JP7243013B2 - Surface-coated cutting tools with excellent fracture resistance - Google Patents

Surface-coated cutting tools with excellent fracture resistance Download PDF

Info

Publication number
JP7243013B2
JP7243013B2 JP2019062526A JP2019062526A JP7243013B2 JP 7243013 B2 JP7243013 B2 JP 7243013B2 JP 2019062526 A JP2019062526 A JP 2019062526A JP 2019062526 A JP2019062526 A JP 2019062526A JP 7243013 B2 JP7243013 B2 JP 7243013B2
Authority
JP
Japan
Prior art keywords
layer
concentration
value
maximum
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019062526A
Other languages
Japanese (ja)
Other versions
JP2020157457A (en
Inventor
翔 龍岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019062526A priority Critical patent/JP7243013B2/en
Publication of JP2020157457A publication Critical patent/JP2020157457A/en
Application granted granted Critical
Publication of JP7243013B2 publication Critical patent/JP7243013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

この発明は、ステンレス鋼や溶断表面が残存する鋼材等の切削加工において、特に、耐欠損性にすぐれた表面被覆切削工具(以下、単に「被覆工具」という)に関するものである。 TECHNICAL FIELD The present invention relates to a surface-coated cutting tool (hereinafter simply referred to as a "coated tool") that is particularly excellent in fracture resistance in the cutting of stainless steel, steel materials with fused surfaces, and the like.

ステンレス鋼や溶断表面が残存する鋼材の切削加工において、特に、CVD法によりAlTiNを被覆した切削工具においては、その皮膜硬さや耐酸化特性により、連続高速切削領域では高い耐摩耗性を発揮することが知られているものの、一方、被削材の靭性が高いステンレス鋼や、切り込み量が変動する溶断面の加工のような不安定加工においては、その高い皮膜硬さのため、粒子の脱落が顕著に発生し、工具の欠損を伴う異常損傷が進むことで、本来の性能を発揮することができないという問題を有していた。 In the cutting of stainless steel and steel materials with residual fused surfaces, in particular, cutting tools coated with AlTiN by the CVD method should exhibit high wear resistance in continuous high-speed cutting due to the hardness and oxidation resistance of the coating. However, on the other hand, in unstable machining such as stainless steel with high toughness of the work material and welding surface machining where the depth of cut fluctuates, the high hardness of the coating causes particles to fall off. There was a problem that the original performance could not be exhibited due to the progress of abnormal damage accompanied by chipping of the tool, which occurred remarkably.

これに対して、基材表面に密着性にすぐれるTi系の密着層を設け、基材ないし基材表面の成分を密着層中に拡散させることにより高い密着性を得る技術が提案されている。
例えば、特許文献1では、超硬合金基材側から被覆膜のTiN層側にかけてのCおよびCoの拡散量を調整し、所望の濃度勾配を有することにより、密着性の向上を図ることが記載されており、また、特許文献2では、WC基超硬合金基材側より硬質被覆層側の第一層であるチタン炭化物皮膜におけるCo含有量、および、Co含有量に対するCr含有量比を規定することにより、前記チタン炭化物皮膜の密着性の向上を図ることが記載されている。
また、特許文献3では、WC超硬合金基体の表面に被覆されるTiN層中のCr濃度を高めることにより、WC超硬合金基体とその表面に被覆されるTiN層の密着性を向上させることが記載されている。
On the other hand, a technique has been proposed in which a Ti-based adhesion layer having excellent adhesion is provided on the surface of the base material, and components of the base material or the surface of the base material are diffused into the adhesion layer to obtain high adhesion. .
For example, in Patent Document 1, by adjusting the diffusion amount of C and Co from the cemented carbide substrate side to the TiN layer side of the coating film and having a desired concentration gradient, it is possible to improve adhesion. Also, in Patent Document 2, the Co content in the titanium carbide coating, which is the first layer on the hard coating layer side from the WC-based cemented carbide substrate side, and the Cr content ratio to the Co content, It is described that the adhesion of the titanium carbide coating is improved by defining the thickness.
Further, in Patent Document 3, the adhesion between the WC cemented carbide substrate and the TiN layer coated on the surface thereof is improved by increasing the Cr concentration in the TiN layer coated on the surface of the WC cemented carbide substrate. is described.

特許第6041160号Patent No. 6041160 特許第5046196号Patent No. 5046196 特許第6276288号Patent No. 6276288

近年の切削加工における省力化および省エネ化等の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具では、粒子の脱落の発生により、工具の欠損を伴う異常損傷を生じることから、すぐれた耐欠損性が求められる。
そこで、前記特許文献1乃至特許文献3では、被覆工具において、基体成分もしくは基体表面の成分を密着層中に拡散させることにより、工具基体上にTi系の密着性にすぐれた密着層を形成し、欠損の発生を回避することが提案された。
しかしながら、これらのCVD-AlTiN皮膜においては、元素拡散により密着性向上効果は認められるものの、元素の拡散により密着層自体の硬さが過度に上昇し、加工中に硬さの高いCVD-AlTiN皮膜表面から発生したクラックが内部まで進展し、皮膜粒子の脱落などによる工具の欠損が生じるという問題を有していた。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting has become even faster and more efficient. Because of the accompanying abnormal damage, excellent chipping resistance is required.
Therefore, in Patent Documents 1 to 3, in coated tools, a Ti-based adhesion layer having excellent adhesion is formed on the tool substrate by diffusing the substrate component or the component of the substrate surface into the adhesion layer. , was proposed to avoid the occurrence of defects.
However, in these CVD-AlTiN films, although the effect of improving the adhesion by element diffusion is recognized, the diffusion of the elements excessively increases the hardness of the adhesion layer itself, resulting in a CVD-AlTiN film with high hardness during processing. There was a problem in that cracks generated from the surface propagated to the inside, causing chipping of the tool due to detachment of coating particles.

そこで、本発明は、かかる課題を解決し、長期使用に際しても、工具の欠損をともなう異常損傷の進展を阻止し、すぐれた耐欠損性を発揮する表面被覆切削工具を提供することを目的とする。 Accordingly, it is an object of the present invention to provide a surface-coated cutting tool that solves the above problems and prevents the development of abnormal damage accompanied by chipping of the tool even during long-term use, thereby exhibiting excellent chipping resistance. .

本発明者らは、前述の観点から、AlとTiの複合窒化物からなる硬質被覆層を化学蒸着にて被覆形成した被覆工具の耐欠損性を改善および向上を図るべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned point of view, the present inventors have made extensive research to improve and improve the chipping resistance of coated tools formed by chemical vapor deposition with a hard coating layer composed of a composite nitride of Al and Ti. As a result, the following findings were obtained.

すなわち、本発明者らは、CVD-AlTiNから成る硬質被覆層の下部層において、基体と接する領域より硬質被覆層の表面側に向かってCr成分およびC成分を適切に拡散させ、それぞれの成分が、濃度傾斜分布領域を有し、具体的には、硬質被覆層の下部層の基体表面から硬質被覆層の表面側に向かって、順に異なる位置にて、Cr成分が最大濃度となる領域、および、C成分が最大濃度となる領域を設け、TiとCrの炭窒化物からなる密着層を得て、結晶配向と皮膜の残留応力を制御し、その皮膜硬さの過度な上昇を抑制することにより、クラックによる内部進展を防ぎ、粒子の脱落を減ずる結果、耐欠損性にすぐれた皮膜が得られることを知見した。 That is, the present inventors appropriately diffused the Cr component and the C component toward the surface side of the hard coating layer from the region in contact with the substrate in the lower layer of the hard coating layer made of CVD-AlTiN, so that the respective components , a concentration gradient distribution region, specifically, a region where the Cr component has a maximum concentration at different positions in order from the substrate surface of the lower layer of the hard coating layer toward the surface side of the hard coating layer, and , provide a region where the C component has the maximum concentration, obtain an adhesion layer composed of carbonitrides of Ti and Cr, control the crystal orientation and the residual stress of the film, and suppress an excessive increase in the hardness of the film. It was found that, as a result of preventing the internal propagation of cracks and reducing the shedding of particles, a film with excellent chipping resistance can be obtained.

本発明は、前記知見に基づいてなされたものであって、
「(1)結合相成分としてCo、Crを含有する炭化タングステン基超硬合金からなる工具基体の表面に、硬質被覆層を有してなる表面被覆切削工具において、
(a)前記硬質被覆層は、前記工具基体最表面に直接接してなる下部層と、該下部層に直接接してなる上部層との少なくとも二層を有し、前記硬質被覆層の全平均層厚は、0.6~20.0μmであり、
(b)前記下部層は、TiおよびCrの炭窒化物からなり、その平均層厚は、0.2~1.6μmであり、
(b-1)前記下部層は、前記基体最表面から層厚が0.1μmまでの範囲において、
最大Cr濃度値を有し、前記最大Cr濃度値の90%以上のCr濃度を有する最大Cr濃度領域のCr濃度値が、下部層の全平均Cr濃度に対して1.2倍以上であって、かつ、0.5原子%以上、5.0原子%以下であり、前記最大Cr濃度領域の領域幅は、0.02μm以上であり、また、
(b-2)前記下部層は、前記基体最表面から層厚が0.1μmを超え上部層との境界までの範囲において、最大C濃度値を有し、前記最大C濃度値の90%以上のC濃度を有する最大C濃度領域のC濃度値が、下部層の全平均C濃度に対して1.2倍以上であって、かつ、7.0原子%以上、25.0原子%以下であり、前記最大C濃度領域の領域幅は、0.02μm以上であり、
また、
(c)前記上部層は、AlとTiとの複合窒化物または複合炭窒化物を含む層であり、その平均層厚は、0.4~18.4μmであり、
組成式:(AlTi1-X)(C1-Y)で表した場合、前記複合窒化物または複合炭窒化物層のTiとAlの合量に対してAlが占める平均含有割合Xavgおよび前記複合窒化物または複合炭窒化物層のCとNの合量に対してCが占める平均含有割合Yavg(但し、Xavg、Yavg はいずれも原子比)が、それぞれ、0.75≦Xavg≦0.90、0≦Yavg<0.05を満足し、NaCl型の面心立方晶構造を有する複合窒化物または複合炭窒化物層からなることを特徴とする表面被覆切削工具。
(2)前記TiおよびCrの炭窒化物からなる下部層について、X線回折を行った際に、以下の式(A)にて表わされる、立方晶(200)面における配向性指数TC(200)が、0.5≦TC(200)≦4.5を満たすことを特徴とする(1)に記載された表面被覆切削工具。
式(A) TC(200)=[I(200)/I(200)]
×[(1/n)×Σ(I(hkl)/I(hkl)]-1
ただし、
I(200);(200)面におけるX線回折ピーク強度の測定値
(200);
ICDDカード00-038-1420に記載のTiNの結晶面の(200)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、TiNの標準回折ピーク強度の平均値])の値の合計値
(3) (1)または(2)において、前記TiおよびCrの炭窒化物からなる下部層における皮膜残留応力の値が、-500~500MPaを満たすことを特徴とする表面被覆切削工具。
(4) 前記上部層について、X線回折を行った際に、以下の式(B)にて表される、立方晶(111)面における配向性指数TC(111)が、2.0≦TC(111)≦4.0を満たすことを特徴とする(1)乃至(3)のいずれか一つに記載された表面被覆切削工具。
式(B) TC(111)=[I(111)/I(111)]
×[(1/6)×Σ(I(hkl)/I(hkl)]-1
ただし、
I(111);(111)面におけるX線回折ピーク強度の測定値
(111);
ICDDカード00-046-1200に記載のAlNの結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、AlNの標準回折ピーク強度の平均値])の値の合計値
(5) 前記上部層について、X線回折を行った際に、立方晶(111)面の回折線強度に対する立方晶(200)面における回折線強度の値、I(111)/I(200)が、0.9≦I(111)/I(200)の関係を満たすことを特徴とする(1)乃至(4)のいずれか一つに記載された表面被覆切削工具。」に特徴を有するものである。
なお、本明細書中において、数値範囲を示す際に、「~」あるいは「-」を用いる場合は、その数値範囲の下限および上限を含むことを意味する。
The present invention was made based on the above findings,
"(1) A surface-coated cutting tool having a hard coating layer on the surface of a tool substrate made of a tungsten carbide-based cemented carbide containing Co and Cr as binder phase components,
(a) The hard coating layer has at least two layers, a lower layer in direct contact with the outermost surface of the tool substrate and an upper layer in direct contact with the lower layer, and the total average layer of the hard coating layer The thickness is 0.6 to 20.0 μm,
(b) the lower layer is made of Ti and Cr carbonitrides and has an average layer thickness of 0.2 to 1.6 μm;
(b-1) the lower layer, in a range from the outermost surface of the substrate to a layer thickness of 0.1 μm,
The Cr concentration value of the maximum Cr concentration region having the maximum Cr concentration value and having a Cr concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration of the lower layer and is 0.5 atomic % or more and 5.0 atomic % or less, and the region width of the maximum Cr concentration region is 0.02 μm or more, and
(b-2) The lower layer has a maximum C concentration value in a range from the outermost surface of the substrate to the boundary with the upper layer with a layer thickness exceeding 0.1 μm, and is 90% or more of the maximum C concentration value. The C concentration value of the maximum C concentration region having a C concentration of is 1.2 times or more the total average C concentration of the lower layer, and is 7.0 atomic % or more and 25.0 atomic % or less and the region width of the maximum C concentration region is 0.02 μm or more,
again,
(c) the upper layer is a layer containing a composite nitride or composite carbonitride of Al and Ti, and has an average layer thickness of 0.4 to 18.4 μm;
Composition formula: (Al X Ti 1-X ) (C Y N 1-Y ), the average content ratio of Al to the total amount of Ti and Al in the composite nitride or composite carbonitride layer X avg and the average content ratio Y avg of C to the total amount of C and N in the composite nitride or composite carbonitride layer (where X avg and Y avg are both atomic ratios) are respectively 0 .75 ≤ X avg ≤ 0.90, 0 ≤ Y avg < 0.05, and comprising a composite nitride or composite carbonitride layer having a NaCl-type face-centered cubic crystal structure. Cutting tools.
(2) When X-ray diffraction is performed on the lower layer composed of the carbonitrides of Ti and Cr, the orientation index TC (200 ) satisfies 0.5≦TC(200)≦4.5.
Formula (A) TC(200)=[I(200)/I 0 (200)]
×[(1/n)×Σ(I(hkl)/I 0 (hkl)] −1
however,
I (200); measured value of X-ray diffraction peak intensity in (200) plane I 0 (200);
Average value of standard X-ray diffraction peak intensity Σ(I(hkl)/I 0 (hkl)) on the (200) plane of the TiN crystal plane described in ICDD card 00-038-1420;
Each of the six planes (111), (200), (220), (311), (222), and (400) ([measured value of X-ray diffraction peak intensity] / [listed on ICDD card (3) In (1) or (2), the value of the film residual stress in the lower layer composed of the Ti and Cr carbonitrides is A surface-coated cutting tool characterized by satisfying -500 to 500 MPa.
(4) When X-ray diffraction is performed on the upper layer, the orientation index TC (111) in the cubic crystal (111) plane represented by the following formula (B) is 2.0 ≤ TC The surface-coated cutting tool according to any one of (1) to (3), wherein (111)≦4.0 is satisfied.
Formula (B) TC(111)=[I(111)/I 0 (111)]
×[(1/6)×Σ(I(hkl)/I 0 (hkl)] −1
however,
I (111); measured value of X-ray diffraction peak intensity in the (111) plane I 0 (111);
Average value of standard X-ray diffraction peak intensity Σ(I(hkl)/I 0 (hkl)) on the (111) plane of the AlN crystal plane described in ICDD card 00-046-1200;
Each of the six planes (111), (200), (220), (311), (222), and (400) ([measured value of X-ray diffraction peak intensity] / [listed on ICDD card (5) When X-ray diffraction is performed on the upper layer, the cubic crystal (200 ) of (1) to (4), wherein the value of diffraction line intensity on the plane, I (111) / I (200), satisfies the relationship of 0.9 ≤ I (111) / I (200) A surface-coated cutting tool according to any one of the preceding claims. ”is characterized by
In this specification, when "-" or "-" is used when indicating a numerical range, it means including the lower limit and the upper limit of the numerical range.

つぎに、本発明の被覆工具の工具基体および硬質被覆層について、具体的に説明する。 Next, the tool substrate and the hard coating layer of the coated tool of the present invention will be specifically described.

(a)工具基体
工具基体としては、炭化タングステン基超硬合金を用いる。本発明は、硬質被覆層の異なる領域においてCrおよびCがそれぞれ含有量の最大濃度を有することを特徴とするものであるが、例えば、所定量のCrおよびCを工具基体に含有させておき、特定の条件にて、成膜中にこれらの成分を硬質被覆層中に拡散させることにより、所望の濃度分布を有する硬質被覆層を形成することができる。
(a) Tool Substrate A tungsten carbide-based cemented carbide is used as the tool substrate. The present invention is characterized in that Cr and C each have a maximum content concentration in different regions of the hard coating layer. A hard coating layer having a desired concentration distribution can be formed by diffusing these components into the hard coating layer during film formation under specific conditions.

(b)硬質被覆層
硬質被覆層は、下部層と上部層を含んでなり、その他の層として、上部層の上に最上層を設けてもよい。
硬質被覆層の平均層厚は、0.6μm未満では、密着性および耐摩耗性を長期の使用に亘って十分に確保することはできないため、0.6μm以上とする。一方、その平均層厚が、20.0μmを超えると、剥離あるいは欠損が生じ易くなることから、20.0μm以下とすることが望ましい。
(b) Hard Coating Layer The hard coating layer comprises a lower layer and an upper layer, and as another layer, a top layer may be provided on the upper layer.
If the average layer thickness of the hard coating layer is less than 0.6 μm, sufficient adhesion and abrasion resistance cannot be ensured over a long period of use, so the average layer thickness is made 0.6 μm or more. On the other hand, if the average layer thickness exceeds 20.0 μm, peeling or defects are likely to occur.

(c)下部層;
<平均層厚>
下部層は、TiとCrの複合炭窒化物からなり、工具基体の直上に直接接して設けられる。下部層の平均層厚は、0.2μm未満では、十分な密着性が得られないため、下限は0.2μm以上とする。他方、1.6μmを超えると得られた皮膜の変形が顕著となり、切削加工の早期段階にて基材からの剥離が生じ易くなるため、上限は、1.6μm以下とした。
(c) lower layer;
<Average layer thickness>
The lower layer is made of composite carbonitride of Ti and Cr, and is provided directly above and in direct contact with the tool substrate. If the average layer thickness of the lower layer is less than 0.2 μm, sufficient adhesion cannot be obtained, so the lower limit is made 0.2 μm or more. On the other hand, if the thickness exceeds 1.6 μm, deformation of the obtained film becomes remarkable, and peeling from the substrate tends to occur at an early stage of cutting, so the upper limit was made 1.6 μm or less.

<成分組成>
前記下部層は、前記基体最表面から層厚が0.1μmまでの範囲(以下、下部層の「基体近接領域」ともいう。)において、下部層の全構成元素の合量に対するCr含有量の最大Cr濃度値を有し、前記最大Cr濃度値の90%以上のCr濃度を有する最大Cr濃度領域のCr濃度値が、下部層の全平均Cr濃度に対して1.2倍以上であって、かつ、0.5原子%以上5.0原子%以下であり、前記最大Cr濃度領域の領域幅は、0.02μm以上と規定した。
ここで、前記最大Cr濃度値の90%以上の濃度を有する最大Cr濃度領域のCr濃度値を下部層の全平均Cr濃度に対して1.2倍以上とする理由は、前記Cr濃度値が、1.2倍に満たない場合には、Cr濃度勾配が不十分でCr拡散による下部層の基体との界面における粒界靱性向上効果が十分ではない、または、下部層の基体近接領域全体で硬さ低下が顕著となり、上部層との硬度差が大きくなり層間での剥離が生じ易くなるためである。
また、前記最大Cr濃度領域のCr濃度値を0.5原子%以上5.0原子%以下の範囲に規定した理由は、Cr含有量が0.5原子%未満であるとCr拡散による下部層の基体との界面における粒界靭性向上効果が十分ではなく、基体からの皮膜剥離が生じやすくなり、他方、Cr含有量が5.0原子%を超えると下部層へのCr拡散による下部層の基体との界面における硬さ低下が顕著となり、上部層との硬さの差が大きくなり層間での剥離が生じ易くなるためである。
また、前記下部層では、前記基体最表面から層厚が0.1μmまでの領域を超え上部層との境界までの範囲(以下、下部層の「上部領域」ともいう。)において、下部層の全構成元素の合量に対するC含有量の最大C濃度値を有し、前記最大C濃度値の90%以上のC濃度を有する最大C濃度領域の濃度値が、下部層の全平均C濃度に対して1.2倍以上であって、かつ、7.0原子%以上25.0原子%以下であり、前記最大C濃度領域の領域幅は、0.02μm以上と規定した。
ここで、下部層の全平均C濃度値に対して最大C濃度領域の濃度値が1.2倍に満たない場合は、C濃度勾配が不十分であり、基材からのCの拡散が不十分で所望の密着性が得られない、または下部層全体の硬さの増加が顕著となり、層中での脆性破壊が生じ易くなるためである。
C含有量を7.0原子%以上25.0原子%以下の範囲に規定した理由は、Cが、7.0原子%未満では、基材からのCの拡散が不十分であるため、下部層の基体との界面における所望の密着性が得られず、基材からの皮膜剥離が生じ易くなり、他方、25.0原子%を超えるとCの拡散が過多となり、下部層の基体との界面における硬さの増加が過度となり、層中での脆性破壊が生じ易くなるためである。
また、Cr、Cそれぞれの最大濃度領域の領域幅を、0.02μm以上と規定した理由は、0.02μm未満では領域幅が不十分であり、所望の効果を発揮できないためである。
<Component composition>
The lower layer has a Cr content relative to the total amount of all constituent elements of the lower layer in a range from the outermost surface of the substrate to a layer thickness of 0.1 μm (hereinafter also referred to as a “substrate-adjacent region” of the lower layer). The Cr concentration value of the maximum Cr concentration region having the maximum Cr concentration value and having a Cr concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration of the lower layer And, it is 0.5 atomic % or more and 5.0 atomic % or less, and the region width of the maximum Cr concentration region is defined as 0.02 μm or more.
Here, the reason why the Cr concentration value of the maximum Cr concentration region having a concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more of the total average Cr concentration of the lower layer is that the Cr concentration value is , If it is less than 1.2 times, the Cr concentration gradient is insufficient and the effect of improving the grain boundary toughness at the interface of the lower layer with the substrate due to Cr diffusion is not sufficient, or the entire region close to the substrate of the lower layer This is because the decrease in hardness becomes significant, the difference in hardness from the upper layer increases, and separation between the layers tends to occur.
Further, the reason why the Cr concentration value of the maximum Cr concentration region is specified in the range of 0.5 atomic % or more and 5.0 atomic % or less is that when the Cr content is less than 0.5 atomic %, the lower layer due to Cr diffusion The effect of improving the grain boundary toughness at the interface with the substrate is not sufficient, and the film tends to peel off from the substrate. This is because the decrease in hardness at the interface with the substrate becomes significant, and the difference in hardness from the upper layer becomes large, making separation between the layers more likely to occur.
In addition, in the lower layer, in the range from the outermost surface of the substrate to the boundary with the upper layer beyond the layer thickness of 0.1 μm (hereinafter also referred to as the “upper region” of the lower layer), The maximum C concentration value of the C content with respect to the total amount of all constituent elements, and the concentration value of the maximum C concentration region having a C concentration of 90% or more of the maximum C concentration value is the total average C concentration of the lower layer 1.2 times or more and 7.0 atomic % or more and 25.0 atomic % or less, and the region width of the maximum C concentration region is defined as 0.02 μm or more.
Here, if the concentration value of the maximum C concentration region is less than 1.2 times the total average C concentration value of the lower layer, the C concentration gradient is insufficient and the diffusion of C from the substrate is insufficient. This is because sufficient and desired adhesion cannot be obtained, or the hardness of the entire lower layer increases significantly, and brittle fracture easily occurs in the layer.
The reason why the C content is specified in the range of 7.0 atomic % or more and 25.0 atomic % or less is that if C is less than 7.0 atomic %, diffusion of C from the base material is insufficient. The desired adhesion at the interface between the layer and the substrate is not obtained, and the film tends to peel off from the substrate. This is because the increase in hardness at the interface becomes excessive and brittle fracture easily occurs in the layer.
The reason why the width of each of the maximum concentration regions of Cr and C is specified to be 0.02 μm or more is that if the width is less than 0.02 μm, the width of the region is insufficient and the desired effect cannot be exhibited.

<結晶組織>
下部層を構成するTiCr複合炭窒化物は、NaCl型の面心立方構造(以下、単に「立方晶構造」ともいう。)をとることにより硬さを向上させることができる。
下部層の立方晶(200)面における配向性指数TC(200)は、0.5以上とすることにより、Crの拡散が十分に促進される結果、さらに均一なCrの拡散状態が得られ、密着層の粒界靱性効果が向上し、一方、4.5以下とすることにより、Crの偏析が抑制され、粒界を起点とする密着層の内部破壊が生じにくくなるため、0.5≦TC(200)≦4.5とすることが望ましい。
<Crystal structure>
The TiCr composite carbonitride constituting the lower layer can improve hardness by adopting a NaCl-type face-centered cubic structure (hereinafter also simply referred to as "cubic crystal structure").
By setting the orientation index TC (200) of the cubic crystal (200) plane of the lower layer to 0.5 or more, the diffusion of Cr is sufficiently promoted, resulting in a more uniform Cr diffusion state. The grain boundary toughness effect of the adhesion layer is improved, and on the other hand, by making it 4.5 or less, the segregation of Cr is suppressed and the internal fracture of the adhesion layer originating from the grain boundary is difficult to occur, so 0.5 ≤ It is desirable that TC(200)≦4.5.

<皮膜残留応力>
下部層の皮膜残留応力値は、-500MPa以上とすることにより、加工中における耐剥離効果を高めることができ、また、500MPa以下とすることにより、加工中における皮膜外部から発生するクラックの進展抑制効果を高め、耐欠損性を改善できる効果を有するため、-500~500MPaとすることが好ましい。
<Film residual stress>
By setting the film residual stress value of the lower layer to -500 MPa or more, the peeling resistance effect during processing can be enhanced, and by setting it to 500 MPa or less, the growth of cracks generated from the outside of the film during processing can be suppressed. Since it has the effect of increasing the effect and improving the chipping resistance, it is preferably −500 to 500 MPa.

(d)上部層
<平均層厚>
上部層は、TiとAlの複合窒化物または複合炭窒化物からなり、前記下部層の直上に直接接して設けられる。上部層の平均層厚は、0.4μm未満では、皮膜全体における硬質層が不十分であり、耐摩耗性に劣るため、0.4μm以上とする。他方、平均層厚が、18.4μmを超えると、硬質層の層厚が、過多となり加工中に突発欠損が生じ易くなるため、18.4μm以下とした。
(d) upper layer <average layer thickness>
The upper layer is made of composite nitride or composite carbonitride of Ti and Al, and is provided directly above and in direct contact with the lower layer. If the average layer thickness of the upper layer is less than 0.4 μm, the hard layer in the entire coating is insufficient and wear resistance is poor, so the average layer thickness is made 0.4 μm or more. On the other hand, if the average layer thickness exceeds 18.4 μm, the layer thickness of the hard layer becomes excessive, and sudden fracture tends to occur during processing.

<成分組成>
上部層は、Al、Tiの複合窒化物層(AlTiN層)または複合炭窒化物層(AlTiCN層)にて構成され、層全体に亘り、均質な耐摩耗性と耐熱性や靱性を示し、Ti成分によって、高温強度を向上させ、Al成分によって、高温硬さと耐熱性を補完するため、高温切削条件下においても、低摩耗係数が維持され、すぐれた耐熱性を発揮することができる。
前記Al、Tiの複合窒化物層または複合炭窒化物層を構成する複合窒化物または複合炭窒化物は、具体的には、組成式:(AlTi1-X)(C1-Y)にて表すことができるが、Alの平均含有割合Xavg(原子比)の値が0.75未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、Xavg(原子比)の値が0.90を超えると、相対的なTi含有割合の減少により、(AlTi1-X)(C1-Y)層自体の高温強度が低下し、チッピング、欠損を発生しやすくなるため、Alの平均含有割合Xavg(原子比)の値は、最大硬さに近く、特に高い効果が得られる、0.75以上0.90以下の範囲に規定した。
また、C成分には、硬さを向上させる作用があるが、C成分の平均含有割合Yavg(原子比)が0.05以上では、高温強度が低下するため、C成分の平均含有割合Yavg(原子比)は、0≦Yavg<0.05と規定した。
<Component composition>
The upper layer is composed of a composite nitride layer (AlTiN layer) of Al and Ti or a composite carbonitride layer (AlTiCN layer). The high-temperature strength is improved by the component, and the high-temperature hardness and heat resistance are complemented by the Al component, so that even under high-temperature cutting conditions, a low wear coefficient can be maintained and excellent heat resistance can be exhibited.
Specifically, the composite nitride or composite carbonitride constituting the composite nitride layer or composite carbonitride layer of Al and Ti has a composition formula: (Al X Ti 1-X ) (C Y N 1- Y ), but if the value of the average Al content X avg (atomic ratio) is less than 0.75, the high-temperature hardness becomes insufficient and wear resistance decreases. When the value of avg (atomic ratio) exceeds 0.90, the high-temperature strength of the (Al x Ti 1-x )(C Y N 1-y ) layer itself decreases due to the decrease in the relative Ti content, Since chipping and chipping are likely to occur, the value of the average content of Al X avg (atomic ratio) is close to the maximum hardness and is specified in the range of 0.75 or more and 0.90 or less, where a particularly high effect can be obtained. bottom.
In addition, although the C component has the effect of improving hardness, if the average content ratio Y avg (atomic ratio) of the C component is 0.05 or more, the high-temperature strength decreases. avg (atomic ratio) was defined as 0≦Y avg <0.05.

<結晶組織>
上部層を構成するAl、Tiの複合窒化物または複合炭窒化物(AlTi1-X)(C1-Y)は、NaCl型の面心立方構造(以下、単に「立方晶構造」という場合もある。)をとることによって硬さを向上させることができる。
すなわち、立方晶構造の(111)面に高配向性を有する、Al、Tiの複合窒化物または複合炭窒化物層とすることにより、高硬度化することができる。
上部層の立方晶構造の(111)面における配向性指数TC(111)が、2.0以上では、加工中の結晶粒の脱落を抑制することができるため、さらに、硬質層としての効果を発揮でき、4.0以下では、下部層との密着性をより高めることにより、層間での剥離を抑制できるため、TC(111)は、2.0以上、4.0以下とすることが望ましい。
また、上部層における立方晶(111)面と立方晶(200)面の回折線強度の値、
I(111)/I(200)は、0.9以上であると、加工中に結晶粒の脱落が生じにくくなるため、I(111)/I(200)≧0.9であることが望ましい。
<Crystal structure>
Al and Ti composite nitrides or composite carbonitrides (Al X Ti 1-X ) (C Y N 1-Y ) constituting the upper layer have a NaCl-type face-centered cubic structure (hereinafter simply referred to as “cubic crystal structure ) can be used to improve hardness.
That is, by forming a composite nitride or composite carbonitride layer of Al and Ti having high orientation in the (111) plane of the cubic crystal structure, it is possible to increase the hardness.
When the orientation index TC (111) in the (111) plane of the cubic crystal structure of the upper layer is 2.0 or more, it is possible to suppress the dropout of crystal grains during processing, so that the effect as a hard layer is further improved. TC(111) is desirably 2.0 or more and 4.0 or less, because if it is 4.0 or less, peeling between layers can be suppressed by increasing the adhesion to the lower layer. .
In addition, the value of the diffraction line intensity of the cubic (111) plane and the cubic (200) plane in the upper layer,
When I(111)/I(200) is 0.9 or more, crystal grains are less likely to fall off during processing, so it is desirable that I(111)/I(200)≧0.9. .

(e)最上層
本発明においては、上部層である、前記複合窒化物層または前記複合炭窒化物層の上に必要に応じ、さらにα-Alやκ-AlなどのAl酸化物からなる層や、Tiの窒化物層または炭窒化物層を耐摩耗性向上等の観点から、0.5~15.0μmの範囲にて設けることができる。
(e) top layer
In the present invention, an Al oxide such as α-Al 2 O 3 or κ-Al 2 O 3 is further formed on the composite nitride layer or the composite carbonitride layer, which is the upper layer, if necessary. A layer, a nitride layer or a carbonitride layer of Ti can be provided in a range of 0.5 to 15.0 μm from the viewpoint of improving wear resistance.

硬質被覆層の成膜方法;
本発明において、Cr含有量およびC含有量について、それぞれ特定の濃度分布を有するとともに、特定範囲の膜厚を有するTiおよびCrの炭窒化物からなる下部層と、特定範囲の成分組成を有するAlとTiの複合窒化物または複合炭窒化物からなり、特定範囲の層厚、および、特定の結晶構造を有する上部層とを含み、すぐれた耐欠損性を発揮する硬質被覆層を備えてなる表面被覆切削工具は、例えば、CVD法(化学蒸着法)を用いて、以下の条件にて成膜を行なうことにより、形成することができる。
さらに、下部層および/または上部層において、それぞれ、特定の配向性指数を有し、それぞれ、特定の残留応力値を有する硬質被覆層を備えてなる表面被覆切削工具においても同様である。
A method for forming a hard coating layer;
In the present invention, the Cr content and the C content each have a specific concentration distribution and a film thickness in a specific range. A surface comprising a hard coating layer made of a composite nitride or composite carbonitride of Ti and Ti, including an upper layer having a specific range of layer thickness and a specific crystal structure, and exhibiting excellent fracture resistance A coated cutting tool can be formed, for example, by forming a film under the following conditions using a CVD method (chemical vapor deposition method).
Furthermore, the same applies to a surface-coated cutting tool comprising a hard coating layer having a specific orientation index and a specific residual stress value in the lower layer and/or the upper layer, respectively.

<下部層の成膜>
本発明に係る下部層の成膜方法は、工具基体に対し、第1工程(Cr拡散工程)として、相対的に高温(800~900℃)にて、CVD法(ガス群A)を用いてTiCNを成膜した際には、工具基体からCrの拡散が促進され、次いで、第2工程(C拡散工程)として、相対的に低温(700~850℃)にて、CVD法(ガス群B)を用いてTiCNを成膜した際には、Cの拡散が促進され、その結果、工具基体表面から0.1μmまでの領域において、下部層における最大Cr濃度値を含む最大Cr濃度領域を有し、工具基体表面から0.1μmを超え上部層との境界までの領域において、下部層における最大C濃度値を含む最大C濃度領域を有する、すぐれた密着層をえることができる。
[成膜条件]
1)第1工程(Cr拡散工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群A:TiCl:0.01~0.04%、N:1~10%、H:残、
反応雰囲気圧力:4.0~5.0kPa、
反応雰囲気温度:800~900℃
2)第2工程(C拡散工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群B:TiCl:0.01~0.04%、N:1~10%、H:残
反応雰囲気圧力:4.0~5.0kPa、
反応雰囲気温度:700~850℃
<Film formation of lower layer>
In the method for forming the lower layer according to the present invention, the first step (Cr diffusion step) is performed on the tool substrate at a relatively high temperature (800 to 900 ° C.) using the CVD method (gas group A). When the TiCN film is formed, the diffusion of Cr from the tool substrate is promoted, and then, as the second step (C diffusion step), the CVD method (gas group B ), the diffusion of C is promoted, and as a result, in a region up to 0.1 μm from the tool substrate surface, there is a maximum Cr concentration region including the maximum Cr concentration value in the lower layer. Then, an excellent adhesion layer having a maximum C concentration region including the maximum C concentration value in the lower layer can be obtained in the region from the tool substrate surface to the boundary with the upper layer exceeding 0.1 μm.
[Deposition conditions]
1) First step (Cr diffusion step)
Processing method: Film formation using CVD method Reaction gas composition (% by volume):
Gas group A: TiCl 4 : 0.01 to 0.04%, N 2 : 1 to 10%, H 2 : balance,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 800-900°C
2) Second step (C diffusion step)
Processing method: Film formation using CVD method Reaction gas composition (% by volume):
Gas group B: TiCl 4 : 0.01 to 0.04%, N 2 : 1 to 10%, H 2 : residual Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700-850°C

<上部層の成膜>
次いで、本発明に係る上部層の成膜方法では、AlTi複合窒化物層またはAlTi複合炭窒化物層の成膜条件について、例えば、加熱温度の異なる二種類のNHガスを用い、高温のアンモニアガスにより核形成を抑制し、結晶化を促進させることにより、粗粒を得ることができる。
すなわち、本発明に係るAlTiN層およびAlTiCN層の成膜方法は、第3工程(初期核形成工程)、すなわち、AlTiN膜およびAlTiCN膜を形成するための初期核となるAlTiN結晶およびAlTiCN結晶を形成する工程と、第4工程(結晶成長工程)、すなわち、初期核である、前記AlTiN結晶およびAlTiCN結晶を成長させ、AlTiN膜およびAlTiCN膜を形成するための工程とを交互に繰り返すことにより、成膜を行うものである。
以下に、各成膜工程における成膜条件の概要を示すが、特に、第3工程における、微細なAlTiN結晶およびAlTiCN結晶の初期核の形成工程では、以下のガス群Cとガス群Dとを位相差を設けて交互に反応器に供給し成膜を行なう際に、高温(例えば、300~450℃)で予熱されたアンモニアガスを用いることにより、核形成を促進し、引き続いて実施する第4工程においては、以下のガス群Eとガス群Fとを位相差を設けて交互に反応器に供給し成膜を行なう際に、用いるアンモニアガスを低温(例えば、50~250℃)で予熱されたアンモニアガスに変更することにより、核形成を抑制し結晶化を促進し、さらに、これら前記第工程と前記第工程とを交互に30~120秒間ごとに繰り返し成膜することで結晶成長を図り、所望の結晶を得ることができる。
なお、前記第3工程と前記第4工程との繰り返し数は、目標膜厚に合わせて調整する。
<Deposition of upper layer>
Next, in the method for forming the upper layer according to the present invention, the conditions for forming the AlTi composite nitride layer or the AlTi composite carbonitride layer are set, for example, by using two types of NH 3 gas with different heating temperatures, Coarse grains can be obtained by suppressing nucleation with gas and promoting crystallization.
That is, in the method of forming an AlTiN layer and an AlTiCN layer according to the present invention, the third step (initial nucleation step) is to form AlTiN crystals and AlTiCN crystals that serve as initial nuclei for forming the AlTiN film and the AlTiCN film. and the fourth step (crystal growth step), that is, the step of growing the AlTiN crystal and the AlTiCN crystal, which are the initial nuclei, to form the AlTiN film and the AlTiCN film. membrane.
An outline of the film forming conditions in each film forming step is shown below. In particular, in the step of forming initial nuclei of fine AlTiN crystals and AlTiCN crystals in the third step, the following gas group C and gas group D are used. When forming a film by alternately supplying to the reactor with a phase difference, by using ammonia gas preheated at a high temperature (for example, 300 to 450 ° C.), nucleation is promoted and subsequently performed. In the 4 steps, the following gas group E and gas group F are alternately supplied to the reactor with a phase difference, and the ammonia gas used is preheated at a low temperature (for example, 50 to 250 ° C.). nucleation is suppressed and crystallization is promoted by changing to the ammonia gas that has been dehydrated, and furthermore, the third step and the fourth step are alternately repeated every 30 to 120 seconds to form crystals. A desired crystal can be obtained by the growth.
The number of repetitions of the third step and the fourth step is adjusted according to the target film thickness.

[成膜条件]
1)第3工程(初期核形成工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群C:TiCl:0.01~0.04%、AlCl:0.01~0.05%、
:0~10%、C:0~0.5%、H:残、
ガス群D:NH:0.1~0.8%、H:25~35%、
反応雰囲気圧力:4.0~5.0kPa、
反応雰囲気温度:700~850℃
供給周期:1~5秒、
1周期当たりのガス供給時間:0.15~0.25秒、
ガス群Cの供給とガス群Dの供給の位相差:0.10~0.20秒
ガス群Dの予熱温度:300~450℃
[Deposition conditions]
1) Third step (initial nucleation step)
Processing method: Film formation using CVD method Reaction gas composition (% by volume):
Gas group C: TiCl 4 : 0.01 to 0.04%, AlCl 3 : 0.01 to 0.05%,
N 2 : 0-10%, C 2 H 4 : 0-0.5%, H 2 : balance,
Gas group D: NH 3 : 0.1 to 0.8%, H 2 : 25 to 35%,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700-850°C
Supply cycle: 1 to 5 seconds,
Gas supply time per cycle: 0.15 to 0.25 seconds,
Phase difference between supply of gas group C and supply of gas group D: 0.10 to 0.20 seconds
Preheating temperature for gas group D: 300 to 450°C

2)第4工程(結晶成長工程)
処理方法;CVD法を用いた成膜
反応ガス組成(容量%):
ガス群E:TiCl:0.01~0.04%、AlCl:0.01~0.05%、
:0~10%、C:0~0.5%、H:残、
ガス群F:NH:0.1~0.8%、H:25~35%、
反応雰囲気圧力:4.0~5.0kPa、
反応雰囲気温度:700~850℃
供給周期:1~5秒、
1周期当たりのガス供給時間:0.15~0.25秒、
ガス群Eの供給とガス群Fの供給の位相差:0.10~0.20秒
ガス群Fの予熱温度:50~250℃
なお、第3工程、および第4工程のそれぞれの反応ガス組成(容量%)における、各ガス成分の容量%は、第3工程においては、ガス群Cとガス群Dとの合計を100容量%として算出される各成分の容量%を示し、第4工程においては、ガス群Eとガス群Fとの合計を100容量%として算出される各成分の容量%を示す。
2) Fourth step (crystal growth step)
Processing method: Film formation using CVD method Reaction gas composition (% by volume):
Gas group E: TiCl 4 : 0.01 to 0.04%, AlCl 3 : 0.01 to 0.05%,
N 2 : 0-10%, C 2 H 4 : 0-0.5%, H 2 : balance,
Gas group F: NH 3 : 0.1 to 0.8%, H 2 : 25 to 35%,
Reaction atmosphere pressure: 4.0 to 5.0 kPa,
Reaction atmosphere temperature: 700-850°C
Supply cycle: 1 to 5 seconds,
Gas supply time per cycle: 0.15 to 0.25 seconds,
Phase difference between supply of gas group E and supply of gas group F: 0.10 to 0.20 seconds
Preheating temperature for gas group F: 50 to 250°C
The volume % of each gas component in the reaction gas composition (% by volume) in each of the third step and the fourth step is the total of gas group C and gas group D in the third step, which is 100% by volume. In the fourth step, the volume % of each component calculated assuming that the total of gas group E and gas group F is 100 volume % is shown.

本発明に係る表面被覆切削工具は、工具基体の表面部に工具基体から拡散させたCr成分およびC成分を含むTiとCrの炭化物からなる密着層を設けることにより、粒子の脱落を大幅に抑制し、耐欠損性にすぐれた特性を発揮するため、工具寿命の向上をもたらすものである。 In the surface-coated cutting tool according to the present invention, an adhesion layer made of Ti and Cr carbonitrides containing Cr components and C components diffused from the tool base is provided on the surface of the tool base, thereby greatly reducing the falling off of particles. In order to suppress it and exhibit excellent fracture resistance properties, it brings about an improvement in tool life.

本発明に係る被覆工具の工具基体と、硬質被覆層を構成する下部層(Crリッチ領域を含むTiCrCN層)、および、上部層(AlTiCN層)との関係を示す断面模式図である。1 is a cross-sectional schematic diagram showing the relationship between a tool substrate of a coated tool according to the present invention, a lower layer (TiCrCN layer including a Cr-rich region) and an upper layer (AlTiCN layer) constituting a hard coating layer. FIG.

つぎに、本発明の被覆工具を実施例により具体的に説明する。 EXAMPLES Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFTNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ作製した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder, all having an average particle size of 1 to 3 μm, were prepared. After blending with the composition, wax is further added and mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. Vacuum sintered at a predetermined temperature within the range of ~1470°C for 1 hour. After sintering, tool substrates A to C made of WC-based cemented carbide with an insert shape of ISO standard SEEN1203AFTN were produced respectively. bottom.

ついで、これらの工具基体A~Cのそれぞれを化学蒸着装置に装入し、以下の手順にて本発明被覆工具1~8をそれぞれ製造した。
すなわち、まず、第1工程として、化学蒸着装置内に工具基体A~Cのいずれかを配置し、表2に示される形成条件(形成記号)A~Hに記載された、温度条件および圧力条件の下、表2に示される成分組成を有するガス群A(TiCl、Nおよび残部H)により、一定時間成膜を行なう。ガス群Aを用い、成膜温度を高温の800℃~900℃とすることにより、成膜速度が速く粗粒で、かつ、粒界が明瞭な結晶粒からなる蒸着層が形成される。この温度域では、Crの拡散が促進される結果、得られる蒸着膜は、Cr含有量の最大値を示す。
次いで、第2工程として、表2に示される形成条件(形成記号)A~Hに記載された、温度条件および圧力条件の下、表2に示される成分組成を有するガス群B(TiCl、Nおよび残部H)により、一定時間成膜を行なう。ガス群Bを用い、成膜温度を下げ、700℃~850℃とすることにより、炉内分圧が低く、成膜速度が非常に遅いため、微粒結晶からなる蒸着膜が形成される。この温度域においては、Crに代わり、Cの拡散が促進される結果、C含有量の最大値を示す。
Then, each of these tool substrates A to C was loaded into a chemical vapor deposition apparatus, and the coated tools 1 to 8 of the present invention were produced according to the following procedure.
That is, first, as a first step, any one of the tool substrates A to C is placed in a chemical vapor deposition apparatus, and the temperature conditions and pressure conditions described in the formation conditions (formation symbols) A to H shown in Table 2 Below, film formation is performed for a certain period of time using gas group A (TiCl 4 , N 2 and balance H 2 ) having the composition shown in Table 2. By using the gas group A and setting the film formation temperature to a high temperature of 800° C. to 900° C., the film formation speed is high, and a deposited layer composed of coarse crystal grains with clear grain boundaries is formed. In this temperature range, diffusion of Cr is promoted, and as a result, the deposited film obtained exhibits the maximum Cr content.
Next, as the second step, gas group B (TiCl 4 , Film formation is performed for a certain period of time using N 2 and the remainder H 2 ). By using gas group B and lowering the film formation temperature to 700° C. to 850° C., the partial pressure in the furnace is low and the film formation speed is very low, so that a deposited film made of fine crystal grains is formed. In this temperature range, the diffusion of C is promoted instead of Cr, resulting in the maximum C content.

つづいて、第3工程(初期核形成工程)として、表3に示される形成条件(形成記号)A~Hに記載された、ガス群Cとガス群Dの供給条件、および、ガス反応条件(圧力、温度、工程時間(秒))に基づき、一定時間成膜を行なう。
引き続き、第4工程(結晶成長工程)として、表4に示される形成条件(形成記号)A~Hに記載された、ガス群Eとガス群Fの供給条件、および、ガス反応条件(圧力、温度、工程時間(秒))に基づき、一定時間成膜を行ない、表6および表7に示す本発明被覆工具1~3、6、7を得た。
また、本発明被覆工具4、5および8については、前記表4に示される形成条件(形成記号)D、E、Hにて成膜後、さらに、最上層として、それぞれ、κ-Al層、l-TiCN層またはα-Al層を表5に示される形成条件にて成膜することにより、表6および表7に示す本発明工具4、5および8として得た。
Subsequently, as the third step (initial nucleation step), the supply conditions for gas group C and gas group D and the gas reaction conditions ( Film formation is performed for a certain period of time based on the pressure, temperature, and process time (seconds).
Subsequently, as the fourth step (crystal growth step), the supply conditions of gas group E and gas group F and the gas reaction conditions (pressure, Based on the temperature and process time (seconds), film formation was carried out for a certain period of time, and the coated tools 1 to 3, 6 and 7 of the present invention shown in Tables 6 and 7 were obtained.
In addition, for the coated tools 4, 5 and 8 of the present invention, after film formation under the formation conditions (formation symbols) D, E, and H shown in Table 4, κ-Al 2 O was added as the uppermost layer, respectively. Inventive Tools 4, 5 and 8 shown in Tables 6 and 7 were obtained by forming three layers, l-TiCN layer and α-Al 2 O 3 layer, under the formation conditions shown in Table 5.

また、比較の目的で、表2、表3および表4に示される形成条件a~c、f、gにて成膜を行ない、比較例被覆工具1~3、6、7を得た。
また、表2、表3および表4に示される形成条件d、e、hにて成膜を行なった後、最上層として、それぞれ、κ-Al層、l-TiCN層またはα-Al層を表5に示される形成条件にて成膜することにより、表9に示す比較例工具4、5および8を得た。
For the purpose of comparison, films were formed under conditions a to c, f, and g shown in Tables 2, 3, and 4, and comparative coated tools 1 to 3, 6, and 7 were obtained.
Further, after film formation was performed under the formation conditions d, e, and h shown in Tables 2, 3, and 4, a κ-Al 2 O 3 layer, a l-TiCN layer, or an α- Comparative example tools 4, 5 and 8 shown in Table 9 were obtained by forming Al 2 O 3 layers under the formation conditions shown in Table 5.

表6および表7には、本発明被覆工具1~8の硬質被覆層の目標平均全層厚、および、
下部層については、目標平均層厚、形成膜の種類、全平均Cr濃度、全平均C濃度、基体近接領域(基体最表面から厚み方向0.1μmまでの領域)における最大Cr濃度値の90%以上の濃度を有する最大Cr濃度領域の濃度値、前記最大Cr濃度領域の領域幅、上部領域(基体最表面から厚み方向0.1μmを超え上部層までの領域)における最大C濃度値の90%以上の濃度を有する最大濃度領域の濃度値、前記最大濃度領域の領域幅、形成膜の結晶特性(結晶構造、配向性指数(TC(200)))、
上部層(AlTi1-X)(C1-Y)については、目標平均層厚、平均Al含有割合(Xavg)、平均C含有割合(Yavg)、結晶特性(結晶構造、配向性指数(TC(111)))、
最上層については、化合物の種類および目標平均層厚の測定結果を示す。
比較例被覆工具1~8の硬質被覆層についても同様である。
Tables 6 and 7 show the target average total layer thickness of the hard coating layer of the coated tools 1 to 8 of the present invention, and
For the lower layer, target average layer thickness, type of formed film, total average Cr concentration, total average C concentration, 90% of the maximum Cr concentration value in the region adjacent to the substrate (region from the outermost surface of the substrate to 0.1 μm in the thickness direction) 90% of the maximum Cr concentration value in the maximum Cr concentration region having a concentration of ≥ 90%, the width of the maximum Cr concentration region, and the upper region (the region from the outermost surface of the substrate to the upper layer exceeding 0.1 μm in the thickness direction) the concentration value of the maximum C concentration region having a concentration equal to or higher than the above, the region width of the maximum C concentration region, the crystal characteristics of the formed film (crystal structure, orientation index (TC (200))),
For the upper layer (Al X Ti 1-X ) (C Y N 1-Y ), the target average layer thickness, average Al content ratio (X avg ), average C content ratio (Y avg ), crystal characteristics (crystal structure, orientation index (TC(111))),
For the top layer, the type of compound and the measurement result of the target average layer thickness are shown.
The same applies to the hard coating layers of the coated tools 1 to 8 of Comparative Examples.

なお、ここで、本発明被覆工具1~8、および、比較例被覆工具1~8の硬質被覆層の膜厚の測定は、走査型電子顕微鏡(倍率5000倍)を用いて行った。
すなわち、工具基体に垂直な方向の断面が露出するように研磨を施し、5000~20000倍の視野にて各層を観察し、観察視野内の5点の層厚を測った平均値を平均層厚として、本発明被覆工具1~8については、表6および表7に、比較例被覆工具1~8については、表8および表9に示した。
また、上部層のAlTiNまたはAlTiCNのAlの平均含有割合Xavg(原子比)およびC成分の平均含有割合Yavg(原子比)については、電子線マイクロアナライザ(EPMA,Electron-Probe-Micro-Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均から求めた。本発明被覆工具1~8については表7に、比較例被覆工具1~8については表9に、XavgおよびYavgの値を示す。
下部層に含まれるCr、Cの含有量の最大点および最大値についての測定は、下記の方法で実施した。
TEMに備え付けたEDS検出器により基体最表面より硬質被覆層の表面方向に4nm毎の間隔でラインスキャンを実施して、含有元素の分布を取得し、下部層全域におけるCrおよびCの含有量を下部層中の平均含有量、下部層中のCr、Cの含有量の最大値を示す点を中心とし、それぞれの元素の最大含有量とし、さらに基体表面からの距離を最大点とした。最大点を中心として基体側2点、表面側2点以上(すなわち20nm領域)の範囲で-10%以内のズレ量である際に最大濃度、その領域を最大濃度領域とする。
Here, the measurement of the thickness of the hard coating layer of the coated tools 1 to 8 of the present invention and the coated tools 1 to 8 of the comparative examples was performed using a scanning electron microscope (magnification: 5000).
That is, the tool base is polished so that the cross section in the direction perpendicular to the tool substrate is exposed, each layer is observed in a field of view of 5000 to 20000 times, and the average value of the layer thickness measured at 5 points in the observation field is the average layer thickness. As a result, the coated tools 1 to 8 of the present invention are shown in Tables 6 and 7, and the coated tools 1 to 8 of the comparative examples are shown in Tables 8 and 9.
Further, the average Al content X avg (atomic ratio) of AlTiN or AlTiCN in the upper layer and the average content Y avg (atomic ratio) of the C component were measured using an electron probe microanalyser (EPMA, Electron-Probe-Micro-Analyser). ) was used to irradiate an electron beam from the surface side of a sample whose surface was polished, and the characteristic X-ray analysis results obtained were averaged from 10 points. The values of X avg and Y avg are shown in Table 7 for inventive coated tools 1-8 and in Table 9 for comparative coated tools 1-8.
The maximum point and the maximum content of Cr and C contained in the lower layer were measured by the following method.
An EDS detector attached to the TEM performs a line scan at intervals of 4 nm in the surface direction of the hard coating layer from the outermost surface of the substrate to obtain the distribution of the contained elements, and the content of Cr and C in the entire lower layer. The maximum content of each element was defined with the point showing the average content in the lower layer and the maximum content of Cr and C in the lower layer as the center, and the distance from the substrate surface was defined as the maximum point. When the deviation amount is within -10% in the range of 2 points on the substrate side and 2 or more points on the surface side (that is, 20 nm area) centering on the maximum point, the maximum density is defined as the maximum density area.

また、AlTiN層、AlTiCN層の結晶構造については、X線回折装置を用い、Cu-Kα線を線源として測定範囲(2θ):20~120度、スキャンステップ:0.013度、1ステップ辺り測定時間:0.48sec/stepの条件にて、例えば、工具基体表面に対して平行な硬質被覆層表面において、X線回折を行い、JCPDS00-038-1420立方晶TiNとJCPDS00-046-1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66~38.53°、43.59~44.77°、61.81~65.18°)に現れるX線回折ピークにより、確認することができる。
そして、取得された、(111)、(200)、(220)、(311)、(222)、(400)の各面におけるX線回折ピーク強度の測定値I(hkl)とICDDカード00-046-1200に記載のAlNの結晶面の前記各面における標準X線回折ピーク強度の平均値I(hkl)とより、立方晶の(111)面における配向性指数TC(111)、(200)面の回折ピーク強度I(200)に対する(111)面の回折ピーク強度I(111)の比であるI(111)/I(200)を得ることができる。
In addition, for the crystal structure of the AlTiN layer and the AlTiCN layer, an X-ray diffractometer is used, the Cu-Kα ray is used as the radiation source, the measurement range (2θ): 20 to 120 degrees, the scan step: 0.013 degrees, around 1 step Under the condition of measurement time: 0.48 sec/step, for example, X-ray diffraction is performed on the surface of the hard coating layer parallel to the surface of the tool base, and JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic Crystalline AlN, X-ray diffraction appearing between the diffraction angles of the same crystal plane shown in each (for example, 36.66-38.53°, 43.59-44.77°, 61.81-65.18°) It can be confirmed by the peak.
Then, the measured value I (hkl) of the X-ray diffraction peak intensity in each plane of (111), (200), (220), (311), (222), and (400) and the ICDD card 00- 046-1200, the average value I 0 (hkl) of the standard X-ray diffraction peak intensity in each plane of the AlN crystal plane described in 046-1200, the orientation index TC (111), (200 It is possible to obtain I(111)/I(200), which is the ratio of the diffraction peak intensity I(111) of the (111) plane to the diffraction peak intensity I(200) of the ) plane.

Figure 0007243013000001
Figure 0007243013000001

Figure 0007243013000002
Figure 0007243013000002

Figure 0007243013000003
Figure 0007243013000003

Figure 0007243013000004
Figure 0007243013000004

Figure 0007243013000005
Figure 0007243013000005

Figure 0007243013000006
Figure 0007243013000006

Figure 0007243013000007
Figure 0007243013000007

Figure 0007243013000008
Figure 0007243013000008

Figure 0007243013000009
Figure 0007243013000009

つぎに、前記各種の被覆工具を工具鋼製カッターの先端部に固定治具にてクランプした状態にて、本発明被覆工具1~8、比較例被覆工具1~8について、以下に示す、ステンレス鋼の乾式断続切削試験を実施し、工具欠損にいたるまでの最大加工長に関する評価を実施し、結果を表10に示した。 Next, in a state in which each of the above-described coated tools was clamped to the tip of a cutter made of tool steel with a fixing jig, the coated tools 1 to 8 of the present invention and the coated tools 1 to 8 of comparative examples were coated with stainless A dry interrupted cutting test of steel was carried out to evaluate the maximum machining length up to tool breakage, and the results are shown in Table 10.

≪切削条件≫
切削試験 :乾式正面フライス、センターカット切削加工、
被削材 :JIS・SUS316L
幅100mm、長さ400mmの穴付きブロック材
(直径50mmの穴が50mm間隔にて4個)
切削速度 :150m/min.
切り込み :2.0mm、
一刃送り量:0.3mm/刃、
加工長 :刃先が欠損に至るまで加工(最大加工長8.0mで評価終了)
≪Cutting conditions≫
Cutting test: dry face milling, center cut machining,
Work material: JIS/SUS316L
100mm wide and 400mm long block with holes
(4 holes with a diameter of 50 mm at 50 mm intervals)
Cutting speed: 150 m/min.
Notch: 2.0 mm,
Single blade feed amount: 0.3 mm/blade,
Machining length: Machining until the cutting edge is chipped (Evaluation ends at the maximum machining length of 8.0m)

Figure 0007243013000010
Figure 0007243013000010

表10に示される切削加工試験結果からも明らかなように、本発明被覆工具は、その硬質被覆層として、工具基体最表面に対し、順次、Cr含有量の最大値、および、C含有量の最大値を有する、TiとCrとの複合炭窒化物からなる下部層を直接接して設け、さらに、前記下部層に対し、特定の成分組成を有し、NaCl型の面心立方晶構造を有するAlTi複合窒化物またはAlTi複合炭窒化物からなる上部層を設けることにより、微細結晶粒の脱落に起因するチッピング等の発生を回避し、長期に亘ってすぐれた耐欠損性を発揮するものである。 As is clear from the cutting test results shown in Table 10, the hard coating layer of the coated tool of the present invention has a maximum Cr content and a C content of A lower layer composed of a composite carbonitride of Ti and Cr having a maximum value is provided in direct contact with the lower layer, and has a specific chemical composition and a NaCl-type face-centered cubic crystal structure. By providing an upper layer made of AlTi composite nitride or AlTi composite carbonitride, chipping due to falling off of fine crystal grains is avoided, and excellent chipping resistance is exhibited over a long period of time. .

前述のとおり、本発明の表面被覆切削工具は、特に、ステンレス鋼や溶断表面が残存する鋼材の切削加工に用いた場合においても、すぐれた耐欠損性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらには、低コスト化に十分満足するものである。
As described above, the surface-coated cutting tool of the present invention exhibits excellent chipping resistance even when used for cutting stainless steel and steel materials with a fused surface remaining. We are fully satisfied with the improvement in performance, labor saving and energy saving in cutting, and cost reduction.

Claims (5)

結合相成分としてCo、Crを含有する炭化タングステン基超硬合金からなる工具基体の表面に、硬質被覆層を有してなる表面被覆切削工具において、
(a)前記硬質被覆層は、前記工具基体最表面に直接接してなる下部層と、該下部層に直接接してなる上部層との少なくとも二層を有し、前記硬質被覆層の全平均層厚は、0.6~20.0μmであり、
(b)前記下部層は、TiおよびCrの炭窒化物からなり、その平均層厚は、0.2~1.6μmであり、
(b-1)前記下部層は、前記基体最表面から層厚が0.1μmまでの範囲において、
最大Cr濃度値を有し、前記最大Cr濃度値の90%以上の濃度を有する最大Cr濃度領域の濃度値が、下部層の全平均Cr濃度に対して1.2倍以上であって、かつ、0.5原子%以上、5.0原子%以下であり、前記最大Cr濃度領域の領域幅は、0.02μm以上であり、また、
(b-2)前記下部層は、前記基体最表面から層厚が0.1μmを超え上部層との境界までの範囲において、最大C濃度値を有し、前記最大C濃度値の90%以上の濃度を有する最大C濃度領域の濃度値が、下部層の全平均C濃度に対して1.2倍以上であって、かつ、7.0原子%以上、25.0原子%以下であり、前記最大C濃度領域の領域幅は、0.02μm以上であり、
また、
(c)前記上部層は、AlとTiとの複合窒化物または複合炭窒化物を含む層であり、その平均層厚は、0.4~18.4μmであり、
組成式:(AlTi1-X)(C1-Y)で表した場合、複合窒化物または複合炭窒化物層のTiとAlの合量に対してAlが占める平均含有割合Xavgおよび複合窒化物または複合炭窒化物層のCとNの合量に対してCが占める平均含有割合Yavg(但し、Xavg、Yavg はいずれも原子比)が、それぞれ、0.75≦Xavg≦0.90、0≦Yavg<0.05を満足し、NaCl型の面心立方晶構造を有する複合窒化物または複合炭窒化物層からなることを特徴とする表面被覆切削工具。
A surface-coated cutting tool comprising a hard coating layer on the surface of a tool substrate made of a tungsten carbide-based cemented carbide containing Co and Cr as binder phase components,
(a) The hard coating layer has at least two layers, a lower layer in direct contact with the outermost surface of the tool substrate and an upper layer in direct contact with the lower layer, and the total average layer of the hard coating layer The thickness is 0.6 to 20.0 μm,
(b) the lower layer is made of Ti and Cr carbonitrides and has an average layer thickness of 0.2 to 1.6 μm;
(b-1) the lower layer, in a range from the outermost surface of the substrate to a layer thickness of 0.1 μm,
The concentration value of the maximum Cr concentration region having the maximum Cr concentration value and having a concentration of 90% or more of the maximum Cr concentration value is 1.2 times or more the total average Cr concentration of the lower layer, and , 0.5 atomic % or more and 5.0 atomic % or less, the region width of the maximum Cr concentration region is 0.02 μm or more, and
(b-2) The lower layer has a maximum C concentration value in a range from the outermost surface of the substrate to the boundary with the upper layer with a layer thickness exceeding 0.1 μm, and is 90% or more of the maximum C concentration value. is 1.2 times or more the total average C concentration of the lower layer, and is 7.0 atomic % or more and 25.0 atomic % or less, The region width of the maximum C concentration region is 0.02 μm or more,
again,
(c) the upper layer is a layer containing a composite nitride or composite carbonitride of Al and Ti, and has an average layer thickness of 0.4 to 18.4 μm;
When represented by the composition formula: (Al X Ti 1-X ) (C Y N 1-Y ), the average content ratio X of Al with respect to the total amount of Ti and Al in the composite nitride or composite carbonitride layer avg and the average content ratio Y avg of C to the total amount of C and N in the composite nitride or composite carbonitride layer (where X avg and Y avg are both atomic ratios) are each 0.75 ≤ X avg ≤ 0.90, 0 ≤ Y avg < 0.05, and comprising a composite nitride or composite carbonitride layer having a NaCl-type face-centered cubic crystal structure. .
前記TiおよびCrの炭窒化物からなる下部層について、X線回折を行った際に、以下の式(A)にて表わされる、立方晶(200)面における配向性指数TC(200)が、0.5≦TC(200)≦4.5を満たすことを特徴とする請求項1に記載された表面被覆切削工具。
式(A) TC(200)=[I(200)/I(200)]
×[(1/n)×Σ(I(hkl)/I(hkl)]-1
ただし、
I(200);(200)面におけるX線回折ピーク強度の測定値
(200);
ICDDカード00-038-1420に記載のTiNの結晶面の(200)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、TiNの標準回折ピーク強度の平均値])の値の合計値
When X-ray diffraction was performed on the lower layer composed of the carbonitrides of Ti and Cr, the orientation index TC (200) in the cubic (200) plane represented by the following formula (A) was 2. The surface-coated cutting tool according to claim 1, wherein 0.5≦TC(200)≦4.5 is satisfied.
Formula (A) TC(200)=[I(200)/I 0 (200)]
×[(1/n)×Σ(I(hkl)/I 0 (hkl)] −1
however,
I (200); measured value of X-ray diffraction peak intensity in (200) plane I 0 (200);
Average value of standard X-ray diffraction peak intensity Σ(I(hkl)/I 0 (hkl)) on the (200) plane of the TiN crystal plane described in ICDD card 00-038-1420;
Each of the six planes (111), (200), (220), (311), (222), and (400) ([measured value of X-ray diffraction peak intensity] / [listed on ICDD card Total value of the average value of the standard diffraction peak intensity of TiN])
請求項1または請求項2において、前記TiおよびCrの炭窒化物からなる下部層における皮膜残留応力の値が、-500~500MPaを満たすことを特徴とする表面被覆切削工具。 3. The surface-coated cutting tool according to claim 1, wherein the film residual stress value in the lower layer composed of the carbonitrides of Ti and Cr satisfies -500 to 500 MPa. 前記上部層について、X線回折を行った際に、以下の式(B)にて表わされる、立方晶(111)面における配向性指数TC(111)が、2.0≦TC(111)≦4.0を満たすことを特徴とする請求項1乃至請求項3のいずれか一つに記載された表面被覆切削工具。
式(B)TC(111)=[I(111)/I(111)]
×[(1/6)×Σ(I(hkl)/I(hkl)]-1
ただし、
I(111);(111)面におけるX線回折ピーク強度の測定値
(111);
ICDDカード00-046-1200に記載のAlNの結晶面の(111)面における標準X線回折ピーク強度の平均値
Σ(I(hkl)/I(hkl));
(111)、(200)、(220)、(311)、(222)、(400)の6面のそれぞれの面の([X線回折ピーク強度の測定値]/[ICDDカードに掲載されている、AlNの標準回折ピーク強度の平均値])の値の合計値
When the upper layer was subjected to X-ray diffraction, the orientation index TC (111) in the cubic crystal (111) plane represented by the following formula (B) was 2.0 ≤ TC (111) ≤ 4. The surface-coated cutting tool according to any one of claims 1 to 3, which satisfies 4.0.
Equation (B) TC(111)=[I(111)/I 0 (111)]
×[(1/6)×Σ(I(hkl)/I 0 (hkl)] −1
however,
I (111); measured value of X-ray diffraction peak intensity in the (111) plane I 0 (111);
Average value of standard X-ray diffraction peak intensity Σ(I(hkl)/I 0 (hkl)) on the (111) plane of the AlN crystal plane described in ICDD card 00-046-1200;
Each of the six planes (111), (200), (220), (311), (222), and (400) ([measured value of X-ray diffraction peak intensity] / [listed on ICDD card the average value of standard diffraction peak intensities of AlN])
前記上部層について、X線回折を行った際に、立方晶(111)面の回折線強度値に対する立方晶(200)面における回折線強度値、I(111)/I(200)が、0.9≦I(111)/I(200)の関係を満たすことを特徴とする請求項1乃至請求項4のいずれか一つに記載された表面被覆切削工具。 When X-ray diffraction was performed on the upper layer, the diffraction line intensity value of the cubic crystal (200) plane with respect to the diffraction line intensity value of the cubic crystal (111) plane, I(111)/I(200), was 0. 5. The surface-coated cutting tool according to any one of claims 1 to 4, which satisfies the relationship .9≤I(111)/I(200).
JP2019062526A 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance Active JP7243013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062526A JP7243013B2 (en) 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062526A JP7243013B2 (en) 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance

Publications (2)

Publication Number Publication Date
JP2020157457A JP2020157457A (en) 2020-10-01
JP7243013B2 true JP7243013B2 (en) 2023-03-22

Family

ID=72641053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062526A Active JP7243013B2 (en) 2019-03-28 2019-03-28 Surface-coated cutting tools with excellent fracture resistance

Country Status (1)

Country Link
JP (1) JP7243013B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168421A (en) 2006-12-15 2008-07-24 Sandvik Intellectual Property Ab Coated cemented carbide end mill
WO2015080149A1 (en) 2013-11-29 2015-06-04 京セラ株式会社 Cutting tool
JP2017124463A (en) 2016-01-13 2017-07-20 住友電工ハードメタル株式会社 Surface-coated cutting tool and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008168421A (en) 2006-12-15 2008-07-24 Sandvik Intellectual Property Ab Coated cemented carbide end mill
WO2015080149A1 (en) 2013-11-29 2015-06-04 京セラ株式会社 Cutting tool
JP2017124463A (en) 2016-01-13 2017-07-20 住友電工ハードメタル株式会社 Surface-coated cutting tool and method of manufacturing the same

Also Published As

Publication number Publication date
JP2020157457A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
EP3444053B1 (en) Surface-coated cutting tool and manufacturing method therefor
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
EP3412386B1 (en) Surface-coated cutting tool and manufacturing method therefor
EP3360632B1 (en) Coated cutting tool
WO2012144088A1 (en) Surface-coated cutting tool and method for manufacturing same
EP3415255B1 (en) Surface-coated cutting tool and method for producing same
CN110352107B (en) Surface-coated cutting tool and method for manufacturing same
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP2018164960A (en) Coated cemented carbide tool with superior chipping resistance
JP7412679B2 (en) Surface coated cutting tool with excellent fracture resistance
CN110382146B (en) Surface-coated cutting tool and method for manufacturing same
CN110382145B (en) Surface-coated cutting tool and method for manufacturing same
JP7243013B2 (en) Surface-coated cutting tools with excellent fracture resistance
JP7541279B2 (en) Surface-coated cutting tools
JP7256978B2 (en) A surface-coated cutting tool with a hard coating layer that exhibits excellent adhesion resistance and abnormal damage resistance.
JP6940815B2 (en) Surface coating cutting tool with excellent wear resistance and peeling resistance for the hard coating layer
JP7492678B2 (en) Surface-coated cutting tools
JP2022134543A (en) Surface covering cutting tool
JP2021146478A (en) Surface-coated cutting tool excellent in defect resistance
JP2022138563A (en) Surface-coated machining tool
JP2017024136A (en) Coated cutting tool
JP2019177425A (en) Surface-coated cutting tool the hard coating layer of which exhibits excellent oxidation resistance and deposition resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230216

R150 Certificate of patent or registration of utility model

Ref document number: 7243013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150