を行うものであるため、設備面でもプロセス面でもコスト的不利を生じる。
また、高強度鋼板表面の酸化物に起因しためっき密着性の低下は、溶融亜鉛めっき以外のめっきでも生じるおそれがある。
However, each of the above-mentioned conventional techniques has the following problems.
In the method of Patent Document 1, when the amount of the alloying element added is large, the oxide is formed again on the surface at the time of reannealing, and the plating adhesion may be deteriorated even if appearance defects such as non-plating do not occur. Further, in the case of high Si-containing steel, since the formed oxide after annealing is inactive to acid, it may not be sufficiently removed, and the upper limit of the applicable Si amount is about 0.80% by mass, which is relatively high. Low. Further, there is a problem that the productivity is low because the annealing step is required twice.
Further, the method of Patent Document 2 cannot be applied to a CGL that does not have equipment capable of heating in a Fe-oxidizing atmosphere, and a great cost is required for new installation.
Further, in the methods of Patent Documents 3 to 5, since the Ni plating process is performed by electroplating before the annealing process, there is a cost disadvantage in terms of equipment and process.
Further, the decrease in plating adhesion due to the oxide on the surface of the high-strength steel sheet may occur in plating other than hot-dip galvanizing.
したがって本発明の目的は、以上のような従来技術の課題を解決し、固溶強化元素としてSi、Mnが添加された高強度鋼板を母材とするめっき鋼板を製造する方法において、電気Niめっきなどのプレめっき処理を行うことなく、溶融亜鉛めっきなどのめっき処理前の加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制し、めっき鋼板の表面外観及びめっき密着性を改善することができる製造方法を提供することにある。また、本発明の他の目的は、めっき前の加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制することができる溶液処理用の処理剤を提供することにある。 Therefore, an object of the present invention is to solve the above-mentioned problems of the prior art and to produce a plated steel plate using a high-strength steel plate to which Si and Mn are added as solid solution reinforcing elements as a base material. It is possible to effectively suppress selective oxidation of Si and Mn in heat annealing before plating treatment such as hot-dip galvanizing without performing pre-plating treatment such as, and to improve the surface appearance and plating adhesion of the plated steel plate. The purpose is to provide a manufacturing method. Another object of the present invention is to provide a treatment agent for solution treatment capable of effectively suppressing selective oxidation of Si and Mn in heat annealing before plating.
本発明者らは、上記のような従来技術の課題を解決すべく、鋭意検討及び研究を重ねた結果、事前に鋼板に対して、Fe又はFeよりも標準酸化還元電位が高い金属の金属アルコキシドを含有する溶液を付着させる溶液処理を施した後、Fe還元性雰囲気中で加熱焼鈍することにより、この加熱焼鈍におけるSi、Mnの選択酸化が効果的に抑制され、めっき鋼板の表面外観及びめっき密着性が改善されることを見出した。 As a result of diligent studies and studies in order to solve the above-mentioned problems of the prior art, the present inventors have conducted a metal alkoxide of a metal having a higher standard oxidation-reduction potential than Fe or Fe in advance with respect to the steel sheet. By heat-annealing in a Fe-reducing atmosphere after performing a solution treatment to attach a solution containing the above, selective oxidation of Si and Mn in this heat-annealing is effectively suppressed, and the surface appearance and plating of the plated steel sheet are plated. It was found that the adhesion was improved.
本発明は、このような知見に基づきなされたもので、以下を要旨とするものである。
[1]Si又は/及びMnを含有する鋼板を母材とする高強度めっき鋼板の製造方法であって、
鋼板の表面に、Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液(y)を付着させる溶液処理工程と、
該溶液処理工程を経た鋼板を、H2濃度が0.05vol%以上、露点が10℃以下の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程と、
該焼鈍工程を経た鋼板にめっきを施すめっき処理工程を有することを特徴とする高強度めっき鋼板の製造方法。
The present invention has been made based on such findings, and the gist of the present invention is as follows.
[1] A method for producing a high-strength plated steel sheet using a steel sheet containing Si or / and Mn as a base material.
A solution treatment step of adhering a solution (y) containing a metal alkoxide of one or more metals (x) selected from metals having a standard oxidation-reduction potential higher than Fe and Fe to the surface of a steel plate, and a solution treatment step.
The steel sheet after the solution treatment step, H 2 concentration is 0.05 vol% or more, and annealing steps which dew point is heated at 700 ° C. or higher at 10 ° C. in the reducing atmosphere,
A method for producing a high-strength plated steel sheet, which comprises a plating process for plating a steel sheet that has undergone the annealing step.
[2]上記[1]の製造方法において、溶液処理工程では、溶液(y)を、付着量が金属(x)換算で0.01〜3.0g/m2となるように鋼板の表面に付着させることを特徴とする高強度めっき鋼板の製造方法。
[3]上記[1]又は[2]の製造方法において、溶液(y)が含有する金属アルコキシドが、Niアルコキシド、Cuアルコキシド、及びFeアルコキシドの中から選ばれる1種以上であることを特徴とする高強度めっき鋼板の製造方法。
[4]上記[3]の製造方法において、金属アルコキシドが、Niエチレングリコキシド、Cuエチレングリコキシド、及びFeエチレングリコキシドの中から選ばれる1種以上であることを特徴とする高強度めっき鋼板の製造方法。
[2] In the production method of the above [1], in the solution treatment step, the solution (y) is applied to the surface of the steel sheet so that the amount of adhesion is 0.01 to 3.0 g / m 2 in terms of metal (x). A method for manufacturing a high-strength plated steel sheet, which is characterized by being adhered.
[3] In the production method of the above [1] or [2], the metal alkoxide contained in the solution (y) is one or more selected from Ni alkoxide, Cu alkoxide, and Fe alkoxide. A method for manufacturing high-strength galvanized steel sheets.
[4] In the production method of the above [3], the metal alkoxide is one or more selected from Ni ethylene glycol, Cu ethylene glycol, and Fe ethylene glycol. Manufacturing method.
[5]上記[1]〜[4]のいずれかの製造方法において、鋼板が、質量%で、Si:0.10%以上又は/及びMn:0.50%以上を含有することを特徴とする高強度めっき鋼板の製造方法。
[6]上記[1]〜[5]のいずれかの製造方法において、溶液処理工程を経て表面に溶液(y)が付着した鋼板を、そのまま焼鈍工程に導入することを特徴とする高強度めっき鋼板の製造方法。
[7]上記[1]〜[5]のいずれかの製造方法において、溶液処理工程を経て表面に溶液(y)が付着した鋼板を加熱処理した後、焼鈍工程に導入することを特徴とする高強度めっき鋼板の製造方法。
[5] In any of the above-mentioned production methods [1] to [4], the steel sheet is characterized by containing Si: 0.10% or more and / and Mn: 0.50% or more in mass%. A method for manufacturing high-strength galvanized steel sheets.
[6] In any of the above-mentioned production methods [1] to [5], high-strength plating is characterized in that a steel sheet having a solution (y) adhered to its surface through a solution treatment step is directly introduced into an annealing step. Steel sheet manufacturing method.
[7] The production method according to any one of [1] to [5] above is characterized in that a steel sheet having a solution (y) adhered to its surface is heat-treated through a solution treatment step and then introduced into an annealing step. Manufacturing method of high-strength galvanized steel sheet.
[8]上記[1]〜[7]のいずれかの製造方法において、めっき処理工程は、焼鈍工程を経た鋼板に溶融亜鉛めっきを施す工程(但し、溶融亜鉛めっき後に合金化処理する場合を含む。)であることを特徴とする高強度めっき鋼板の製造方法。
[9]上記[8]の製造方法において、連続溶融亜鉛めっきラインにおいて、溶液処理工程、焼鈍工程、めっき処理工程が連続して行われることを特徴とする高強度めっき鋼板の製造方法。
[10]上記[1]〜[9]のいずれかの製造方法において、鋼板が、質量%で、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有することを特徴とする高強度めっき鋼板の製造方法。
[8] In any of the above-mentioned production methods [1] to [7], the plating treatment step includes a step of hot-dip galvanizing a steel sheet that has undergone an annealing step (provided that it is alloyed after hot-dip galvanizing). .) A method for manufacturing a high-strength plated steel sheet.
[9] In the production method of the above [8], a method for producing a high-strength plated steel sheet, characterized in that a solution treatment step, an annealing step, and a plating treatment step are continuously performed in a continuous hot-dip galvanizing line.
[10] In any of the above-mentioned production methods [1] to [9], the steel sheet is in mass%, C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: Contains 0.50 to 5.00%, P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and the balance is Fe and unavoidable. A method for producing a high-strength galvanized steel sheet, which comprises a component composition composed of impurities.
[11]上記[10]の製造方法において、鋼板が、さらに、質量%で、Ti:0.010〜0.100%、Nb:0.010〜0.100%、及びB:0.0001〜0.0050%の中から選ばれる1種以上を含有することを特徴とする高強度めっき鋼板の製造方法。
[12]上記[10]又は[11]の製造方法において、鋼板が、さらに、質量%で、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、及びREM:0.010%以下の中から選ばれる1種以上を含有することを特徴とする高強度めっき鋼板の製造方法。
[11] In the production method of the above [10], the steel sheet is further made of Ti: 0.010 to 0.100%, Nb: 0.010 to 0.100%, and B: 0.0001 to% by mass. A method for producing a high-strength plated steel sheet, which comprises one or more selected from 0.0050%.
[12] In the production method of the above [10] or [11], the steel sheet is further increased in mass% by Mo: 0.01 to 0.50%, Cr: 1.00% or less, Ni: 0.50%. Below, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0.0100% or less, and REM: 0.010% or less. A method for producing a high-strength plated steel sheet, which comprises one or more selected from the above.
[13]めっき用鋼板の焼鈍時における易酸化性元素の選択酸化を抑制するための溶液処理用の処理剤であって、
Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液(y)からなることを特徴とする溶液処理用の処理剤。
[14]上記[13]の処理剤において、金属アルコキシドが、Niアルコキシド、Cuアルコキシド、及びFeアルコキシドの中から選ばれる1種以上であることを特徴とする溶液処理用の処理剤。
[15]上記[14]の処理剤において、金属アルコキシドが、Niエチレングリコキシド、Cuエチレングリコキシド、及びFeエチレングリコキシドの中から選ばれる1種以上であることを特徴とする溶液処理用の処理剤。
[13] A treatment agent for solution treatment for suppressing selective oxidation of easily oxidizing elements during annealing of steel sheets for plating.
A treatment agent for solution treatment, which comprises a solution (y) containing a metal alkoxide of one or more metals (x) selected from Fe and a metal having a standard oxidation-reduction potential higher than that of Fe.
[14] The treatment agent for solution treatment according to the above [13], wherein the metal alkoxide is one or more selected from Ni alkoxide, Cu alkoxide, and Fe alkoxide.
[15] In the treatment agent of the above [14], the metal alkoxide is one or more selected from Ni ethylene glycol, Cu ethylene glycol, and Fe ethylene glycol, for solution treatment. Processing agent.
本発明によれば、易酸化性元素であるSi、Mnを含有する高強度鋼板を母材とするめっき鋼板の製造において、めっき前の加熱焼鈍におけるSi、Mnの選択酸化を効果的に抑制し、良好な表面外観を有するとともに、めっき密着性に優れためっき鋼板を製造することができる。しかも、事前処理として特定の溶液を鋼板表面に付着させる溶液処理を行うだけでよく、電気Niめっきなどのプレめっき処理を行う必要がないため、設備コスト、処理コストともに低く抑えることができる。本発明により製造された高強度溶融亜鉛めっき鋼板などの高強度めっき鋼板を、例えば、自動車構造部材に適用することで車体軽量化による燃費改善を図ることができる。 According to the present invention, in the production of a plated steel sheet using a high-strength steel sheet containing Si and Mn, which are easily oxidizing elements, as a base material, selective oxidation of Si and Mn in heat annealing before plating is effectively suppressed. It is possible to produce a plated steel sheet having a good surface appearance and excellent plating adhesion. Moreover, as a pretreatment, it is only necessary to perform a solution treatment of adhering a specific solution to the surface of the steel sheet, and it is not necessary to perform a pre-plating treatment such as nickel plating, so that both the equipment cost and the treatment cost can be kept low. By applying a high-strength plated steel sheet such as a high-strength hot-dip galvanized steel sheet manufactured by the present invention to, for example, an automobile structural member, it is possible to improve fuel efficiency by reducing the weight of the vehicle body.
本発明は、易酸化性元素であるSi又は/及びMnを含有する鋼板を母材とする高強度めっき鋼板の製造方法であって、鋼板の表面に、Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液(y)を付着させる溶液処理工程(A)と、この溶液処理工程(A)を経た鋼板を還元性雰囲気中において加熱処理する焼鈍工程(B)と、この焼鈍工程(B)を経た鋼板にめっきを施すめっき処理工程(C)を有する。
なお、本発明により製造される高強度めっき鋼板の母材となる鋼板(高強度鋼板)の好ましい条件などについては、後に詳述する。
The present invention is a method for producing a high-strength plated steel sheet using a steel sheet containing Si and / and Mn, which are easily oxidizing elements, as a base material, and has a standard oxidation-reduction potential on the surface of the steel sheet rather than Fe and Fe. A solution treatment step (A) for adhering a solution (y) containing a metal alkoxide of one or more metals (x) selected from high metals, and a reducing atmosphere for the steel plate that has undergone this solution treatment step (A). It has an annealing step (B) in which heat treatment is performed, and a plating treatment step (C) in which the steel plate that has undergone this annealing step (B) is plated.
The preferable conditions of the steel sheet (high-strength steel sheet) used as the base material of the high-strength plated steel sheet produced by the present invention will be described in detail later.
・溶液処理工程(A)
この溶液処理工程(A)は、必要に応じて鋼板表面を公知の方法で脱脂、洗浄した後に実施する。この溶液処理工程(A)において鋼板表面に付着させる溶液(y)は、Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液(y)であり、鋼板表面に付着した溶液(y)に含まれる金属(x)は、続く焼鈍工程(B)の加熱初期などにおいて鋼板表面に形成させる金属酸化物層(例えば、金属アルコキシドがNiアルコキシドの場合にはNi酸化物層、金属アルコキシドがCuアルコキシドの場合にはCu酸化物層、金属アルコキシドがFeアルコキシドの場合にはFe酸化物層)の主たる金属源となる。また、この金属酸化物層は、続く焼鈍工程(B)の加熱処理後の鋼板表面に形成させる金属層(例えば、Ni酸化物層の場合には金属Ni層、Cu酸化物層の場合には金属Cu層、Fe酸化物層の場合には金属Fe層)の原料皮膜となる。
・ Solution treatment step (A)
This solution treatment step (A) is carried out after degreasing and cleaning the surface of the steel sheet by a known method, if necessary. The solution (y) to be adhered to the surface of the steel plate in this solution treatment step (A) contains a metal alkoxide of one or more metals (x) selected from metals having a standard oxidation-reduction potential higher than Fe and Fe. The metal (x) contained in the solution (y) which is the solution (y) and adheres to the surface of the steel plate is a metal oxide layer (for example, metal alkoxide) formed on the surface of the steel plate in the initial heating stage of the subsequent annealing step (B). Is the main metal source of the Ni oxide layer when the metal alkoxide is Ni alkoxide, the Cu oxide layer when the metal alkoxide is Cu alkoxide, and the Fe oxide layer when the metal alkoxide is Fe alkoxide). Further, this metal oxide layer is a metal layer (for example, a metal Ni layer in the case of a Ni oxide layer and a metal Ni layer in the case of a Cu oxide layer) formed on the surface of a steel plate after the heat treatment in the subsequent annealing step (B). It is a raw material film for the metal Cu layer and the metal Fe layer in the case of the Fe oxide layer).
本発明において、上記のような溶液(y)を用いるのは、ゾル−ゲル法と呼ばれる手法で皮膜形成させることにより、均質かつ均一な厚さの金属酸化物層を形成するためである。すなわち、鋼板表面に付着した溶液(y)の液膜(ゾル)は、時間経過及び温度上昇に伴って溶媒が蒸発・分解するが、その際に、単に液膜中の溶媒が蒸発して溶質が析出するのではなく、液膜中成分の凝集や重合によって液膜全体が次第に流動性を失い、金属化合物を含有した皮膜(ゲル)となるものと考えられる。そして、このようなゲル状皮膜となる過程を経て皮膜(金属酸化物層)形成がなされるので、均質かつ均一な厚さの金属酸化物層を形成することができる。この金属酸化物層は、焼鈍工程において最終的に還元されて金属層となり、この金属層が焼鈍時におけるSi、Mn等の易酸化性元素の拡散障壁となることで、鋼板表面における選択酸化物の形成が抑制されるものと考えられる。 In the present invention, the solution (y) as described above is used in order to form a metal oxide layer having a uniform and uniform thickness by forming a film by a method called a sol-gel method. That is, the solvent of the liquid film (sol) of the solution (y) adhering to the surface of the steel plate evaporates and decomposes with the passage of time and the temperature rise, but at that time, the solvent in the liquid film simply evaporates and the solute. It is considered that the whole liquid film gradually loses its fluidity due to the aggregation and polymerization of the components in the liquid film, and becomes a film (gel) containing a metal compound. Then, since the film (metal oxide layer) is formed through the process of forming such a gel-like film, a homogeneous and uniform thickness metal oxide layer can be formed. This metal oxide layer is finally reduced in the annealing step to become a metal layer, and this metal layer serves as a diffusion barrier for easily oxidizing elements such as Si and Mn during annealing, so that the selective oxide on the surface of the steel sheet is used. It is considered that the formation of
ここで、上記のように溶液(y)の液膜からゲル状皮膜となる過程を経て金属酸化物層を形成するには、焼鈍工程(B)での加熱初期の温度を利用することができるが、その皮膜形成の一部又は全部が、焼鈍工程(B)の前に行われる加熱処理でなされるようにしてもよい。
また、上記のような一連の皮膜形成が焼鈍工程(B)内でなされる場合には、まず、焼鈍工程(B)の初期加熱において溶液(y)の液膜(ゾル)がゲル状皮膜化し、さらにこのゲル状皮膜の分解が生じることにより、鋼板全面に亘って均質かつ均一な厚さの金属酸化物層が形成される。そして、その後の焼鈍過程において、この金属酸化物層の還元が生じ、金属層が形成される。
Here, in order to form the metal oxide layer through the process of forming a gel-like film from the liquid film of the solution (y) as described above, the temperature at the initial stage of heating in the annealing step (B) can be used. However, a part or all of the film formation may be performed by the heat treatment performed before the annealing step (B).
When the above-mentioned series of film formation is performed in the annealing step (B), first, the liquid film (sol) of the solution (y) becomes a gel-like film in the initial heating of the annealing step (B). Further, the decomposition of the gel-like film causes a metal oxide layer having a uniform and uniform thickness to be formed over the entire surface of the steel sheet. Then, in the subsequent annealing process, the metal oxide layer is reduced to form a metal layer.
ここで、溶液処理用の溶液(y)の成分について説明すると、溶液(y)が含有するFe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドは、溶液処理工程後の加熱工程(焼鈍工程(B)など)において生成する金属酸化物の金属及び酸素源となる。金属アルコキシドは、金属原子に対して溶媒であるアルコールのO原子が配位結合した構造を持つ。したがって、例えば、焼鈍工程(B)において金属(M)の酸化物皮膜が形成される場合を考えると、上記ゲル状皮膜中の炭化水素部分は分解するが、M−O結合部分が残るため、Fe還元性雰囲気中であっても金属(M)の酸化物皮膜が生成するものと考えられる。 Here, the components of the solution (y) for solution treatment will be described. Of Fe and one or more metals (x) selected from the metals having a higher standard oxidation-reduction potential than Fe contained in the solution (y). The metal alkoxide serves as a metal and oxygen source for the metal oxide produced in the heating step (such as the annealing step (B)) after the solution treatment step. The metal alkoxide has a structure in which the O atom of the alcohol, which is a solvent, is coordinated to the metal atom. Therefore, for example, considering the case where an oxide film of a metal (M) is formed in the annealing step (B), the hydrocarbon portion in the gel-like film is decomposed, but the MO bond portion remains. It is considered that an oxide film of metal (M) is formed even in a Fe-reducing atmosphere.
金属アルコキシドとは、アルコールのヒドロキシ基の水素が金属原子で置換した化合物であり、アルコール分子中の酸素原子と結合した金属原子はイオン化、すなわち酸化された状態にある。
本発明において溶液(y)が含有する金属アルコキシドは、Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドである。ここで、Feよりも標準酸化還元電位が高い金属の種類に特別な制限はなく、例えば、Ni、Cu、Co、Sn、Pbなどが挙げられるが、コストや2価イオンの化学的安定性、低毒性などの点からはNi、Cuが特に好適である。
The metal alkoxide is a compound in which the hydrogen of the hydroxy group of the alcohol is replaced with a metal atom, and the metal atom bonded to the oxygen atom in the alcohol molecule is in an ionized state, that is, in an oxidized state.
In the present invention, the metal alkoxide contained in the solution (y) is a metal alkoxide of one or more metals (x) selected from metals having a standard oxidation-reduction potential higher than that of Fe and Fe. Here, there is no particular limitation on the type of metal having a standard oxidation-reduction potential higher than that of Fe, and examples thereof include Ni, Cu, Co, Sn, and Pb. Ni and Cu are particularly preferable from the viewpoint of low toxicity and the like.
したがって、溶液(y)が含有する金属アルコキシドとしては、Niアルコキシド、Cuアルコキシド、及びFeアルコキシドの中から選ばれる1種以上が特に好ましい。また、後述するように金属アルコキシドの原料となるアルコールとしては、後述するように特にエチレングリコールが好ましいので、溶液(y)が含有する金属アルコキシドとしては、Niエチレングリコキシド、Cuエチレングリコキシド、及びFeエチレングリコキシドの中から選ばれる1種以上が最も好ましい。
溶液成分として鋼板表面に付着した金属アルコキシドは、溶液処理工程後の加熱工程において金属酸化物となり、さらにこの金属酸化物層はFe還元性雰囲気中での焼鈍工程(B)において還元され、金属層となるが、金属アルコキシドを構成するFeやFeよりも標準酸化還元電位が高い金属(例えば、上述したNi、Cu)は還元されやすい金属であることから、焼鈍工程(B)において容易に還元され、金属層(例えば、金属Ni層、金属Cu層、金属Fe層など)が形成される。
Therefore, as the metal alkoxide contained in the solution (y), one or more selected from Ni alkoxide, Cu alkoxide, and Fe alkoxide is particularly preferable. Further, as described later, ethylene glycol is particularly preferable as the alcohol used as a raw material for the metal alkoxide. Therefore, as the metal alkoxide contained in the solution (y), Ni ethylene glycol, Cu ethylene glycol, and Most preferably, one or more selected from Fe ethylene glycolides.
The metal alkoxide adhering to the surface of the steel plate as a solution component becomes a metal oxide in the heating step after the solution treatment step, and this metal oxide layer is further reduced in the annealing step (B) in a Fe-reducing atmosphere to form a metal layer. However, since a metal having a standard oxidation-reduction potential higher than Fe and Fe constituting the metal alkoxide (for example, Ni and Cu described above) is a metal that is easily reduced, it is easily reduced in the annealing step (B). , A metal layer (for example, a metal Ni layer, a metal Cu layer, a metal Fe layer, etc.) is formed.
金属アルコキシドは、単離された化合物として溶液に加えてもよいが、取扱いしやすいなどの点から、無機塩をアルコキシド原料となるアルコール中に溶解させるのが好適である。その無機塩の種類に特別な制限はないが、Niアルコキシドを生成するためのニッケル塩としては、例えば、硝酸ニッケル(II)、塩化ニッケル(II)、硫酸ニッケル(II)、臭化ニッケル(II)、ヨウ化ニッケル(II)、テトラフルオロホウ酸ニッケル(II)などが挙げられ、また、Cuアルコキシドを生成するための銅塩としては、例えば、硝酸銅(II)、塩化銅(II)、硫酸銅(II)、臭化銅(II)、ヨウ化銅(II)、テトラフルオロホウ酸銅(II)などが挙げられ、また、Coアルコキシドを生成するためのコバルト塩としては、例えば、硝酸コバルト(II)、塩化コバルト(II)、臭化コバルト(II)などが挙げられ、また、Snアルコキシドを生成するための錫塩としては、例えば、硫酸錫(II)、塩化第二錫(II)などが挙げられ、また、Pbアルコキシドを生成するための鉛塩としては、例えば、酢酸鉛(II)、硝酸鉛(II)、塩化鉛(II)などが挙げられ、また、Feアルコキシドを生成するための鉄塩としては、例えば、硝酸鉄(III)、塩化鉄(III)、塩化鉄(II)、硫酸鉄(II)、硫酸アンモニウム鉄(II)、臭化鉄(III)、臭化鉄(II)、ヨウ化鉄(II)、テトラフルオロホウ酸鉄(II)などが挙げられ、これらの中から選ばれる1種以上をそれぞれ用いることができる。 The metal alkoxide may be added to the solution as an isolated compound, but it is preferable to dissolve the inorganic salt in the alcohol as the alkoxide raw material from the viewpoint of easy handling. The type of the inorganic salt is not particularly limited, but examples of the nickel salt for producing Nialkoxide include nickel nitrate (II), nickel chloride (II), nickel sulfate (II), and nickel bromide (II). ), Nickel iodide (II), nickel tetrafluoroborate (II) and the like, and examples of the copper salt for producing Cu alkoxide include copper (II) nitrate, copper (II) chloride, and the like. Examples thereof include copper (II) sulfate, copper (II) bromide, copper (II) iodide, copper (II) tetrafluoroborate, and examples of the cobalt salt for producing Coalkoxide include nitrate. Cobalt (II), cobalt chloride (II), cobalt bromide (II) and the like can be mentioned, and examples of the tin salt for producing Sn alkoxide include tin sulfate (II) and ferric chloride (II). ), Etc., and examples of the lead salt for producing Pb alkoxide include lead acetate (II), lead nitrate (II), lead chloride (II), and the like, and Fe alkoxide is produced. Examples of iron salts for this purpose include iron nitrate (III), iron chloride (III), iron chloride (II), iron sulfate (II), ammonium iron sulfate (II), iron bromide (III), and iron bromide. (II), iron iodide (II), iron tetrafluoroborate (II) and the like can be mentioned, and one or more selected from these can be used respectively.
溶媒であるアルコールの種類も特に制限はなく、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、2−メチル−1−プロパノール、2−メチル−2−プロパノール、エチレングリコール、ジエチレングリコール、トリエチレングリコールなどの1種以上を用いることができる。また、これらの中でも、比較的沸点が高いために蒸発しにくく、かつ比較的安価なアルコールであるエチレングリコールが特に好ましい。すなわち、このエチレングリコールに上述した無機塩の1種以上を溶解させ、溶液中に金属エチレングリコキシドを生成させるのが好ましい。生成した金属エチレングリコキシドは、分子内に有する2つの酸素原子部位で金属原子をキャップする形で結合し、形成した金属錯体は反応性の低い炭素骨格が外側になることから、分子間重合反応を生じにくく、このためスラッジ発生等の観点から浴管理も比較的容易である。
なお、無機塩とアルコールから金属アルコキシドを生成させるには、上述したようにアルコールに無機塩を添加して溶解させるだけよい。
The type of alcohol as a solvent is also not particularly limited, and for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol, 2-methyl-2-propanol, One or more of ethylene glycol, diethylene glycol, triethylene glycol and the like can be used. Among these, ethylene glycol, which is a relatively inexpensive alcohol that does not easily evaporate due to its relatively high boiling point, is particularly preferable. That is, it is preferable to dissolve one or more of the above-mentioned inorganic salts in this ethylene glycol to generate metal ethylene glycolide in the solution. The generated metal ethylene glycolide is bonded in the form of capping a metal atom at two oxygen atom sites in the molecule, and the formed metal complex has a low-reactivity carbon skeleton on the outside, so that an intermolecular polymerization reaction occurs. Therefore, bath management is relatively easy from the viewpoint of sludge generation and the like.
In order to generate a metal alkoxide from an inorganic salt and an alcohol, it is only necessary to add the inorganic salt to the alcohol and dissolve it as described above.
溶液(y)の液濃度(金属アルコキシドの金属(x)換算濃度)は、適宜管理しやすい濃度とすればよいが、液濃度が低すぎると後述する必要付着量(金属(x)換算)を得るのに必要な液膜厚さが大きくなり、液膜が不均一になる懸念があり、一方、液濃度が高すぎると過飽和により溶質の析出が生じたり、後述する必要付着量(金属(x)換算)を得るのに必要な液膜厚さが過度に小さくなって鋼板表面が露出する、などの懸念がある。つまり、焼鈍工程後の鋼板表面におけるSi,Mn表面酸化物の形成抑制が不十分となり、最終的に得られる製品のめっき密着性不良や外観不良を生じる要因となり得る現象が生じる懸念がある。このため溶液(y)の液濃度(金属アルコキシドの金属(x)換算濃度)は0.1〜1000g/L程度が好ましく、0.5〜700g/L程度がより好ましい。 The liquid concentration of the solution (y) (the metal (x) equivalent concentration of the metal alkoxide) may be set to a concentration that is easy to manage, but if the liquid concentration is too low, the required adhesion amount (metal (x) equivalent) described later will be used. There is a concern that the liquid film thickness required to obtain the liquid film will increase and the liquid film will become non-uniform. On the other hand, if the liquid concentration is too high, solute precipitation will occur due to supersaturation, or the required adhesion amount (metal (x)) described later will occur. There is a concern that the liquid film thickness required to obtain () conversion) becomes excessively small and the surface of the steel plate is exposed. That is, there is a concern that the formation of Si and Mn surface oxides on the surface of the steel sheet after the annealing step is insufficiently suppressed, which may cause a phenomenon that may cause poor plating adhesion and poor appearance of the finally obtained product. Therefore, the liquid concentration of the solution (y) (the metal (x) equivalent concentration of the metal alkoxide) is preferably about 0.1 to 1000 g / L, more preferably about 0.5 to 700 g / L.
溶液処理工程(A)における鋼板表面への溶液(y)の付着量は、金属(x)換算で0.01〜3.0g/m2とすることが好ましい。金属(x)換算での付着量が0.01g/m2未満では、焼鈍工程(B)において生成する金属層の付着量が少ないため、この金属層によるSi、Mnの選択酸化の抑制効果が十分に得られない懸念がある。つまり、最終的に得られる製品のめっき密着性不良や外観不良を生じる要因となり得る現象が生じる懸念がある。一方、金属(x)換算での付着量が3.0g/m2を超えると、焼鈍工程(B)の加熱初期などにおいて形成される金属酸化物皮膜の付着量が過剰になり、焼鈍工程(B)後に未還元の金属酸化物が残存する懸念がある。つまり、最終的に得られる製品のめっき密着性不良や外観不良を生じる要因となり得る現象が生じる懸念があり、また、コスト的にも不利である。また、以上の観点から、より好ましい溶液(y)の付着量(金属(x)換算)は0.05〜2.0g/m2である。
溶液(y)を鋼板表面に付着させる方法は特に限定されず、例えば、バーコータ―、スプレー、浸漬、スピンコート、ロールコーターなどの方法を用いることができる。
The amount of the solution (y) adhering to the surface of the steel sheet in the solution treatment step (A) is preferably 0.01 to 3.0 g / m 2 in terms of metal (x). If the amount of adhesion in terms of metal (x) is less than 0.01 g / m 2 , the amount of adhesion of the metal layer generated in the annealing step (B) is small, so that the effect of suppressing selective oxidation of Si and Mn by this metal layer is effective. There is a concern that it will not be fully obtained. That is, there is a concern that a phenomenon may occur that may cause poor plating adhesion or poor appearance of the finally obtained product. On the other hand, when the adhesion amount in terms of metal (x) exceeds 3.0 g / m 2 , the adhesion amount of the metal oxide film formed at the initial stage of heating in the annealing step (B) becomes excessive, and the annealing step (baking step (B) B) There is a concern that unreduced metal oxides will remain afterwards. That is, there is a concern that a phenomenon may occur that may cause poor plating adhesion or poor appearance of the finally obtained product, and it is also disadvantageous in terms of cost. From the above viewpoint, the more preferable amount of the solution (y) adhered (converted to metal (x)) is 0.05 to 2.0 g / m 2 .
The method of adhering the solution (y) to the surface of the steel sheet is not particularly limited, and for example, a method such as a bar coater, a spray, a dip, a spin coat, or a roll coater can be used.
上述した溶液処理工程(A)を実施することによって焼鈍工程(B)後の鋼板表面に金属層が形成されることを試験により調べた。この試験では、表1に示す成分組成の鋼板に対して、表2に示す試験例a、bの各条件で溶液処理と焼鈍処理を行った。このうち試験例aはNiアルコキシド(Niエチレングリコキシド)を含有する溶液で、試験例bはCuアルコキシド(Cuエチレングリコキシド)を含有する溶液で、それぞれ溶液処理を行った後、焼鈍処理を行った。これに対して表2に示す試験例cでは、同様の鋼板に対して、溶液処理を行うことなく焼鈍処理のみを行った。試験例a〜cで得られた鋼板の表面外観の拡大写真を図1に示す。図1の各写真(a)、(b)、(c)は、それぞれ試験例a、試験例b、試験例cで得られた鋼板のものである。また、同様の鋼板サンプルについて、XRDにより鋼板表層の構成成分の同定を行った結果を図2(A)、(B)に示す。図2(A)は、試験例aと試験例cの鋼板のXRDチャートを較べたもの、図2(B)は、試験例bと試験例c鋼板のXRDチャートを較べたものである。 It was investigated by a test that a metal layer was formed on the surface of the steel sheet after the annealing step (B) by carrying out the above-mentioned solution treatment step (A). In this test, the steel sheet having the composition shown in Table 1 was subjected to solution treatment and annealing treatment under the conditions of Test Examples a and b shown in Table 2. Of these, Test Example a is a solution containing Ni alkoxide (Ni ethylene glycol), and Test Example b is a solution containing Cu alkoxide (Cu ethylene glycol). After each solution treatment, annealing treatment is performed. It was. On the other hand, in Test Example c shown in Table 2, similar steel sheets were only annealed without solution treatment. FIG. 1 shows an enlarged photograph of the surface appearance of the steel sheets obtained in Test Examples a to c. The photographs (a), (b), and (c) of FIG. 1 are those of the steel plates obtained in Test Example a, Test Example b, and Test Example c, respectively. Further, the results of identifying the constituent components of the steel sheet surface layer by XRD for the same steel sheet sample are shown in FIGS. 2 (A) and 2 (B). FIG. 2A compares the XRD charts of the steel plates of Test Example a and Test Example c, and FIG. 2B compares the XRD charts of the steel plates of Test Example b and Test Example c.
図1(a)に示される試験例aの鋼板(Niアルコキシドを含有する溶液で溶液処理を行った後、焼鈍処理を行った鋼板)の表面外観は白色を呈しており、図1(c)に示される試験例cの鋼板(焼鈍処理のみを行った鋼板)の表面外観に較べて、Si、Mn酸化物等によるテンパーカラーのない清浄な外観である。また、図2(A)のXRDの測定結果をみると、試験例aの鋼板の表面には金属Ni層(及びその一部が地鉄と合金化したFe−Ni層)が形成されていることが判る。また、図1(b)に示される試験例bの鋼板(Cuアルコキシドを含有する溶液で溶液処理を行った後、焼鈍処理を行った鋼板)の表面外観は赤色を呈しており、図1(c)に示される試験例cの鋼板(焼鈍処理のみを行った鋼板)の表面外観に較べて、Si、Mn酸化物等によるテンパーカラーのない清浄な外観である。また、図2(B)のXRDの測定結果をみると、試験例bの鋼板の表面には金属Cu層が形成されていることが判る。以上の試験結果が示すとおり、本発明のように溶液処理を行った後焼鈍処理を行うことにより、電気Niめっきなどのプレめっき処理を行うことなく、焼鈍後の鋼板表面にNiやCuなどの金属層を形成させ、Si、Mnの選択酸化を抑制することが可能となる。 The surface appearance of the steel sheet of Test Example a (steel sheet subjected to solution treatment with a solution containing Nialkoxide and then annealing treatment) shown in FIG. 1 (a) is white, and FIG. 1 (c) shows. Compared with the surface appearance of the steel sheet of Test Example c (the steel sheet obtained only by annealing) shown in the above, the appearance is clean without temper color due to Si, Mn oxide and the like. Further, looking at the XRD measurement results of FIG. 2 (A), a metal Ni layer (and a Fe-Ni layer in which a part thereof is alloyed with base iron) is formed on the surface of the steel plate of Test Example a. It turns out. Further, the surface appearance of the steel sheet of Test Example b shown in FIG. 1 (b) (the steel sheet which was subjected to solution treatment with a solution containing Cu alkoxide and then annealed) was red. Compared with the surface appearance of the steel sheet of Test Example c (steel sheet subjected to only annealing treatment) shown in c), the appearance is clean without temper color due to Si, Mn oxide and the like. Further, looking at the XRD measurement results of FIG. 2 (B), it can be seen that a metal Cu layer is formed on the surface of the steel plate of Test Example b. As shown in the above test results, by performing the annealing treatment after the solution treatment as in the present invention, Ni, Cu, etc. can be applied to the surface of the annealed steel sheet without performing pre-plating treatment such as electric Ni plating. It is possible to form a metal layer and suppress selective oxidation of Si and Mn.
本発明では、上述したように鋼板表面に付着した溶液(y)の液膜は、ゲル状皮膜を経て皮膜(金属酸化物皮膜)となる。このような皮膜化は室温でも生じるが、必要に応じて加熱することで短時間での皮膜化が可能であり、特に本発明では、溶液処理工程(A)に続く焼鈍工程(B)での加熱初期の温度を利用して皮膜化が可能である。すなわち、溶液処理工程(A)を経て表面に溶液(y)(液膜)が付着した鋼板を、そのまま焼鈍工程(B)に導入することにより、焼鈍工程(B)での加熱初期の比較的低温域(例えば200〜300℃程度)において液膜をゲル状皮膜を経て皮膜(金属酸化物層)化することができる。したがって、焼鈍工程(B)前に液膜の皮膜化を促進するための加熱処理を行うことは必須ではなく、適宜必要に応じて行えばよい。そのような加熱処理を行う場合、焼鈍工程(B)前に皮膜化を完了させてもよいし、皮膜化する途中の状態(例えば、ゲル状皮膜の状態)まで加熱し、その後は焼鈍工程(B)で加熱されることで皮膜化が完了するようにしてもよい。すなわち、その場合には、溶液処理工程(A)を経て表面に溶液(y)が付着した鋼板を適当な加熱手段で加熱処理した後、焼鈍工程(B)に導入する。 In the present invention, the liquid film of the solution (y) adhering to the surface of the steel sheet as described above becomes a film (metal oxide film) via a gel-like film. Although such film formation occurs even at room temperature, it is possible to form a film in a short time by heating as necessary. In particular, in the present invention, in the annealing step (B) following the solution treatment step (A). Filming is possible using the temperature at the initial stage of heating. That is, by introducing the steel sheet to which the solution (y) (liquid film) is attached to the surface through the solution treatment step (A) as it is into the annealing step (B), it is relatively early in the heating in the annealing step (B). In a low temperature range (for example, about 200 to 300 ° C.), the liquid film can be formed into a film (metal oxide layer) via a gel-like film. Therefore, it is not essential to perform the heat treatment for promoting the film formation of the liquid film before the annealing step (B), and it may be performed as needed. When such a heat treatment is performed, the film formation may be completed before the annealing step (B), or the film may be heated to a state in the middle of filming (for example, a gel-like film state), and then the annealing step (for example, a gel-like film state) is performed. The film formation may be completed by heating in B). That is, in that case, the steel sheet to which the solution (y) is adhered to the surface through the solution treatment step (A) is heat-treated by an appropriate heating means, and then introduced into the annealing step (B).
したがって、例えば、連続溶融亜鉛めっきラインにおいて溶液処理工程(A)、焼鈍工程(B)、めっき処理工程(C)が連続して行われる場合には、溶液処理工程(A)を経て表面に溶液(y)(液膜)が付着した鋼板を、そのまま焼鈍工程(B)に導入してもよいし、溶液処理工程(A)を経て表面に溶液(y)が付着した鋼板を適当な加熱手段で加熱処理した後、焼鈍工程(B)に導入してもよい。
ここで、本発明の溶液処理工程(A)は、溶液付着だけで通電がないので、焼鈍工程前に電気Niめっきなどのプレめっき処理を行う特許文献3〜5などの方法に較べて、設備面でもプロセス面でもコスト的な優位性があると言える。
Therefore, for example, when the solution treatment step (A), the annealing step (B), and the plating treatment step (C) are continuously performed in the continuous molten zinc plating line, the solution is applied to the surface through the solution treatment step (A). The steel sheet to which (y) (liquid film) is attached may be directly introduced into the annealing step (B), or the steel sheet to which the solution (y) is attached to the surface through the solution treatment step (A) may be heated by an appropriate heating means. After the heat treatment in, it may be introduced into the annealing step (B).
Here, in the solution treatment step (A) of the present invention, since only the solution adheres and there is no energization, the equipment is compared with the methods such as Patent Documents 3 to 5 in which the pre-plating treatment such as electric Ni plating is performed before the annealing step. It can be said that there is a cost advantage in terms of both processing and process.
・焼鈍工程(B)
焼鈍工程(B)は、鋼板表面に金属層を形成させる目的で実施する。この焼鈍工程(B)では、溶液処理工程(A)を経た鋼板を、H2濃度が0.05vol%以上、露点が10℃以下の還元性雰囲気中において700℃以上で加熱処理し、その後、所定の温度まで冷却する。この焼鈍工程(B)では、上述したように加熱初期の比較的低温域(例えば200〜300℃程度)において溶液(y)の液膜中の溶媒分子を蒸発させるとともに、液膜をゲル状皮膜を経て皮膜化し、鋼板表面に金属酸化物層を形成させることができるが、続く最高到達温度までの加熱において金属酸化物層を還元して金属層(例えば、金属Ni層、金属Cu層、金属Fe層など)とする。なお、金属Ni層の場合には、その一部が地鉄中に拡散し、Fe中にNiが固溶したFe−Ni層を形成する。この焼鈍工程(B)では、鋼板表面に均質かつ均一な厚さで形成された金属酸化物層が最終的に還元されるので、未還元の金属酸化物が残存することなく、鋼板表面全体が金属層で均一に覆われた状態となる。そして、この金属層が焼鈍時におけるSi、Mn等の易酸化性元素の拡散障壁となり、鋼板表面における選択酸化物形成を抑制する結果、めっき処理時の反応性が改善し、良好な表面外観及びめっき密着性が得られるものと考えられる。
・ Annealing process (B)
The annealing step (B) is carried out for the purpose of forming a metal layer on the surface of the steel sheet. In the annealing process (B), the steel sheet after the solution treatment step (A), H 2 concentration is 0.05 vol% or more, the dew point is heated at 700 ° C. or higher at 10 ° C. in the reducing atmosphere, then, Cool to a predetermined temperature. In this annealing step (B), as described above, the solvent molecules in the liquid film of the solution (y) are evaporated in a relatively low temperature region (for example, about 200 to 300 ° C.) at the initial stage of heating, and the liquid film is formed into a gel-like film. A metal oxide layer can be formed on the surface of the steel plate by forming a film through the above, but the metal oxide layer is reduced by subsequent heating to the maximum temperature, and the metal layer (for example, metal Ni layer, metal Cu layer, metal). Fe layer, etc.). In the case of a metallic Ni layer, a part of the metal Ni layer diffuses into the base iron to form an Fe—Ni layer in which Ni is solid-solved in Fe. In this annealing step (B), the metal oxide layer formed on the surface of the steel sheet with a uniform and uniform thickness is finally reduced, so that the entire surface of the steel sheet is covered without leaving unreduced metal oxide. It is uniformly covered with a metal layer. Then, this metal layer serves as a diffusion barrier for easily oxidizing elements such as Si and Mn during annealing, and as a result of suppressing the formation of selective oxides on the surface of the steel sheet, the reactivity during the plating treatment is improved, and a good surface appearance and a good surface appearance are obtained. It is considered that plating adhesion can be obtained.
還元性雰囲気中のH2濃度が低すぎる場合、焼鈍工程(B)の加熱初期などにおいて形成される金属酸化物皮膜が、焼鈍工程(B)後においても未還元の金属酸化物として残存し、最終的に得られる製品のめっき密着性不良や外観不良を招くおそれがある。このことから、金属酸化物層を十分に還元するために、0.05vol%以上、好ましくは1.0vol%以上とする。H2濃度の上限は特にないが、H2濃度が必要以上に高いとコストアップにつながるため、40.0vol%程度を上限とすることが好ましく、35.0vol%程度を上限とするのがより好ましい。還元性雰囲気の残部ガスは、通常、N2、H2O及び不可避的不純物である。
還元性雰囲気の露点は10℃以下、好ましくは0℃以下とする。露点が10℃を超えるとFeの酸化が生じ、めっき密着性不良や外観不良の原因となる場合がある。なお、露点の下限は特にないが、工業的に−60℃未満の露点は実施が難しいことから、−60℃以上が好ましい。
When the H 2 concentration in the reducing atmosphere is too low, the metal oxide film formed at the initial stage of heating in the annealing step (B) remains as an unreduced metal oxide even after the annealing step (B). There is a risk of causing poor plating adhesion and poor appearance of the final product. From this, in order to sufficiently reduce the metal oxide layer, it is set to 0.05 vol% or more, preferably 1.0 vol% or more. There is no particular upper limit for the H 2 concentration, but if the H 2 concentration is higher than necessary, it will lead to cost increase. Therefore, it is preferable to set the upper limit to about 40.0 vol%, and it is more preferable to set the upper limit to about 35.0 vol%. preferable. The residual gas in the reducing atmosphere is usually N 2 , H 2 O and unavoidable impurities.
The dew point of the reducing atmosphere is 10 ° C. or lower, preferably 0 ° C. or lower. If the dew point exceeds 10 ° C., Fe is oxidized, which may cause poor plating adhesion or poor appearance. Although there is no particular lower limit for the dew point, it is industrially difficult to carry out a dew point below -60 ° C, so -60 ° C or higher is preferable.
焼鈍温度(鋼板温度)は700℃以上、好ましくは750℃以上とする。焼鈍温度が700℃未満では、金属酸化物層の還元が遅くなり、完全に金属層とするのに長時間を要し、生産性を損なう。また、金属酸化物層の還元が不十分となって、めっき後の外観不良やめっき密着性劣化の原因となりやすい。一方、焼鈍温度(鋼板温度)の上限は特にないが、950℃を超える高温になると、鋼板中のSi、Mn等の易酸化性元素の拡散が著しくなり、より多くの表面酸化物を形成する場合があり、また、加熱コストも上昇する。このため、焼鈍温度は950℃以下が好ましく、900℃以下がより好ましい。なお、焼鈍工程(B)において、鋼板を上記焼鈍温度に保持する場合、鋼板を一定の温度に保った状態で保持してもよいし、上記温度域を外れない限りは、鋼板の温度を変化させながら保持してもよい。また、保持時間は鋼板表面が十分に還元され、かつ目的とする材質が得られるように設定すれば特に制限されない。
焼鈍工程(B)後の鋼板の冷却条件は特に制限はなく、材質設計等の必要に応じて冷却速度や冷却停止温度を決めればよいが、例えば、続くめっき処理工程(C)で溶融亜鉛めっきを行う場合、めっき浴に浸漬する直前の板温が浴温近傍(例えば470〜500℃程度)となるように管理するのが、浴管理やめっき濡れ性の安定化の観点から好ましい。
なお、この焼鈍工程(B)で使用する焼鈍炉の種類に特に制限はない。
The annealing temperature (steel plate temperature) is 700 ° C. or higher, preferably 750 ° C. or higher. If the annealing temperature is less than 700 ° C., the reduction of the metal oxide layer becomes slow, and it takes a long time to completely form the metal layer, which impairs productivity. In addition, the reduction of the metal oxide layer becomes insufficient, which tends to cause poor appearance after plating and deterioration of plating adhesion. On the other hand, there is no particular upper limit of the annealing temperature (steel plate temperature), but when the temperature exceeds 950 ° C., the diffusion of easily oxidizing elements such as Si and Mn in the steel sheet becomes remarkable, and more surface oxides are formed. In some cases, the heating cost also increases. Therefore, the annealing temperature is preferably 950 ° C. or lower, more preferably 900 ° C. or lower. When the steel sheet is held at the annealing temperature in the annealing step (B), the steel sheet may be held at a constant temperature, or the temperature of the steel sheet is changed as long as the temperature does not deviate from the above temperature range. You may hold it while letting it. Further, the holding time is not particularly limited as long as the surface of the steel sheet is sufficiently reduced and the desired material can be obtained.
The cooling conditions of the steel sheet after the annealing step (B) are not particularly limited, and the cooling rate and the cooling stop temperature may be determined according to the material design and other needs. For example, hot dip galvanizing in the subsequent plating process (C). From the viewpoint of bath management and stabilization of plating wettability, it is preferable to control the plate temperature immediately before immersion in the plating bath so that it is close to the bath temperature (for example, about 470 to 500 ° C.).
The type of annealing furnace used in this annealing step (B) is not particularly limited.
・めっき処理工程(C)
このめっき処理工程(C)では、焼鈍工程(B)で焼鈍された鋼板の表面にめっき処理を施す。上述したように鋼板が溶液処理工程(A)と焼鈍工程(B)を経ることによって鋼板表面が金属層で均一に覆われ、この金属層により鋼板表面でのSi、Mnの選択酸化が抑制されるため、このめっき処理工程(C)では、酸化物に起因しためっき密着性の低下が抑えられる。
めっき処理工程(C)で行うめっき方法の種類は特に限定されず、溶融めっき、電気めっき、無電解めっき、気相めっきなどのいずれでもよく、また、亜鉛又は亜鉛合金めっき、錫又は錫合金めっき、アルミニウム又はアルミニウム合金めっきなど、めっき成分(金属又は合金)の種類も問わない。
-Plating process (C)
In this plating treatment step (C), the surface of the steel sheet annealed in the annealing step (B) is plated. As described above, when the steel sheet undergoes the solution treatment step (A) and the annealing step (B), the surface of the steel sheet is uniformly covered with a metal layer, and the metal layer suppresses selective oxidation of Si and Mn on the surface of the steel sheet. Therefore, in this plating treatment step (C), a decrease in plating adhesion due to oxides can be suppressed.
The type of plating method performed in the plating treatment step (C) is not particularly limited, and may be any of hot-dip plating, electroplating, electroless plating, vapor phase plating, etc., and zinc or zinc alloy plating, tin or tin alloy plating. , Aluminum or aluminum alloy plating, etc., regardless of the type of plating component (metal or alloy).
めっき処理のなかでも、各種用途の鋼板に広く適用され、自動車部材用途の鋼板にも好適なめっきは溶融亜鉛めっき(但し、溶融亜鉛めっき後に合金化処理する場合を含む。)であるので、以下、めっき処理工程(C)で溶融亜鉛めっきを行う場合について説明する。
焼鈍工程(B)で焼鈍後、所定温度まで冷却された鋼板を溶融亜鉛めっき浴に浸漬して溶融亜鉛めっき処理を施す。上述したように鋼板が溶液処理工程(A)と焼鈍工程(B)を経ることによって鋼板表面が金属層で均一に覆われ、この金属層により鋼板表面でのSi、Mnの選択酸化が抑制されるため、溶融亜鉛の良好な濡れ性が得られる。
また、必要に応じて、溶融亜鉛めっき後に合金化処理してもよい。
溶融亜鉛めっき条件に特別な制限はないが、溶融亜鉛めっき浴の浴温は440〜550℃程度が好ましい。溶融亜鉛めっき浴の浴温が440℃未満では、めっき浴内における温度変動により低温部でZnの凝固が生じ、溶融めっき浴として不適切になる場合がある。一方、浴温が550℃を超えると浴の蒸発が激しく、気化したZnが炉内へ付着し、操業が困難になる場合があり、また、めっき時に合金化が進行して過合金となる場合がある。
Among the plating treatments, hot-dip galvanizing (including the case of alloying after hot-dip galvanizing) is widely applied to steel sheets for various purposes and is also suitable for steel sheets for automobile parts. , The case where hot-dip galvanizing is performed in the plating treatment step (C) will be described.
After annealing in the annealing step (B), the steel sheet cooled to a predetermined temperature is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing treatment. As described above, when the steel sheet undergoes the solution treatment step (A) and the annealing step (B), the surface of the steel sheet is uniformly covered with a metal layer, and the metal layer suppresses selective oxidation of Si and Mn on the surface of the steel sheet. Therefore, good wettability of molten zinc can be obtained.
Further, if necessary, alloying treatment may be performed after hot-dip galvanizing.
The hot-dip galvanizing conditions are not particularly limited, but the bath temperature of the hot-dip galvanizing bath is preferably about 440 to 550 ° C. If the bath temperature of the hot-dip galvanizing bath is less than 440 ° C., Zn solidifies in the low temperature portion due to temperature fluctuations in the plating bath, which may make the hot-dip galvanizing bath unsuitable. On the other hand, if the bath temperature exceeds 550 ° C, the bath evaporates violently, vaporized Zn may adhere to the inside of the furnace, making operation difficult, and alloying may proceed during plating to result in overalloying. There is.
めっき処理後に合金化処理を行わない場合には、溶融亜鉛めっき浴の浴中Al濃度は、0.13〜0.24質量%程度とすることが好ましい。浴中Al濃度が0.13質量%未満では、Fe−Zn合金化が進んでめっき密着性が悪化する場合があり、一方、0.24質量%を超えるとAl酸化物による欠陥が発生する場合がある。
また、めっき処理後に合金化処理を行う場合には、溶融亜鉛めっき浴の浴中Al濃度は、0.10〜0.20質量%程度とすることが好ましい。浴中Al濃度が0.10質量%未満では、めっき皮膜の合金化によりΓ相が多量に生成してめっき密着性が劣化する場合がある。一方、0.20質量%を超えるとFe−Zn合金化が進行しない場合がある。
When the alloying treatment is not performed after the plating treatment, the Al concentration in the hot-dip galvanizing bath is preferably about 0.13 to 0.24% by mass. If the Al concentration in the bath is less than 0.13% by mass, Fe-Zn alloying may proceed and the plating adhesion may deteriorate, while if it exceeds 0.24% by mass, defects due to Al oxide may occur. There is.
When the alloying treatment is performed after the plating treatment, the Al concentration in the hot-dip galvanizing bath is preferably about 0.10 to 0.20% by mass. If the Al concentration in the bath is less than 0.10% by mass, a large amount of Γ phase may be generated due to alloying of the plating film, and the plating adhesion may deteriorate. On the other hand, if it exceeds 0.20% by mass, Fe—Zn alloying may not proceed.
溶融亜鉛めっき後に合金化処理する場合、合金化処理条件に特別な制限はないが、合金化処理温度は460℃超600℃未満が好ましい。合金化処理温度が460℃以下では合金化の進行が遅く、十分に合金化させるまでに長時間を要してしまい、効率的でない。一方、600℃以上では、合金化が進行し過ぎてしまい、地鉄界面に硬くて脆いZn−Fe合金層が過剰に生成してめっき密着性を劣化させる場合がある。
また、合金化処理時に母材鋼板の材質が劣化するような場合は、必要に応じて処理温度を低めにするのがよく、例えば460℃超560℃未満とする。
なお、本発明の製造方法は、上述したように全部の工程を連続設備(例えば、連続溶融亜鉛めっきライン)で実施してもよいし、各工程を別々の独立した設備でそれぞれ単独で実施し、或いは一部の工程を独立した設備で単独で実施してもよい。
When the alloying treatment is performed after hot-dip galvanizing, the alloying treatment conditions are not particularly limited, but the alloying treatment temperature is preferably more than 460 ° C and less than 600 ° C. When the alloying treatment temperature is 460 ° C. or lower, the progress of alloying is slow, and it takes a long time to sufficiently alloy, which is not efficient. On the other hand, at 600 ° C. or higher, alloying proceeds too much, and a hard and brittle Zn—Fe alloy layer may be excessively formed at the base iron interface to deteriorate the plating adhesion.
When the material of the base steel sheet deteriorates during the alloying treatment, the treatment temperature should be lowered as necessary, for example, more than 460 ° C and less than 560 ° C.
In the manufacturing method of the present invention, as described above, all the steps may be carried out in continuous equipment (for example, continuous hot-dip galvanizing line), or each step may be carried out independently in separate and independent equipment. Alternatively, some steps may be carried out independently in an independent facility.
次に、本発明により製造されるめっき鋼板の母材鋼板について説明する。なお、以下の説明において、各元素の含有量の単位は「質量%」であるが、便宜上「%」で示す。
本発明においてめっき(例えば、溶融亜鉛めっき)される母材鋼板は、固溶強化元素としてSi又は/及びMnを含有する鋼板であり、一般に引張強さTSが340MPa以上の高強度鋼板である。また、そのなかでも、Si:0.10%以上又は/及びMn:0.50%以上を含有する鋼板が焼鈍時にSi、Mnの選択酸化を生じやすいので、そのような成分組成の鋼板を対象とすることが好ましい。
Next, the base steel sheet of the plated steel sheet manufactured by the present invention will be described. In the following description, the unit of the content of each element is "mass%", but it is indicated by "%" for convenience.
The base steel sheet to be plated (for example, hot dip galvanized) in the present invention is a steel sheet containing Si or / and Mn as a solid solution reinforcing element, and is generally a high-strength steel sheet having a tensile strength TS of 340 MPa or more. Among them, steel sheets containing Si: 0.10% or more and / and Mn: 0.50% or more are likely to cause selective oxidation of Si and Mn during annealing. Therefore, steel sheets having such a component composition are targeted. Is preferable.
また、母材鋼板のより具体的な成分組成としては、基本成分として、C:0.040〜0.500%、Si:0.10〜3.00%、Mn:0.50〜5.00%、P:0.100%以下、S:0.0100%以下、Al:0.100%以下、N:0.0100%以下を含有することが好ましく、さらに必要に応じて、Ti:0.010〜0.100%、Nb:0.010〜0.100%、及びB:0.0001〜0.0050%の中から選ばれる1種以上、Mo:0.01〜0.50%、Cr:1.00%以下、Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下、Sb:0.10%以下、Sn:0.10%以下、Ca:0.0100%以下、及びREM:0.010%以下の中から選ばれる1種以上を含有することができる。以下、これらの限定理由について説明する。 Further, as a more specific component composition of the base steel sheet, as basic components, C: 0.040 to 0.500%, Si: 0.10 to 3.00%, Mn: 0.50 to 5.00. %, P: 0.100% or less, S: 0.0100% or less, Al: 0.100% or less, N: 0.0100% or less, and if necessary, Ti: 0. One or more selected from 010 to 0.100%, Nb: 0.010 to 0.100%, and B: 0.0001 to 0.0050%, Mo: 0.01 to 0.50%, Cr : 1.00% or less, Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% or less, Sb: 0.10% or less, Sn: 0.10% or less, Ca: 0 It can contain one or more selected from 0.0100% or less and REM: 0.010% or less. The reasons for these limitations will be described below.
・C:0.040〜0.500%
Cはオーステナイト安定化元素であり、強度と延性の向上に有効な元素である。このような効果を得るために、C含有量は0.040%以上とすることが好ましい。一方、C含有量が0.500%を超えると、溶接性の劣化が著しく、また、過度に硬質化したマルテンサイト相によって優れた強度−伸びバランスが得られない場合がある。このためC含有量は0.500%以下とすることが好ましい。
・Si:0.10〜3.00%
Siはフェライト安定化元素であり、また、鋼の固溶強化に有効であり、強度と伸びのバランスを向上させる元素である。このような効果を得るために、Si含有量は0.10%以上とすることが好ましい。一方、Si含有量が3.00%を超えると、本発明を適用しても焼鈍中に鋼板表面でSiが酸化物を形成し、めっき時に溶融亜鉛の濡れ性を劣化させるなどにより、めっき密着性が低下するおそれがある。このためSi含有量は3.00%以下とすることが好ましい。
・ C: 0.040 to 0.500%
C is an austenite stabilizing element, which is an effective element for improving strength and ductility. In order to obtain such an effect, the C content is preferably 0.040% or more. On the other hand, if the C content exceeds 0.500%, the weldability is significantly deteriorated, and an excellent strength-elongation balance may not be obtained due to the excessively hardened martensite phase. Therefore, the C content is preferably 0.500% or less.
-Si: 0.10 to 3.00%
Si is a ferrite stabilizing element, which is effective for solid solution strengthening of steel and improves the balance between strength and elongation. In order to obtain such an effect, the Si content is preferably 0.10% or more. On the other hand, when the Si content exceeds 3.00%, even if the present invention is applied, Si forms an oxide on the surface of the steel sheet during annealing, which deteriorates the wettability of hot-dip zinc during plating, resulting in adhesion to plating. There is a risk of deterioration. Therefore, the Si content is preferably 3.00% or less.
・Mn:0.50〜5.00%
Mnは、オーステナイト安定化元素であり、焼鈍板の強度確保に有効な元素である。この強度確保のためには、Mn含有量は0.50%以上とすることが好ましい。ただし、Mn含有量が5.00%を超えると、本発明を適用しても焼鈍中に鋼板表面で多量の酸化物を形成し、めっき時に溶融亜鉛の濡れ性を劣化させるなどにより、めっき密着性が低下するおそれがある。このためMn含有量は5.00%以下とすることが好ましい。
・P:0.100%以下
Pは、鋼の強化に有効な元素であるが、含有量が多すぎると粒界偏析により脆化を引き起こし、耐衝撃性を劣化させるおそれがあり、また、溶融亜鉛めっき後に合金化処理を施す場合、合金化反応を遅延させる場合がある。このためP含有量は0.100%以下とすることが好ましい。なお、鋼の強化の観点からは、P含有量は0.001%以上であることが好ましい。
-Mn: 0.50 to 5.00%
Mn is an austenite stabilizing element and is an element effective for ensuring the strength of the annealed plate. In order to secure this strength, the Mn content is preferably 0.50% or more. However, if the Mn content exceeds 5.00%, even if the present invention is applied, a large amount of oxide is formed on the surface of the steel sheet during annealing, and the wettability of hot-dip zinc is deteriorated during plating. There is a risk of deterioration. Therefore, the Mn content is preferably 5.00% or less.
-P: 0.100% or less P is an element effective for strengthening steel, but if the content is too large, embrittlement may occur due to grain boundary segregation, which may deteriorate impact resistance, and melt. When the alloying treatment is performed after galvanizing, the alloying reaction may be delayed. Therefore, the P content is preferably 0.100% or less. From the viewpoint of strengthening the steel, the P content is preferably 0.001% or more.
・S:0.0100%以下
Sは、MnSなどの介在物となって、耐衝撃性の劣化や溶接部のメタルフローに沿った割れの原因となる。このため、S含有量は極力低い方がよく、0.0100%以下とすることが好ましい。
・Al:0.100%以下
Alの過剰な添加は、酸化物系介在物の増加による表面性状や成形性の劣化を招き、また、コスト高にもつながる。このためAl含有量は0.100%以下とすることが好ましく、0.050%以下とすることがより好ましい。
・N:0.0100%以下
Nは、鋼の耐時効性を劣化させる元素であるので、N含有量は少ないほど好ましく、0.0100%以下とすることが好ましい。
-S: 0.0100% or less S becomes an inclusion such as MnS and causes deterioration of impact resistance and cracking along the metal flow of the welded portion. Therefore, the S content should be as low as possible, preferably 0.0100% or less.
-Al: 0.100% or less Excessive addition of Al causes deterioration of surface properties and moldability due to an increase in oxide-based inclusions, and also leads to high cost. Therefore, the Al content is preferably 0.100% or less, and more preferably 0.050% or less.
-N: 0.0100% or less N is an element that deteriorates the aging resistance of steel. Therefore, the smaller the N content, the more preferably 0.0100% or less.
・Ti:0.010〜0.100%
Tiは鋼板中でCやNと微細炭化物や微細窒化物を形成することにより、鋼板の強度向上に寄与する元素である。この効果を得るためには、Ti含有量は0.010%以上とすることが好ましい。一方、Ti含有量が0.100%を超えるとこの効果が飽和するので、Ti含有量は0.100%以下とすることが好ましい。
・Nb:0.010〜0.100%
Nbは固溶強化や析出強化により強度向上に寄与する元素である。この効果を得るためには、Nb含有量は0.010%以上とすることが好ましい。一方、Nbの含有量が0.100%を超えると鋼板の延性を低下させ、加工性が劣化する場合があるので、Nb含有量は0.100%以下とすることが好ましい。
・B:0.0001〜0.0050%
Bは焼入れ性を高め、鋼板の強度向上に寄与する元素である。この効果を得るためには、B含有量は0.0001%以上とすることが好ましい。一方、Bを過剰に含有すると延性の低下を招き、加工性が劣化する場合がある。また、Bの過剰な含有はコストアップの原因ともなる。このためB含有量は0.0050%以下とすることが好ましい。
-Ti: 0.010 to 0.100%
Ti is an element that contributes to improving the strength of the steel sheet by forming fine carbides and fine nitrides with C and N in the steel sheet. In order to obtain this effect, the Ti content is preferably 0.010% or more. On the other hand, if the Ti content exceeds 0.100%, this effect is saturated, so the Ti content is preferably 0.100% or less.
・ Nb: 0.010 to 0.100%
Nb is an element that contributes to strength improvement by strengthening solid solution and strengthening precipitation. In order to obtain this effect, the Nb content is preferably 0.010% or more. On the other hand, if the Nb content exceeds 0.100%, the ductility of the steel sheet may be lowered and the workability may be deteriorated. Therefore, the Nb content is preferably 0.100% or less.
・ B: 0.0001 to 0.0050%
B is an element that enhances hardenability and contributes to improving the strength of the steel sheet. In order to obtain this effect, the B content is preferably 0.0001% or more. On the other hand, if B is excessively contained, the ductility may be lowered and the workability may be deteriorated. In addition, excessive content of B also causes an increase in cost. Therefore, the B content is preferably 0.0050% or less.
・Mo:0.01〜0.50%
Moは、オーステナイト生成元素であり、焼鈍板の強度確保に有効な元素である。強度確保の観点から、Mo含有量は0.01%以上とすることが好ましい。一方、Moは合金コストが高いため、添加量が多いとコストアップの要因になるので、Mo含有量は0.50%以下とすることが好ましい。
・Cr:1.00%以下
Crは、オーステナイト生成元素であり、焼鈍板の強度確保に有効な元素であるが、添加量が多すぎると焼鈍中に鋼板表面で酸化物を形成し、めっき外観を劣化させる場合がある。このためCr含有量は1.00%以下とすることが好ましい。
・ Mo: 0.01 to 0.50%
Mo is an austenite-forming element and is an element effective for ensuring the strength of the annealed sheet. From the viewpoint of ensuring strength, the Mo content is preferably 0.01% or more. On the other hand, since Mo has a high alloy cost, a large amount of Mo added causes an increase in cost. Therefore, the Mo content is preferably 0.50% or less.
-Cr: 1.00% or less Cr is an austenite-forming element and is an element effective for ensuring the strength of the annealed sheet. However, if the amount added is too large, an oxide is formed on the surface of the steel sheet during annealing, and the plating appearance. May deteriorate. Therefore, the Cr content is preferably 1.00% or less.
・Ni:0.50%以下、Cu:1.00%以下、V:0.500%以下
Ni、Cu、Vは鋼の強化に有効な元素であるが、過剰に添加すると著しい強度上昇による延性の低下が生じる場合があり、また、これらの元素の過剰な添加は、コストアップの要因にもなる。このため、これらの元素を添加する場合には、Ni含有量は0.50%以下、Cu含有量は1.00%以下、V含有量は0.500%以下とすることが好ましい。なお、鋼を強化するためには、Ni含有量は0.05%以上、Cu含有量は0.05%以上、V含有量は0.005%以上とすることが好ましい。
・Sb:0.10%以下、Sn:0.10%以下
SbとSnには、鋼板表面付近の窒化を抑制する作用があるが、過剰に添加しても効果が飽和する。このため、これらの元素を添加する場合には、Sb含有量は0.10%以下、Sn含有量は0.10%以下とすることが好ましい。なお、窒化の抑制のためには、Sb含有量は0.005%以上、Sn含有量は0.005%以上とすることが好ましい。
-Ni: 0.50% or less, Cu: 1.00% or less, V: 0.500% or less Ni, Cu, V are effective elements for strengthening steel, but if added excessively, ductility due to a significant increase in strength In addition, excessive addition of these elements also causes an increase in cost. Therefore, when these elements are added, it is preferable that the Ni content is 0.50% or less, the Cu content is 1.00% or less, and the V content is 0.500% or less. In order to reinforce the steel, it is preferable that the Ni content is 0.05% or more, the Cu content is 0.05% or more, and the V content is 0.005% or more.
-Sb: 0.10% or less, Sn: 0.10% or less Sb and Sn have an effect of suppressing nitriding near the surface of the steel sheet, but the effect is saturated even if they are added excessively. Therefore, when these elements are added, the Sb content is preferably 0.10% or less, and the Sn content is preferably 0.10% or less. In order to suppress nitriding, the Sb content is preferably 0.005% or more, and the Sn content is preferably 0.005% or more.
・Ca:0.0100%以下
Caには、MnSなど硫化物の形状制御によって延性を向上させる効果があるが、過剰に添加しても上記効果は飽和するため、Ca含有量は0.0100%以下とすることが好ましい。なお、上記の効果を得るためには、Ca含有量は0.0010%以上とすることが好ましい。
・REM:0.010%以下
REM(レアアースメタル:希土類金属)は、硫化物系介在物の形態を制御し、加工性の向上に寄与するが、過剰に添加すると介在物の増加を引き起こし、加工性を劣化させる場合があるので、REM含有量は0.010%以下とすることが好ましい。なお、加工性向上の効果を得るためには、REM含有量は0.001%以上とすることが好ましい。
以上述べた基本成分および任意添加成分以外の残部はFe及び不可避的不純物である。
-Ca: 0.0100% or less Ca has the effect of improving ductility by controlling the shape of sulfides such as MnS, but the above effect is saturated even if it is added in excess, so the Ca content is 0.0100%. The following is preferable. In order to obtain the above effect, the Ca content is preferably 0.0010% or more.
-REM: 0.010% or less REM (rare earth metal: rare earth metal) controls the morphology of sulfide-based inclusions and contributes to the improvement of workability, but when added in excess, it causes an increase in inclusions and is processed. The REM content is preferably 0.010% or less because it may deteriorate the properties. In order to obtain the effect of improving workability, the REM content is preferably 0.001% or more.
The rest other than the basic component and the optional additive component described above are Fe and unavoidable impurities.
また、母材鋼板の製造条件にも特別な制限はない。通常、上記成分組成からなる鋼スラブを、熱間圧延工程において粗圧延及び仕上圧延した後、酸洗工程で熱延板表層のスケールを除去し、必要に応じて冷間圧延する。熱間圧延条件、酸洗条件、冷間圧延条件は特に限定されない。すなわち、母材鋼板は熱延鋼板、冷延鋼板のいずれでもよい。
本発明の溶液処理工程(A)で使用される溶液(y)は、鋼板の焼鈍時における易酸化性元素の選択酸化を抑制するための溶液処理用の処理剤であり、Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液からなる溶液処理用の処理剤である。この処理剤の好ましい組成などは、さきに溶液(y)について述べた通りである。
In addition, there are no special restrictions on the manufacturing conditions of the base steel sheet. Usually, a steel slab having the above composition is rough-rolled and finish-rolled in a hot-rolling step, then the scale of the hot-rolled plate surface layer is removed in a pickling step, and cold-rolled if necessary. Hot rolling conditions, pickling conditions, and cold rolling conditions are not particularly limited. That is, the base steel sheet may be either a hot-rolled steel plate or a cold-rolled steel plate.
The solution (y) used in the solution treatment step (A) of the present invention is a treatment agent for solution treatment for suppressing selective oxidation of easily oxidizable elements at the time of annealing of a steel plate, and is more than Fe and Fe. A treatment agent for solution treatment, which comprises a solution containing a metal alkoxide of one or more metals (x) selected from metals having a high standard oxidation-reduction potential. The preferable composition of this treatment agent and the like are as described above for the solution (y).
表3に示す成分組成を有し、残部がFe及び不可避的不純物からなる鋼を溶製してスラブとした。このスラブを1200℃まで加熱して熱間圧延し、巻き取りを実施した。この熱延板を酸洗し、圧下率50%で冷間圧延を行った。得られた冷延鋼板について、表4〜表9に示す条件にて溶液処理工程、焼鈍工程及びめっき処理工程を順次実施した。各工程は、それぞれを単独で実施する実験設備を用いて行った。
溶液処理工程では、ロールコーターにより鋼板表面に溶液を塗布した。その付着量(金属アルコキシドの金属(x)換算量)は、ロールギャップ及びロール周速を調整して液膜厚さを変えることにより制御した。なお、その付着量は溶液を塗布した後、乾燥させた鋼板の蛍光X線分析により定量した。
A steel having the component composition shown in Table 3 and having the balance of Fe and unavoidable impurities was melted to form a slab. The slab was heated to 1200 ° C., hot-rolled, and wound. This hot-rolled plate was pickled and cold-rolled at a reduction ratio of 50%. The obtained cold-rolled steel sheet was subjected to a solution treatment step, an annealing step, and a plating treatment step in sequence under the conditions shown in Tables 4 to 9. Each step was carried out using an experimental facility in which each was carried out independently.
In the solution treatment step, the solution was applied to the surface of the steel sheet by a roll coater. The amount of adhesion (the amount of metal alkoxide converted to metal (x)) was controlled by adjusting the roll gap and the peripheral peripheral speed of the roll to change the liquid film thickness. The amount of adhesion was quantified by fluorescent X-ray analysis of the dried steel sheet after applying the solution.
焼鈍工程は、雰囲気調整が可能な炉において実施し、溶液処理工程で溶液が塗布された鋼板を、そのまま液膜を有する状態で炉に入れ、焼鈍を行った。
めっき処理工程では、鋼板を浴中Al濃度が0.132質量%の溶融亜鉛めっき浴で溶融亜鉛めっきを施した。また、一部の鋼板には、引き続き合金化処理を施した。この合金化処理では、保持時間を20秒とし、めっき皮膜中のFe濃度が10質量%に到達する温度を合金化処理温度とした。めっき皮膜中のFe濃度は、誘導結合プラズマ発光分光分析で測定した。
The annealing step was carried out in a furnace capable of adjusting the atmosphere, and the steel sheet coated with the solution in the solution treatment step was placed in the furnace as it was with a liquid film and annealed.
In the plating treatment step, the steel sheet was hot-dip galvanized in a hot-dip galvanizing bath having an Al concentration of 0.132% by mass in the bath. In addition, some steel sheets were continuously alloyed. In this alloying treatment, the holding time was set to 20 seconds, and the temperature at which the Fe concentration in the plating film reached 10% by mass was defined as the alloying treatment temperature. The Fe concentration in the plating film was measured by inductively coupled plasma emission spectroscopy.
以上のようにして得られた溶融亜鉛めっき鋼板(GI)と合金化溶融亜鉛めっき鋼板(GA)について、以下に示す方法で表面外観、めっき密着性(GI密着性及びGA密着性)を評価した。
・表面外観
不めっき、ムラ、ピンホール、クラックなどの外観不良の有無を目視にて判定し、下記基準により評価を行い、○と△を合格とした。
〇:不めっき、ムラ、ピンホール、クラックはいずれも認められない。
△:不めっき、ピンホール、クラックはいずれも認められないが、軽微なムラが認められる。
×:不めっき、明瞭なムラ、ピンホール、クラックのいずれか1種以上が認められる。
The surface appearance and plating adhesion (GI adhesion and GA adhesion) of the hot-dip galvanized steel sheet (GI) and the alloyed hot-dip galvanized steel sheet (GA) obtained as described above were evaluated by the following methods. ..
-Surface appearance The presence or absence of appearance defects such as non-plating, unevenness, pinholes, and cracks was visually judged, and evaluation was performed according to the following criteria.
〇: No non-plating, unevenness, pinholes, or cracks are observed.
Δ: No non-plating, pinholes, or cracks were observed, but slight unevenness was observed.
X: One or more of non-plating, clear unevenness, pinholes, and cracks are observed.
・溶融亜鉛めっき鋼板(GI)のめっき密着性(GI密着性)
溶融亜鉛めっき鋼板(GI)のめっき密着性の評価には、ボールインパクト試験を用い、加工部をセロハンテープ剥離後、めっき層剥離の有無を目視判定することで下記基準により評価し、○及び△を合格とした。なお、本試験ではボール質量1.8kg、落下高さ100cmとした。
○:めっき層の剥離なし
△:めっき層に軽微な剥離あり
×:めっき層に軽微でない剥離あり
-Plating adhesion of hot-dip galvanized steel sheet (GI) (GI adhesion)
To evaluate the plating adhesion of hot-dip galvanized steel sheet (GI), a ball impact test was used, and after peeling the cellophane tape on the processed part, the presence or absence of peeling of the plating layer was visually judged to evaluate according to the following criteria. Was passed. In this test, the ball mass was 1.8 kg and the drop height was 100 cm.
◯: No peeling of the plating layer Δ: Slight peeling of the plating layer ×: Non-slight peeling of the plating layer
・合金化溶融亜鉛めっき鋼板(GA)のめっき密着性(GAめっき密着性)
合金化溶融亜鉛めっき鋼板(GA)のめっき密着性は、耐パウダリング性により評価した。具体的には、合金化溶融亜鉛めっき鋼板にセロハンテープを貼り、テープ面について90度曲げ・曲げ戻しをし、加工部の内側(圧縮加工側)に、曲げ加工部と平行に巾24mmのセロハンテープを押し当てて引き離し、セロハンテープの長さ40mmの部分に付着した亜鉛量を蛍光X線によるZnカウント数として測定し、Znカウント数を単位長さ(1m)当たりに換算した量を、下記基準の通りランク付けした。ランク1〜2のものを良好(○)、ランク3のものを概ね良好(△)、ランク4以上のものを不良(×)とし、○と△を合格とした。
ランク1:蛍光X線カウント数が0以上〜2000未満
ランク2:蛍光X線カウント数が2000以上〜5000未満
ランク3:蛍光X線カウント数が5000以上〜8000未満
ランク4:蛍光X線カウント数が8000以上〜10000未満
ランク5:蛍光X線カウント数が10000以上
・ Plating adhesion of alloyed hot-dip galvanized steel sheet (GA) (GA plating adhesion)
The plating adhesion of the alloyed hot-dip galvanized steel sheet (GA) was evaluated by the powdering resistance. Specifically, cellophane tape is attached to the alloyed hot-dip zinc-plated steel plate, the tape surface is bent and bent back 90 degrees, and the cellophane with a width of 24 mm is placed inside the processed portion (compression processed side) in parallel with the bent portion. The tape is pressed and pulled apart, the amount of zinc adhering to the 40 mm long part of the cellophane tape is measured as the Zn count number by fluorescent X-ray, and the amount obtained by converting the Zn count number per unit length (1 m) is as follows. Ranked according to the criteria. Ranks 1 and 2 were good (◯), rank 3 was generally good (Δ), rank 4 and above were bad (x), and ○ and Δ were passed.
Rank 1: Fluorescent X-ray count is 0 or more and less than 2000 Rank 2: Fluorescent X-ray count is 2000 or more and less than 5000 Rank 3: Fluorescent X-ray count is 5000 or more and less than 8000 Rank 4: Fluorescent X-ray count Is 8000 or more and less than 10000 Rank 5: Fluorescent X-ray count is 10000 or more
以上の結果を、製造条件とともに表4〜表10に示す。
表4〜表10によれば、本発明例の高強度溶融亜鉛めっき鋼板は、いずれも表面外観及びめっき密着性に優れていることが判る。これに対して比較例の高強度溶融亜鉛めっき鋼板は、表面外観、めっき密着性のいずれか又は両方が劣っている。
The above results are shown in Tables 4 to 10 together with the manufacturing conditions.
According to Tables 4 to 10, it can be seen that the high-strength hot-dip galvanized steel sheets of the examples of the present invention are all excellent in surface appearance and plating adhesion. On the other hand, the high-strength hot-dip galvanized steel sheet of the comparative example is inferior in surface appearance, plating adhesion, or both.
Claims (15)
鋼板の表面に、Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液(y)を付着させる溶液処理工程と、
該溶液処理工程を経た鋼板を、H2濃度が0.05vol%以上、露点が10℃以下の還元性雰囲気中において700℃以上で加熱処理する焼鈍工程と、
該焼鈍工程を経た鋼板にめっきを施すめっき処理工程を有することを特徴とする高強度めっき鋼板の製造方法。 A method for producing a high-strength plated steel sheet using a steel sheet containing Si or / and Mn as a base material.
A solution treatment step of adhering a solution (y) containing a metal alkoxide of one or more metals (x) selected from metals having a standard oxidation-reduction potential higher than Fe and Fe to the surface of a steel plate, and a solution treatment step.
The steel sheet after the solution treatment step, H 2 concentration is 0.05 vol% or more, and annealing steps which dew point is heated at 700 ° C. or higher at 10 ° C. in the reducing atmosphere,
A method for producing a high-strength plated steel sheet, which comprises a plating process for plating a steel sheet that has undergone the annealing step.
Fe及びFeよりも標準酸化還元電位が高い金属の中から選ばれる1種以上の金属(x)の金属アルコキシドを含有する溶液(y)からなることを特徴とする溶液処理用の処理剤。 A treatment agent for solution treatment for suppressing selective oxidation of easily oxidizing elements during annealing of steel sheets for plating.
A treatment agent for solution treatment, which comprises a solution (y) containing a metal alkoxide of one or more metals (x) selected from Fe and a metal having a standard oxidation-reduction potential higher than that of Fe.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018110498 | 2018-06-08 | ||
JP2018110498 | 2018-06-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019214784A JP2019214784A (en) | 2019-12-19 |
JP6863404B2 true JP6863404B2 (en) | 2021-04-21 |
Family
ID=68919318
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019094591A Active JP6863404B2 (en) | 2018-06-08 | 2019-05-20 | Manufacturing method of high-strength galvanized steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6863404B2 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3376914B2 (en) * | 1998-04-03 | 2003-02-17 | 日本鋼管株式会社 | Manufacturing method and apparatus for hot-dip galvanized steel sheet |
JP3480357B2 (en) * | 1999-03-03 | 2003-12-15 | Jfeスチール株式会社 | Method for producing high strength galvanized steel sheet containing Si and high strength galvannealed steel sheet |
JP5672127B2 (en) * | 2011-04-15 | 2015-02-18 | 新日鐵住金株式会社 | Hot-dip galvanized steel sheet and manufacturing method thereof |
JP6777140B2 (en) * | 2018-02-16 | 2020-10-28 | Jfeスチール株式会社 | Manufacturing method of high-strength galvanized steel sheet |
-
2019
- 2019-05-20 JP JP2019094591A patent/JP6863404B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2019214784A (en) | 2019-12-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5720856B2 (en) | Galvanized steel sheet for hot forming | |
CN108291283B (en) | High-strength hot-dip galvanized steel sheet, hot-rolled steel sheet and cold-rolled steel sheet used for same, and method for producing high-strength hot-dip galvanized steel sheet | |
JP3956550B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet with excellent balance of strength and ductility | |
CN113272466B (en) | Method for producing hot dip galvanized steel sheet | |
JP5799819B2 (en) | Method for producing hot-dip galvanized steel sheet with excellent plating wettability and pick-up resistance | |
JP4631241B2 (en) | High-tensile hot-dip galvanized steel sheet and high-tensile alloyed hot-dip galvanized steel sheet with excellent strength ductility balance, plating adhesion and corrosion resistance | |
JP6094649B2 (en) | Method for producing high-strength hot-dip galvanized steel sheet and method for producing high-strength galvannealed steel sheet | |
CN108474092B (en) | High-strength hot-rolled steel sheet by hot-dip plating and method for producing same | |
JP7241283B2 (en) | Aluminum-iron plated steel sheet for hot press with excellent corrosion resistance and weldability and its manufacturing method | |
JPWO2016002141A1 (en) | Method for producing high-strength hot-dip galvanized steel sheet | |
JPH0913147A (en) | High strength galvannealed steel plate excellent in formability and plating adhesion and its production | |
EP3636790B1 (en) | Hot dipped high manganese steel and manufacturing method therefor | |
JP6777140B2 (en) | Manufacturing method of high-strength galvanized steel sheet | |
JP2000309824A (en) | Cold rolled steel sheet, hot dip plated steel sheet and their production | |
JPH0688187A (en) | Production of alloyed galvannealed steel sheet | |
JP2002309358A (en) | Galvannealed steel sheet with excellent workability | |
JP3126911B2 (en) | High strength galvanized steel sheet with good plating adhesion | |
JP2004115843A (en) | High tensile hot dip galvannealed steel sheet and its manufacturing method | |
JP2014114489A (en) | Method of producing molten zinc plated steel plate | |
JP6863404B2 (en) | Manufacturing method of high-strength galvanized steel sheet | |
JP3494133B2 (en) | Manufacturing method of hot-dip coated high strength steel sheet | |
JP6673290B2 (en) | Manufacturing method of high strength galvanized steel sheet | |
JP7054067B2 (en) | High-strength cold-rolled steel sheet, its manufacturing method, and water treatment agent | |
JP2003073772A (en) | High-tension hot-dip galvanized steel sheet superior in plating property and manufacturing method therefor | |
JP2002173714A (en) | High tensile strength hot dip plated steel sheet and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200124 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210302 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210315 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6863404 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |