JP2020157457A - Surface-coated cutting tool excellent in defect resistance - Google Patents

Surface-coated cutting tool excellent in defect resistance Download PDF

Info

Publication number
JP2020157457A
JP2020157457A JP2019062526A JP2019062526A JP2020157457A JP 2020157457 A JP2020157457 A JP 2020157457A JP 2019062526 A JP2019062526 A JP 2019062526A JP 2019062526 A JP2019062526 A JP 2019062526A JP 2020157457 A JP2020157457 A JP 2020157457A
Authority
JP
Japan
Prior art keywords
layer
concentration
value
maximum
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019062526A
Other languages
Japanese (ja)
Other versions
JP7243013B2 (en
Inventor
翔 龍岡
Sho Tatsuoka
翔 龍岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019062526A priority Critical patent/JP7243013B2/en
Publication of JP2020157457A publication Critical patent/JP2020157457A/en
Application granted granted Critical
Publication of JP7243013B2 publication Critical patent/JP7243013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

To provide a surface-coated cutting tool exerting excellent defect resistance in cutting of a stainless steel, a fusion surface-remaining steel material and the like.SOLUTION: There is provided a surface-coated cutting tool having a hard coating layer of 0.6-20.0 μm in overall average layer thickness including the upper and lower layers on the surface of a Co, Cr-containing tungsten carbide-based hard metal substrate. The lower layer consists of a TiCr composite carbonitride, has a maximum Cr concentration area of 0.5 atom% or more but 5.0 atom% or less of Cr in an area from the outermost surface of the substrate to a layer thickness of 0.1 μm and has a maximum C concentration area of 7.0 atom% or more but 25.0 atom% or less of C in an area over the above area to 1.6 μm. The upper layer consists of an AlTi composite (carbo)nitride (composition formula: (AlXTi1-X)(CYN1-Y) and satisfies 0.75≤Xavg≤0.90 and 0≤Yavg<0.05, has an NaCl type face-centered cubic crystal structure and has the film thickness of 0.4 to 18.4 μm.SELECTED DRAWING: Figure 1

Description

この発明は、ステンレス鋼や溶断表面が残存する鋼材等の切削加工において、特に、耐欠損性にすぐれた表面被覆切削工具(以下、単に「被覆工具」という)に関するものである。 The present invention relates to a surface-coated cutting tool having excellent fracture resistance (hereinafter, simply referred to as "coated tool") in cutting of stainless steel, steel materials having a fusing surface remaining, and the like.

ステンレス鋼や溶断表面が残存する鋼材の切削加工において、特に、CVD法によりAlTiNを被覆した切削工具においては、その皮膜硬さや耐酸化特性により、連続高速切削領域では高い耐摩耗性を発揮することが知られているものの、一方、被削材の靭性が高いステンレス鋼や、切り込み量が変動する溶断面の加工のような不安定加工においては、その高い皮膜硬さのため、粒子の脱落が顕著に発生し、工具の欠損を伴う異常損傷が進むことで、本来の性能を発揮することができないという問題を有していた。 In cutting of stainless steel and steel materials with a fusing surface remaining, especially in cutting tools coated with AlTiN by the CVD method, high wear resistance is exhibited in the continuous high-speed cutting region due to the film hardness and oxidation resistance characteristics. However, on the other hand, in unstable machining such as stainless steel with high toughness of the work material and machining of melted cross section where the depth of cut fluctuates, the high film hardness causes particles to fall off. There was a problem that the original performance could not be exhibited due to the remarkable occurrence and the progress of abnormal damage accompanied by the chipping of the tool.

これに対して、基材表面に密着性にすぐれるTi系の密着層を設け、基材ないし基材表面の成分を密着層中に拡散させることにより高い密着性を得る技術が提案されている。
例えば、特許文献1では、超硬合金基材側から被覆膜のTiN層側にかけてのCおよびCoの拡散量を調整し、所望の濃度勾配を有することにより、密着性の向上を図ることが記載されており、また、特許文献2では、WC基超硬合金基材側より硬質被覆層側の第一層であるチタン炭化物皮膜におけるCo含有量、および、Co含有量に対するCr含有量比を規定することにより、前記チタン炭化物皮膜の密着性の向上を図ることが記載されている。
また、特許文献3では、WC超硬合金基体の表面に被覆されるTiN層中のCr濃度を高めることにより、WC超硬合金基体とその表面に被覆されるTiN層の密着性を向上させることが記載されている。
On the other hand, a technique has been proposed in which a Ti-based adhesion layer having excellent adhesion is provided on the surface of the base material, and the components of the base material or the surface of the base material are diffused into the adhesion layer to obtain high adhesion. ..
For example, in Patent Document 1, it is possible to improve the adhesion by adjusting the diffusion amount of C and Co from the cemented carbide base material side to the TiN layer side of the coating film and having a desired concentration gradient. In addition, Patent Document 2 describes the Co content in the titanium carbide film, which is the first layer on the hard coating layer side from the WC-based cemented carbide base material side, and the Cr content ratio to the Co content. It is described that the adhesion of the titanium carbide film is improved by specifying it.
Further, in Patent Document 3, the adhesion between the WC cemented carbide substrate and the TiN layer coated on the surface thereof is improved by increasing the Cr concentration in the TiN layer coated on the surface of the WC cemented carbide substrate. Is described.

特許第6041160号Patent No. 6041160 特許第5046196号Patent No. 5046196 特許第6276288号Patent No. 6276288

近年の切削加工における省力化および省エネ化等の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具では、粒子の脱落の発生により、工具の欠損を伴う異常損傷を生じることから、すぐれた耐欠損性が求められる。
そこで、前記特許文献1乃至特許文献3では、被覆工具において、基体成分もしくは基体表面の成分を密着層中に拡散させることにより、工具基体上にTi系の密着性にすぐれた密着層を形成し、欠損の発生を回避することが提案された。
しかしながら、これらのCVD−AlTiN皮膜においては、元素拡散により密着性向上効果は認められるものの、元素の拡散により密着層自体の硬さが過度に上昇し、加工中に硬さの高いCVD−AlTiN皮膜表面から発生したクラックが内部まで進展し、皮膜粒子の脱落などによる工具の欠損が生じるという問題を有していた。
In recent years, there have been strong demands for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient. In coated tools, the occurrence of particles falling off causes tool loss. Excellent fracture resistance is required because it causes abnormal damage.
Therefore, in Patent Documents 1 to 3, in the coating tool, the substrate component or the component on the surface of the substrate is diffused into the adhesion layer to form a Ti-based adhesion layer having excellent adhesion on the tool substrate. , It was proposed to avoid the occurrence of defects.
However, in these CVD-AlTiN films, although the effect of improving adhesion is recognized by element diffusion, the hardness of the adhesion layer itself is excessively increased due to element diffusion, and the CVD-AlTiN film having high hardness during processing. There was a problem that cracks generated from the surface propagated to the inside and the tool was damaged due to the film particles falling off.

そこで、本発明は、かかる課題を解決し、長期使用に際しても、工具の欠損をともなう異常損傷の進展を阻止し、すぐれた耐欠損性を発揮する表面被覆切削工具を提供することを目的とする。 Therefore, an object of the present invention is to provide a surface-coated cutting tool that solves such a problem, prevents the progress of abnormal damage accompanied by a tool defect even during long-term use, and exhibits excellent chipping resistance. ..

本発明者らは、前述の観点から、AlとTiの複合窒化物からなる硬質被覆層を化学蒸着にて被覆形成した被覆工具の耐欠損性を改善および向上を図るべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above viewpoint, the present inventors have conducted extensive research in order to improve and improve the fracture resistance of a coating tool in which a hard coating layer made of a composite nitride of Al and Ti is coated and formed by chemical vapor deposition. As a result, the following findings were obtained.

すなわち、本発明者らは、CVD−AlTiNから成る硬質被覆層の下部層において、基体と接する領域より硬質被覆層の表面側に向かってCr成分およびC成分を適切に拡散させ、それぞれの成分が、濃度傾斜分布領域を有し、具体的には、硬質被覆層の下部層の基体表面から硬質被覆層の表面側に向かって、順に異なる位置にて、Cr成分が最大濃度となる領域、および、C成分が最大濃度となる領域を設け、TiとCrの炭窒化物からなる密着層を得て、結晶配向と皮膜の残留応力を制御し、その皮膜硬さの過度な上昇を抑制することにより、クラックによる内部進展を防ぎ、粒子の脱落を減ずる結果、耐欠損性にすぐれた皮膜が得られることを知見した。 That is, in the lower layer of the hard coating layer made of CVD-AlTiN, the present inventors appropriately diffuse the Cr component and the C component from the region in contact with the substrate toward the surface side of the hard coating layer, and each component is formed. , A region having a concentration gradient distribution region, specifically, a region in which the Cr component has the maximum concentration at different positions in order from the substrate surface of the lower layer of the hard coating layer toward the surface side of the hard coating layer, and , A region where the C component has the maximum concentration is provided, an adhesion layer made of carbon nitride of Ti and Cr is obtained, the crystal orientation and the residual stress of the film are controlled, and the excessive increase in the film hardness is suppressed. As a result, it was found that as a result of preventing internal growth due to cracks and reducing particle shedding, a film having excellent fracture resistance can be obtained.

本発明は、前記知見に基づいてなされたものであって、
「(1)結合相成分としてCo、Crを含有する炭化タングステン基超硬合金からなる工具基体の表面に、硬質被覆層を有してなる表面被覆切削工具において、
(a)前記硬質被覆層は、前記工具基体最表面に直接接してなる下部層と、該下部層に直接接してなる上部層との少なくとも二層を有し、前記硬質被覆層の全平均層厚は、0.6〜20.0μmであり、
(b)前記下部層は、TiおよびCrの炭窒化物からなり、その平均層厚は、0.2〜1.6μmであり、
(b−1)前記下部層は、前記基体最表面から層厚が0.1μmまでの範囲において、
最大Cr濃度値を有し、前記最大Cr濃度値の90%以上のCr濃度を有する最大Cr濃度領域のCr濃度値が、下部層の全平均Cr濃度に対して1.2倍以上であって、かつ、0.5原子%以上、5.0原子%以下であり、前記最大Cr濃度領域の領域幅は、0.02μm以上であり、また、
(b−2)前記下部層は、前記基体最表面から層厚が0.1μmを超え上部層との境界までの範囲において、最大C濃度値を有し、前記最大C濃度値の90%以上のC濃度を有する最大C濃度領域のC濃度値が、下部層の全平均C濃度に対して1.2倍以上であって、かつ、7.0原子%以上、25.0原子%以下であり、前記最大C濃度領域は、0.02μm以上であり、
また、
(c)前記上部層は、AlとTiとの複合窒化物または複合炭窒化物を含む層であり、その平均層厚は、0.4〜18.4μmであり、
組成式:(AlTi1−X)(C1−Y)で表した場合、前記複合窒化物または複合炭窒化物層のTiとAlの合量に対してAlが占める平均含有割合Xavgおよび前記複合窒化物または複合炭窒化物層のCとNの合量に対してCが占める平均含有割合Yavg(但し、Xavg、Yavg はいずれも原子比)が、それぞれ、0.75≦Xavg≦0.90、0≦Yavg<0.05を満足し、NaCl型の面心立方晶構造を有する複合窒化物または複合炭窒化物層からなることを特徴とする表面被覆切削工具。

(2)前記TiおよびCrの炭窒化物からなる下部層について、X線回折を行った際に、以下の式(A)にて表わされる、立方晶(200)面における配向性指数TC(200)が、0.5≦TC(200)≦4.5を満たすことを特徴とする(1)に記載された表面被覆切削工具。
式(A) TC(200)=[I(200)/I(200)]
×[(1/n)×Σ(I(hkl)/I(hkl)]−1
ただし、
I(200);(200)面におけるX線回折ピーク強度の測定値
(200);
ICDDカード00−038−1420に記載のTiNの結晶面の(200)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、TiNの標準回折ピーク強度の平均値])の値の合計値
(3) (1)または(2)において、前記TiおよびCrの炭窒化物からなる下部層における皮膜残留応力の値が、−500〜500MPaを満たすことを特徴とする表面被覆切削工具。
(4) 前記上部層について、X線回折を行った際に、以下の式(B)にて表される、立方晶(111)面における配向性指数TC(111)が、2.0≦TC(111)≦4.0を満たすことを特徴とする(1)乃至(3)のいずれか一つに記載された表面被覆切削工具。
式(B) TC(111)=[I(111)/I(111)]
×[(1/6)×Σ(I(hkl)/I(hkl)]−1
ただし、
I(111);(111)面におけるX線回折ピーク強度の測定値
(111);
ICDDカード00−046−1200に記載のAlNの結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、AlNの標準回折ピーク強度の平均値])の値の合計値
(5) 前記上部層について、X線回折を行った際に、立方晶(111)面の回折線強度に対する立方晶(200)面における回折線強度の値、I(111)/I(200)が、0.9≦I(111)/I(200)の関係を満たすことを特徴とする(1)乃至(4)のいずれか一つに記載された表面被覆切削工具。」に特徴を有するものである。
なお、本明細書中において、数値範囲を示す際に、「〜」あるいは「−」を用いる場合は、その数値範囲の下限および上限を含むことを意味する。
The present invention has been made based on the above findings.
"(1) In a surface-coated cutting tool having a hard coating layer on the surface of a tool substrate made of a tungsten carbide-based cemented carbide containing Co and Cr as a bonding phase component.
(A) The hard coating layer has at least two layers, a lower layer directly in contact with the outermost surface of the tool substrate and an upper layer directly in contact with the lower layer, and is an overall average layer of the hard coating layer. The thickness is 0.6-20.0 μm and
(B) The lower layer is made of Ti and Cr carbonitride, and the average layer thickness thereof is 0.2 to 1.6 μm.
(B-1) The lower layer has a layer thickness of 0.1 μm from the outermost surface of the substrate.
The Cr concentration value in the maximum Cr concentration region having the maximum Cr concentration value and having a Cr concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration in the lower layer. Moreover, it is 0.5 atomic% or more and 5.0 atomic% or less, and the region width of the maximum Cr concentration region is 0.02 μm or more, and also.
(B-2) The lower layer has a maximum C concentration value in the range from the outermost surface of the substrate to the boundary with the upper layer in a layer thickness of more than 0.1 μm, and is 90% or more of the maximum C concentration value. The C concentration value in the maximum C concentration region having the C concentration of is 1.2 times or more the total average C concentration of the lower layer, and is 7.0 atomic% or more and 25.0 atomic% or less. Yes, the maximum C concentration region is 0.02 μm or more.
Also,
(C) The upper layer is a layer containing a composite nitride or a composite carbonitride of Al and Ti, and the average layer thickness thereof is 0.4 to 18.4 μm.
Composition formula: When represented by (Al X Ti 1-X ) ( CY N 1-Y ), the average content ratio of Al to the total amount of Ti and Al in the composite nitride or composite carbonitride layer. X avg and the average content of C with respect to the total amount of C and N in the composite nitride or composite carbonitride layer occupied Y avg (however, X avg, Y avg any atomic ratio), respectively, 0 A surface coating comprising a composite nitride or composite carbonitride layer satisfying .75 ≦ X avg ≦ 0.90 and 0 ≦ Y avg <0.05 and having a NaCl-type surface-centered cubic structure. Cutting tools.

(2) When the lower layer made of the carbonitride of Ti and Cr is subjected to X-ray diffraction, the orientation index TC (200) on the cubic (200) plane represented by the following formula (A). ) Satisfies 0.5 ≦ TC (200) ≦ 4.5. The surface coating cutting tool according to (1).
Equation (A) TC (200) = [I (200) / I 0 (200)]
× [(1 / n) × Σ (I (hkl) / I 0 (hkl)] -1
However,
I (200); Measured value of X-ray diffraction peak intensity on plane (200) I 0 (200);
Average value of standard X-ray diffraction peak intensity on the (200) plane of the TiN crystal plane described on the ICDD card 00-038-1420 Σ (I (hkl) / I 0 (hkl));
([Measured value of X-ray diffraction peak intensity] / [Posted on ICDD card] on each of the six surfaces (111), (200), (220), (311), (222), and (400). [3] In (1) or (2), the value of the film residual stress in the lower layer made of the carbonitride of Ti and Cr is the total value of the values of the standard diffraction peak intensities of TiN. A surface coating cutting tool characterized by satisfying −500 to 500 MPa.
(4) When the upper layer is subjected to X-ray diffraction, the orientation index TC (111) on the cubic (111) plane, which is represented by the following formula (B), is 2.0 ≦ TC. (111) The surface coating cutting tool according to any one of (1) to (3), which satisfies ≦ 4.0.
Equation (B) TC (111) = [I (111) / I 0 (111)]
× [(1/6) × Σ (I (hkl) / I 0 (hkl)] -1
However,
I (111); Measured value of X-ray diffraction peak intensity on plane (111) I 0 (111);
Average value of standard X-ray diffraction peak intensity on the (111) plane of the AlN crystal plane described on the ICDD card 00-046-1200 Σ (I (hkl) / I 0 (hkl));
([Measurement value of X-ray diffraction peak intensity] / [Posted on ICDD card] of each of the six surfaces (111), (200), (220), (311), (222), and (400). The total value of the values of the standard diffraction peak intensities of AlN]) (5) When X-ray diffraction was performed on the upper layer, the cubic crystal (200) with respect to the diffraction line intensity of the cubic (111) plane. ), The value of the diffraction line intensity in the plane, I (111) / I (200), satisfies the relationship of 0.9 ≦ I (111) / I (200), according to (1) to (4). The surface coating cutting tool described in any one. It is characterized by.
In the present specification, when "~" or "-" is used to indicate a numerical range, it means that the lower limit and the upper limit of the numerical range are included.

つぎに、本発明の被覆工具の工具基体および硬質被覆層について、具体的に説明する。 Next, the tool base and the hard coating layer of the covering tool of the present invention will be specifically described.

(a)工具基体
工具基体としては、炭化タングステン基超硬合金を用いる。本発明は、硬質被覆層の異なる領域においてCrおよびCがそれぞれ含有量の最大濃度を有することを特徴とするものであるが、例えば、所定量のCrおよびCを工具基体に含有させておき、特定の条件にて、成膜中にこれらの成分を硬質被覆層中に拡散させることにより、所望の濃度分布を有する硬質被覆層を形成することができる。
(A) Tool base A tungsten carbide-based cemented carbide is used as the tool base. The present invention is characterized in that Cr and C each have the maximum concentration of Cr and C in different regions of the hard coating layer. For example, a predetermined amount of Cr and C are contained in the tool substrate. By diffusing these components into the hard coating layer during film formation under specific conditions, a hard coating layer having a desired concentration distribution can be formed.

(b)硬質被覆層
硬質被覆層は、下部層と上部層を含んでなり、その他の層として、上部層の上に最上層を設けてもよい。
硬質被覆層の平均層厚は、0.6μm未満では、密着性および耐摩耗性を長期の使用に亘って十分に確保することはできないため、0.6μm以上とする。一方、その平均層厚が、20.0μmを超えると、剥離あるいは欠損が生じ易くなることから、20.0μm以下とすることが望ましい。
(B) Hard coating layer The hard coating layer includes a lower layer and an upper layer, and an uppermost layer may be provided on the upper layer as another layer.
If the average thickness of the hard coating layer is less than 0.6 μm, the adhesion and abrasion resistance cannot be sufficiently ensured over a long period of use, so the average thickness is set to 0.6 μm or more. On the other hand, if the average layer thickness exceeds 20.0 μm, peeling or chipping is likely to occur, so it is desirable to set the average layer thickness to 20.0 μm or less.

(c)下部層;
<平均層厚>
下部層は、TiとCrの複合炭窒化物からなり、工具基体の直上に直接接して設けられる。下部層の平均層厚は、0.2μm未満では、十分な密着性が得られないため、下限は0.2μm以上とする。他方、1.6μmを超えると得られた皮膜の変形が顕著となり、切削加工の早期段階にて基材からの剥離が生じ易くなるため、上限は、1.6μm以下とした。
(C) Lower layer;
<Average layer thickness>
The lower layer is made of a composite carbonitride of Ti and Cr, and is provided in direct contact with the tool substrate. If the average thickness of the lower layer is less than 0.2 μm, sufficient adhesion cannot be obtained, so the lower limit is set to 0.2 μm or more. On the other hand, if it exceeds 1.6 μm, the deformation of the obtained film becomes remarkable and peeling from the base material is likely to occur at an early stage of cutting, so the upper limit is set to 1.6 μm or less.

<成分組成>
前記下部層は、前記基体最表面から層厚が0.1μmまでの範囲(以下、下部層の「基体近接領域」ともいう。)において、下部層の全構成元素の合量に対するCr含有量の最大Cr濃度値を有し、前記最大Cr濃度値の90%以上のCr濃度を有する最大Cr濃度領域のCr濃度値が、下部層の全平均Cr濃度に対して1.2倍以上であって、かつ、0.5原子%以上5.0原子%以下であり、前記最大Cr濃度領域の領域幅は、0.02μm以上と規定した。
ここで、前記最大Cr濃度値の90%以上の濃度を有する最大Cr濃度領域のCr濃度値を下部層の全平均Cr濃度に対して1.2倍以上とする理由は、前記Cr濃度値が、1.2倍に満たない場合には、Cr濃度勾配が不十分でCr拡散による下部層の基体との界面における粒界靱性向上効果が十分ではない、または、下部層の基体近接領域全体で硬さ低下が顕著となり、上部層との硬度差が大きくなり層間での剥離が生じ易くなるためである。
また、前記最大Cr濃度領域のCr濃度値を0.5原子%以上5.0原子%以下の範囲に規定した理由は、Cr含有量が0.5原子%未満であるとCr拡散による下部層の基体との界面における粒界靭性向上効果が十分ではなく、基体からの皮膜剥離が生じやすくなり、他方、Cr含有量が5.0原子%を超えると下部層へのCr拡散による下部層の基体との界面における硬さ低下が顕著となり、上部層との硬さの差が大きくなり層間での剥離が生じ易くなるためである。
また、前記下部層では、前記基体最表面から層厚が0.1μmまでの領域を超え上部層との境界までの範囲(以下、下部層の「上部領域」ともいう。)において、下部層の全構成元素の合量に対するC含有量の最大C濃度値を有し、前記最大C濃度値の90%以上のC濃度を有する最大C濃度領域の濃度値が、下部層の全平均C濃度に対して1.2倍以上であって、かつ、7.0原子%以上25.0原子%以下であり、前記最大C濃度領域の領域幅は、0.02μm以上と規定した。
ここで、下部層の全平均C濃度値に対して最大C濃度領域の濃度値が1.2倍に満たない場合は、C濃度勾配が不十分であり、基材からのCの拡散が不十分で所望の密着性が得られない、または下部層全体の硬さの増加が顕著となり、層中での脆性破壊が生じ易くなるためである。
C含有量を7.0原子%以上25.0原子%以下の範囲に規定した理由は、Cが、7.0原子%未満では、基材からのCの拡散が不十分であるため、下部層の基体との界面における所望の密着性が得られず、基材からの皮膜剥離が生じ易くなり、他方、25.0原子%を超えるとCの拡散が過多となり、下部層の基体との界面における硬さの増加が過度となり、層中での脆性破壊が生じ易くなるためである。
また、Cr、Cそれぞれの最大濃度領域の領域幅を、0.02μm以上と規定した理由は、0.02μm未満では領域幅が不十分であり、所望の効果を発揮できないためである。
<Ingredient composition>
The lower layer has a Cr content with respect to the total amount of all the constituent elements of the lower layer in a range from the outermost surface of the substrate to a layer thickness of 0.1 μm (hereinafter, also referred to as a “base proximity region” of the lower layer). The Cr concentration value in the maximum Cr concentration region having the maximum Cr concentration value and having a Cr concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration in the lower layer. Moreover, it is defined as 0.5 atomic% or more and 5.0 atomic% or less, and the region width of the maximum Cr concentration region is 0.02 μm or more.
Here, the reason why the Cr concentration value in the maximum Cr concentration region having a concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration in the lower layer is that the Cr concentration value is If it is less than 1.2 times, the Cr concentration gradient is insufficient and the effect of improving grain boundary toughness at the interface of the lower layer with the substrate by Cr diffusion is not sufficient, or in the entire region near the substrate of the lower layer. This is because the decrease in hardness becomes remarkable, the difference in hardness from the upper layer becomes large, and peeling between layers is likely to occur.
Further, the reason why the Cr concentration value in the maximum Cr concentration region is defined in the range of 0.5 atomic% or more and 5.0 atomic% or less is that when the Cr content is less than 0.5 atomic%, the lower layer due to Cr diffusion The effect of improving grain boundary toughness at the interface with the substrate is not sufficient, and film peeling from the substrate is likely to occur. On the other hand, when the Cr content exceeds 5.0 atomic%, the lower layer due to Cr diffusion into the lower layer This is because the decrease in hardness at the interface with the substrate becomes remarkable, the difference in hardness with the upper layer becomes large, and peeling between layers is likely to occur.
Further, in the lower layer, in the range from the outermost surface of the substrate to the boundary with the upper layer beyond the region where the layer thickness is up to 0.1 μm (hereinafter, also referred to as “upper region” of the lower layer), the lower layer The concentration value in the maximum C concentration region having the maximum C concentration value of the C content with respect to the total amount of all the constituent elements and having a C concentration of 90% or more of the maximum C concentration value becomes the total average C concentration of the lower layer. It is defined as 1.2 times or more, 7.0 atomic% or more and 25.0 atomic% or less, and the region width of the maximum C concentration region is 0.02 μm or more.
Here, when the concentration value in the maximum C concentration region is less than 1.2 times the total average C concentration value in the lower layer, the C concentration gradient is insufficient and the diffusion of C from the base material is inadequate. This is because sufficient and desired adhesion cannot be obtained, or the hardness of the entire lower layer increases remarkably, and brittle fracture in the layer is likely to occur.
The reason why the C content is defined in the range of 7.0 atomic% or more and 25.0 atomic% or less is that if C is less than 7.0 atomic%, the diffusion of C from the substrate is insufficient, so the lower part The desired adhesion at the interface of the layer with the substrate cannot be obtained, and the film is easily peeled off from the substrate. On the other hand, if it exceeds 25.0 atomic%, the diffusion of C becomes excessive and the layer is with the substrate of the lower layer. This is because the increase in hardness at the interface becomes excessive and brittle fracture in the layer is likely to occur.
Further, the reason why the region width of the maximum concentration region of each of Cr and C is defined as 0.02 μm or more is that the region width is insufficient if it is less than 0.02 μm, and the desired effect cannot be exhibited.

<結晶組織>
下部層を構成するTiCr複合炭窒化物は、NaCl型の面心立方構造(以下、単に「立方晶構造」ともいう。)をとることにより硬さを向上させることができる。
下部層の立方晶(200)面における配向性指数TC(200)は、0.5以上とすることにより、Crの拡散が十分に促進される結果、さらに均一なCrの拡散状態が得られ、密着層の粒界靱性効果が向上し、一方、4.5以下とすることにより、Crの偏析が抑制され、粒界を起点とする密着層の内部破壊が生じにくくなるため、0.5≦TC(200)≦4.5とすることが望ましい。
<Crystal structure>
The hardness of the TiCr composite carbonitride constituting the lower layer can be improved by adopting a NaCl-type face-centered cubic structure (hereinafter, also simply referred to as “cubic structure”).
By setting the orientation index TC (200) on the cubic (200) plane of the lower layer to 0.5 or more, the diffusion of Cr is sufficiently promoted, and as a result, a more uniform diffusion state of Cr is obtained. The grain boundary toughness effect of the adhesion layer is improved, while when it is 4.5 or less, segregation of Cr is suppressed and internal destruction of the adhesion layer starting from the grain boundary is less likely to occur. It is desirable that TC (200) ≤ 4.5.

<皮膜残留応力>
下部層の皮膜残留応力値は、−500MPa以上とすることにより、加工中における耐剥離効果を高めることができ、また、500MPa以下とすることにより、加工中における皮膜外部から発生するクラックの進展抑制効果を高め、耐欠損性を改善できる効果を有するため、−500〜500MPaとすることが好ましい。
<Film residual stress>
When the film residual stress value of the lower layer is -500 MPa or more, the peeling resistance effect during processing can be enhanced, and when it is 500 MPa or less, the growth of cracks generated from the outside of the film during processing is suppressed. Since it has an effect of enhancing the effect and improving the fracture resistance, it is preferably −500 to 500 MPa.

(d)上部層
<平均層厚>
上部層は、TiとAlの複合窒化物または複合炭窒化物からなり、前記下部層の直上に直接接して設けられる。上部層の平均層厚は、0.4μm未満では、皮膜全体における硬質層が不十分であり、耐摩耗性に劣るため、0.4μm以上とする。他方、平均層厚が、18.4μmを超えると、硬質層の層厚が、過多となり加工中に突発欠損が生じ易くなるため、18.4μm以下とした。
(D) Upper layer <average layer thickness>
The upper layer is made of a composite nitride or a composite carbonitride of Ti and Al, and is provided in direct contact with the lower layer. If the average layer thickness of the upper layer is less than 0.4 μm, the hard layer in the entire film is insufficient and the abrasion resistance is inferior, so the average layer thickness is set to 0.4 μm or more. On the other hand, if the average layer thickness exceeds 18.4 μm, the layer thickness of the hard layer becomes excessive and sudden defects are likely to occur during processing, so the average layer thickness is set to 18.4 μm or less.

<成分組成>
上部層は、Al、Tiの複合窒化物層(AlTiN層)または複合炭窒化物層(AlTiCN層)にて構成され、層全体に亘り、均質な耐摩耗性と耐熱性や靱性を示し、Ti成分によって、高温強度を向上させ、Al成分によって、高温硬さと耐熱性を補完するため、高温切削条件下においても、低摩耗係数が維持され、すぐれた耐熱性を発揮することができる。
前記Al、Tiの複合窒化物層または複合炭窒化物層を構成する複合窒化物または複合炭窒化物は、具体的には、組成式:(AlTi1−X)(C1−Y)にて表すことができるが、Alの平均含有割合Xavg(原子比)の値が0.75未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、Xavg(原子比)の値が0.90を超えると、相対的なTi含有割合の減少により、(AlTi1−X)(C1−Y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなるため、Alの平均含有割合Xavg(原子比)の値は、最大硬さに近く、特に高い効果が得られる、0.75以上0.90以下の範囲に規定した。
また、C成分には、硬さを向上させる作用があるが、C成分の平均含有割合Yavg(原子比)が0.05以上では、高温強度が低下するため、C成分の平均含有割合Yavg(原子比)は、0≦Yavg<0.05と規定した。
<Ingredient composition>
The upper layer is composed of an Al and Ti composite nitride layer (AlTiN layer) or a composite carbonitride layer (AlTiCN layer), and exhibits uniform wear resistance, heat resistance and toughness throughout the layer, and Ti. Since the high-temperature strength is improved by the component and the high-temperature hardness and heat resistance are complemented by the Al component, a low wear coefficient is maintained even under high-temperature cutting conditions, and excellent heat resistance can be exhibited.
Specifically, the composite nitride or composite carbonitride constituting the composite nitride layer or composite carbonitride layer of Al and Ti has a composition formula: (Al X Ti 1-X ) ( CY N 1- ). It can be represented by Y ), but when the value of the average content ratio X avg (atomic ratio) of Al is less than 0.75, the high temperature hardness becomes insufficient and the wear resistance deteriorates, while X When the value of avg (atomic ratio) exceeds 0.90, the high temperature strength of the (Al X Ti 1-X ) ( CY N 1-Y ) layer itself decreases due to the relative decrease in the Ti content ratio. Since chipping and chipping are likely to occur, the value of the average Al content ratio X avg (atomic ratio) is specified in the range of 0.75 or more and 0.90 or less, which is close to the maximum hardness and a particularly high effect can be obtained. did.
Further, the C component has an effect of improving the hardness, but when the average content ratio Avg (atomic ratio) of the C component is 0.05 or more, the high temperature strength decreases, so that the average content ratio Y of the C component The avg (atomic ratio) was defined as 0 ≦ Y avg <0.05.

<結晶組織>
上部層を構成するAl、Tiの複合窒化物または複合炭窒化物(AlTi1−X)(C1−Y)は、NaCl型の面心立方構造(以下、単に「立方晶構造」という場合もある。)をとることによって硬さを向上させることができる。
すなわち、立方晶構造の(111)面に高配向性を有する、Al、Tiの複合窒化物または複合炭窒化物層とすることにより、高硬度化することができる。
上部層の立方晶構造の(111)面における配向性指数TC(111)が、2.0以上では、加工中の結晶粒の脱落を抑制することができるため、さらに、硬質層としての効果を発揮でき、4.0以下では、下部層との密着性をより高めることにより、層間での剥離を抑制できるため、TC(111)は、2.0以上、4.0以下とすることが望ましい。
また、上部層における立方晶(111)面と立方晶(200)面の回折線強度の値、
I(111)/I(200)は、0.9以上であると、加工中に結晶粒の脱落が生じにくくなるため、I(111)/I(200)≧0.9であることが望ましい。
<Crystal structure>
The Al, Ti composite nitride or composite carbonitride (Al X Ti 1-X ) ( CY N 1-Y ) constituting the upper layer is a NaCl-type face-centered cubic structure (hereinafter, simply "cubic structure"). In some cases, the hardness can be improved by taking.).
That is, the hardness can be increased by forming an Al, Ti composite nitride or composite carbonitride layer having high orientation on the (111) plane of the cubic structure.
When the orientation index TC (111) on the (111) plane of the cubic structure of the upper layer is 2.0 or more, it is possible to suppress the dropping of crystal grains during processing, so that the effect as a hard layer is further enhanced. It is desirable that the TC (111) is 2.0 or more and 4.0 or less because it can be exhibited and peeling between layers can be suppressed by further enhancing the adhesion with the lower layer at 4.0 or less. ..
Further, the value of the diffraction line intensity of the cubic (111) plane and the cubic (200) plane in the upper layer,
When I (111) / I (200) is 0.9 or more, it is difficult for crystal grains to fall off during processing, so it is desirable that I (111) / I (200) ≥ 0.9. ..

(e)最上層
本発明においては、上部層である、前記複合窒化物層または前記複合炭窒化物層の上に必要に応じ、さらにα−Alやκ−AlなどのAl酸化物からなる層や、Tiの窒化物層または炭窒化物層を耐摩耗性向上等の観点から、0.5〜15.0μmの範囲にて設けることができる。
(E) Top layer
In the present invention, it is further composed of Al oxides such as α-Al 2 O 3 and κ-Al 2 O 3 on the composite nitride layer or the composite carbonitride layer, which is an upper layer, if necessary. The layer and the Ti nitride layer or the carbonitride layer can be provided in the range of 0.5 to 15.0 μm from the viewpoint of improving wear resistance and the like.

硬質被覆層の成膜方法;
本発明において、Cr含有量およびC含有量について、それぞれ特定の濃度分布を有するとともに、特定範囲の膜厚を有するTiおよびCrの炭窒化物からなる下部層と、特定範囲の成分組成を有するAlとTiの複合窒化物または複合炭窒化物からなり、特定範囲の層厚、および、特定の結晶構造を有する上部層とを含み、すぐれた耐欠損性を発揮する硬質被覆層を備えてなる表面被覆切削工具は、例えば、CVD法(化学蒸着法)を用いて、以下の条件にて成膜を行なうことにより、形成することができる。
さらに、下部層および/または上部層において、それぞれ、特定の配向性指数を有し、それぞれ、特定の残留応力値を有する硬質被覆層を備えてなる表面被覆切削工具においても同様である。
Method of forming a hard coating layer;
In the present invention, Al having a specific concentration distribution for each of the Cr content and the C content, a lower layer made of carbonitrides of Ti and Cr having a specific range of film thickness, and an Al having a specific range of component composition. A surface comprising a composite nitride or composite carbonitride of Ti and a hard coating layer comprising a specific range of layer thicknesses and an upper layer having a specific crystal structure and exhibiting excellent fracture resistance. The coating cutting tool can be formed by, for example, using a CVD method (chemical vapor deposition method) to form a film under the following conditions.
Further, the same applies to a surface coating cutting tool provided with a hard coating layer having a specific orientation index in the lower layer and / or the upper layer, respectively, and having a specific residual stress value.

<下部層の成膜>
本発明に係る下部層の成膜方法は、工具基体に対し、第1工程(Cr拡散工程)として、相対的に高温(800〜900℃)にて、CVD法(ガス群A)を用いてTiCNを成膜した際には、工具基体からCrの拡散が促進され、次いで、第2工程(C拡散工程)として、相対的に低温(700〜850℃)にて、CVD法(ガス群B)を用いてTiCNを成膜した際には、Cの拡散が促進され、その結果、工具基体表面から0.1μmまでの領域において、下部層における最大Cr濃度値を含む最大Cr濃度領域を有し、工具基体表面から0.1μmを超え上部層との境界までの領域において、下部層における最大C濃度値を含む最大C濃度領域を有する、すぐれた密着層をえることができる。
[成膜条件]
1)第1工程(Cr拡散工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群A:TiCl:0.01〜0.04%、N:1〜10%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:800〜900℃
2)第2工程(C拡散工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群B:TiCl:0.01〜0.04%、N:1〜10%、H:残
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜850℃
<Formation of lower layer>
The method for forming the lower layer according to the present invention uses a CVD method (gas group A) at a relatively high temperature (800 to 900 ° C.) as the first step (Cr diffusion step) on the tool substrate. When the TiCN is formed, the diffusion of Cr is promoted from the tool substrate, and then, as the second step (C diffusion step), the CVD method (gas group B) is performed at a relatively low temperature (700 to 850 ° C.). ) Is used to promote the diffusion of C, and as a result, in the region up to 0.1 μm from the surface of the tool substrate, there is a maximum Cr concentration region including the maximum Cr concentration value in the lower layer. However, in the region exceeding 0.1 μm from the surface of the tool substrate to the boundary with the upper layer, an excellent adhesion layer having a maximum C concentration region including the maximum C concentration value in the lower layer can be obtained.
[Film formation conditions]
1) First step (Cr diffusion step)
Treatment method: Film formation using CVD method Reaction gas composition (volume%):
Gas group A: TiCl 4 : 0.01 to 0.04%, N 2 : 1 to 10%, H 2 : Residual,
Reaction atmosphere pressure: 4.0-5.0 kPa,
Reaction atmosphere temperature: 800-900 ° C
2) Second step (C diffusion step)
Treatment method: Film formation using CVD method Reaction gas composition (volume%):
Gas group B: TiCl 4 : 0.01 to 0.04%, N 2 : 1 to 10%, H 2 : Residual reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700-850 ° C

<上部層の成膜>
次いで、本発明に係る上部層の成膜方法では、AlTi複合窒化物層またはAlTi複合炭窒化物層の成膜条件について、例えば、加熱温度の異なる二種類のNHガスを用い、高温のアンモニアガスにより核形成を抑制し、結晶化を促進させることにより、粗粒を得ることができる。
すなわち、本発明に係るAlTiN層およびAlTiCN層の成膜方法は、第3工程(初期核形成工程)、すなわち、AlTiN膜およびAlTiCN膜を形成するための初期核となるAlTiN結晶およびAlTiCN結晶を形成する工程と、第4工程(結晶成長工程)、すなわち、初期核である、前記AlTiN結晶およびAlTiCN結晶を成長させ、AlTiN膜およびAlTiCN膜を形成するための工程とを交互に繰り返すことにより、成膜を行うものである。
以下に、各成膜工程における成膜条件の概要を示すが、特に、第3工程における、微細なAlTiN結晶およびAlTiCN結晶の初期核の形成工程では、以下のガス群Cとガス群Dとを位相差を設けて交互に反応器に供給し成膜を行なう際に、高温(例えば、300〜450℃)で予熱されたアンモニアガスを用いることにより、核形成を促進し、引き続いて実施する第4工程においては、以下のガス群Eとガス群Fとを位相差を設けて交互に反応器に供給し成膜を行なう際に、用いるアンモニアガスを低温(例えば、50〜250℃)で予熱されたアンモニアガスに変更することにより、核形成を抑制し結晶化を促進し、さらに、これら前記第1工程と前記第2工程とを交互に30〜120秒間ごとに繰り返し成膜することで結晶成長を図り、所望の結晶を得ることができる。
なお、前記第3工程と前記第4工程との繰り返し数は、目標膜厚に合わせて調整する。
<Formation of upper layer>
Then, in the method of forming the upper layer according to the present invention, the film formation conditions of AlTi composite nitride layer or AlTi composite carbonitride layer, for example, using two different types of NH 3 gas with the heating temperature, a high temperature ammonia Coarse grains can be obtained by suppressing nucleation with gas and promoting crystallization.
That is, the method for forming an AlTiN layer and an AlTiCN layer according to the present invention forms a third step (initial nucleation step), that is, an AlTiN crystal and an AlTiCN crystal which are initial nuclei for forming the AlTiN film and the AlTiCN film. And the fourth step (crystal growth step), that is, the step of growing the AlTiN crystal and the AlTiCN crystal which are the initial nuclei and forming the AlTiN film and the AlTiCN film are alternately repeated. It is a film.
The outline of the film forming conditions in each film forming step is shown below. In particular, in the step of forming the initial nuclei of the fine AlTiN crystal and the AlTiCN crystal in the third step, the following gas group C and gas group D are used. Nuclear formation is promoted by using ammonia gas preheated at a high temperature (for example, 300 to 450 ° C.) when the phase difference is provided and the gas is alternately supplied to the reactor to form a film. In the four steps, the following gas group E and gas group F are alternately supplied to the reactor with a phase difference to perform film formation, and the ammonia gas used is preheated at a low temperature (for example, 50 to 250 ° C.). By changing to the produced ammonia gas, nucleation is suppressed and crystallization is promoted, and further, the first step and the second step are alternately repeatedly formed every 30 to 120 seconds to form crystals. It is possible to grow and obtain a desired crystal.
The number of repetitions of the third step and the fourth step is adjusted according to the target film thickness.

[成膜条件]
1)第3工程(初期核形成工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群C:TiCl:0.01〜0.04%、AlCl:0.01〜0.05%、
:0〜10%、C:0〜0.5%、H:残、
ガス群D:NH:0.1〜0.8%、H:25〜35%、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜850℃
供給周期:1〜5秒、
1周期当たりのガス供給時間:0.15〜0.25秒、
ガス群Cの供給とガス群Dの供給の位相差:0.10〜0.20秒
ガス群Dの予熱温度:300〜450℃
[Film formation conditions]
1) Third step (initial nucleation step)
Treatment method: Film formation using CVD method Reaction gas composition (volume%):
Gas group C: TiCl 4 : 0.01 to 0.04%, AlCl 3 : 0.01 to 0.05%,
N 2 : 0 to 10%, C 2 H 4 : 0 to 0.5%, H 2 : Remaining,
Gas group D: NH 3 : 0.1 to 0.8%, H 2 : 25 to 35%,
Reaction atmosphere pressure: 4.0-5.0 kPa,
Reaction atmosphere temperature: 700-850 ° C
Supply cycle: 1 to 5 seconds,
Gas supply time per cycle: 0.15-0.25 seconds,
Phase difference between the supply of gas group C and the supply of gas group D: 0.10 to 0.20 seconds
Preheating temperature of gas group D: 300-450 ° C

2)第4工程(結晶成長工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群E:TiCl:0.01〜0.04%、AlCl:0.01〜0.05%、
:0〜10%、C:0〜0.5%、H:残、
ガス群F:NH:0.1〜0.8%、H:25〜35%、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜850℃
供給周期:1〜5秒、
1周期当たりのガス供給時間:0.15〜0.25秒、
ガス群Eの供給とガス群Fの供給の位相差:0.10〜0.20秒
ガス群Fの予熱温度:50〜250℃
なお、第3工程、および第4工程のそれぞれの反応ガス組成(容量%)における、各ガス成分の容量%は、第3工程においては、ガス群Cとガス群Dとの合計を100容量%として算出される各成分の容量%を示し、第4工程においては、ガス群Eとガス群Fとの合計を100容量%として算出される各成分の容量%を示す。
2) Fourth step (crystal growth step)
Treatment method: Film formation using CVD method Reaction gas composition (volume%):
Gas group E: TiCl 4 : 0.01 to 0.04%, AlCl 3 : 0.01 to 0.05%,
N 2 : 0 to 10%, C 2 H 4 : 0 to 0.5%, H 2 : Remaining,
Gas group F: NH 3 : 0.1 to 0.8%, H 2 : 25 to 35%,
Reaction atmosphere pressure: 4.0-5.0 kPa,
Reaction atmosphere temperature: 700-850 ° C
Supply cycle: 1 to 5 seconds,
Gas supply time per cycle: 0.15-0.25 seconds,
Phase difference between supply of gas group E and supply of gas group F: 0.10 to 0.20 seconds
Preheating temperature of gas group F: 50-250 ° C
The volume% of each gas component in each reaction gas composition (volume%) of the third step and the fourth step is 100% by volume of the total of the gas group C and the gas group D in the third step. In the fourth step, the volume% of each component calculated as 100% by volume of the total of the gas group E and the gas group F is shown.

本発明に係る表面被覆切削工具は、工具基体の表面部に工具基体から拡散させたCr成分およびC成分を含むTiとCrの炭化物からなる密着層を設けることにより、粒子の脱落を大幅に抑制し、耐欠損性にすぐれた特性を発揮するため、工具寿命の向上をもたらすものである。 The surface-coated cutting tool according to the present invention is provided with a close contact layer made of carbides of Ti and Cr containing Cr component and C component diffused from the tool base on the surface portion of the tool base, thereby significantly suppressing the dropping of particles. However, since it exhibits excellent fracture resistance, it improves the tool life.

本発明に係る被覆工具の工具基体と、硬質被覆層を構成する下部層(Crリッチ領域を含むTiCrCN層)、および、上部層(AlTiCN層)との関係を示す断面模式図である。It is sectional drawing which shows the relationship between the tool base of the covering tool which concerns on this invention, the lower layer (TiCrCN layer including Cr rich region) which constitutes a hard coating layer, and the upper layer (AlTiCN layer).

つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the covering tool of the present invention will be specifically described with reference to Examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFTNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ作製した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, prepare tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFTN. did.

ついで、これらの工具基体A〜Cのそれぞれを化学蒸着装置に装入し、以下の手順にて本発明被覆工具1〜8をそれぞれ製造した。
すなわち、まず、第1工程として、化学蒸着装置内に工具基体A〜Cのいずれかを配置し、表2に示される形成条件(形成記号)A〜Hに記載された、温度条件および圧力条件の下、表2に示される成分組成を有するガス群A(TiCl、Nおよび残部H)により、一定時間成膜を行なう。ガス群Aを用い、成膜温度を高温の800℃〜900℃とすることにより、成膜速度が速く粗粒で、かつ、粒界が明瞭な結晶粒からなる蒸着層が形成される。この温度域では、Crの拡散が促進される結果、得られる蒸着膜は、Cr含有量の最大値を示す。
次いで、第2工程として、表2に示される形成条件(形成記号)A〜Hに記載された、温度条件および圧力条件の下、表2に示される成分組成を有するガス群B(TiCl、Nおよび残部H)により、一定時間成膜を行なう。ガス群Bを用い、成膜温度を下げ、700℃〜850℃とすることにより、炉内分圧が低く、成膜速度が非常に遅いため、微粒結晶からなる蒸着膜が形成される。この温度域においては、Crに代わり、Cの拡散が促進される結果、C含有量の最大値を示す。
Then, each of these tool bases A to C was charged into a chemical vapor deposition apparatus, and the coated tools 1 to 8 of the present invention were manufactured by the following procedure.
That is, first, as the first step, any of the tool substrates A to C is placed in the chemical vapor deposition apparatus, and the temperature conditions and pressure conditions described in the formation conditions (formation symbols) A to H shown in Table 2 are shown. Underneath, a film is formed for a certain period of time by the gas group A (TiCl 4 , N 2 and the balance H 2 ) having the component composition shown in Table 2. By using the gas group A and setting the film formation temperature to a high temperature of 800 ° C. to 900 ° C., a thin-film deposition layer composed of crystal grains having a high film formation rate, coarse particles, and clear grain boundaries is formed. In this temperature range, the resulting vapor deposition film exhibits the maximum Cr content as a result of the accelerated diffusion of Cr.
Then, as a second step, the gas group B (TiCl 4 , TiCl 4 ,) having the component composition shown in Table 2 under the temperature and pressure conditions described in the formation conditions (formation symbols) A to H shown in Table 2. A film is formed with N 2 and the balance H 2 ) for a certain period of time. By using the gas group B and lowering the film formation temperature to 700 ° C. to 850 ° C., the partial pressure in the furnace is low and the film formation rate is very slow, so that a vapor deposition film made of fine crystals is formed. In this temperature range, the maximum value of C content is shown as a result of promoting the diffusion of C instead of Cr.

つづいて、第3工程(初期核形成工程)として、表3に示される形成条件(形成記号)A〜Hに記載された、ガス群Cとガス群Dの供給条件、および、ガス反応条件(圧力、温度、工程時間(秒))に基づき、一定時間成膜を行なう。
引き続き、第4工程(結晶成長工程)として、表4に示される形成条件(形成記号)A〜Hに記載された、ガス群Eとガス群Fの供給条件、および、ガス反応条件(圧力、温度、工程時間(秒))に基づき、一定時間成膜を行ない、表6および表7に示す本発明被覆工具1〜3、6、7を得た。
また、本発明被覆工具4、5および8については、前記表4に示される形成条件(形成記号)D、E、Hにて成膜後、さらに、最上層として、それぞれ、κ-Al層、l−TiCN層またはα-Al層を表5に示される形成条件にて成膜することにより、表6および表7に示す本発明工具4、5および8として得た。
Subsequently, as the third step (initial nucleation step), the supply conditions of the gas group C and the gas group D and the gas reaction conditions described in the formation conditions (formation symbols) A to H shown in Table 3 ( Film formation is performed for a certain period of time based on pressure, temperature, and process time (seconds).
Subsequently, as the fourth step (crystal growth step), the supply conditions of the gas group E and the gas group F and the gas reaction conditions (pressure,) described in the formation conditions (formation symbols) A to H shown in Table 4 are continued. Film formation was carried out for a certain period of time based on the temperature and the process time (seconds)) to obtain the coating tools 1 to 3, 6 and 7 of the present invention shown in Tables 6 and 7.
Further, with respect to the covering tools 4, 5 and 8 of the present invention, after film formation under the formation conditions (formation symbols) D, E and H shown in Table 4, the top layer is κ-Al 2 O, respectively. The three layers, the l-TiCN layer, or the α-Al 2 O 3 layer were formed under the formation conditions shown in Table 5 to obtain the tools 4, 5 and 8 of the present invention shown in Tables 6 and 7.

また、比較の目的で、表2、表3および表4に示される形成条件a〜c、f、gにて成膜を行ない、比較例被覆工具1〜3、6、7を得た。
また、表2、表3および表4に示される形成条件d、e、hにて成膜を行なった後、最上層として、それぞれ、κ-Al層、l−TiCN層またはα-Al層を表5に示される形成条件にて成膜することにより、表9に示す比較例工具4、5および8を得た。
Further, for the purpose of comparison, film formation was carried out under the formation conditions a to c, f and g shown in Tables 2, 3 and 4, to obtain Comparative Examples Covering Tools 1-3, 6 and 7.
Further, after the film formation was performed under the formation conditions d, e, and h shown in Tables 2, 3 and 4, the top layer was κ-Al 2 O 3 layer, l-TiCN layer or α-, respectively. By forming the Al 2 O 3 layer under the formation conditions shown in Table 5, Comparative Examples Tools 4, 5 and 8 shown in Table 9 were obtained.

表6および表7には、本発明被覆工具1〜8の硬質被覆層の目標平均全層厚、および、
下部層については、目標平均層厚、形成膜の種類、全平均Cr濃度、全平均C濃度、基体近接領域(基体最表面から厚み方向0.1μmまでの領域)における最大Cr濃度値の90%以上の濃度を有する最大Cr濃度領域の濃度値、前記最大Cr濃度領域の領域幅、上部領域(基体最表面から厚み方向0.1μmを超え上部層までの領域)における最大C濃度値の90%以上の濃度を有する最大Cr濃度領域の濃度値、前記最大Cr濃度領域の領域幅、形成膜の結晶特性(結晶構造、配向性指数(TC(200)))、
上部層(AlTi1−X)(C1−Y)については、目標平均層厚、平均Al含有割合(Xavg)、平均C含有割合(Yavg)、結晶特性(結晶構造、配向性指数(TC(111)))、
最上層については、化合物の種類および目標平均層厚の測定結果を示す。
比較例被覆工具1〜8の硬質被覆層についても同様である。
Tables 6 and 7 show the target average total thickness of the hard coating layers of the coating tools 1 to 8 of the present invention, and
For the lower layer, the target average layer thickness, the type of film formed, the total average Cr concentration, the total average C concentration, and 90% of the maximum Cr concentration value in the substrate proximity region (the region from the outermost surface of the substrate to 0.1 μm in the thickness direction). 90% of the maximum C concentration value in the maximum Cr concentration region having the above concentration, the region width of the maximum Cr concentration region, and the upper region (the region from the outermost surface of the substrate to the upper layer exceeding 0.1 μm in the thickness direction). The concentration value of the maximum Cr concentration region having the above concentration, the region width of the maximum Cr concentration region, the crystal characteristics of the formed film (crystal structure, orientation index (TC (200))),
For the upper layer (Al X Ti 1-X ) ( CY N 1-Y ), the target average layer thickness, average Al content ratio (X avg ), average C content ratio (Y avg ), crystal characteristics (crystal structure, Orientation index (TC (111))),
For the top layer, the measurement results of the type of compound and the target average layer thickness are shown.
Comparative Example The same applies to the hard coating layers of the coating tools 1 to 8.

なお、ここで、本発明被覆工具1〜8、および、比較例被覆工具1〜8の硬質被覆層の膜厚の測定は、走査型電子顕微鏡(倍率5000倍)を用いて行った。
すなわち、工具基体に垂直な方向の断面が露出するように研磨を施し、5000〜20000倍の視野にて各層を観察し、観察視野内の5点の層厚を測った平均値を平均層厚として、本発明被覆工具1〜8については、表6および表7に、比較例被覆工具1〜8については、表8および表9に示した。
また、上部層のAlTiNまたはAlTiCNのAlの平均含有割合Xavg(原子比)およびC成分の平均含有割合Yavg(原子比)については、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均から求めた。本発明被覆工具1〜8については表7に、比較例被覆工具1〜8については表9に、XavgおよびYavgの値を示す。
下部層に含まれるCr、Cの含有量の最大点および最大値についての測定は、下記の方法で実施した。
TEMに備え付けたEDS検出器により基体最表面より硬質被覆層の表面方向に4nm毎の間隔でラインスキャンを実施して、含有元素の分布を取得し、下部層全域におけるCrおよびCの含有量を下部層中の平均含有量、下部層中のCr、Cの含有量の最大値を示す点を中心とし、それぞれの元素の最大含有量とし、さらに基体表面からの距離を最大点とした。最大点を中心として基体側2点、表面側2点以上(すなわち20nm領域)の範囲で−10%以内のズレ量である際に最大濃度、その領域を最大濃度領域とする。
Here, the film thicknesses of the hard coating layers of the coating tools 1 to 8 of the present invention and the coating tools 1 to 8 of the comparative example were measured using a scanning electron microscope (magnification: 5000 times).
That is, polishing is performed so that the cross section in the direction perpendicular to the tool substrate is exposed, each layer is observed in a field of view of 5000 to 20000 times, and the average value obtained by measuring the layer thickness of 5 points in the observation field of view is the average layer thickness. As shown in Tables 6 and 7, the covering tools 1 to 8 of the present invention are shown in Tables 8 and 9, and the covering tools 1 to 8 of Comparative Examples are shown in Tables 8 and 9.
Regarding the average content of AlTiN or AlTiCN in the upper layer, X- avg (atomic ratio) and the average content of C component, Y- avg (atomic ratio), the electron probe microanalyzer (EPMA, Electron-Probe-Micro-Analyzer) ) Was used to irradiate the sample whose surface was polished with an electron beam from the sample surface side, and the obtained characteristic X-ray was obtained from the 10-point average of the analysis results. Table 7 shows the covering tools 1 to 8 of the present invention, and Table 9 shows the values of X avg and Y avg for the covering tools 1 to 8 of Comparative Examples.
The measurement for the maximum point and the maximum value of the contents of Cr and C contained in the lower layer was carried out by the following method.
A line scan was performed at intervals of 4 nm from the outermost surface of the substrate toward the surface of the hard coating layer using an EDS detector installed in the TEM to obtain the distribution of contained elements and determine the Cr and C contents in the entire lower layer. The points showing the average contents in the lower layer and the maximum values of Cr and C in the lower layer were taken as the center, the maximum contents of each element were taken, and the distance from the substrate surface was taken as the maximum point. The maximum concentration is defined as the maximum concentration when the deviation amount is within -10% in the range of two points on the substrate side and two points or more on the surface side (that is, a 20 nm region) with the maximum point as the center.

また、AlTiN層、AlTiCN層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源として測定範囲(2θ):20〜120度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepの条件にて、例えば、工具基体表面に対して平行な硬質被覆層表面において、X線回折を行い、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に現れるX線回折ピークにより、確認することができる。
そして、取得された、(111)、(200)、(220)、(311)、(222)、(400)の各面におけるX線回折ピーク強度の測定値I(hkl)とICDDカード00−046−1200に記載のAlNの結晶面の前記各面における標準X線回折ピーク強度の平均値I(hkl)とより、立方晶の(111)面における配向性指数TC(111)、(200)面の回折ピーク強度I(200)に対する(111)面の回折ピーク強度I(111)の比であるI(111)/I(200)を得ることができる。
Regarding the crystal structure of the AlTiN layer and AlTiCN layer, an X-ray diffractometer is used, and the measurement range (2θ): 20 to 120 degrees, the scan step: 0.013 degrees, and one step around using Cu-Kα rays as the radiation source. Measurement time: Under the condition of 0.48 sec / step, for example, X-ray diffraction was performed on the surface of the hard coating layer parallel to the surface of the tool substrate, and JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic were performed. Crystal AlN, X-ray diffraction appearing between the diffraction angles of the same crystal plane shown in each (eg, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °) It can be confirmed by the peak.
Then, the measured values I (hkl) of the X-ray diffraction peak intensities in each of the acquired surfaces (111), (200), (220), (311), (222), and (400) and the ICDD card 00- From the average value I 0 (hkl) of the standard X-ray diffraction peak intensities on each of the AlN crystal planes described in 046-1200, the orientation indices TC (111), (200) on the (111) plane of the cubic crystal. I (111) / I (200), which is the ratio of the diffraction peak intensity I (111) of the (111) plane to the diffraction peak intensity I (200) of the plane), can be obtained.



つぎに、前記各種の被覆工具を工具鋼製カッターの先端部に固定治具にてクランプした状態にて、本発明被覆工具1〜8、比較例被覆工具1〜8について、以下に示す、ステンレス鋼の乾式断続切削試験を実施し、工具欠損にいたるまでの最大加工長に関する評価を実施し、結果を表10に示した。 Next, with the various covering tools clamped to the tip of the tool steel cutter with a fixing jig, the covering tools 1 to 8 of the present invention and the covering tools 1 to 8 of the comparative example are shown below in stainless steel. A dry intermittent cutting test of steel was carried out, an evaluation was carried out regarding the maximum machining length up to a tool breakage, and the results are shown in Table 10.

≪切削条件≫
切削試験 :乾式正面フライス、センターカット切削加工、
被削材 :JIS・SUS316L
幅100mm、長さ400mmの穴付きブロック材
(直径50mmの穴が50mm間隔にて4個)
切削速度 :150m/min.
切り込み :2.0mm、
一刃送り量:0.3mm/刃、
加工長 :刃先が欠損に至るまで加工(最大加工長8.0mで評価終了)
≪Cutting conditions≫
Cutting test: Dry face milling cutter, center cut cutting process,
Work material: JIS / SUS316L
Block material with holes 100 mm wide and 400 mm long
(4 holes with a diameter of 50 mm at intervals of 50 mm)
Cutting speed: 150 m / min.
Notch: 2.0 mm,
Single blade feed amount: 0.3 mm / blade,
Machining length: Machining until the cutting edge is damaged (evaluation is completed at the maximum machining length of 8.0 m)

表10に示される切削加工試験結果からも明らかなように、本発明被覆工具は、その硬質被覆層として、工具基体最表面に対し、順次、Cr含有量の最大値、および、C含有量の最大値を有する、TiとCrとの複合炭窒化物からなる下部層を直接接して設け、さらに、前記下部層に対し、特定の成分組成を有し、NaCl型の面心立方晶構造を有するAlTi複合窒化物またはAlTi複合炭窒化物からなる上部層を設けることにより、微細結晶粒の脱落に起因するチッピング等の発生を回避し、長期に亘ってすぐれた耐欠損性を発揮するものである。 As is clear from the cutting test results shown in Table 10, the coated tool of the present invention has, as its hard coating layer, sequentially the maximum value of Cr content and the C content with respect to the outermost surface of the tool substrate. A lower layer made of a composite carbonitride of Ti and Cr having a maximum value is provided in direct contact with the lower layer, and further has a specific component composition with respect to the lower layer and has a NaCl-type surface-centered cubic structure. By providing an upper layer made of AlTi composite nitride or AlTi composite carbonitride, it is possible to avoid the occurrence of chipping and the like due to the shedding of fine crystal grains, and to exhibit excellent fracture resistance over a long period of time. ..

前述のとおり、本発明の表面被覆切削工具は、特に、ステンレス鋼や溶断表面が残存する鋼材の切削加工に用いた場合においても、すぐれた耐欠損性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらには、低コスト化に十分満足するものである。
As described above, the surface-coated cutting tool of the present invention exhibits excellent fracture resistance, especially when used for cutting stainless steel or steel materials having a fusing surface remaining. It is fully satisfactory in terms of high performance, labor saving and energy saving in cutting, and cost reduction.

Claims (5)

結合相成分としてCo、Crを含有する炭化タングステン基超硬合金からなる工具基体の表面に、硬質被覆層を有してなる表面被覆切削工具において、
(a)前記硬質被覆層は、前記工具基体最表面に直接接してなる下部層と、該下部層に直接接してなる上部層との少なくとも二層を有し、前記硬質被覆層の全平均層厚は、0.6〜20.0μmであり、
(b)前記下部層は、TiおよびCrの炭窒化物からなり、その平均層厚は、0.2〜1.6μmであり、
(b−1)前記下部層は、前記基体最表面から層厚が0.1μmまでの範囲において、
最大Cr濃度値を有し、前記最大Cr濃度値の90%以上の濃度を有する最大Cr濃度領域の濃度値が、下部層の全平均Cr濃度に対して1.2倍以上であって、かつ、0.5原子%以上、5.0原子%以下であり、前記最大Cr濃度領域の領域幅は、0.02μm以上であり、また、
(b−2)前記下部層は、前記基体最表面から層厚が0.1μmを超え上部層との境界までの範囲において、最大C濃度値を有し、前記最大C濃度値の90%以上の濃度を有する最大C濃度領域の濃度値が、下部層の全平均C濃度に対して1.2倍以上であって、かつ、7.0原子%以上、25.0原子%以下であり、前記最大C濃度領域は、0.02μm以上であり、
また、
(c)前記上部層は、AlとTiとの複合窒化物または複合炭窒化物を含む層であり、その平均層厚は、0.4〜18.4μmであり、
組成式:(AlTi1−X)(C1−Y)で表した場合、複合窒化物または複合炭窒化物層のTiとAlの合量に対してAlが占める平均含有割合Xavgおよび複合窒化物または複合炭窒化物層のCとNの合量に対してCが占める平均含有割合Yavg(但し、Xavg、Yavg はいずれも原子比)が、それぞれ、0.75≦Xavg≦0.90、0≦Yavg<0.05を満足し、NaCl型の面心立方晶構造を有する複合窒化物または複合炭窒化物層からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool having a hard coating layer on the surface of a tool substrate made of a tungsten carbide-based cemented carbide containing Co and Cr as a bonding phase component.
(A) The hard coating layer has at least two layers, a lower layer directly in contact with the outermost surface of the tool substrate and an upper layer directly in contact with the lower layer, and is an overall average layer of the hard coating layer. The thickness is 0.6-20.0 μm and
(B) The lower layer is made of Ti and Cr carbonitride, and the average layer thickness thereof is 0.2 to 1.6 μm.
(B-1) The lower layer has a layer thickness of 0.1 μm from the outermost surface of the substrate.
The concentration value of the maximum Cr concentration region having the maximum Cr concentration value and having a concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration of the lower layer, and , 0.5 atomic% or more and 5.0 atomic% or less, and the region width of the maximum Cr concentration region is 0.02 μm or more, and
(B-2) The lower layer has a maximum C concentration value in the range from the outermost surface of the substrate to the boundary with the upper layer in a layer thickness of more than 0.1 μm, and is 90% or more of the maximum C concentration value. The concentration value of the maximum C concentration region having the concentration of is 1.2 times or more and 7.0 atomic% or more and 25.0 atomic% or less with respect to the total average C concentration of the lower layer. The maximum C concentration region is 0.02 μm or more, and is
Also,
(C) The upper layer is a layer containing a composite nitride or a composite carbonitride of Al and Ti, and the average layer thickness thereof is 0.4 to 18.4 μm.
Composition formula: When represented by (Al X Ti 1-X ) ( CY N 1-Y ), the average content ratio X of Al to the total amount of Ti and Al in the composite nitride or composite carbonitride layer X. The average content ratio of C to the total amount of C and N in the avg and the composite nitride or composite carbonitride layer Y avg (however, both X avg and Y avg are atomic ratios) is 0.75, respectively. A surface-coated cutting tool that satisfies ≤X avg ≤0.90, 0≤Y avg <0.05, and is composed of a composite nitride or composite carbonitride layer having a NaCl-type surface-centered cubic structure. ..
前記TiおよびCrの炭窒化物からなる下部層について、X線回折を行った際に、以下の式(A)にて表わされる、立方晶(200)面における配向性指数TC(200)が、0.5≦TC(200)≦4.5を満たすことを特徴とする請求項1に記載された表面被覆切削工具。
式(A) TC(200)=[I(200)/I(200)]
×[(1/n)×Σ(I(hkl)/I(hkl)]−1
ただし、
I(200);(200)面におけるX線回折ピーク強度の測定値
(200);
ICDDカード00−038−1420に記載のTiNの結晶面の(200)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、TiNの標準回折ピーク強度の平均値])の値の合計値
When X-ray diffraction was performed on the lower layer made of the carbonitrides of Ti and Cr, the orientation index TC (200) on the cubic (200) plane, which is represented by the following formula (A), was determined. The surface coating cutting tool according to claim 1, wherein 0.5 ≤ TC (200) ≤ 4.5 is satisfied.
Equation (A) TC (200) = [I (200) / I 0 (200)]
× [(1 / n) × Σ (I (hkl) / I 0 (hkl)] -1
However,
I (200); Measured value of X-ray diffraction peak intensity on plane (200) I 0 (200);
Average value of standard X-ray diffraction peak intensity on the (200) plane of the TiN crystal plane described on the ICDD card 00-038-1420 Σ (I (hkl) / I 0 (hkl));
([Measurement value of X-ray diffraction peak intensity] / [Posted on ICDD card] of each of the six surfaces (111), (200), (220), (311), (222), and (400). The average value of the standard diffraction peak intensity of TiN])
請求項1または請求項2において、前記TiおよびCrの炭窒化物からなる下部層における皮膜残留応力の値が、−500〜500MPaを満たすことを特徴とする表面被覆切削工具。 The surface coating cutting tool according to claim 1 or 2, wherein the value of the film residual stress in the lower layer made of the carbonitride of Ti and Cr satisfies −500 to 500 MPa. 前記上部層について、X線回折を行った際に、以下の式(B)にて表わされる、立方晶(111)面における配向性指数TC(111)が、2.0≦TC(111)≦4.0を満たすことを特徴とする請求項1乃至請求項3のいずれか一つに記載された表面被覆切削工具。
式(B)TC(111)=[I(111)/I(111)]
×[(1/6)×Σ(I(hkl)/I(hkl)]−1
ただし、
I(111);(111)面におけるX線回折ピーク強度の測定値
(111);
ICDDカード00−046−1200に記載のAlNの結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、AlNの標準回折ピーク強度の平均値])の値の合計値
When X-ray diffraction is performed on the upper layer, the orientation index TC (111) on the cubic (111) plane, which is represented by the following formula (B), is 2.0 ≦ TC (111) ≦. The surface coating cutting tool according to any one of claims 1 to 3, wherein the surface coating cutting tool satisfies 4.0.
Equation (B) TC (111) = [I (111) / I 0 (111)]
× [(1/6) × Σ (I (hkl) / I 0 (hkl)] -1
However,
I (111); Measured value of X-ray diffraction peak intensity on plane (111) I 0 (111);
Average value of standard X-ray diffraction peak intensity on the (111) plane of the AlN crystal plane described on the ICDD card 00-046-1200 Σ (I (hkl) / I 0 (hkl));
([Measurement value of X-ray diffraction peak intensity] / [Posted on ICDD card] of each of the six surfaces (111), (200), (220), (311), (222), and (400). The average value of the standard diffraction peak intensities of AlN])
前記上部層について、X線回折を行った際に、立方晶(111)面の回折線強度値に対する立方晶(200)面における回折線強度値、I(111)/I(200)が、0.9≦I(111)/I(200)の関係を満たすことを特徴とする請求項1乃至請求項4のいずれか一つに記載された表面被覆切削工具。 When X-ray diffraction was performed on the upper layer, the diffraction line intensity value on the cubic (200) plane, I (111) / I (200), was 0 with respect to the diffraction line strength value on the cubic (111) plane. The surface-coated cutting tool according to any one of claims 1 to 4, wherein the relationship of .9 ≦ I (111) / I (200) is satisfied.
JP2019062526A 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance Active JP7243013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062526A JP7243013B2 (en) 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062526A JP7243013B2 (en) 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance

Publications (2)

Publication Number Publication Date
JP2020157457A true JP2020157457A (en) 2020-10-01
JP7243013B2 JP7243013B2 (en) 2023-03-22

Family

ID=72641053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062526A Active JP7243013B2 (en) 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance

Country Status (1)

Country Link
JP (1) JP7243013B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168421A (en) * 2006-12-15 2008-07-24 Sandvik Intellectual Property Ab Coated cemented carbide end mill
WO2015080149A1 (en) * 2013-11-29 2015-06-04 京セラ株式会社 Cutting tool
JP2017124463A (en) * 2016-01-13 2017-07-20 住友電工ハードメタル株式会社 Surface-coated cutting tool and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168421A (en) * 2006-12-15 2008-07-24 Sandvik Intellectual Property Ab Coated cemented carbide end mill
WO2015080149A1 (en) * 2013-11-29 2015-06-04 京セラ株式会社 Cutting tool
JP2017124463A (en) * 2016-01-13 2017-07-20 住友電工ハードメタル株式会社 Surface-coated cutting tool and method of manufacturing the same

Also Published As

Publication number Publication date
JP7243013B2 (en) 2023-03-22

Similar Documents

Publication Publication Date Title
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
KR20180123092A (en) Surface-coated cutting tool and manufacturing method thereof
WO2012144088A1 (en) Surface-coated cutting tool and method for manufacturing same
EP3360632B1 (en) Coated cutting tool
CN110352107B (en) Surface-coated cutting tool and method for manufacturing same
JP6905807B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP2017056497A (en) Surface coat cutting tool allowing hard coat layer to exhibit superior chipping resistance
JP2018164960A (en) Coated cemented carbide tool with superior chipping resistance
KR20180128822A (en) Surface-coated cutting tool and method of producing the same
JPH07100701A (en) Coated cutting tool and its manufacture
EP3447166A1 (en) Coated cutting tool
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP7412679B2 (en) Surface coated cutting tool with excellent fracture resistance
CN110382146B (en) Surface-coated cutting tool and method for manufacturing same
CN110382145B (en) Surface-coated cutting tool and method for manufacturing same
WO2020166683A1 (en) Surface-coated cutting tool
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2020146820A (en) Cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP7243013B2 (en) Surface-coated cutting tools with excellent fracture resistance
WO2016190332A1 (en) Surface-coated cutting tool with rigid coating layer exhibiting excellent chipping resistance
JP7256978B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent adhesion resistance and abnormal damage resistance.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7243013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150