JP2020156462A - Lactobacillus breeding inhibitor for beer-like sparkling drink - Google Patents

Lactobacillus breeding inhibitor for beer-like sparkling drink Download PDF

Info

Publication number
JP2020156462A
JP2020156462A JP2019168689A JP2019168689A JP2020156462A JP 2020156462 A JP2020156462 A JP 2020156462A JP 2019168689 A JP2019168689 A JP 2019168689A JP 2019168689 A JP2019168689 A JP 2019168689A JP 2020156462 A JP2020156462 A JP 2020156462A
Authority
JP
Japan
Prior art keywords
beer
polylysine
raw material
fermentation
beverage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019168689A
Other languages
Japanese (ja)
Inventor
奥村 健一
Kenichi Okumura
健一 奥村
舞花 北澤
Maika Kitazawa
舞花 北澤
南 梅ヶ谷
Minami Umegaya
南 梅ヶ谷
信親 竹末
Nobuchika Takesue
信親 竹末
静 野場
Shizuka Noba
静 野場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Publication of JP2020156462A publication Critical patent/JP2020156462A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Alcoholic Beverages (AREA)
  • Non-Alcoholic Beverages (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

To provide a Lactobacillus breeding inhibitor which can inhibit breeding of Lactobacillus which is beer destructive bacteria in beer-like sparkling drink while suppressing influence for the quality of the drink, and the beer-like sparkling drink using the breeding inhibitor and a manufacturing method thereof.SOLUTION: A Lactobacillus breeding inhibitor for beer-like sparkling drink contains polylysine as an active component. The beer-like sparkling drink contains polylysine. A manufacturing method of the beer-like sparkling drink uses polylysine as a raw material.SELECTED DRAWING: None

Description

本発明は、ビール様発泡性飲料における乳酸菌の増殖を抑制する抗菌剤、並びに当該抗菌剤を使用したビール様発泡性飲料及びその製造方法に関する。 The present invention relates to an antibacterial agent that suppresses the growth of lactic acid bacteria in a beer-like effervescent beverage, a beer-like effervescent beverage using the antibacterial agent, and a method for producing the same.

ビールは、微生物が生育しにくい飲料であることが知られている。これは、ビールのpHが低いこと、溶存酸素が少ないこと、アルコールを含有することなどに加え、ホップの使用によるところがある。ホップは、ビールに特有の苦味や香りを付与するほか、その苦味成分が抗菌活性を示し、ビールを変敗させる乳酸菌の増殖を抑える機能がある。 Beer is known to be a beverage in which microorganisms do not easily grow. This is due to the low pH of beer, low dissolved oxygen, alcohol content, and the use of hops. Hops impart the bitterness and aroma peculiar to beer, and the bitterness component exhibits antibacterial activity and has a function of suppressing the growth of lactic acid bacteria that deteriorate beer.

消費者嗜好の多様化から、ビール様発泡性飲料に用いられる素材や製造方法も多様になってきており、ホップを使用しないビール様発泡性飲料の開発も検討されている。ただし、ホップを使用しないビール様飲料では、ホップを使用するビール様飲料に比べて、微生物リスクが増大する恐れがある。なお、ホップを使用する場合においても、ホップ耐性のある乳酸菌が増殖してしまう可能性がある。 Due to the diversification of consumer tastes, the materials and manufacturing methods used for beer-like sparkling beverages are also diversifying, and the development of beer-like sparkling beverages that do not use hops is also being considered. However, hop-free beer-like beverages may have an increased microbial risk compared to hop-based beer-like beverages. Even when hops are used, hop-resistant lactic acid bacteria may grow.

微生物リスクを低減させる方法としては、環境管理のほか、加熱殺菌を行うことが考えられる。ただし、発酵貯酒中にビール有害菌が増殖した場合は、不快臭の発生や粘質化等の品質劣化が生じ、後工程での加熱殺菌では対応できない場合がある。また、加熱殺菌を行うと、ビール様発泡性飲料に好ましくない香味が生じる恐れがある。例えば、特許文献1には、原材料にホップを用いないビールテイスト飲料では、ホップの抗菌作用を利用できないため、微生物の殺菌が必要となる場合があり、例えば加熱工程が行われること、原材料にホップを用いないビールテイスト飲料において、リナロール、2,5−ジメチル−4−ヒドロキシ−3(2H)−フラノンおよび2-アセチルピラジンからなる群から選ばれる1以上を含有させることで、加熱工程による不快な香りがマスキングされることが記載されている。 In addition to environmental management, heat sterilization can be considered as a method for reducing the risk of microorganisms. However, if harmful bacteria of beer grow during fermentation and storage, quality deterioration such as generation of unpleasant odor and thickening may occur, and heat sterilization in the subsequent process may not be possible. In addition, heat sterilization may give an unfavorable flavor to beer-like sparkling beverages. For example, in Patent Document 1, beer-taste beverages that do not use hops as raw materials may require sterilization of microorganisms because the antibacterial action of hops cannot be utilized. For example, a heating step is performed, and hops are used as raw materials. In a beer-taste beverage that does not use hops, by containing one or more selected from the group consisting of linalol, 2,5-dimethyl-4-hydroxy-3 (2H) -furanone and 2-acetylpyrazine, it is unpleasant due to the heating process. It is stated that the scent is masked.

一方で、ポリリジンは、L−リジンのε−アミノ酸とα−カルボキシル基とがイソペプチド結合により25〜35個繋がったホモポリマーである。ポリリジンは、グラム陽性細菌、グラム陰性細菌、酵母などの様々な微生物に対する増殖抑制作用を有することが知られており(非特許文献1参照。)、食品保存料として使用されている。 On the other hand, polylysine is a homopolymer in which 25 to 35 ε-amino acids of L-lysine and α-carboxyl groups are linked by isopeptide bonds. Polylysine is known to have a growth inhibitory effect on various microorganisms such as Gram-positive bacteria, Gram-negative bacteria, and yeast (see Non-Patent Document 1), and is used as a food preservative.

特開2018−023295号公報Japanese Unexamined Patent Publication No. 2018-023295

武藤 正道、「食品の科学的保存技術5 各論2)既存保存料 1 ε−ポリリジン」、防菌防黴誌、第37巻、第10号、2009年発行、第765〜772ページ。Masamichi Muto, "Scientific Preservative Technology for Foods 5 Details 2) Existing Preservatives 1 ε-Polylysine", Antibacterial and Antifungal Magazine, Vol. 37, No. 10, published in 2009, pp. 765-772.

環境管理や加熱殺菌処理以外に微生物リスクを低減させる方法としては、当該微生物に対する抗菌剤を、飲料や製造工程の途中製品中に添加する方法が考えられる。しかし、酵母による発酵工程を経て製造されるビール様飲料において、単に、抗菌素材を添加しただけでは、ビールの有害菌である乳酸菌だけではなく、発酵に必要な酵母の増殖も抑制してしまう。この場合、発酵不良による弊害が生じる。 As a method for reducing the risk of microorganisms other than environmental management and heat sterilization treatment, a method of adding an antibacterial agent against the microorganisms to a beverage or a product in the middle of a manufacturing process can be considered. However, in a beer-like beverage produced through a fermentation process using yeast, simply adding an antibacterial material suppresses the growth of not only lactic acid bacteria, which are harmful bacteria of beer, but also yeast necessary for fermentation. In this case, adverse effects due to poor fermentation occur.

本発明は、ビール様発泡性飲料において、飲料の品質に対する影響を抑えつつ、ビール有害菌である乳酸菌の増殖を抑制することができる乳酸菌増殖抑制剤、並びに当該抗菌剤を使用したビール様発泡性飲料及びその製造方法を提供することを目的とする。 The present invention is an agent for suppressing the growth of lactic acid bacteria, which is a harmful bacterium of beer, and a beer-like effervescent agent using the antibacterial agent, while suppressing the influence on the quality of the beer-like effervescent beverage. It is an object of the present invention to provide a beverage and a method for producing the same.

本発明者らは、ポリリジンが、ビール様発泡性飲料における乳酸菌の増殖に対する抑制作用は強いが、ビール酵母の増殖に対する阻害作用は弱いことを見出し、本発明を完成させた。 The present inventors have found that polylysine has a strong inhibitory effect on the growth of lactic acid bacteria in a beer-like effervescent beverage, but a weak inhibitory effect on the growth of brewer's yeast, and completed the present invention.

本発明に係る乳酸菌増殖抑制剤、ビール様発泡性飲料、及びビール様発泡性飲料の製造方法は、下記[1]〜[8]である。
[1] ポリリジンを有効成分とすることを特徴とする、ビール様発泡性飲料用乳酸菌増殖抑制剤。
[2] ポリリジンを含有することを特徴とする、ビール様発泡性飲料。
[3] ポリリジンの含有量が0.0001%(w/v)以上である、前記[2]のビール様発泡性飲料。
[4] ホップを原料としない、前記[2]又は[3]のビール様発泡性飲料。
[5] 発酵ビール様発泡性飲料である、前記[2]〜[4]のいずれかのビール様発泡性飲料。
[6] ポリリジンを原料とすることを特徴とする、ビール様発泡性飲料の製造方法。
[7] ホップを原料としない、前記[6]のビール様発泡性飲料の製造方法。
[8] 製造されたビール様発泡性飲料のポリリジンの含有量が0.0001%(w/v)以上である、前記[6]又は[7]のビール様発泡性飲料の製造方法。
The methods for producing a lactic acid bacterium growth inhibitor, a beer-like effervescent beverage, and a beer-like effervescent beverage according to the present invention are as follows [1] to [8].
[1] A lactic acid bacterium growth inhibitor for beer-like effervescent beverages, which comprises polylysine as an active ingredient.
[2] A beer-like effervescent beverage characterized by containing polylysine.
[3] The beer-like effervescent beverage according to [2] above, wherein the content of polylysine is 0.0001% (w / v) or more.
[4] The beer-like sparkling beverage according to the above [2] or [3], which does not use hops as a raw material.
[5] The beer-like effervescent beverage according to any one of [2] to [4] above, which is a fermented beer-like effervescent beverage.
[6] A method for producing a beer-like effervescent beverage, which comprises using polylysine as a raw material.
[7] The method for producing a beer-like sparkling beverage according to the above [6], which does not use hops as a raw material.
[8] The method for producing a beer-like effervescent beverage according to the above [6] or [7], wherein the produced beer-like effervescent beverage has a polylysine content of 0.0001% (w / v) or more.

本発明に係るビール様発泡性飲料用乳酸菌増殖抑制剤は、乳酸菌の増殖に対する抑制効果は高いが、ビール酵母の増殖に対する阻害作用は比較的弱い。このため、当該乳酸菌増殖抑制剤を用いることにより、非発酵ビール様発泡性飲料のみならず、発酵ビール様発泡性飲料であっても、発酵不良等による品質劣化を抑えつつ、微生物リスクを低減することができる。 The lactic acid bacterium growth inhibitor for beer-like effervescent beverages according to the present invention has a high inhibitory effect on the growth of lactic acid bacteria, but has a relatively weak inhibitory effect on the growth of brewer's yeast. Therefore, by using the lactic acid bacterium growth inhibitor, not only non-fermented beer-like effervescent beverages but also fermented beer-like effervescent beverages can reduce the risk of microorganisms while suppressing quality deterioration due to poor fermentation and the like. be able to.

参考例1において、L. brevisを添加した麦汁(A)及びS. pastorianusを添加した麦汁(B)の600nmの吸光度を経時的に測定した結果を示したグラフである。In Reference Example 1, it is a graph which showed the result of having measured the absorbance at 600 nm of the wort (A) to which L. brevis was added and the wort (B) to which S. pastorianus was added over time. 実施例1において、各ポリリジン原料液にL. brevisを添加した溶液の600nmの吸光度を経時的に測定した結果を示したグラフである。It is a graph which showed the result of having measured the absorbance at 600 nm of the solution which added L. brevis to each polylysine raw material solution with time in Example 1. FIG. 実施例1において、各ポリリジン原料液にS. pastorianusを添加した溶液の600nmの吸光度を経時的に測定した結果を示したグラフである。In Example 1, it is a graph which showed the result of having measured the absorbance at 600 nm of the solution which added S. pastorianus to each polylysine raw material solution with time. 実施例3において、ポリリジン無添加の麦汁をアルコール発酵させた対照サンプル(A)、及びポリリジンの終濃度0.0005%(w/v)の麦汁をアルコール発酵させた試験サンプル(B)の、発酵中のS. pastorianusの菌濃度及びエキス消費を測定した結果を示した図である。In Example 3, the control sample (A) in which the wort without polylysine was alcohol-fermented and the test sample (B) in which the wort having a final concentration of 0.0005% (w / v) of polylysine was alcohol-fermented. It is a figure which showed the result of having measured the bacterial concentration and extract consumption of S. pastorianus during fermentation. 実施例4において、ポリリジンの終濃度0.0005%(w/v)の溶液に2種類の酵母をそれぞれ添加した溶液の600nmの吸光度を経時的に測定した結果を示したグラフである。FIG. 5 is a graph showing the results of measuring the absorbance at 600 nm of a solution obtained by adding two types of yeast to a solution having a final concentration of polylysine of 0.0005% (w / v) in Example 4 over time.

本発明及び本願明細書においては、「ビール様発泡性飲料」とは、ビールらしさを有する、炭酸ガスを含有する飲料を意味する。また、「ビールらしさ」とは、製品名称・表示にかかわらず、香味上ビールを想起させる呈味のことを意味する。つまり、ビール様発泡性飲料とは、発泡性飲料のうち、アルコール含有量、麦芽及びホップの使用の有無、発酵の有無に関わらず、ビールと同等の又はそれと似た風味・味覚及びテクスチャーを有し、高い止渇感・ドリンカビリティーを有する飲料を意味する。 In the present invention and the specification of the present application, the "beer-like effervescent beverage" means a beverage containing carbon dioxide gas, which has a beer-like character. In addition, "beer-likeness" means a taste reminiscent of beer in terms of flavor, regardless of the product name or label. That is, a beer-like effervescent beverage has a flavor, taste and texture equivalent to or similar to beer, regardless of the alcohol content, the use of malt and hops, and the presence or absence of fermentation. However, it means a beverage with a high sense of thirst and drinkability.

本発明に係るビール様発泡性飲料は、アルコール飲料であってもよく、アルコール含量が1容量%未満であるいわゆるノンアルコール飲料又はローアルコール飲料であってもよい。また、麦芽を原料とする飲料であってもよく、麦芽を原料としない飲料であってもよく、発酵工程を経て製造される飲料であってもよく、発酵工程を経ずに製造される飲料であってもよい。具体的には、ビール、麦芽を原料とする発泡酒、麦芽を使用しない発泡性アルコール飲料、ローアルコール発泡性飲料、ノンアルコールビール等が挙げられる。その他、麦芽を原料とし、発酵工程を経て製造された飲料を、アルコール含有蒸留液と混和して得られたリキュール類又はスピリッツであってもよい。アルコール含有蒸留液とは、蒸留操作により得られたアルコールを含有する溶液であり、例えば、原料用アルコールであってもよく、スピリッツ、ウィスキー、ブランデー、ウオッカ、ラム、テキーラ、ジン、焼酎等の蒸留酒等を用いることができる。 The beer-like effervescent beverage according to the present invention may be an alcoholic beverage, or may be a so-called non-alcoholic beverage or a low-alcoholic beverage having an alcohol content of less than 1% by volume. Further, it may be a beverage made from malt, a beverage not made from malt, a beverage produced through a fermentation step, or a beverage produced without undergoing a fermentation step. It may be. Specific examples thereof include beer, sparkling wine made from malt, sparkling alcoholic beverages that do not use malt, low alcohol sparkling beverages, and non-alcoholic beer. In addition, liqueurs or spirits obtained by mixing a beverage produced from malt as a raw material through a fermentation step with an alcohol-containing distillate may be used. The alcohol-containing distillation solution is a solution containing alcohol obtained by a distillation operation, and may be, for example, alcohol for raw materials. Distillation of spirits, whiskey, brandy, wokka, lamb, tequila, gin, shochu, etc. Alcohol and the like can be used.

本発明に係るビール様発泡性飲料用乳酸菌増殖抑制剤(以下、「本発明に係る乳酸菌増殖抑制剤」ということがある。)は、ポリリジンを有効成分とすることを特徴とする。ポリリジンは、乳酸菌に対して高い増殖抑制活性を持つ。このため、ポリリジンは、乳酸菌が主な有害菌であるビール様発泡性飲料に使用される抗菌剤として非常に有用である。また、ポリリジンは、乳酸菌と酵母のいずれにも増殖抑制活性を示すことが知られているが、乳酸菌に対する増殖抑制活性の方が強い。このため、発酵ビール様発泡性飲料であっても、ポリリジンを、乳酸菌に対して十分な抗菌作用を示すが、酵母に対しては増殖抑制作用を有さない又は当該作用が弱い濃度で含有させることにより、発酵不良及びこれによる品質低下を抑制しつつ、乳酸菌増殖による汚染を抑制できる。 The lactic acid bacterium growth inhibitor for beer-like effervescent beverages according to the present invention (hereinafter, may be referred to as "lactic acid bacterium growth inhibitor according to the present invention") is characterized by containing polylysine as an active ingredient. Polylysine has high growth inhibitory activity against lactic acid bacteria. Therefore, polylysine is very useful as an antibacterial agent used in beer-like effervescent beverages in which lactic acid bacteria are the main harmful bacteria. Further, polylysine is known to show growth inhibitory activity against both lactic acid bacteria and yeast, but the growth inhibitory activity against lactic acid bacteria is stronger. Therefore, even in a fermented beer-like effervescent beverage, polylysine has a sufficient antibacterial action against lactic acid bacteria, but has no growth inhibitory action against yeast or is contained in a concentration at which the action is weak. This makes it possible to suppress contamination due to the growth of lactic acid bacteria while suppressing poor fermentation and resulting deterioration in quality.

本発明において用いられるポリリジンとしては、天然物から抽出されたものであってもよく、形質転換微生物に産生させたものであってもよく、化学合成されたものであってもよい。例えば、ポリリジンは、ストレプトマイセス属菌が発酵により生産するため、この微生物から抽出することができる。本発明において用いられるポリリジンとしては、市販のものを用いることもできる。市販されているポリリジンとしては、ポリリジンの精製品であってもよく、ポリリジン以外の有効成分を含有する飲食品用の添加剤であってもよい。 The polylysine used in the present invention may be one extracted from a natural product, one produced by a transforming microorganism, or one chemically synthesized. For example, polylysine can be extracted from this microorganism because it is produced by Streptomyces spp. As the polylysine used in the present invention, commercially available ones can also be used. The commercially available polylysine may be a refined product of polylysine, or may be an additive for foods and drinks containing an active ingredient other than polylysine.

本発明に係る乳酸菌増殖抑制剤をビール様発泡性飲料へ添加することにより、当該ビール様発泡性飲料の飲料中における乳酸菌の増殖を抑制することができる。乳酸菌はビール様発泡性飲料における主たる有害菌であり、乳酸菌の増殖を充分に抑制できれば、微生物リスクはかなり低減できる。当該乳酸菌増殖抑制剤のビール様発泡性飲料への添加量は、飲料中における乳酸菌の増殖を抑制する効果(乳酸菌抑制効果)を得るために十分な量であればよい。例えば、当該乳酸菌増殖抑制剤は、飲料中のポリリジンの含有量が好ましくは0.0001%(w/v)以上、より好ましくは0.0001〜0.001%(w/v)、さらに好ましくは0.0002〜0.0005%(w/v)、よりさらに好ましくは0.0002〜0.0004%(w/v)とすることで、発酵不良による品質劣化を抑制しつつ、充分な乳酸菌抑制効果を得ることができる。なお、ビール様発泡性飲料等におけるポリリジンの含有量は、飲料中の特定のタンパク質を定量する際に使用される一般的な方法によって測定することができる。当該方法としては、例えば、試料中のポリリジンのα−アミノ基をダンシル誘導体化した後、加水分解し、生成されたα−ダンシルリジン(α−DNS−Lys)を高速液体クロマトグラフィー(HPLC)等で定量する方法(菱山隆ら、「プレカラムーダンシル誘導体化高速液体クロマトグラフィーによる食品中のε-ポリリジンの定量」、日本食品科学工学会誌、1996年10月、第43巻、第10号、第1105〜1109ページ)が挙げられる。 By adding the lactic acid bacterium growth inhibitor according to the present invention to a beer-like effervescent beverage, the growth of lactic acid bacteria in the beer-like effervescent beverage can be suppressed. Lactic acid bacteria are the main harmful bacteria in beer-like sparkling beverages, and if the growth of lactic acid bacteria can be sufficiently suppressed, the risk of microorganisms can be significantly reduced. The amount of the lactic acid bacterium growth inhibitor added to the beer-like effervescent beverage may be an amount sufficient to obtain the effect of suppressing the growth of lactic acid bacteria in the beverage (lactic acid bacterium suppression effect). For example, the content of polylysine in the beverage of the lactic acid bacterium growth inhibitor is preferably 0.0001% (w / v) or more, more preferably 0.0001 to 0.001% (w / v), and even more preferably. By setting it to 0.0002 to 0.0005% (w / v), more preferably 0.0002 to 0.0004% (w / v), it is possible to sufficiently suppress lactic acid bacteria while suppressing quality deterioration due to poor fermentation. The effect can be obtained. The content of polylysine in beer-like effervescent beverages and the like can be measured by a general method used when quantifying a specific protein in a beverage. Examples of the method include high performance liquid chromatography (HPLC) or the like in which the α-amino group of polylysine in a sample is derivatized and then hydrolyzed to produce α-dansyl lysine (α-DNS-Lys). (Hishiyama et al., "Quantification of ε-polylysine in food by pre-column-dancil derivatization high performance liquid chromatography", Journal of Japan Society for Food Science and Technology, October 1996, Vol. 43, No. 10, (Pages 1105-1109).

本発明に係る乳酸菌増殖抑制剤による乳酸菌抑制効果は高く、このため、本発明に係る乳酸菌増殖抑制剤は、特に、ホップを原料としないビール様発泡性飲料、すなわち、ホップに由来する抗菌成分を含まないビール様発泡性飲料に、好適に使用できる。当該乳酸菌増殖抑制剤を添加することで、ホップを原料としないビール様発泡性飲料でも微生物リスクを充分に低減させることができる。 The lactic acid bacterium growth inhibitor according to the present invention has a high lactic acid bacterium growth inhibitory effect. Therefore, the lactic acid bacterium growth inhibitor according to the present invention particularly comprises a beer-like effervescent beverage not made from hops, that is, an antibacterial component derived from hops. It can be suitably used for beer-like effervescent beverages that do not contain it. By adding the lactic acid bacterium growth inhibitor, the risk of microorganisms can be sufficiently reduced even in a beer-like sparkling beverage that does not use hops as a raw material.

ポリリジンは、いわゆるホップ耐性乳酸菌に対しても高い生育阻害効果を示す。このため、本発明に係る乳酸菌増殖抑制剤を用いることにより、ホップを原料とするビール様発泡性飲料についても、充分な乳酸菌抑制効果を示し、微生物リスクを充分に低減させることができる。 Polylysine also exhibits a high growth inhibitory effect on so-called hop-resistant lactic acid bacteria. Therefore, by using the lactic acid bacterium growth inhibitor according to the present invention, a beer-like effervescent beverage made from hops can also exhibit a sufficient lactic acid bacterium inhibitory effect, and the microbial risk can be sufficiently reduced.

本発明に係るビール様発泡性飲料は、ポリリジンを含有させる以外は、一般的な発酵ビール様発泡性飲料や非発酵ビール様発泡性飲料と同様にして製造できる。そこで、一般的な発酵ビール様発泡性飲料と非発酵ビール様発泡性飲料の製造方法を説明する。 The beer-like effervescent beverage according to the present invention can be produced in the same manner as a general fermented beer-like effervescent beverage or non-fermented beer-like effervescent beverage except that it contains polylysine. Therefore, a method for producing a general fermented beer-like sparkling beverage and a non-fermented beer-like sparkling beverage will be described.

発酵工程を経て製造される発酵ビール様発泡性飲料は、一般的には、仕込(発酵原料液調製)、発酵、貯酒、濾過の工程で製造することができる。 The fermented beer-like effervescent beverage produced through the fermentation step can generally be produced by the steps of preparation (preparation of fermentation raw material liquid), fermentation, storage of sake, and filtration.

仕込工程(発酵原料液調製工程)として、穀物原料及び糖質原料からなる群より選択される1種以上から発酵原料液を調製する。具体的には、発酵原料と原料水とを含む混合物を加温し、澱粉質を糖化して糖液を調製した後、得られた糖液を煮沸し、その後固体分の少なくとも一部を除去して発酵原料液を調製する。 As a preparation step (fermentation raw material liquid preparation step), a fermentation raw material liquid is prepared from one or more selected from the group consisting of grain raw materials and sugar raw materials. Specifically, a mixture containing a fermentation raw material and raw material water is heated, starch is saccharified to prepare a sugar solution, the obtained sugar solution is boiled, and then at least a part of the solid content is removed. To prepare the fermentation raw material solution.

まず、穀物原料と糖質原料の少なくともいずれかと原料水とを含む混合物を調製して加温し、穀物原料等の澱粉質を糖化させて糖液を調製する。糖液の原料としては、穀物原料のみを用いてもよく、糖質原料のみを用いてもよく、両者を混合して用いてもよい。穀物原料としては、例えば、大麦や小麦、これらの麦芽等の麦類、米、トウモロコシ、大豆等の豆類、イモ類等が挙げられる。穀物原料は、穀物シロップ、穀物エキス等として用いることもできるが、粉砕処理して得られる穀物粉砕物として用いることが好ましい。穀物類の粉砕処理は、常法により行うことができる。穀物粉砕物としては、麦芽粉砕物、コーンスターチ、コーングリッツ等のように、粉砕処理の前後において通常なされる処理を施したものであってもよい。本発明においては、用いられる穀物粉砕物は、麦芽粉砕物であることが好ましい。麦芽粉砕物を用いることにより、ビールらしさがよりはっきりとした発酵ビール様発泡性飲料を製造することができる。麦芽粉砕物は、大麦、例えば二条大麦を、常法により発芽させ、これを乾燥後、所定の粒度に粉砕したものであればよい。また、本発明において用いられる穀物原料としては、1種類の穀物原料であってもよく、複数種類の穀物原料を混合したものであってもよい。例えば、主原料として麦芽粉砕物を、副原料として米やトウモロコシの粉砕物を用いてもよい。糖質原料としては、例えば、液糖等の糖類が挙げられる。 First, a mixture containing at least one of a grain raw material and a sugar raw material and raw material water is prepared and heated, and starch such as a grain raw material is saccharified to prepare a sugar solution. As the raw material of the sugar solution, only the grain raw material may be used, only the sugar raw material may be used, or both may be mixed and used. Examples of the grain raw material include barley and wheat, wheat such as malt thereof, beans such as rice, corn and soybean, and potatoes. The grain raw material can be used as a grain syrup, a grain extract, or the like, but is preferably used as a crushed grain product obtained by crushing. The crushing treatment of grains can be carried out by a conventional method. The crushed grain may be a crushed malt, cornstarch, corn grits, or the like, which has been subjected to a treatment usually performed before and after the crushing treatment. In the present invention, the crushed grain product used is preferably a crushed malt product. By using the crushed malt product, it is possible to produce a fermented beer-like sparkling beverage having a clearer beer-like character. The crushed malt product may be any crushed barley, for example, Nijo barley, which is germinated by a conventional method, dried, and then crushed to a predetermined particle size. Further, the grain raw material used in the present invention may be one kind of grain raw material or a mixture of a plurality of kinds of grain raw materials. For example, crushed malt may be used as the main raw material, and crushed rice or corn may be used as the auxiliary raw material. Examples of the sugar raw material include sugars such as liquid sugar.

当該混合物には、穀物原料等と水以外の副原料を加えてもよい。当該副原料としては、例えば、ホップ、食物繊維、酵母エキス、果汁、苦味料、着色料、香草、香料等が挙げられる。また、必要に応じて、α−アミラーゼ、グルコアミラーゼ、プルラナーゼ等の糖化酵素やプロテアーゼ等の酵素剤を添加することができる。 A grain raw material or an auxiliary raw material other than water may be added to the mixture. Examples of the auxiliary raw material include hops, dietary fiber, yeast extract, fruit juice, bitterness, coloring agents, herbs, and fragrances. Further, if necessary, a saccharifying enzyme such as α-amylase, glucoamylase and pullulanase, and an enzyme preparation such as protease can be added.

糖化処理は、穀物原料等由来の酵素や、別途添加した酵素を利用して行う。糖化処理時の温度や時間は、用いた穀物原料等の種類、発酵原料全体に占める穀物原料の割合、添加した酵素の種類や混合物の量、目的とする発酵ビール様発泡性飲料の品質等を考慮して、適宜調整される。例えば、糖化処理は、穀物原料等を含む混合物を35〜70℃で20〜90分間保持する等、常法により行うことができる。 The saccharification treatment is carried out using an enzyme derived from a grain raw material or the like or an enzyme added separately. The temperature and time during the saccharification process are determined by the type of grain raw material used, the ratio of the grain raw material to the total fermentation raw material, the type and amount of the added enzyme, the quality of the target fermented beer-like effervescent beverage, etc. It will be adjusted as appropriate in consideration. For example, the saccharification treatment can be carried out by a conventional method, such as holding a mixture containing a grain raw material or the like at 35 to 70 ° C. for 20 to 90 minutes.

糖化処理後に得られた糖液を煮沸することにより、煮汁(糖液の煮沸物)を調製することができる。糖液は、煮沸処理前に濾過し、得られた濾液を煮沸処理することが好ましい。また、この糖液の濾液に替わりに、麦芽エキスに温水を加えたものを用い、これを煮沸してもよい。煮沸方法及びその条件は、適宜決定することができる。 By boiling the sugar solution obtained after the saccharification treatment, a broth (boiled product of the sugar solution) can be prepared. It is preferable that the sugar solution is filtered before the boiling treatment and the obtained filtrate is boiled. Further, instead of the filtrate of this sugar solution, a malt extract to which warm water is added may be used and boiled. The boiling method and its conditions can be appropriately determined.

煮沸処理前又は煮沸処理中に、香草等を適宜添加することにより、所望の香味を有する発酵ビール様発泡性飲料を製造することができる。例えば、ホップを煮沸処理前又は煮沸処理中に添加し、ホップの存在下で煮沸処理することにより、ホップの風味・香気成分、特に苦味成分を効率よく煮出することができる。ホップの添加量、添加態様(例えば数回に分けて添加するなど)及び煮沸条件は、適宜決定することができる。 A fermented beer-like sparkling beverage having a desired flavor can be produced by appropriately adding herbs or the like before or during the boiling treatment. For example, by adding hops before or during the boiling treatment and boiling the hops in the presence of the hops, the flavor / aroma components of the hops, particularly the bitterness components, can be efficiently boiled. The amount of hops added, the mode of addition (for example, addition in several portions) and the boiling conditions can be appropriately determined.

煮沸処理後に得られた煮汁には、沈殿により生じたタンパク質等の粕が含まれている。そこで、煮汁から粕等の固体分の少なくとも一部を除去する。粕の除去は、いずれの固液分離処理で行ってもよいが、一般的には、ワールプールと呼ばれる槽を用いて沈殿物を除去する。この際の煮汁の温度は、15℃以上であればよく、一般的には50〜100℃程度で行われる。粕を除去した後の煮汁(濾液)は、プレートクーラー等により適切な発酵温度まで冷却する。この粕を除去した後の煮汁が、発酵原料液となる。 The broth obtained after the boiling treatment contains meals such as proteins produced by precipitation. Therefore, at least a part of solids such as lees is removed from the broth. The debris may be removed by any solid-liquid separation treatment, but generally, the precipitate is removed using a tank called a whirlpool. The temperature of the broth at this time may be 15 ° C. or higher, and is generally about 50 to 100 ° C. After removing the dregs, the broth (filtrate) is cooled to an appropriate fermentation temperature with a plate cooler or the like. The broth after removing the lees becomes the fermentation raw material liquid.

次いで、発酵工程として、冷却した発酵原料液に酵母を接種して、発酵を行う。冷却した発酵原料液は、そのまま発酵工程に供してもよく、所望のエキス濃度に調整した後に発酵工程に供してもよい。発酵に用いる酵母は特に限定されるものではなく、通常、酒類の製造に用いられる酵母の中から適宜選択して用いることができる。上面発酵酵母であってもよく、下面発酵酵母であってもよいが、大型醸造設備への適用が容易であることから、下面発酵酵母であることが好ましい。 Next, as a fermentation step, yeast is inoculated into the cooled fermentation raw material solution to perform fermentation. The cooled fermentation raw material liquid may be subjected to the fermentation step as it is, or may be subjected to the fermentation step after adjusting to a desired extract concentration. The yeast used for fermentation is not particularly limited, and usually, yeast used for producing alcoholic beverages can be appropriately selected and used. Top-fermenting yeast may be used, or bottom-fermenting yeast may be used, but bottom-fermenting yeast is preferable because it can be easily applied to large-scale brewing facilities.

さらに、貯酒工程として、得られた発酵液を、貯酒タンク中で熟成させ、0℃程度の低温条件下で貯蔵し安定化させた後、濾過工程として、熟成後の発酵液を濾過することにより、酵母及び当該温度域で不溶なタンパク質等を除去して、目的の発酵ビール様発泡性飲料を得ることができる。当該濾過処理は、酵母を濾過除去可能な手法であればよく、例えば、珪藻土濾過、平均孔径が0.4〜1.0μm程度のフィルターによるフィルター濾過等が挙げられる。 Further, as a liquor storage step, the obtained fermented liquor is aged in a liquor storage tank, stored and stabilized under low temperature conditions of about 0 ° C., and then the ripened fermented liquor is filtered as a filtration step. , Yeast and insoluble proteins in the temperature range can be removed to obtain the desired fermented beer-like sparkling beverage. The filtration treatment may be a method capable of removing yeast by filtration, and examples thereof include diatomaceous earth filtration and filter filtration with a filter having an average pore size of about 0.4 to 1.0 μm.

ポリリジンは、発酵ビール様発泡性飲料の製造工程のうち、任意の工程で原料として添加することができる。例えば、仕込工程において発酵原料液に添加してもよく、発酵工程において発酵液に添加してもよく、貯酒工程において発酵液に添加してもよい。ポリリジンは加熱処理後にも乳酸菌抑制効果を保持しているため、仕込工程における煮沸処理前又は煮沸処理中に添加してもよい。 Polylysine can be added as a raw material in any step of the manufacturing process of fermented beer-like sparkling beverage. For example, it may be added to the fermentation raw material liquid in the preparation step, may be added to the fermentation liquid in the fermentation step, or may be added to the fermentation liquid in the sake storage step. Since polylysine retains the effect of suppressing lactic acid bacteria even after the heat treatment, it may be added before the boiling treatment in the preparation step or during the boiling treatment.

発酵原料液は、熱凝固性蛋白質を析出しやすくし、かつ、アルコール発酵に適したpHにするため、pHを5.0〜6.0に調整される。また、発酵後にはpHが4.0〜4.5になる。ポリリジンは、pHが4.0〜6.0、好ましくは4.0〜5.5の範囲で、乳酸菌の増殖を抑制できる。 The pH of the fermentation raw material liquid is adjusted to 5.0 to 6.0 in order to facilitate the precipitation of heat-coagulable proteins and to bring the pH suitable for alcoholic fermentation. In addition, the pH becomes 4.0 to 4.5 after fermentation. Polylysine can suppress the growth of lactic acid bacteria in the pH range of 4.0 to 6.0, preferably 4.0 to 5.5.

発酵工程を経ずに製造される非発酵ビール様発泡性飲料は、一般的には、各原料を混合する方法(調合法)によって製造できる。例えば、具体的には、各原料を混合することにより、調合液を調製する調合工程と、得られた調合液に炭酸ガスを加えるガス導入工程と、により製造することができる。 A non-fermented beer-like effervescent beverage produced without undergoing a fermentation step can generally be produced by a method (formulation method) of mixing each raw material. For example, specifically, it can be produced by a compounding step of preparing a compounding solution by mixing each raw material and a gas introduction step of adding carbon dioxide gas to the obtained compounding solution.

まず、調合工程において、原料を混合することにより、調合液を調製する。調合工程においては、炭酸ガス以外の全ての原料を混合した調合液を調製することが好ましい。各原料を混合する順番は特に限定されるものではない。原料水に、全ての原料を同時に添加してもよく、先に添加した原料を溶解させた後に残る原料を添加する等、順次原料を添加してもよい。また、例えば、原料水に、固形(例えば粉末状や顆粒状)の原料及びアルコールを混合してもよく、固形原料を予め水溶液としておき、これらの水溶液、及びアルコール、必要に応じて原料水を混合してもよい。 First, in the compounding step, a compounding solution is prepared by mixing the raw materials. In the compounding step, it is preferable to prepare a compounding solution in which all the raw materials other than carbon dioxide are mixed. The order in which each raw material is mixed is not particularly limited. All the raw materials may be added to the raw material water at the same time, or the raw materials remaining after dissolving the previously added raw materials may be added in sequence. Further, for example, a solid (for example, powder or granular) raw material and alcohol may be mixed with the raw material water, and the solid raw material may be prepared as an aqueous solution in advance, and these aqueous solutions, alcohol, and raw material water may be added if necessary. You may mix.

原料としては、苦味料、酸味料、甘味料、カラメル色素、香味料、エタノール(原料アルコール)、乳化剤、多糖類、水溶性食物繊維、タンパク質若しくはその分解物等が挙げられる。 Examples of the raw material include bitterness, acidulant, sweetener, caramel color, flavor, ethanol (raw alcohol), emulsifier, polysaccharide, water-soluble dietary fiber, protein or its decomposition product.

酸味料としては、乳酸、クエン酸、グルコン酸、酒石酸、リンゴ酸、コハク酸、リン酸、アジピン酸、及びフマル酸等が挙げられる。これらの酸味料は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Examples of the acidulant include lactic acid, citric acid, gluconic acid, tartaric acid, malic acid, succinic acid, phosphoric acid, adipic acid, fumaric acid and the like. Only one kind of these acidulants may be used, or two or more kinds may be used in combination.

苦味料としては、ホップ、イソα酸、テトライソα酸、β酸の酸化物、マグネシウム塩、カルシウム塩、ナリンジン、クワシン、キニーネ、モモルデシン、クエルシトリン、テオブロミン、カフェイン、ゴーヤ、センブリ茶、苦丁茶、ニガヨモギ抽出物、ゲンチアナ抽出物、キナ抽出物等が挙げられる。これらの苦味料は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Bitterness agents include hops, iso-alpha acids, tetra-iso-alpha acids, β-acid oxides, magnesium salts, calcium salts, naringin, quasin, quinine, momordecine, quercitrin, theobromine, caffeine, bitter gourd, senburi tea, and Kuding. Examples thereof include tea, bitter hop extract, gentiana extract, and quinine extract. Only one kind of these bitterness agents may be used, or two or more kinds thereof may be used in combination.

原料として用いるホップは、生ホップであってもよく、乾燥ホップであってもよく、ホップペレットであってもよく、ホップ加工品であってもよい。ホップ加工品としては、ホップから苦味成分を抽出したホップエキスであってもよく、イソ化ホップエキス、テトラハイドロイソフムロン、ヘキサハイドロイソフムロン等のホップ中の苦味成分をイソ化した成分を含むホップ加工品であってもよい。 The hops used as a raw material may be raw hops, dried hops, hop pellets, or processed hops. The processed hop product may be a hop extract obtained by extracting the bitterness component from the hop, and is a processed hop product containing an isometric component of the bitterness component in the hop such as isometric hop extract, tetrahydroisohumulone, and hexahydroisohumulone. May be.

甘味料としては、ショ糖、ブドウ糖、果糖、異性化液糖、及び高甘味度甘味料等が挙げられる。高甘味度甘味料としては、アスパルテーム、スクラロース、アセスルファムカリウム、ネオテーム、ステビア、及び酵素処理ステビア等が挙げられる。これらの甘味料は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Examples of the sweetener include sucrose, glucose, fructose, high fructose corn syrup, and high-sweetness sweeteners. Examples of high-sweetness sweeteners include aspartame, sucralose, acesulfame potassium, neotame, stevia, and enzyme-treated stevia. Only one kind of these sweeteners may be used, or two or more kinds may be used in combination.

香味料としては、ビール抽出物、ビール香料、ホップ香料等が挙げられる。これらの香味料は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Examples of the flavoring agent include beer extract, beer flavoring, hop flavoring and the like. Only one kind of these flavoring agents may be used, or two or more kinds thereof may be used in combination.

乳化剤としては、例えば、ポリグリセリン脂肪酸エステル、グリセリン脂肪酸エステル、スクロース脂肪酸エステル、ポリプロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリソルベート等が挙げられる。 Examples of the emulsifier include polyglycerin fatty acid ester, glycerin fatty acid ester, sucrose fatty acid ester, polypropylene glycol fatty acid ester, sorbitan fatty acid ester, polysorbate and the like.

多糖類としては、でんぷん、デキストリン等が挙げられる。デキストリンは、でんぷんを加水分解して得られる糖質であって、オリゴ糖(3〜10個程度の単糖が重合した糖質)よりも大きなものを指す。これらの多糖類は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Examples of the polysaccharide include starch, dextrin and the like. Dextrin is a carbohydrate obtained by hydrolyzing starch and is larger than oligosaccharide (a carbohydrate obtained by polymerizing about 3 to 10 monosaccharides). Only one type of these polysaccharides may be used, or two or more types may be used in combination.

水溶性食物繊維とは、水に溶解し、かつヒトの消化酵素により消化されない又は消化され難い炭水化物を意味する。水溶性食物繊維としては、例えば、大豆食物繊維(可溶性大豆多糖類)、ポリデキストロース、難消化性デキストリン、ガラクトマンナン、イヌリン、グアーガム分解物、ペクチン、アラビアゴム等が挙げられる。これらの水溶性食物繊維は、1種類のみを用いてもよく、2種類以上を併用してもよい。 Water-soluble dietary fiber means carbohydrates that are soluble in water and are indigestible or difficult to digest by human digestive enzymes. Examples of the water-soluble dietary fiber include soybean dietary fiber (soluble soybean polysaccharide), polydextrose, indigestible dextrin, galactomannan, inulin, guar gum decomposition product, pectin, and gum arabic. Only one kind of these water-soluble dietary fibers may be used, or two or more kinds may be used in combination.

調合工程において調製された調合液に、不溶物が生じた場合には、ガス導入工程の前に、当該調合液に対して濾過等の不溶物を除去する処理を行うことが好ましい。不溶物除去処理は、特に限定されるものではなく、濾過法、遠心分離法等の当該技術分野で通常用いられている方法で行うことができる。本発明においては、不溶物は濾過除去することが好ましく、珪藻土濾過により除去することがより好ましい。 When an insoluble matter is generated in the prepared liquid prepared in the blending step, it is preferable to perform a treatment for removing the insoluble matter such as filtration on the blended liquid before the gas introduction step. The insoluble matter removing treatment is not particularly limited, and can be carried out by a method usually used in the art such as a filtration method and a centrifugation method. In the present invention, the insoluble matter is preferably removed by filtration, and more preferably removed by diatomaceous earth filtration.

次いで、ガス導入工程として、調合工程により得られた調合液に炭酸ガスを加える。これにより、非発酵ビール様発泡性飲料を得る。炭酸を加えることによって、ビールと同様の爽快感が付与される。なお、炭酸ガスの添加は、常法により行うことができる。例えば、調合工程により得られた調合液、及び炭酸水を混合してよく、調合工程により得られた調合液に炭酸ガスを直接加えて溶け込ませてもよい。 Next, as a gas introduction step, carbon dioxide gas is added to the blending solution obtained in the blending step. As a result, a non-fermented beer-like sparkling beverage is obtained. By adding carbonic acid, the same refreshing feeling as beer is given. The carbon dioxide gas can be added by a conventional method. For example, the blended solution obtained in the blending step and carbonated water may be mixed, and carbon dioxide gas may be directly added to the blended solution obtained in the blending step to dissolve the mixture.

炭酸ガスを添加した後、得られた非発酵ビール様発泡性飲料に対して、さらに濾過等の不溶物を除去する処理を行ってもよい。不溶物除去処理は、特に限定されるものではなく、当該技術分野で通常用いられている方法で行うことができる。 After adding carbon dioxide gas, the obtained non-fermented beer-like effervescent beverage may be further subjected to a treatment for removing insoluble matter such as filtration. The insoluble matter removing treatment is not particularly limited, and can be carried out by a method usually used in the art.

ポリリジンは、非発酵ビール様発泡性飲料の製造工程のうち、任意の工程で原料として添加することができる。例えば、調合工程において、他の原料と一緒に調合液に添加してもよく、炭酸ガスを導入した後、不溶物除去処理前又はその後に添加してもよい。 Polylysine can be added as a raw material in any step of the manufacturing process of a non-fermented beer-like sparkling beverage. For example, in the compounding step, it may be added to the compounding solution together with other raw materials, or may be added after introducing carbon dioxide gas and before or after the insoluble matter removing treatment.

本発明に係る発泡性飲料が容器詰飲料である場合、本発明に係る発泡性飲料を充填する容器としては、特に限定されるものではない。具体的には、ガラス瓶、缶、可撓性容器等が挙げられる。可撓性容器としては、PE(ポリエチレン)、PP(ポリプロピレン)、EVOH(エチレン・ビニルアルコール共重合体)、PET(ポリエチレンテレフタレート)等の可撓性樹脂を成形してなる容器が挙げられる。可撓性容器は、単層樹脂からなるものであってもよく、多層樹脂からなるものであってもよい。 When the effervescent beverage according to the present invention is a packaged beverage, the container for filling the effervescent beverage according to the present invention is not particularly limited. Specific examples thereof include glass bottles, cans, and flexible containers. Examples of the flexible container include a container formed by molding a flexible resin such as PE (polyethylene), PP (polypropylene), EVOH (ethylene / vinyl alcohol copolymer), and PET (polyethylene terephthalate). The flexible container may be made of a single layer resin or may be made of a multilayer resin.

次に実施例及び参考例を示して本発明をさらに詳細に説明するが、本発明は以下の実施例等に限定されるものではない。 Next, the present invention will be described in more detail with reference to Examples and Reference Examples, but the present invention is not limited to the following Examples and the like.

[参考例1]
ビール酵母(Saccharomyces pastorianus:以下、「S. pastorianus」)と、乳酸菌の環境単離株(Lactobacillus brevis:以下、「L. brevis)について、ホップを含有させた麦汁と、ホップなしで調製された麦汁における増殖性を調べた。
[Reference example 1]
Saccharomyces pastorianus (hereinafter, "S. pastorianus") and an environmentally isolated strain of lactic acid bacteria (Lactobacillus brevis: hereinafter, "L. brevis") were prepared with hop-containing wort and without hops. The proliferative property in wort was examined.

<微生物の前培養と菌液調製>
S. pastorianusは、CP加ポテトデキストロース寒天培地(栄研化学社製)に接種し、L. brevisはMRS液体培地(de Man, Rogosa and Sharpe、Merck社製)に接種し、それぞれ25℃で3日間培養した。
前培養した菌体を、1mL当たりの菌数が約10個となるように滅菌生理食塩水に懸濁させたものを、菌液とした。
<Preculture of microorganisms and preparation of bacterial solution>
S. pastorianus was inoculated on CP-added potato dextrose agar medium (manufactured by Eiken Chemical Co., Ltd.), and L. brevis was inoculated on MRS liquid medium (manufactured by de Man, Rogosa and Sharpe, manufactured by Merck) at 25 ° C. for 3 Inoculated for days.
The pre-cultured cells, those suspended in sterile saline so that the number of bacteria per 1mL of about 10 5, and the bacterial solution.

<麦汁の調製>
麦芽40kgと水160Lとの混合物を、58℃で20分間保持してタンパク質の分解処理を行った後、64℃で20分間保持して麦芽由来成分を糖化した。糖化処理後の混合物を濾過し、ホップを含まない清澄な麦汁を得た。
<Preparation of wort>
A mixture of 40 kg of malt and 160 L of water was held at 58 ° C. for 20 minutes for proteolysis, and then held at 64 ° C. for 20 minutes to saccharify the malt-derived components. The saccharified mixture was filtered to give hop-free clear wort.

得られた麦汁をオートクレーブで加熱殺菌(121℃、15分間)した後、濾紙でトルーブを除去した。除去後の麦汁を、5NのHCl又はNaOHを用いてpH5.25±0.05に調整した後、フィルター除菌(孔径0.45μm)したものを、無ホップ麦汁とした。
オートクレーブで加熱殺菌時にホップを添加した以外は同様にして調製し、フィルター除菌したものを、ホップ含有麦汁とした。
The obtained wort was sterilized by heating in an autoclave (121 ° C., 15 minutes), and then the trove was removed with a filter paper. The removed wort was adjusted to pH 5.25 ± 0.05 with 5N HCl or NaOH, and then sterilized by a filter (pore size 0.45 μm) to obtain hop-free wort.
The wort was prepared in the same manner except that hops were added during heat sterilization in an autoclave, and the wort containing hops was sterilized by a filter.

<微生物の培養>
無ホップ麦汁又はホップ含有麦汁に、S. pastorianus又はL. brevisを、96ウェルプレートにウェル当たり10個/100μLとなるように播種し、25℃で培養し、600nmの吸光度を経時的に測定した。吸光度は、「VICTOR Nivo Multimode Plate Reader」(製造元:PerkinElmer社、S/N:HH35L3517059、励起フィルター:600/10 nm)を用いて測定した。バックグラウンドの測定として、微生物未接種サンプルを使用した。
<Culture of microorganisms>
The free hop wort or hop containing wort, S. The pastorianus or L. brevis, seeded such that the 96-well plates to 10 3 cells per well / 100 [mu] L, and incubated at 25 ° C., over time the absorbance of 600nm Measured to. Absorbance was measured using a "VICTOR Nivo Multimode Plate Reader" (manufacturer: PerkinElmer, S / N: HH35L3517059, excitation filter: 600/10 nm). A microbial uninoculated sample was used as a background measurement.

L. brevisを添加した麦汁の測定結果を図1(A)に、S. pastorianusを添加した麦汁の測定結果を図1(B)に、それぞれ示す。この結果、S. pastorianusはいずれの麦汁でも増殖が観察されたが、L. brevisは無ホップ麦汁では吸光度が増大し増殖が確認されたが、ホップ含有麦汁では増殖が確認されなかった。 The measurement results of the wort to which L. brevis was added are shown in FIG. 1 (A), and the measurement results of the wort to which S. pastorianus was added are shown in FIG. 1 (B). As a result, S. pastorianus was observed to grow in all worts, while L. brevis was confirmed to grow in hop-free wort with increased absorbance, but not in hop-containing worts. ..

[実施例1]
参考例1で使用したS. pastorianus及びL. brevisのポリリジン存在下における増殖能を調べた。
[Example 1]
The proliferative ability of S. pastorianus and L. brevis used in Reference Example 1 in the presence of polylysine was examined.

<ポリリジン原料の調製>
ポリリジンは、終濃度10%(w/v)となるように純水で調整した水溶液(10%(w/v)ポリリジン溶液)を、ポリリジンの終濃度0.0010%(w/v)となるように無ホップ麦汁で希釈し、塩酸又は乳酸を用いてpH5.25±0.05に調整した後、フィルター除菌(孔径0.45μm)した。得られた0.0010%(w/v)ポリリジン溶液を、さらに無ホップ麦汁で希釈することで、ポリリジンの終濃度が0.00001%(w/v)、0.00002%(w/v)、0.00004%(w/v)、0.00006%(w/v)、0.00008%(w/v)であるポリリジン溶液を調製した。
なお、耐熱性の評価に用いるサンプルは、100℃で30分間加熱した10%(w/v)ポリリジン溶液を用い、同様に調整した。
<Preparation of polylysine raw material>
The polylysine is an aqueous solution (10% (w / v) polylysine solution) adjusted with pure water so as to have a final concentration of 10% (w / v), and the final concentration of polylysine is 0.0010% (w / v). As described above, the mixture was diluted with hop-free wort, adjusted to pH 5.25 ± 0.05 with hydrochloric acid or lactic acid, and then sterilized by a filter (pore size 0.45 μm). By further diluting the obtained 0.0010% (w / v) polylysine solution with hop-free wheat juice, the final concentrations of polylysine were 0.00001% (w / v) and 0.00002% (w / v). ), 0.00004% (w / v), 0.00006% (w / v), 0.00008% (w / v) polylysine solutions were prepared.
The sample used for the evaluation of heat resistance was prepared in the same manner using a 10% (w / v) polylysine solution heated at 100 ° C. for 30 minutes.

<抗菌性能の測定>
参考例1と同様にして調製した菌液を、96ウェルプレート(8行×12列)に、ウェル当たり10μLずつ接種し、各濃度に調整したポリリジン原料液を90μL加え、25℃で7日間、嫌気条件で培養した。接種菌液の生菌数(試験菌数)は、CP加ポテトデキストロース寒天培地又はMRS寒天培地を用いた平板塗抹培養法により測定し、接種菌液の生菌数に換算し算出した。
また、各ウェル中の溶液は、参考例1と同様にして経時的に600nmの吸光度を測定し、微生物の増殖を調べた。
<Measurement of antibacterial performance>
The bacterial solution prepared in the same manner as in Reference Example 1 was inoculated into a 96-well plate (8 rows × 12 columns) at 10 μL per well, 90 μL of the polylysine raw material solution adjusted to each concentration was added, and the temperature was 25 ° C. for 7 days. The cells were cultured under anaerobic conditions. The viable cell count (test cell count) of the inoculated bacterial solution was measured by a plate smear culture method using CP-added potato dextrose agar medium or MRS agar medium, and was converted into the viable cell count of the inoculated bacterial solution.
In addition, the solution in each well was measured for absorbance at 600 nm over time in the same manner as in Reference Example 1, and the growth of microorganisms was examined.

L. brevisを播種したサンプルのうち、未加熱の10%(w/v)ポリリジン溶液から調製したポリリジン溶液の結果を図2(A)に、加熱処理した10%(w/v)ポリリジン溶液から調製したポリリジン溶液の結果を図2(B)に、それぞれ示す。また、S. pastorianusを播種したサンプルのうち、未加熱の10%(w/v)ポリリジン溶液から調製したポリリジン溶液の結果を図3(A)に、加熱処理した10%(w/v)ポリリジン溶液から調製したポリリジン溶液の結果を図3(B)に、それぞれ示す。 Among the samples seeded with L. brevis, the results of the polylysine solution prepared from the unheated 10% (w / v) polylysine solution are shown in FIG. 2 (A) from the heat-treated 10% (w / v) polylysine solution. The results of the prepared polylysine solution are shown in FIG. 2 (B), respectively. Further, among the samples in which S. pastorianus was sown, the results of the polylysine solution prepared from the unheated 10% (w / v) polylysine solution are shown in FIG. 3 (A), and the heat-treated 10% (w / v) polylysine was obtained. The results of the polylysine solution prepared from the solution are shown in FIG. 3 (B), respectively.

この結果、L. brevisを播種した全てのサンプルにおいて、参考例1の無ホップ麦汁の結果と比べて吸光度の増加が抑えられており、L. brevisの増殖が抑制されていることが確認された。また、S. pastorianusを播種した全てのサンプルにおいて、吸光度の増加が確認され、S. pastorianusの増殖が可能であることが確認された。 As a result, it was confirmed that in all the samples in which L. brevis was sown, the increase in absorbance was suppressed and the growth of L. brevis was suppressed as compared with the result of the hop-free wort of Reference Example 1. It was. In addition, an increase in absorbance was confirmed in all the samples in which S. pastorianus was sown, confirming that S. pastorianus could proliferate.

中でも、ポリリジン濃度が0.0004%(w/v)を添加した溶液では、未加熱のポリリジンと加熱処理済のポリリジンのいずれであっても、L. brevisの増殖はほぼ確認されなかったが(図2(A)及び(B))、S. pastorianusは十分な増殖を示した(図3(A)及び(B))。これらの結果から、適切な量のポリリジンを含有させることにより、発酵に対する影響を抑えつつ、乳酸菌の増殖を抑制できることが確認された。 Among them, in the solution to which the polylysine concentration was added 0.0004% (w / v), the growth of L. brevis was hardly confirmed in either the unheated polylysine or the heat-treated polylysine ( 2 (A) and 2 (B)), S. pastorianus showed sufficient proliferation (FIGS. 3 (A) and (B)). From these results, it was confirmed that the growth of lactic acid bacteria can be suppressed while suppressing the influence on fermentation by containing an appropriate amount of polylysine.

[実施例2]
酵母によるアルコール発酵に対するポリリジンの影響を調べた。
[Example 2]
The effect of polylysine on alcoholic fermentation by yeast was investigated.

<ポリリジン原料の調整>
ポリリジン原料の調整には、市販の食品添加用ポリリジン製剤(製品名:「サンキーパー No.381」、三栄源社製、組成:ポリリジン50%(w/w)、グリセリン50%(w/w))を使用した。当該ポリリジン製剤を、ポリリジンの終濃度0.0005、0.00125、0.0025、又は0.005%(w/v)となるように、無ホップ麦汁に添加し、これをポリリジン原料とした。
<Adjustment of polylysine raw material>
For the adjustment of polylysine raw materials, commercially available polylysine preparations for food additives (product name: "Sunkeeper No.381", manufactured by Sanei Gensha, composition: polylysine 50% (w / w), glycerin 50% (w / w)) )It was used. The polylysine preparation was added to hop-free wort so that the final concentration of polylysine was 0.0005, 0.00125, 0.0025, or 0.005% (w / v), and this was used as a raw material for polylysine. ..

<試菌の接種>
実施例1と同様にして前培養したS. pastorianusの菌体を1mL当たりの菌数が約40×10個となるように無ホップ麦汁に懸濁させ、菌液とした。当該菌液を三角フラスコに10mL接種し、各濃度に調整したポリリジン原料を190mL加えて混合し、発酵栓をして10.5℃で8日間、好気条件で培養した。
<Inoculation of test bacteria>
Example 1 was suspended in non-hop wort as the number of bacteria is approximately 40 × 10 8 cells per 1mL Cells of pre-cultured S. pastorianus were similarly used as a cell solution. 10 mL of the bacterial solution was inoculated into an Erlenmeyer flask, 190 mL of polylysine raw material adjusted to each concentration was added, mixed, fermented, and cultured at 10.5 ° C. for 8 days under aerobic conditions.

アルコール発酵は、1分子の糖から2分子のエタノールと2分子の二酸化炭素が生成される[C12(180g)→2COH(46g×2)+2CO(44g×2)]。従って、アルコール発酵により生成されたアルコールの濃度(g/L)は、下記式(1)により表すことができる。また、エタノールの比重は0.789g/mLであるから、体積濃度に換算すると下記式(2)のようになる。そこで、培養中の三角フラスコの重量を測定することにより炭酸ガス減少量を求め、生成したアルコール濃度(%(v/v))を推定した。 In alcoholic fermentation, 2 molecules of ethanol and 2 molecules of carbon dioxide are produced from 1 molecule of sugar [C 6 H 12 O 6 (180 g) → 2 C 2 H 5 OH (46 g × 2) + 2CO 2 (44 g × 2) )]. Therefore, the concentration (g / L) of alcohol produced by alcoholic fermentation can be expressed by the following formula (1). Further, since the specific gravity of ethanol is 0.789 g / mL, it is converted into the volume concentration by the following formula (2). Therefore, the amount of carbon dioxide reduction was determined by measuring the weight of the Erlenmeyer flask during culture, and the alcohol concentration (% (v / v)) produced was estimated.

式(1): [発酵液のアルコール濃度(g/L)]=((46/44)×[炭酸ガス減少量(g)])/[培養液量(L)]
式(2): [発酵液のアルコール濃度(%(v/v))]=(0.1325×[炭酸ガス減少量(g)])/[培養液量(L)]
Formula (1): [Alcohol concentration of fermented liquid (g / L)] = ((46/44) x [carbon dioxide reduction amount (g)]) / [culture liquid amount (L)]
Formula (2): [Alcohol concentration of fermented liquid (% (v / v))] = (0.1325 x [carbon dioxide gas reduction amount (g)]) / [culture liquid amount (L)]

各反応液のアルコール濃度(%(v/v))の測定結果を表1に示す。発酵液中のポリリジン終濃度が高くなるほど、アルコール生成量が減少した。ただし、ポリリジン終濃度0.005%であっても、発酵液のアルコール濃度が0.7%(v/v)程度であり、問題なくアルコール生成が行われることが確認された。 Table 1 shows the measurement results of the alcohol concentration (% (v / v)) of each reaction solution. The higher the final concentration of polylysine in the fermentation broth, the lower the amount of alcohol produced. However, even if the final concentration of polylysine was 0.005%, the alcohol concentration of the fermentation broth was about 0.7% (v / v), and it was confirmed that alcohol production was carried out without any problem.

Figure 2020156462
Figure 2020156462

[実施例3]
ポリリジン存在下で、大量培養によりアルコール発酵を行い、得られた発酵ビール様発泡性飲料の官能評価を行った。S. pastorianus及びL.brevisは、参考例1で使用されたものを用いた。
[Example 3]
Alcoholic fermentation was carried out by mass culture in the presence of polylysine, and the obtained fermented beer-like effervescent beverage was sensory evaluated. As S. pastorianus and L. brevis, those used in Reference Example 1 were used.

<発酵ビール様発泡性飲料の製造>
コーンスターチ22kgと水66kgを混合し、加熱させて膨潤させた(膨潤スターチ)。次に、麦芽44kgと水110kgの混合物を、55℃で30分間保持してタンパク質の分解処理を行った。次いで当該混合物に、前記膨潤スターチを加え、64.5℃で50分間保持して麦芽及びコーンスターチ由来成分を糖化し、濾過した後に清澄な麦汁を得た。その後、当該麦汁を、ホップは添加せずに80分間煮沸させ、調製湯を加えた。得られた煮沸後麦汁に、実施例2で使用したポリリジン製剤をポリリジンの終濃度が0.0005%(w/v)となるように添加・撹拌し、熱凝固物を除去した後に約8℃まで冷却した。冷却した無ホップ麦汁を発酵タンクへ移し替え、S. pastorianus及びL.brevisの菌数が、それぞれ1mL当たり20×10個及び1.0×10個となるように添加し、10.5℃で培養した。
<Manufacturing of fermented beer-like sparkling beverage>
22 kg of cornstarch and 66 kg of water were mixed and heated to swell (swelling starch). Next, a mixture of 44 kg of malt and 110 kg of water was held at 55 ° C. for 30 minutes for proteolysis. The swollen starch was then added to the mixture and held at 64.5 ° C. for 50 minutes to saccharify the malt and cornstarch-derived components and filter to give a clear wort. Then, the wort was boiled for 80 minutes without adding hops, and the prepared hot water was added. To the obtained wort after boiling, the polylysine preparation used in Example 2 was added and stirred so that the final concentration of polylysine was 0.0005% (w / v), and after removing the thermal coagulant, about 8 Cooled to ° C. The cooled hop-free wort was transferred to a fermentation tank and added so that the numbers of S. pastorianus and L. brevis were 20 × 10 6 and 1.0 × 10 5 per mL, respectively. It was cultured at 5 ° C.

発酵中のS. pastorianusの菌濃度及びエキス消費を測定した。測定結果を図4に示す。ポリリジン無添加の麦汁をアルコール発酵させた対照サンプルの結果を図4(A)に、ポリリジンの終濃度0.0005%(w/v)の麦汁をアルコール発酵させた試験サンプルの結果を図4(B)に、それぞれ示す。また、発酵7日毎にサンプリングを行い、L.brevisの生菌数を観測した。測定結果を表2に示す。 Bacterial concentration and extract consumption of S. pastorianus during fermentation were measured. The measurement results are shown in FIG. The results of the control sample obtained by alcoholic fermentation of wort without polylysine are shown in FIG. 4 (A), and the results of the test sample obtained by alcoholic fermentation of wort having a final concentration of polylysine of 0.0005% (w / v) are shown in FIG. 4 (B) shows each. In addition, sampling was performed every 7 days of fermentation, and the viable cell count of L. brevis was observed. The measurement results are shown in Table 2.

Figure 2020156462
Figure 2020156462

図4に示すように、ポリリジン終濃度0.0005%(w/v)を含む麦汁において、S. pastorianusは対照と変わりなく増殖し、エキスを消費した。また、表2に示すように、ポリリジン終濃度0.0005%(w/v)を含む麦汁の発酵・熟成期間において、L. brevisの生菌量は、ゆるやかに減少した。 As shown in FIG. 4, in wort containing a final polylysine concentration of 0.0005% (w / v), S. pastorianus proliferated as in the control and consumed the extract. In addition, as shown in Table 2, the viable amount of L. brevis gradually decreased during the fermentation and aging period of wort containing a final polylysine concentration of 0.0005% (w / v).

<官能評価>
得られた試験サンプルと対照サンプルについて、まず、濾過にて清澄化し、1.2倍希釈後に、容器に充填した。次いで、ポリリジン添加により香味に変化があるか否か調べるため、両サンプルについて、3点試験法による官能評価を実施した。官能評価は、11名の専門パネルにより、「BCOJ官能評価法 2002」に記載の方法に従って実施した。評価結果を表3に示す。
<Sensory evaluation>
The obtained test sample and control sample were first clarified by filtration, diluted 1.2 times, and then filled in a container. Next, in order to investigate whether or not there was a change in flavor due to the addition of polylysine, both samples were subjected to sensory evaluation by a three-point test method. The sensory evaluation was carried out by a panel of 11 experts according to the method described in "BCOJ Sensory Evaluation Method 2002". The evaluation results are shown in Table 3.

Figure 2020156462
Figure 2020156462

表3に示すように、11名のパネルのうち、試験サンプルと対照サンプルを正しく識別したパネルは2名であり、2つのサンプル間に有意な差は認められなかった。すなわち、ポリリジン存在下でアルコール発酵を行っても、ポリリジン非存在下と同様に香味に優れた発酵ビール様発泡性飲料が製造できた。 As shown in Table 3, of the 11 panels, 2 were the ones who correctly identified the test sample and the control sample, and no significant difference was observed between the two samples. That is, even if alcoholic fermentation was carried out in the presence of polylysine, a fermented beer-like effervescent beverage having an excellent flavor as in the absence of polylysine could be produced.

[実施例4]
S. pastorianus以外の2種類の酵母のポリリジン存在下における増殖能を調べた。酵母は、Saccharomyces cerevisiae(以下、「S. cerevisiae」)とSaccharomyces bayanus(以下、「S. bayanus」)を用いた。
[Example 4]
The proliferative potential of two yeasts other than S. pastorianus in the presence of polylysine was investigated. As yeast, Saccharomyces cerevisiae (hereinafter, "S. cerevisiae") and Saccharomyces bayanus (hereinafter, "S. bayanus") were used.

酵母をS. pastorianusに代えてS. cerevisiae又はS. bayanusを用い、ポリリジン原料として、実施例1で調整したポリリジン原料液又は実施例2で用いた市販の食品添加用ポリリジン製剤(製品名:「サンキーパー No.381」、三栄源社製)を用いた以外は、実施例1と同様にして、酵母菌液を、終濃度0.0005%(w/v)のポリリジンと共に96ウェルプレートのウェルに入れ、25℃で7日間、嫌気条件で培養した。経時的に各ウェルの600nmの吸光度を測定し、微生物の増殖を調べた。 Using S. cerevisiae or S. bayanus instead of S. pastorianus as yeast, the polylysine raw material solution prepared in Example 1 or the commercially available polylysine preparation for food additives used in Example 2 (product name: "Product name:" In the same manner as in Example 1 except that "Sunkeeper No. 381" (manufactured by Sanei Gensha) was used, the yeast solution was mixed with polylysine at a final concentration of 0.0005% (w / v) in a 96-well plate well. And cultured at 25 ° C. for 7 days under anaerobic conditions. The absorbance at 600 nm of each well was measured over time to examine the growth of microorganisms.

各ウェルの600nmの吸光度の測定結果を図5に示す。ポリリジン製剤を添加したS. cerevisiae(図中、「S. cerevisiae/ポリリジン製剤」)とポリリジン原料液を添加したS. cerevisiae(図中、「S. cerevisiae/ポリリジン原料液」)の吸光度変化はほぼ同様であり、S. cerevisiaeは0.0005%(w/v)のポリリジン存在下で十分な増殖を示した。同様に、ポリリジン製剤を添加したS. bayanus(図中、「S. bayanus /ポリリジン製剤」)とポリリジン原料液を添加したS. bayanus(図中、「S. bayanus /ポリリジン原料液」)の吸光度変化はほぼ同様であり、S. bayanusも、0.0005%(w/v)のポリリジン存在下で十分な増殖を示した。 The measurement result of the absorbance at 600 nm of each well is shown in FIG. The change in absorbance between S. cerevisiae (“S. cerevisiae / polylysine preparation” in the figure) to which the polylysine preparation was added and S. cerevisiae (“S. cerevisiae / polylysine raw material liquid” in the figure) to which the polylysine raw material solution was added was almost the same. Similarly, S. cerevisiae showed sufficient proliferation in the presence of 0.0005% (w / v) polylysine. Similarly, the absorbance of S. bayanus (“S. bayanus / polylysine preparation” in the figure) to which the polylysine preparation was added and S. bayanus (“S. bayanus / polylysine raw material liquid” in the figure) to which the polylysine raw material solution was added. The changes were similar and S. bayanus also showed sufficient proliferation in the presence of 0.0005% (w / v) polylysine.

Claims (8)

ポリリジンを有効成分とすることを特徴とする、ビール様発泡性飲料用乳酸菌増殖抑制剤。 A lactic acid bacterium growth inhibitor for beer-like effervescent beverages, which comprises polylysine as an active ingredient. ポリリジンを含有することを特徴とする、ビール様発泡性飲料。 A beer-like effervescent beverage characterized by containing polylysine. ポリリジンの含有量が0.0001%(w/v)以上である、請求項2に記載のビール様発泡性飲料。 The beer-like effervescent beverage according to claim 2, wherein the content of polylysine is 0.0001% (w / v) or more. ホップを原料としない、請求項2又は3に記載のビール様発泡性飲料。 The beer-like sparkling beverage according to claim 2 or 3, which is not made from hops. 発酵ビール様発泡性飲料である、請求項2〜4のいずれか一項に記載のビール様発泡性飲料。 The beer-like effervescent beverage according to any one of claims 2 to 4, which is a fermented beer-like effervescent beverage. ポリリジンを原料とすることを特徴とする、ビール様発泡性飲料の製造方法。 A method for producing a beer-like effervescent beverage, which comprises using polylysine as a raw material. ホップを原料としない、請求項6に記載のビール様発泡性飲料の製造方法。 The method for producing a beer-like effervescent beverage according to claim 6, wherein hops are not used as a raw material. 製造されたビール様発泡性飲料のポリリジンの含有量が0.0001%(w/v)以上である、請求項6又は7に記載のビール様発泡性飲料の製造方法。 The method for producing a beer-like effervescent beverage according to claim 6 or 7, wherein the produced beer-like effervescent beverage has a polylysine content of 0.0001% (w / v) or more.
JP2019168689A 2019-03-20 2019-09-17 Lactobacillus breeding inhibitor for beer-like sparkling drink Pending JP2020156462A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019053590 2019-03-20
JP2019053590 2019-03-20

Publications (1)

Publication Number Publication Date
JP2020156462A true JP2020156462A (en) 2020-10-01

Family

ID=72640320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019168689A Pending JP2020156462A (en) 2019-03-20 2019-09-17 Lactobacillus breeding inhibitor for beer-like sparkling drink

Country Status (1)

Country Link
JP (1) JP2020156462A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502641A (en) * 1992-02-03 1996-03-26 ローヌ‐プーラン インコーポレイテッド Method and composition for improving the foam properties of fermented malt beverages

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08502641A (en) * 1992-02-03 1996-03-26 ローヌ‐プーラン インコーポレイテッド Method and composition for improving the foam properties of fermented malt beverages

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
上岡 秀也: "ポリリジン製剤の食品への利用", NEW FOOD INDUSTRY, vol. 33(7), JPN6023035255, 1991, pages 1 - 5, ISSN: 0005138194 *
藤井 正弘: "保存料としてのポリリジンの利用", NEW FOOD INDUSTRY, vol. 32(7), JPN6023035254, 1990, pages 33 - 36, ISSN: 0005138193 *

Similar Documents

Publication Publication Date Title
JP4594940B2 (en) Low-alcohol beer containing palatinose or a soft drink similar to beer
JP4864977B2 (en) Microbe-stabilized beer
JP5763416B2 (en) Method for producing low alcohol fermented malt beverage
WO2013080354A1 (en) Unfermented beer-flavoured beverage and manufacturing method therefor
JP2021036907A (en) Non-sweet beverage
CN116209745A (en) Low alcohol beer comprising gluconate component
WO2012077212A1 (en) Method for producing beer-like sparkling fermented beverage having high pyruvic acid content
JP2020195300A (en) Fermented beverage and method for improving aftertaste of fermented beverage
JP6871468B1 (en) Manufacturing method of effervescent fermented malt beverage
JP6789369B1 (en) Beer-like sparkling beverage
JP6814274B1 (en) Beer-like sparkling beverage
JP2020156462A (en) Lactobacillus breeding inhibitor for beer-like sparkling drink
JP6814263B1 (en) Beer-like sparkling beverage
JP6814262B1 (en) Beer-like sparkling beverage
JP7544476B2 (en) Lactic acid bacteria growth inhibitor for beer-like sparkling beverages
JP2021083344A (en) Lactic acid bacterium growth inhibitor for beer-like sparkling beverage
JP2021106577A (en) Beer-like foamable beverage
JP2021083357A (en) Lactic acid bacterium growth inhibitor for beer-like sparkling beverage
JP2020150879A (en) Lactic acid bacteria proliferation inhibitor for beer-like foamable beverage
JP7291844B1 (en) beer-like sparkling beverage
JP7270862B1 (en) beer-like sparkling beverage
JP2018099140A (en) Beer-like beverage
JP6799131B1 (en) Beer-like sparkling beverage
JP2006042661A (en) Fermented malt beverage with lactobacillus or fermented beverage with malt substitute and method for producing the same
WO2023248557A1 (en) Beer-like sparkling beverage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240827