JP2020153892A - Optical device, analyzer, and method of manufacturing optical device - Google Patents

Optical device, analyzer, and method of manufacturing optical device Download PDF

Info

Publication number
JP2020153892A
JP2020153892A JP2019054280A JP2019054280A JP2020153892A JP 2020153892 A JP2020153892 A JP 2020153892A JP 2019054280 A JP2019054280 A JP 2019054280A JP 2019054280 A JP2019054280 A JP 2019054280A JP 2020153892 A JP2020153892 A JP 2020153892A
Authority
JP
Japan
Prior art keywords
optical device
sample
base material
analyzer
metal nanoparticles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019054280A
Other languages
Japanese (ja)
Other versions
JP7315163B2 (en
Inventor
本間 敬之
Noriyuki Honma
敬之 本間
雅広 柳沢
Masahiro Yanagisawa
雅広 柳沢
正弘 三田
Masahiro Mita
正弘 三田
育夫 代木
Ikuo Shiroki
育夫 代木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO INTERNATIONAL KK
Waseda University
Original Assignee
KYODO INTERNATIONAL KK
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO INTERNATIONAL KK, Waseda University filed Critical KYODO INTERNATIONAL KK
Priority to JP2019054280A priority Critical patent/JP7315163B2/en
Publication of JP2020153892A publication Critical patent/JP2020153892A/en
Application granted granted Critical
Publication of JP7315163B2 publication Critical patent/JP7315163B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

To provide an optical device with a simple structure that can further enhance Raman scattering light obtained from a sample using surface plasmon and thereby can achieve a more highly sensitive measurement of the surface-enhancement Raman scattering light when incorporated to an analyzer.SOLUTION: An optical device 7, used in an analyzer 1 for performing sample analysis by measuring surface-enhancement Raman scattering light L3, comprises a substrate 21 having a first surface 21a and a second surface 21b opposed to the first surface. The second surface has a rough surface in at least its partial region and a plurality of metallic nanoparticles 22 are fixed to at least a protruding end of the rough surface.SELECTED DRAWING: Figure 1

Description

本発明は、光学デバイス、分析装置、及び光学デバイスの製造方法に関し、当該光学デバイスは、例えば表面増強ラマン散乱光を測定して試料分析を行う分析装置に適用して好適なものである。 The present invention relates to an optical device, an analyzer, and a method for manufacturing the optical device, and the optical device is suitable for application to, for example, an analyzer that measures surface-enhanced Raman scattered light and performs sample analysis.

表面増強ラマン散乱(以下、SERS(Surface Enhanced Raman Scattering)とも称する)は、金属表面に励起された表面プラズモンによる電界によって、金属表面に存在する分子が発するラマン散乱光の強度が数桁増強される現象である。表面プラズモンとは、金属に光を照射したときに励起される金属中の自由電子の粗密波である。このようなSERSは、試料表面近傍の分子構造の解析等に応用され、従来のラマン分光法におけるラマン散乱光の測定感度を約2桁以上上昇させることができる。 In surface-enhanced Raman scattering (hereinafter, also referred to as SERS (Surface Enhanced Raman Scattering)), the intensity of Raman scattered light emitted by molecules existing on the metal surface is enhanced by several orders of magnitude by the electric field generated by the surface plasmon excited on the metal surface. It is a phenomenon. Surface plasmons are coarse and dense waves of free electrons in a metal that are excited when the metal is irradiated with light. Such SERS can be applied to the analysis of the molecular structure near the sample surface, and can increase the measurement sensitivity of Raman scattered light in the conventional Raman spectroscopy by about two orders of magnitude or more.

このような表面増強ラマン分光法を用いた分析装置としては、特許文献1が知られている。特許文献1には、複数の球状金属粒子がプローブの内部に分散し、プローブの表面に複数の金属粒子が露出した構成を有している。このようなプローブを用いた分析装置は、プローブ先端部を試料に近接させた状態で、当該プローブに励起光を入射し、当該励起光によって表面プラズモンの電界を励起させ、試料から放出されるラマン散乱光を増強し、表面増強ラマン散乱光を測定し得るものである。 Patent Document 1 is known as an analyzer using such surface-enhanced Raman spectroscopy. Patent Document 1 has a configuration in which a plurality of spherical metal particles are dispersed inside the probe and the plurality of metal particles are exposed on the surface of the probe. An analyzer using such a probe injects excitation light into the probe with the probe tip close to the sample, excites the electric field of the surface plasmon by the excitation light, and emits Raman from the sample. It is possible to enhance the scattered light and measure the surface-enhanced Raman scattered light.

特開2008−281530号公報Japanese Unexamined Patent Publication No. 2008-281530

特許文献1に開示された分析装置に比べて、試料が発するラマン散乱光を表面プラズモンによって更に増強して、より高感度に試料の構造解析を行い得る分析装置の出現が要望されている。
本発明は上記要望に鑑み、試料からのラマン散乱光を表面プラズモンにより更に増強でき、分析装置に組み込んだ時に、より高感度で表面増強ラマン散乱光の測定を実現できる、簡単な構造を有する光学デバイス、その光学デバイスを備える分析装置、及びその光学デバイスの製造方法を提供することである。
Compared to the analyzer disclosed in Patent Document 1, there is a demand for the emergence of an analyzer capable of performing structural analysis of a sample with higher sensitivity by further enhancing the Raman scattered light emitted by the sample by surface plasmon.
In view of the above requirements, the present invention has an optic having a simple structure capable of further enhancing Raman scattered light from a sample by surface plasmon and realizing measurement of surface enhanced Raman scattered light with higher sensitivity when incorporated into an analyzer. The present invention provides a device, an analyzer including the optical device, and a method for manufacturing the optical device.

一実施形態に係る光学デバイスは、表面増強ラマン散乱光を測定して試料分析を行う分析装置に使用され、第1面と、前記第1面とは反対側の第2面とを有する基材を備え、前記第2面は、少なくとも一部の領域が粗面であり、前記粗面の少なくとも凸部先端には複数の金属ナノ粒子が固着される。 The optical device according to one embodiment is used in an analyzer that measures surface-enhanced Raman scattered light to perform sample analysis, and has a first surface and a second surface opposite to the first surface. The second surface is a rough surface at least in a part, and a plurality of metal nanoparticles are fixed to at least the tip of the convex portion of the rough surface.

一実施形態に係る分析装置は、上記光学デバイスと、励起光を発する光源と、撮像手段と、前記励起光を、前記光学デバイスを透過後に前記試料に照射させるか、又は前記試料を透過後に前記光学デバイスに照射させ、前記試料から放出された表面増強ラマン散乱光を、前記撮像手段まで導く導光手段と、を備える。 The analyzer according to one embodiment is such that the optical device, a light source that emits excitation light, an imaging means, and the excitation light are transmitted to the sample after being transmitted through the optical device, or the sample is irradiated after being transmitted through the sample. It is provided with a light guide means for irradiating an optical device and guiding the surface-enhanced Raman scattered light emitted from the sample to the imaging means.

更に、一実施形態に係る光学デバイスの製造方法は、第1面と、前記第1面とは反対側の第2面とを有する基材を備え、前記第2面は、少なくとも一部の領域が粗面であり、前記粗面には複数の金属ナノ粒子が固着される、表面増強ラマン散乱光を測定して試料分析を行う分析装置に使用される光学デバイスの製造方法であって、前記基材の前記第2面の前記一部の領域を含む領域にサンドブラスト処理を施して、前記粗面を形成する工程と、前記粗面に金属をスパッタリングして、前記粗面に前記金属ナノ粒子を固着させる工程と、を含む。 Further, the method for manufacturing an optical device according to one embodiment includes a base material having a first surface and a second surface opposite to the first surface, and the second surface is at least a part of a region. Is a rough surface, and a plurality of metal nanoparticles are fixed to the rough surface. The method for manufacturing an optical device used in an analyzer that measures surface-enhanced Raman scattered light and performs sample analysis. A step of sandblasting a region including a part of the region of the second surface of the base material to form the rough surface, and sputtering a metal on the rough surface to perform the metal nanoparticles on the rough surface. Includes a step of fixing the.

本実施形態に係る光学デバイスを備える分析装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the analyzer which includes the optical device which concerns on this embodiment. 本実施形態に係る光学デバイスの基材の一部の領域(突出先端を含む領域)が、試料表面に近接している状態を示す概略図である。It is a schematic diagram which shows the state which a part region (the region including the protruding tip) of the base material of the optical device which concerns on this Embodiment is close to a sample surface. (a)は、半球状の金属ナノ粒子を試料表面に点接触させたときの表面プラズモンの励起状態を示す概略図であり、(b)は、半球状の金属ナノ粒子を試料表面に面接触させたときの表面プラズモンの励起状態を示す概略図である。(A) is a schematic view showing the excited state of surface plasmon when hemispherical metal nanoparticles are point-contacted with the sample surface, and (b) is a schematic view showing the excited state of surface plasmon, and (b) is surface contact of hemispherical metal nanoparticles with the sample surface. It is the schematic which shows the excited state of the surface plasmon when it was made. 本実施形態に係る分析装置における、光学デバイス及び試料の他の配置を示す概略図である。It is the schematic which shows the other arrangement of an optical device and a sample in the analyzer which concerns on this embodiment. 本実施形態に係る光学デバイスの他の構成を示す概略図である。It is the schematic which shows the other structure of the optical device which concerns on this embodiment. 本実施形態に係る分析装置における、光学デバイス及び試料の他の構成を示す概略図である。It is a schematic diagram which shows the other structure of an optical device and a sample in the analyzer which concerns on this embodiment. 実施例1に係る光学デバイスの基材の第2面の粗面を示す走査型電子顕微鏡写真である。It is a scanning electron micrograph which shows the rough surface of the 2nd surface of the base material of the optical device which concerns on Example 1. FIG. 実施例1及び比較例1に係る光学デバイスを使用して測定したジアルキルジチオリン酸亜鉛(ZDTP)薄膜の表面のラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum of the surface of the zinc dialkyldithiophosphate (ZDTP) thin film measured using the optical device which concerns on Example 1 and Comparative Example 1. 実施例4に係る光学デバイスの基材の第2面の粗面上に金属ナノ粒子が固着された様子を示す走査型電子顕微鏡写真である。6 is a scanning electron micrograph showing a state in which metal nanoparticles are fixed on the rough surface of the second surface of the base material of the optical device according to the fourth embodiment. 実施例2に係る光学デバイスを使用して測定したFe薄膜の表面のラマンスペクトルを示すグラフである。It is a graph which shows the Raman spectrum of the surface of the Fe 2 O 3 thin film measured using the optical device which concerns on Example 2. FIG. 実施例2〜4及び比較例2,3に係る光学デバイスの基材の第2面の算術平均粗さRaと、強度比との関係を示すグラフである。It is a graph which shows the relationship between the arithmetic average roughness Ra of the 2nd surface of the base material of the optical device which concerns on Examples 2-4 and Comparative Examples 2 and 3 and an intensity ratio.

本実施形態に係る分析装置について図1を参照して説明する。
図1は、本実施形態に係る光学デバイス7を備える分析装置1の全体構成を示す概略図である。分析装置1は、励起光L1を照射する光源2を有する。光源2から照射された励起光L1は、光ファイバ3aを通してハーフミラー(導光手段)4に入射した後、対物レンズ6及び光学デバイス7を順次通過して試料Sにまで到達し得るように構成されている。
The analyzer according to this embodiment will be described with reference to FIG.
FIG. 1 is a schematic view showing an overall configuration of an analyzer 1 including an optical device 7 according to the present embodiment. The analyzer 1 has a light source 2 that irradiates the excitation light L1. The excitation light L1 emitted from the light source 2 is configured to be able to reach the sample S by sequentially passing through the objective lens 6 and the optical device 7 after being incident on the half mirror (light guide means) 4 through the optical fiber 3a. Has been done.

本実施形態に係る光学デバイス7は、基材21を備え、例えば基材21は光が透過可能な透明部材から形成されている。基材21は、第1面21aと、第1面21aとは反対側の第2面21bを有している。第2面21bは、第1面21a側とは反対方向に向けて凸面形状に湾曲している。基材21は、例えば円盤状であり、第2面21bの中心部を突出先端として凸面形状に湾曲し、試料Sに配置したときに突出先端が周縁部よりも試料Sに近接される。 The optical device 7 according to the present embodiment includes a base material 21, for example, the base material 21 is formed of a transparent member capable of transmitting light. The base material 21 has a first surface 21a and a second surface 21b opposite to the first surface 21a. The second surface 21b is curved in a convex shape toward the direction opposite to the first surface 21a side. The base material 21 has, for example, a disk shape, is curved in a convex shape with the central portion of the second surface 21b as the protruding tip, and when placed on the sample S, the protruding tip is closer to the sample S than the peripheral portion.

ここで、光学デバイス7の基材21の突出先端を含む領域に着目する。図2は、本実施形態に係る光学デバイス7の基材21の一部の領域(突出先端を含む領域)が、試料表面に近接している状態を示す概略図である。図2に示すように、基材21の第2面21bは、少なくとも一部の領域(突出先端を含む領域)が粗面であり、凹凸構造を有している。粗面の少なくとも凸部先端T1には、金属ナノ粒子22が固着されている。このため、突出先端を含む領域において、粗面の少なくとも凸部先端T1に固着された単一又は複数の金属ナノ粒子22が、分析対象となる試料Sの表面(単に、試料表面とも称する)S1に近接又は接触され得る。 Here, attention is paid to a region including a protruding tip of the base material 21 of the optical device 7. FIG. 2 is a schematic view showing a state in which a part of a region (region including a protruding tip) of the base material 21 of the optical device 7 according to the present embodiment is close to the sample surface. As shown in FIG. 2, the second surface 21b of the base material 21 has a rough surface at least a part of the region (the region including the protruding tip) and has an uneven structure. Metal nanoparticles 22 are fixed to at least the tip T1 of the convex portion of the rough surface. Therefore, in the region including the protruding tip, the single or a plurality of metal nanoparticles 22 fixed to at least the convex tip T1 of the rough surface are the surface of the sample S to be analyzed (simply referred to as the sample surface) S1. Can be in close proximity to or in contact with.

光学デバイス7は、基材21の第2面21bの湾曲する曲率が調整されており、試料表面S1と接触する突出先端付近の領域が、励起光L1のビーム径(励起光L1の円形状照射領域の直径)よりも小さく、その結果、表面増強ラマン散乱光L3による面分解能を向上させ得るようになされている。 In the optical device 7, the curved curvature of the second surface 21b of the base material 21 is adjusted, and the region near the protruding tip in contact with the sample surface S1 is the beam diameter of the excitation light L1 (circular irradiation of the excitation light L1). It is smaller than the diameter of the region), and as a result, the surface resolution due to the surface-enhanced Raman scattered light L3 can be improved.

光学デバイス7では、励起光L1は、基材21を第1面21aから第2面21bの突出先端を含む領域の当該凸部先端T1に向けて透過して、更に当該先端T1に配置された金属ナノ粒子22を透過して、試料Sに照射及び集光される。この際、当該金属ナノ粒子22は、試料表面S1に近接した近接面に表面プラズモンを励起させ得る。また、この際、試料Sからは励起光L1によりラマン散乱光を放出し、光学デバイス7により励起された表面プラズモンPによる電界により、試料Sに存在する分子のラマン散乱光の強度が数桁増強されるSERS(表面増強ラマン散乱)が発生し、表面増強ラマン散乱光L3を放出する。 In the optical device 7, the excitation light L1 is transmitted through the base material 21 from the first surface 21a toward the convex tip tip T1 in the region including the protruding tip of the second surface 21b, and is further arranged at the tip T1. The sample S is irradiated and focused by passing through the metal nanoparticles 22. At this time, the metal nanoparticles 22 can excite surface plasmons on a surface close to the sample surface S1. At this time, Raman scattered light is emitted from the sample S by the excitation light L1, and the intensity of the Raman scattered light of the molecules existing in the sample S is increased by several orders of magnitude due to the electric field generated by the surface plasmon P excited by the optical device 7. SERS (Surface-enhanced Raman scattering) is generated, and surface-enhanced Raman scattered light L3 is emitted.

上記分析装置1には、光学フィルタ13、アパーチャー14、回折格子15及び撮像手段16の結像光学系が設けられており、これら結像光学系と光源2とがハーフミラー4を中心に直交して配置されている。分析装置1は、試料Sにて発生した表面増強ラマン散乱光L3を含んだ反射光L2を、対物レンズ6を介してハーフミラー4に照射させ、当該ハーフミラー4によって反射光L2を反射させ光ファイバ3bを通して光学フィルタ13に導き、更にアパーチャー14及び回折格子15を順に通過してCCD(Charge Coupled Device)等の撮像手段16に到達させる。 The analyzer 1 is provided with an imaging optical system of an optical filter 13, an aperture 14, a diffraction grating 15, and an imaging means 16, and the imaging optical system and the light source 2 are orthogonal to each other about the half mirror 4. Is arranged. The analyzer 1 irradiates the half mirror 4 with the reflected light L2 including the surface-enhanced Raman scattered light L3 generated in the sample S via the objective lens 6, and reflects the reflected light L2 by the half mirror 4 to generate light. It is guided to the optical filter 13 through the fiber 3b, and further passes through the aperture 14 and the diffraction lattice 15 in order to reach the imaging means 16 such as a CCD (Charge Coupled Device).

結像光学系では、光学フィルタ13によりフィルタリングして反射光L2の中から表面増強ラマン散乱光L3だけを取り出し、アパーチャー14を通過した光を回折格子15にてスペクトルとして分離し、撮像手段16に到達させ得る。このように分析装置1は、撮像手段16にて得られた画像からラマンスペクトルを分光測定し、ラマンスペクトルの強度から試料Sの分子構造を特定する。 In the imaging optical system, only the surface-enhanced Raman scattered light L3 is extracted from the reflected light L2 by filtering with an optical filter 13, and the light passing through the aperture 14 is separated as a spectrum by a diffraction grating 15 and used as an imaging means 16. Can be reached. In this way, the analyzer 1 spectroscopically measures the Raman spectrum from the image obtained by the imaging means 16 and identifies the molecular structure of the sample S from the intensity of the Raman spectrum.

上述する構成に加えて、この分析装置1は、試料Sが載置される基台12を備えており、当該基台12が3軸方向に移動することで試料Sに対して照射される励起光L1の焦点を試料Sの深さ方向z及び面方向(深さ方向zと直交するx軸方向及びy軸方向)に位置調整可能になっている。実際上、この基台12は、面方向のx軸方向と、このx軸方向と直交する同じく面方向のy軸方向とに移動する第1ピエゾステージ10と、x軸方向及びy軸方向に直交する深さ方向zに移動する第2ピエゾステージ11とを有し、これら第1ピエゾステージ10及び第2ピエゾステージ11により焦点位置を面方向及び深さ方向zにÅ(オングストローム)単位で位置調整可能になっている。 In addition to the above-described configuration, the analyzer 1 includes a base 12 on which the sample S is placed, and the base 12 moves in the triaxial direction to excite the sample S. The focus of the light L1 can be adjusted in the depth direction z and the plane direction (x-axis direction and y-axis direction orthogonal to the depth direction z) of the sample S. Practically, the base 12 has a first piezo stage 10 that moves in the x-axis direction in the plane direction and the y-axis direction in the same plane direction that is orthogonal to the x-axis direction, and in the x-axis direction and the y-axis direction. It has a second piezo stage 11 that moves in the orthogonal depth direction z, and the focal position is positioned in the plane direction and the depth direction z in Å (ongstrom) units by the first piezo stage 10 and the second piezo stage 11. It is adjustable.

なお、本実施形態においては、試料Sが載置される基台12を3軸方向に移動させることにより、対物レンズ6により集光した励起光L1の焦点を試料Sの面方向及び深さ方向zに移動させるようにした場合について述べたが、分析装置1では、対物レンズ6にピエゾアクチュエータ5を設けており、当該ピエゾアクチュエータ5によっても対物レンズ6を深さ方向zに移動し得るように構成されている。これにより、分析装置1では、試料Sが載置される基台12を固定しつつ、ピエゾアクチュエータ5によって対物レンズ6を深さ方向zに移動させることができ、対物レンズ6により集光した励起光L1の焦点を試料Sの深さ方向zに移動し得る。 In the present embodiment, by moving the base 12 on which the sample S is placed in the triaxial direction, the focal point of the excitation light L1 focused by the objective lens 6 is focused on the surface direction and the depth direction of the sample S. Although the case where the objective lens 6 is moved to z has been described, in the analyzer 1, the objective lens 6 is provided with the piezo actuator 5, so that the piezo actuator 5 can also move the objective lens 6 in the depth direction z. It is configured. As a result, in the analyzer 1, the objective lens 6 can be moved in the depth direction z by the piezo actuator 5 while fixing the base 12 on which the sample S is placed, and the excitation focused by the objective lens 6 can be performed. The focus of the light L1 can be moved in the depth direction z of the sample S.

対物レンズ6により絞られた励起光L1の電界(以下、励起光電界と呼ぶ)は、表面プラズモンにより増強され、例えば焦点が試料S内にある場合、焦点位置で最大となり、かつ焦点位置を中心に急峻な電界勾配となり得る。そこで、この分析装置1では、励起光L1の焦点位置を試料Sの深さ方向zに移動し、例えば試料S内の所定の界面S2に焦点位置を合わせることで、焦点位置(界面S2)にて最大の表面増強ラマン散乱光L3を得て、界面S2から得られた表面増強ラマン散乱光L3からラマンスペクトルを分光測定し、ラマンスペクトルの強度から試料S中の界面S2の分子構造を特定することができる。 The electric field of the excitation light L1 focused by the objective lens 6 (hereinafter referred to as the excitation light electric field) is enhanced by the surface plasmon. For example, when the focal point is in the sample S, it is maximized at the focal position and centered on the focal position. It can be a steep electric field gradient. Therefore, in this analyzer 1, the focal position of the excitation light L1 is moved in the depth direction z of the sample S, and the focal position is adjusted to, for example, a predetermined interface S2 in the sample S to bring it to the focal position (interface S2). The maximum surface-enhanced Raman scattered light L3 is obtained, the Raman spectrum is spectroscopically measured from the surface-enhanced Raman scattered light L3 obtained from the interface S2, and the molecular structure of the interface S2 in the sample S is specified from the intensity of the Raman spectrum. be able to.

光学デバイス7の基材21の突出先端を含む領域において、第2面21bの粗面を構成する凹凸構造の凸部先端T1に固着される金属ナノ粒子22が試料表面S1に接触させた例を説明する。図3(a)は、半球状の金属ナノ粒子22を試料表面S1に点接触させたときの表面プラズモンPの励起状態を示す概略図である。一方、図3(b)は、半球状の金属ナノ粒子22を試料表面S1に面接触させたときの表面プラズモンPの励起状態を示す概略図である。 An example in which metal nanoparticles 22 fixed to the convex tip T1 of the concave-convex structure constituting the rough surface of the second surface 21b are brought into contact with the sample surface S1 in the region including the protruding tip of the base material 21 of the optical device 7. explain. FIG. 3A is a schematic view showing the excited state of the surface plasmon P when the hemispherical metal nanoparticles 22 are brought into point contact with the sample surface S1. On the other hand, FIG. 3B is a schematic view showing the excited state of the surface plasmon P when the hemispherical metal nanoparticles 22 are brought into surface contact with the sample surface S1.

図3(a)に示すように、金属ナノ粒子22は半球状であり、平坦面が第2面21bの粗面の凸部先端T1に固着された構成を有している。金属ナノ粒子22は、曲面の頂点が試料表面S1と点接触している。この状態で、電界振動方向に振動する励起光L1を平坦面側から曲面頂点を介して試料Sに向けて垂直に入射すると、試料表面S1と点接触した曲面頂点に表面プラズモンPが励起される。その結果、試料表面S1や試料S内にて励起された表面プラズモンPの電界(単に、プラズモン電界とも称する)によって、試料Sの分子からのラマン散乱光の強度を数桁増強させるSERS(表面増強ラマン散乱)が発生し、表面増強ラマン散乱光L3が得られる。 As shown in FIG. 3A, the metal nanoparticles 22 are hemispherical and have a structure in which the flat surface is fixed to the convex tip tip T1 of the rough surface of the second surface 21b. In the metal nanoparticles 22, the apex of the curved surface is in point contact with the sample surface S1. In this state, when the excitation light L1 vibrating in the electric field vibration direction is vertically incident from the flat surface side toward the sample S via the curved surface apex, the surface plasmon P is excited to the curved surface apex in point contact with the sample surface S1. .. As a result, the electric field of the surface plasmon P excited in the sample surface S1 or the sample S (also simply referred to as a plasmon electric field) enhances the intensity of Raman scattered light from the molecule of the sample S by several orders of magnitude. Raman scattering) occurs, and surface-enhanced Raman scattered light L3 is obtained.

一方、図3(b)に示すように金属ナノ粒子22は、その平坦面が第2面21bの粗面の凸部先端T1に固着され、試料表面S1に強く押し当てられて試料表面S1に面接触している。この状態でも、平坦面側から面接触した曲面頂点に向けて電界振動方向に振動する励起光L1を垂直に照射すると、試料表面S1と面接触した曲面頂点に表面プラズモンPが励起される。その結果、当該表面プラズモンPの電界(プラズモン電界)によって、試料Sの分子からのラマン散乱光の強度が数桁増強されるSERS(表面増強ラマン散乱)が発生し、表面増強ラマン散乱光L3が得られる。
なお、図3(b)に示すように、金属ナノ粒子22を試料表面S1に対して面接触させた場合、図3(a)に示す金属ナノ粒子22を試料表面S1に点接触させた場合に比べて、プラズモン電界の強度は、約3倍になる。
On the other hand, as shown in FIG. 3B, the flat surface of the metal nanoparticles 22 is fixed to the tip T1 of the convex portion of the rough surface of the second surface 21b, and is strongly pressed against the sample surface S1 against the sample surface S1. There is surface contact. Even in this state, when the excitation light L1 vibrating in the electric field vibration direction is vertically irradiated from the flat surface side toward the curved surface apex in surface contact, the surface plasmon P is excited to the curved surface apex in surface contact with the sample surface S1. As a result, the electric field of the surface plasmon P (plasmon electric field) generates SERS (surface-enhanced Raman scattering) in which the intensity of Raman scattered light from the molecule of sample S is increased by several orders of magnitude, and the surface-enhanced Raman scattered light L3 is generated. can get.
As shown in FIG. 3B, when the metal nanoparticles 22 are brought into surface contact with the sample surface S1, the metal nanoparticles 22 shown in FIG. 3A are brought into point contact with the sample surface S1. The strength of the plasmon electric field is about three times that of the above.

このように、本実施形態に係る光学デバイス7では、基材21の一部の領域(突出先端を含む領域)に形成された粗面の少なくとも凸部先端T1に固着された金属ナノ粒子22を、試料Sに近接又は接触して配置することによって、金属ナノ粒子22の試料Sと近接又は接触した面に表面プラズモンPを励起でき、試料表面S1や試料S内にて励起された表面プラズモンPによりラマン散乱光の強度を数桁増強させた表面増強ラマン散乱光L3が得られるため、撮像手段16において表面増強ラマン散乱光L3の感度を高めることができる。 As described above, in the optical device 7 according to the present embodiment, the metal nanoparticles 22 fixed to at least the convex tip T1 of the rough surface formed in a part of the base material 21 (the region including the protruding tip) are formed. By arranging the metal nanoparticles 22 in close proximity to or in contact with the sample S, the surface plasmon P can be excited on the surface of the metal nanoparticles 22 in close proximity to or in contact with the sample S, and the surface plasmon P excited in the sample surface S1 or the sample S can be excited. As a result, the surface-enhanced Raman scattered light L3 in which the intensity of the Raman scattered light is increased by several orders of magnitude can be obtained, so that the sensitivity of the surface-enhanced Raman scattered light L3 can be increased in the imaging means 16.

また、金属ナノ粒子22を設けた本実施形態に係る光学デバイス7では、試料表面S1と光学デバイス7の表面とを、焦点近傍に設置した場合、光学デバイス7の表面の金属ナノ粒子22(例えばAg)近傍での励起光電界の電界勾配が、表面プラズモンPの電界増強効果により0.1[nm]あたり10から10へ増加する。表面増強ラマン散乱光L3の強度(ラマン強度)は電界の4乗に比例することが知られているので、0.1[nm]程度の距離の差におけるラマン強度の変化を感度よく捉えることが可能となる。なお、本実施形態に係る分析装置1では、試料Sを載置した基台12を移動させること、或いはピエゾアクチュエータ5により対物レンズ6を移動させることで、深さ方向z(焦点方向)でのラマン強度の変化を測定し得る。 Further, in the optical device 7 according to the present embodiment provided with the metal nanoparticles 22, when the sample surface S1 and the surface of the optical device 7 are placed near the focal point, the metal nanoparticles 22 on the surface of the optical device 7 (for example, Ag) field gradient of the excitation light field in the vicinity is increased by the electric field enhancing effect of surface plasmon P from 0.1 [nm] per 10 3 to 10 4. Since it is known that the intensity of surface-enhanced Raman scattered light L3 (Raman intensity) is proportional to the fourth power of the electric field, it is possible to sensitively capture changes in Raman intensity at a distance difference of about 0.1 [nm]. It will be possible. In the analyzer 1 according to the present embodiment, the base 12 on which the sample S is placed is moved, or the objective lens 6 is moved by the piezo actuator 5, so that the depth direction is z (focus direction). Changes in Raman intensity can be measured.

この分析装置1では、例えば励起光波長532[nm]のとき、光学デバイス7の表面にて発生した表面プラズモンPの電界が、当該表面から離れると急激に減衰することから、深さ方向zでの測定点以外からの信号の影響を少なくできるという利点がある。ここで、光学デバイス7の表面から所定距離以上離れた箇所では、撮像手段16による表面増強ラマン散乱光L3の感度が低下することから、ラマンスペクトルの増強が得られるのは光学デバイス7の表面から深さ方向zへ100[nm]程度までとなり得る。 In this analyzer 1, for example, when the excitation light wavelength is 532 [nm], the electric field of the surface plasmon P generated on the surface of the optical device 7 is rapidly attenuated when the surface is separated from the surface, so that the electric field is rapidly attenuated in the depth direction z. There is an advantage that the influence of signals from other than the measurement points of can be reduced. Here, at a location separated from the surface of the optical device 7 by a predetermined distance or more, the sensitivity of the surface-enhanced Raman scattered light L3 by the imaging means 16 decreases, so that the enhancement of the Raman spectrum can be obtained from the surface of the optical device 7. It can be up to about 100 [nm] in the depth direction z.

因みに、表面プラズモンPの電界によって増強された励起光電界は、対物レンズ6により集光した励起光L1の焦点位置で最大になり、焦点位置を中心に急峻な電界勾配になり焦点の前後の電界強度が急激に減少することから、高い深さ分解能が得られる。
光学デバイス7及び試料S間の界面に、焦点位置が一致したときには、励起光電界の強度が最大となる(すなわち、表面増強ラマン散乱光L3の強度が最大となる)。これに対して、焦点位置が試料Sの内部に移動すると、表面プラズモンPの電界による増強効果が弱まってゆき、焦点位置での励起光電界の強度が減少してゆく(すなわち、表面増強ラマン散乱光L3の強度が減少してゆく)。しかし電界勾配の変化は少ないので、高い深さ分解能は維持される。
Incidentally, the excitation light electric field enhanced by the electric field of the surface plasmon P becomes maximum at the focal position of the excitation light L1 focused by the objective lens 6, and becomes a steep electric field gradient around the focal position, and the electric field before and after the focal point. High depth resolution is obtained because the intensity decreases sharply.
When the focal position coincides with the interface between the optical device 7 and the sample S, the intensity of the excitation light electric field becomes maximum (that is, the intensity of the surface-enhanced Raman scattered light L3 becomes maximum). On the other hand, when the focal position moves to the inside of the sample S, the effect of enhancing the surface plasmon P by the electric field weakens, and the intensity of the excitation light electric field at the focal position decreases (that is, surface-enhanced Raman scattering). The intensity of light L3 decreases). However, since the change in the electric field gradient is small, high depth resolution is maintained.

分析装置1は、このように焦点位置を深さ方向zへ移動させてゆき、焦点近傍に生じる励起光電界の高勾配の強度変化を基に得られた表面増強ラマン散乱光L3のラマンスペクトルを測定することで、深さ方向zに沿って得られたラマンスペクトルの強度変化を基に試料Sの深さ方向zにおける分子構造の変化を特定し得る。 The analyzer 1 moves the focal position in the depth direction z in this way, and obtains a Raman spectrum of surface-enhanced Raman scattered light L3 obtained based on a high-gradient intensity change of the excitation photoelectric field generated in the vicinity of the focal point. By the measurement, the change in the molecular structure of the sample S in the depth direction z can be specified based on the change in the intensity of the Raman spectrum obtained along the depth direction z.

次に、本実施形態に係る光学デバイス7の構成を詳細に説明する。
光学デバイス7を構成する基材21は、上述するように光を透過可能な透明部材からなり、例えば石英、ガラス、サファイア、ダイヤモンド、CaF又は加工性に優れたSiOから形成される。基材21は、光学特性や、硬度による粗面加工の容易性から、好ましくは石英又はサファイアから形成される。基材21は、測定する試料に応じた寸法に形成され、例えば、厚さが0.1[mm]〜10[mm]、直径が5[mm]〜100[mm]に形成され、一例では、厚さが1[mm]、直径が20[mm]に形成される。
Next, the configuration of the optical device 7 according to the present embodiment will be described in detail.
As described above, the base material 21 constituting the optical device 7 is made of a transparent member capable of transmitting light, and is formed of, for example, quartz, glass, sapphire, diamond, CaF 2, or SiO 2 having excellent workability. The base material 21 is preferably formed of quartz or sapphire because of its optical properties and ease of rough surface processing due to its hardness. The base material 21 is formed to have dimensions according to the sample to be measured, for example, having a thickness of 0.1 [mm] to 10 [mm] and a diameter of 5 [mm] to 100 [mm], in one example. , The thickness is 1 [mm] and the diameter is 20 [mm].

基材21の第2面21bには、上述するように、少なくとも一部の領域(突出先端を含む領域)が粗面である。当該粗面は、ISO 25178に準拠して測定される算術平均粗さRaが、0.1[μm]を超えるものであり、好ましくは0.25[μm]以上、1.0[μm]以下であり、より好ましくは0.4[μm]以上、0.7[μm]以下である。算術平均粗さRaは、レーザー顕微鏡又は原子間力顕微鏡(AFM)によって測定することができる。 As described above, at least a part of the region (the region including the protruding tip) is a rough surface on the second surface 21b of the base material 21. The rough surface has an arithmetic mean roughness Ra measured in accordance with ISO 25178 of more than 0.1 [μm], preferably 0.25 [μm] or more and 1.0 [μm] or less. It is more preferably 0.4 [μm] or more and 0.7 [μm] or less. The arithmetic mean roughness Ra can be measured by a laser microscope or an atomic force microscope (AFM).

金属ナノ粒子22は、Ag、Au、Cu、Pd、Pt、Alのいずれか、又は誘電率の実部が負の金属のいずれかを含み、好ましくはAgを含む。金属ナノ粒子22は、直径が5[nm]〜100[nm]であり、金属ナノ粒子の間の距離を1[nm]〜100[nm]であることで、表面プラズモンの電界を増強させることができる。特に、金属ナノ粒子の直径を10[nm]〜60[nm]とすることで更に表面プラズモンの電界を1000倍以上に増強させることができ、これに相当するラマン散乱光の強度を顕著に増幅することができる。なお、金属ナノ粒子22は、試料Sに対して確実に近接し得るように、一部の領域(第2面21bの凸部先端を含む領域)の粗面に対して、金属ナノ粒子22をアイランド状に固着させることが望ましい。 The metal nanoparticles 22 contain either Ag, Au, Cu, Pd, Pt, Al, or a metal having a negative real part of the dielectric constant, preferably Ag. The metal nanoparticles 22 have a diameter of 5 [nm] to 100 [nm] and a distance between the metal nanoparticles of 1 [nm] to 100 [nm] to enhance the electric field of the surface plasmon. Can be done. In particular, by setting the diameter of the metal nanoparticles to 10 [nm] to 60 [nm], the electric field of the surface plasmon can be further increased 1000 times or more, and the corresponding intensity of Raman scattered light is remarkably amplified. can do. The metal nanoparticles 22 are provided with the metal nanoparticles 22 on the rough surface of a part of the region (the region including the tip of the convex portion of the second surface 21b) so that the metal nanoparticles 22 can be reliably approached to the sample S. It is desirable to fix it in an island shape.

金属ナノ粒子22の形状は、図3(a)に示す半球状に限定されず、円錐状、球体状、角錐状、半楕円状、直方体状、不定形状等の種々の形状であってもよく、これら金属ナノ粒子22を基材21の第2面21b内に埋設させていてもよい。 The shape of the metal nanoparticles 22 is not limited to the hemisphere shown in FIG. 3A, and may be various shapes such as a conical shape, a spherical shape, a pyramidal shape, a semi-elliptical shape, a rectangular parallelepiped shape, and an indefinite shape. , These metal nanoparticles 22 may be embedded in the second surface 21b of the base material 21.

次に、本実施形態に係る光学デバイス7の製造方法を詳細に説明する。
まず、第1面21aと、第1面21aとは反対側の面であって、第1面21a側とは反対方向に向かう凸面形状に湾曲している第2面21bとを有する、例えば光が透過可能な基材21を用意する。
Next, the manufacturing method of the optical device 7 according to the present embodiment will be described in detail.
First, it has a first surface 21a and a second surface 21b which is a surface opposite to the first surface 21a and is curved in a convex shape toward the direction opposite to the first surface 21a side, for example, light. Prepare a base material 21 that allows light to pass through.

次に、当該基材21の第2面21bの少なくとも一部の領域(突出先端を含む領域)に、サンドブラスト処理又は機械研磨等の粗面化処理を施して、粗面を形成する。当該粗面化処理は、例えば基材21の第2面21bの全面に施され、基材21の第2面21bの全面に粗面が形成される。当該粗面化処理は、第2面21bが曲面であっても容易に粗面を形成できることから、サンドブラスト処理であることが好ましい。 Next, at least a part of the second surface 21b of the base material 21 (the region including the protruding tip) is subjected to a roughening treatment such as sandblasting or mechanical polishing to form a roughened surface. The roughening treatment is applied to, for example, the entire surface of the second surface 21b of the base material 21, and a rough surface is formed on the entire surface of the second surface 21b of the base material 21. The roughening treatment is preferably a sandblasting treatment because a roughened surface can be easily formed even if the second surface 21b is a curved surface.

サンドブラスト処理で使用する研磨剤としては、特に限定されないが、例えば、アルミナ、ガラス及び炭化ケイ素等のセラミックス材料、スチール、亜鉛、ステンレス、鉄及び銅等の金属材料、並びに合成樹脂の微粒子を、基材21の硬度に応じて使用され得る。基材21として石英又はサファイアを使用する場合、基材21よりも硬度の高い炭化ケイ素の微粒子を含む研磨剤を使用してサンドブラスト処理を行うことが好ましい。なお、当該粗面の算術平均粗さRaは、例えば、サンドブラスト処理を施す時間や、研磨剤の種類又は粒径を調節することで調整され得る。 The abrasive used in the sandblasting treatment is not particularly limited, and is based on, for example, ceramic materials such as alumina, glass and silicon carbide, metal materials such as steel, zinc, stainless steel, iron and copper, and fine particles of synthetic resin. It can be used depending on the hardness of the material 21. When quartz or sapphire is used as the base material 21, it is preferable to perform sandblasting using an abrasive containing fine particles of silicon carbide having a hardness higher than that of the base material 21. The arithmetic mean roughness Ra of the rough surface can be adjusted, for example, by adjusting the time for sandblasting, the type of abrasive, or the particle size.

次に、当該粗面に金属をスパッタリングして、当該粗面の少なくとも凸部先端に金属ナノ粒子を固着させる。金属のスパッタリングは、例えば基材21の第2面21bの全面に施される。金属のスパッタリングによれば、第2面21bが曲面であっても容易に金属ナノ粒子をアイランド状に形成できる。金属ナノ粒子22の直径や、粒子間の距離は、例えば、金属をスパッタリングする時間や回数を調整することで調節され得る。 Next, the metal is sputtered onto the rough surface to fix the metal nanoparticles to at least the tip of the convex portion of the rough surface. Sputtering of the metal is performed, for example, on the entire surface of the second surface 21b of the base material 21. According to metal sputtering, metal nanoparticles can be easily formed in an island shape even if the second surface 21b is a curved surface. The diameter of the metal nanoparticles 22 and the distance between the particles can be adjusted, for example, by adjusting the time and number of times the metal is sputtered.

以上説明した実施形態に係る光学デバイス7では、一部の領域(凸面形状である基材21の第2面21bの少なくとも突出先端を含む領域)が粗面であり、当該粗面の少なくとも凸部先端に金属ナノ粒子22が固着されている。そのため、凸部先端に固着された金属ナノ粒子22に励起光L1を集光及び照射でき、金属ナノ粒子22の試料Sと近接又は接触した面に表面プラズモンPを励起させることができる。このような光学デバイス7を備える分析装置は、表面プラズモンPをより確実に励起できるため、更にラマン散乱光を増強でき、表面増強ラマン散乱光L3を従来よりも高感度に測定することができる。表面増強ラマン散乱光L3を従来よりも高感度に測定できると、種々の試料分析が行えるようになり従来よりも汎用性が向上し得る。また、光学デバイス7は、基材21及び金属ナノ粒子22からなる簡単な構造を有するため、安価に再現性良く製造することができる。 In the optical device 7 according to the embodiment described above, a part of the region (the region including at least the protruding tip of the second surface 21b of the base material 21 having a convex shape) is a rough surface, and at least the convex portion of the rough surface. Metal nanoparticles 22 are fixed to the tip. Therefore, the excitation light L1 can be focused and irradiated on the metal nanoparticles 22 fixed to the tip of the convex portion, and the surface plasmon P can be excited on the surface of the metal nanoparticles 22 in close proximity to or in contact with the sample S. Since the analyzer provided with such an optical device 7 can excite the surface plasmon P more reliably, the Raman scattered light can be further enhanced, and the surface-enhanced Raman scattered light L3 can be measured with higher sensitivity than before. If the surface-enhanced Raman scattered light L3 can be measured with higher sensitivity than before, various sample analyzes can be performed and the versatility can be improved as compared with the conventional one. Further, since the optical device 7 has a simple structure composed of the base material 21 and the metal nanoparticles 22, it can be manufactured inexpensively and with good reproducibility.

また、光学デバイス7では、第2面21bの少なくとも一部の領域(突出先端を含む領域)が粗面であるため、金属ナノ粒子22を空間的に高密度に配置することができ、隣接する金属ナノ粒子22同士の間隙で発生するプラズモン共鳴によって、金属ナノ粒子22の試料Sに近接した近接面に励起される表面プラズモンPをより確実に増強し得る。 Further, in the optical device 7, since at least a part of the second surface 21b (the region including the protruding tip) is a rough surface, the metal nanoparticles 22 can be spatially arranged at high density and are adjacent to each other. The plasmon resonance generated in the gap between the metal nanoparticles 22 can more reliably enhance the surface plasmon P excited to the close surface of the metal nanoparticles 22 close to the sample S.

更に、光学デバイス7では、金属ナノ粒子22に平坦面を形成したことにより、単なる球状の金属ナノ粒子22と比較して、金属ナノ粒子22の試料Sに近接した近接面に表面プラズモンPを励起させることができ、試料Sからのラマン散乱光を表面プラズモンPにより確実に増強し得る。 Further, in the optical device 7, by forming a flat surface on the metal nanoparticles 22, the surface plasmon P is excited on a close surface close to the sample S of the metal nanoparticles 22 as compared with a simple spherical metal nanoparticles 22. The Raman scattered light from the sample S can be reliably enhanced by the surface plasmon P.

更に、光学デバイス7では、基材21の第2面21bが突出先端を有しているため、突出先端を試料表面S1に対して位置決めすることで、突出先端付近の金属ナノ粒子22を、確実、かつ容易に試料表面S1に近接し得る。 Further, in the optical device 7, since the second surface 21b of the base material 21 has a protruding tip, positioning the protruding tip with respect to the sample surface S1 ensures that the metal nanoparticles 22 near the protruding tip are secured. And can easily approach the sample surface S1.

なお、単なる球状でなる金属ナノ粒子の場合は、プラズモン共鳴を起こすために隣に別の金属ナノ粒子が存在する必要があるが、平坦面を有した金属ナノ粒子22では、隣接する金属ナノ粒子22が不要なため、孤立した金属ナノ粒子22であっても試料Sからの表面増強ラマン散乱光L3が得られる。従って、金属ナノ粒子22の直径に相当する高い空間分解能を実現することができる。 In the case of mere spherical metal nanoparticles, another metal nanoparticles must be present next to each other in order to cause plasmon resonance, but in the case of metal nanoparticles 22 having a flat surface, adjacent metal nanoparticles are required. Since 22 is unnecessary, surface-enhanced Raman scattered light L3 from sample S can be obtained even with isolated metal nanoparticles 22. Therefore, a high spatial resolution corresponding to the diameter of the metal nanoparticles 22 can be realized.

以上説明した実施形態に係る光学デバイスの製造方法では、基材21の第2面21bに、サンドブラスト処理を施して粗面を形成する工程と、粗面に金属をスパッタリングして金属ナノ粒子を固着させる工程とを含む。そのため、複雑な微細加工技術によらず、安価に再現性良く、高感度で表面増強ラマン散乱光の測定を実現できる光学デバイス7を製造することができる。 In the method for manufacturing an optical device according to the above-described embodiment, a step of sandblasting the second surface 21b of the base material 21 to form a rough surface and a step of sputtering a metal on the rough surface to fix metal nanoparticles. Including the step of causing. Therefore, it is possible to manufacture an optical device 7 that can realize the measurement of surface-enhanced Raman scattered light with high sensitivity at low cost and with good reproducibility without using complicated microfabrication technology.

また、分析装置1では、光学デバイス7に励起光L1を照射するとともに、励起光L1の試料Sの深さ方向zに焦点位置を調整し得るように構成したことにより、焦点位置を中心に急峻な電界勾配になる励起光電界を試料Sの深さ方向zに移動させて深さ方向zに沿って変化するラマン強度の変化から試料分析を行うことができる。この際、この分析装置1では、励起光電界が焦点位置を中心に急峻な電界勾配になり焦点の前後からのラマン散乱光が減少していることから、高い深さ分解能を得ることができる。 Further, the analyzer 1 is configured so that the optical device 7 is irradiated with the excitation light L1 and the focal position of the excitation light L1 can be adjusted in the depth direction z of the sample S, so that the analysis device 1 is steep with respect to the focal position. The sample analysis can be performed from the change in Raman intensity that changes along the depth direction z by moving the excitation optical electric field that has a stable electric field gradient in the depth direction z of the sample S. At this time, in this analyzer 1, since the excitation light electric field has a steep electric field gradient around the focal position and the Raman scattered light from before and after the focal point is reduced, high depth resolution can be obtained.

なお、本実施形態に係る分析装置1及び光学デバイス7は、上述した構成の他に以下に説明する種々の形態を採用できる。
図1に示す分析装置1では、試料表面S1の上側(励起光L1が入射する側)に光学デバイス7を配置する例を示して説明したが、光学デバイス7及び試料Sの配置はこれに限定されない。図4に示す分析装置のように、光学デバイス7の上側(励起光L1が入射する側)に試料表面S1を配置してもよい。図4では、光学デバイス7の第2面21bが上側を向いて配置され、その突出先端に試料表面S1が接触するように試料Sが配置されている。この場合、試料Sは、例えば、ガラス基板等の光が透過可能な基板上の試料表面S1に測定対象となる薄膜が形成される等、光が透過可能に構成される。また、この場合、基材21は、上述する光が透過可能な透明部材から形成されてもよく、Fe、Ni、Zn、Ti等の金属材料、Si、Ge、C等の半導体材料、若しくはそれらの合金材料、又はITO等の導電性材料から形成されてもよい。また、この場合、励起光L1の焦点位置は、例えば試料表面S1と光学デバイス7との接触面に合わせて使用される。
The analyzer 1 and the optical device 7 according to the present embodiment can adopt various forms described below in addition to the above-described configuration.
In the analyzer 1 shown in FIG. 1, an example in which the optical device 7 is arranged on the upper side of the sample surface S1 (the side on which the excitation light L1 is incident) is shown, but the arrangement of the optical device 7 and the sample S is limited to this. Not done. As in the analyzer shown in FIG. 4, the sample surface S1 may be arranged on the upper side of the optical device 7 (the side on which the excitation light L1 is incident). In FIG. 4, the second surface 21b of the optical device 7 is arranged so as to face upward, and the sample S is arranged so that the sample surface S1 comes into contact with the protruding tip thereof. In this case, the sample S is configured to be capable of transmitting light, for example, a thin film to be measured is formed on the sample surface S1 on a substrate such as a glass substrate through which light can be transmitted. Further, in this case, the base material 21 may be formed of the above-mentioned transparent member capable of transmitting light, and may be a metal material such as Fe, Ni, Zn, Ti, or a semiconductor material such as Si, Ge, C, or them. It may be formed from an alloy material of the above, or a conductive material such as ITO. Further, in this case, the focal position of the excitation light L1 is used, for example, in accordance with the contact surface between the sample surface S1 and the optical device 7.

図4に示す分析装置では、励起光L1は、導光手段によって、試料S内を試料表面S1に向けて透過後、例えば金属ナノ粒子22及び試料表面S1の接触面に照射及び集光される。この際、試料Sからは励起光L1によりラマン散乱光を放出され、光学デバイス7により励起された表面プラズモンPによる電界により、試料Sに存在する分子のラマン散乱光の強度が数桁増強されるSERS(表面増強ラマン散乱)が発生し、表面増強ラマン散乱光L3を放出する。このような構成であっても、上述する実施形態に係る分析装置1と同様の効果を得ることができる。 In the analyzer shown in FIG. 4, the excitation light L1 is transmitted through the sample S toward the sample surface S1 by the light guide means, and then is irradiated and focused on the contact surfaces of the metal nanoparticles 22 and the sample surface S1, for example. .. At this time, Raman scattered light is emitted from the sample S by the excitation light L1, and the intensity of the Raman scattered light of the molecules existing in the sample S is increased by several orders of magnitude due to the electric field generated by the surface plasmon P excited by the optical device 7. SERS (surface-enhanced Raman scattering) occurs and emits surface-enhanced Raman scattered light L3. Even with such a configuration, the same effect as that of the analyzer 1 according to the above-described embodiment can be obtained.

また、図1に示す分析装置1では、光学デバイス7の第2面21bが凸面形状を有する例を示して説明したが、光学デバイス7の構造はこれに限定されない。光学デバイスは、図5に示す光学デバイス7´のように基材21´が平板状を有してもよい。光学デバイス7´は、第2面21b´が平面であって基材21´が平板状であること以外は、光学デバイス7と同様の構成を有する。具体的には、光学デバイス7´は、第2面21b´の一部の領域に上記粗面を有し、当該粗面の凸部先端には上記複数の金属ナノ粒子22が固着されている。ここで、当該一部の領域とは、試料表面S1に近接又は接触し、かつ励起光L1が透過又は照射される領域であり、例えば第2面21b´の中央領域である。光学デバイス7´は、基材21に代えて基材21´を使用すること以外、上述する光学デバイス7の製造方法と同様に製造できる。このような構成であっても、上述する実施形態に係る光学デバイス7と同様の効果を得ることができる。 Further, in the analyzer 1 shown in FIG. 1, an example in which the second surface 21b of the optical device 7 has a convex shape has been described, but the structure of the optical device 7 is not limited to this. In the optical device, the base material 21'may have a flat plate shape as in the optical device 7'shown in FIG. The optical device 7'has the same configuration as the optical device 7 except that the second surface 21b'is a flat surface and the base material 21'is a flat plate. Specifically, the optical device 7'has the rough surface in a part of the second surface 21b', and the plurality of metal nanoparticles 22 are fixed to the tip of the convex portion of the rough surface. .. Here, the partial region is a region that is close to or in contact with the sample surface S1 and is transmitted or irradiated with the excitation light L1, for example, the central region of the second surface 21b'. The optical device 7'can be manufactured in the same manner as the above-described method for manufacturing the optical device 7 except that the base material 21'is used instead of the base material 21. Even with such a configuration, the same effect as that of the optical device 7 according to the above-described embodiment can be obtained.

更に、図1に示す分析装置1では、試料表面S1が平坦な例を示して説明したが、試料表面S1の形状はこれに限定されない。試料表面S1は、粗面(例えば、算術平均粗さRaが0.1[μm]以上の粗面)を有してもよい。また、試料表面S1は、図6に示すように、光学デバイス7´に向かう凸面形状に湾曲している試料表面S1´であってもよい。また、試料表面の形状が、平滑面又は粗面、及び平坦面又は湾曲面であることは適宜組み合わされて適用されてよい。なお、図6に示すように、光学デバイス7´が平板状である場合、試料表面S1の形状を湾曲であるものにすると、試料表面S1の位置分解能を光学デバイス7と同様に向上することができるため好ましい。また、試料Sは、固体状に限定されず液体状であってもよく、例えば、ガラス基板等の光が透過可能な基板上に測定対象となる液体層が形成されてもよい。 Further, in the analyzer 1 shown in FIG. 1, an example in which the sample surface S1 is flat has been described, but the shape of the sample surface S1 is not limited to this. The sample surface S1 may have a rough surface (for example, a rough surface having an arithmetic mean roughness Ra of 0.1 [μm] or more). Further, as shown in FIG. 6, the sample surface S1 may be the sample surface S1'curved in a convex shape toward the optical device 7'. Further, the fact that the shape of the sample surface is a smooth surface or a rough surface and a flat surface or a curved surface may be applied in an appropriate combination. As shown in FIG. 6, when the optical device 7'is a flat plate, if the shape of the sample surface S1 is curved, the positional resolution of the sample surface S1 can be improved in the same manner as the optical device 7. It is preferable because it can be done. Further, the sample S is not limited to a solid state and may be a liquid state. For example, a liquid layer to be measured may be formed on a substrate such as a glass substrate through which light can be transmitted.

以上説明した、光学デバイス及び試料の配置、光学デバイスの形状、試料の形状は、上述した例に限定されず、適宜組み合わせて適用されてよい。このような組み合わせからなる構成であっても、上述する実施形態に係る分析装置と同様の効果を得ることができる。 The arrangement of the optical device and the sample, the shape of the optical device, and the shape of the sample described above are not limited to the above-mentioned examples, and may be applied in an appropriate combination. Even with a configuration composed of such a combination, the same effect as that of the analyzer according to the above-described embodiment can be obtained.

次に、本実施形態に係る光学デバイスについて、実施例及び比較例によって、より詳細に説明する。
(実施例1及び比較例1)
実施例1に係る光学デバイスは、以下に示す方法で製造した。
まず、厚さが1[mm]、直径が20[mm]の石英からなる基材を用意した。この基材は、第1面と、第1面とは反対側の面であって、第1面側とは反対方向に向けて凸面形状に湾曲している第2面とを有する。
Next, the optical device according to the present embodiment will be described in more detail with reference to Examples and Comparative Examples.
(Example 1 and Comparative Example 1)
The optical device according to Example 1 was manufactured by the method shown below.
First, a base material made of quartz having a thickness of 1 [mm] and a diameter of 20 [mm] was prepared. This base material has a first surface and a second surface which is a surface opposite to the first surface and is curved in a convex shape toward the direction opposite to the first surface side.

次に、基材の第2面の全面に、炭化ケイ素からなる研磨剤を使用してサンドブラスト処理を施して、算術平均粗さRaが0.46[μm]の粗面を形成した。算術平均粗さRaは、ISO25178に準拠して測定した。 Next, the entire surface of the second surface of the base material was sandblasted using an abrasive made of silicon carbide to form a rough surface having an arithmetic average roughness Ra of 0.46 [μm]. The arithmetic mean roughness Ra was measured according to ISO25178.

図7は、実施例1に係る光学デバイスの基材の第2面の粗面を示す走査型電子顕微鏡写真である。図7の結果から、実施例1の光学デバイスの基材の第2面には、凹凸構造から構成される粗面が形成されていることが分かる。 FIG. 7 is a scanning electron micrograph showing a rough surface of the second surface of the base material of the optical device according to the first embodiment. From the results of FIG. 7, it can be seen that a rough surface composed of an uneven structure is formed on the second surface of the base material of the optical device of Example 1.

次に、基材の第2面の粗面にAgをスパッタリングしてAgナノ粒子を粗面化した第2面の凸部先端および凸部の壁面にアイランド状に固着させた。金属ナノ粒子は、直径が5[nm]〜100[nm]であり、金属ナノ粒子の間の距離が1[nm]〜100[nm]であった。 Next, Ag was sputtered onto the rough surface of the second surface of the base material to roughen the Ag nanoparticles and fixed them in an island shape on the tip of the convex portion of the second surface and the wall surface of the convex portion. The metal nanoparticles had a diameter of 5 [nm] to 100 [nm] and a distance between the metal nanoparticles was 1 [nm] to 100 [nm].

比較例1の光学デバイスは、基材の第2面にサンドブラスト処理を施さない点以外は、実施例1と同様の方法で製造した。比較例1の基材の第2面の算術平均粗さRaは、実施例1と同様に測定すると、0.00[μm]である平滑面であった。 The optical device of Comparative Example 1 was manufactured by the same method as in Example 1 except that the second surface of the base material was not sandblasted. The arithmetic mean roughness Ra of the second surface of the base material of Comparative Example 1 was a smooth surface of 0.00 [μm] when measured in the same manner as in Example 1.

次いで、ジアルキルチオリン酸亜鉛(ZDTP)薄膜(試料S)を表面に形成したガラス基板を用意した。図1に示す分析装置において、実施例1及び比較例1に係る光学デバイスの第2面を、ガラス基板のZDTP薄膜上に第2面に固着されたAgナノ粒子が接触するように配置し、ラマンスペクトルを測定した。Agナノ粒子と試料表面S1との接触は、各光学デバイスを試料表面S1に向けて垂直方向に1[mN]の荷重を加えることによって行った。図8は、実施例1及び比較例1に係る光学デバイスを使用して測定したZDTP薄膜の表面のラマンスペクトルを示すグラフである。 Next, a glass substrate on which a zinc dialkylthiophosphate (ZDTP) thin film (Sample S) was formed was prepared. In the analyzer shown in FIG. 1, the second surface of the optical device according to Example 1 and Comparative Example 1 is arranged on the ZDTP thin film of the glass substrate so that the Ag nanoparticles fixed to the second surface come into contact with each other. Raman spectra were measured. The contact between the Ag nanoparticles and the sample surface S1 was performed by applying a load of 1 [mN] in the vertical direction toward the sample surface S1 with each optical device. FIG. 8 is a graph showing the Raman spectrum of the surface of the ZDTP thin film measured using the optical devices according to Example 1 and Comparative Example 1.

図8から明らかなように、実施例1の光学デバイスを組み込んだ分析装置は、比較例1の光学デバイスを組み込んだ分析装置と比較して、ZDTPの潤滑膜のCHピークが約10倍の強度で得られることが確認できた。従って、表面増強ラマン散乱光を利用した分析装置において、実施例1の光学デバイスを組み込むことによって、試料からのラマン散乱光を表面プラズモンにより確実に増強でき、高感度で試料の分子構造の解析が行えることが確認できた。 As is clear from FIG. 8, the analyzer incorporating the optical device of Example 1 has about 10 times the CH 2 peak of the lubricating film of ZDTP as compared with the analyzer incorporating the optical device of Comparative Example 1. It was confirmed that it can be obtained with strength. Therefore, by incorporating the optical device of Example 1 in the analyzer using surface-enhanced Raman scattered light, the Raman scattered light from the sample can be reliably enhanced by the surface plasmon, and the molecular structure of the sample can be analyzed with high sensitivity. I was able to confirm that it could be done.

(実施例2〜4及び比較例2,3)
実施例2〜4及び比較例2,3に係る光学デバイスは、以下に示す方法で製造した。
まず、厚さが1[mm]、直径が20[mm]のサファイアからなる基材を用意した。この基材は、第1面と、第1面とは反対側の第2面を有し、平板状である。すなわち、実施例2〜4及び比較例2,3に係る光学デバイスは、図5に示すような構造を有する。
(Examples 2 to 4 and Comparative Examples 2 and 3)
The optical devices according to Examples 2 to 4 and Comparative Examples 2 and 3 were manufactured by the methods shown below.
First, a base material made of sapphire having a thickness of 1 [mm] and a diameter of 20 [mm] was prepared. This base material has a first surface and a second surface opposite to the first surface, and has a flat plate shape. That is, the optical devices according to Examples 2 to 4 and Comparative Examples 2 and 3 have a structure as shown in FIG.

次に、実施例1と同様の方法で、比較例3、実施例2、3及び4の光学デバイスの基材の第2面の全面にサンドブラスト処理を施して、算術平均粗さRaがそれぞれ0.1[μm]の平滑面、0.3[μm]、0.5[μm]及び0.65[μm]の粗面になるようにした。ここで、算術平均粗さRaは、サンドブラスト処理を施す時間を調節することによって、変化させた。 Next, the entire second surface of the base material of the optical devices of Comparative Examples 3, 2, 3 and 4 is sandblasted in the same manner as in Example 1, and the arithmetic mean roughness Ra is 0, respectively. .1 [μm] smooth surface, 0.3 [μm], 0.5 [μm] and 0.65 [μm] rough surfaces. Here, the arithmetic mean roughness Ra was changed by adjusting the time for performing the sandblasting treatment.

次いで、実施例1と同様の方法で、実施例2〜4及び比較例2,3に係る光学デバイスの基材の第2面の全面にAgをスパッタリングして、Agからなる複数の金属ナノ粒子を固着させた。 Next, Ag is sputtered over the entire surface of the second surface of the base material of the optical device according to Examples 2 to 4 and Comparative Examples 2 and 3 by the same method as in Example 1, and a plurality of metal nanoparticles composed of Ag. Was fixed.

比較例2の光学デバイスは、基材の第2面に対して、サンドブラスト処理を施さない点以外は、実施例2〜4、及び比較例2と同様の方法で製造した。比較例2の基材の第2面の算術平均粗さRaは、実施例1と同様に測定すると、0.00[μm]の平滑面であった。 The optical device of Comparative Example 2 was manufactured by the same method as in Examples 2 to 4 and Comparative Example 2 except that the second surface of the base material was not sandblasted. The arithmetic mean roughness Ra of the second surface of the base material of Comparative Example 2 was 0.00 [μm] smooth surface when measured in the same manner as in Example 1.

ここで、図9は、実施例4に係る光学デバイスの基材の第2面の粗面(算術平均粗さRaが0.65[μm]であって、突出先端を含む領域)上に金属ナノ粒子が固着された様子を示す走査型電子顕微鏡写真である。この結果から、金属ナノ粒子22は、金属ナノ粒子の直径を5[nm]〜20[nm]とし、金属ナノ粒子の間の距離を1[nm]〜20[nm]となるアイランド状に配置されていることが確認された。 Here, FIG. 9 shows a metal on the rough surface of the second surface of the base material of the optical device according to the fourth embodiment (the region where the arithmetic mean roughness Ra is 0.65 [μm] and includes the protruding tip). It is a scanning electron micrograph which shows a state that nanoparticles were fixed. From this result, the metal nanoparticles 22 are arranged in an island shape in which the diameter of the metal nanoparticles is 5 [nm] to 20 [nm] and the distance between the metal nanoparticles is 1 [nm] to 20 [nm]. It was confirmed that it was done.

次いで、Feの薄膜(試料S)を表面に形成したガラス基板を用意した。図1に示す分析装置において、実施例2〜4及び比較例2,3に係る光学デバイスの第2面を、ガラス基板のFeの薄膜上に第2面に固着されたAgナノ粒子が接触するように配置し、ラマンスペクトルを測定した。Agナノ粒子と試料表面S1との接触は、各光学デバイスを試料表面S1に向けて垂直方向に1[mN]の荷重を加えることによって行った。図10は、実施例2に係る光学デバイスを使用して測定したFeの薄膜の表面のラマンスペクトルを示すグラフである。 Next, a glass substrate on which a thin film of Fe 2 O 3 (Sample S) was formed was prepared. In the analyzer shown in FIG. 1, Ag nanoparticles having the second surface of the optical device according to Examples 2 to 4 and Comparative Examples 2 and 3 fixed to the second surface on a thin film of Fe 2 O 3 on a glass substrate. The Raman spectrum was measured by arranging them in contact with each other. The contact between the Ag nanoparticles and the sample surface S1 was performed by applying a load of 1 [mN] in the vertical direction toward the sample surface S1 with each optical device. FIG. 10 is a graph showing a Raman spectrum on the surface of a thin film of Fe 2 O 3 measured using the optical device according to Example 2.

この結果より、実施例2に係る光学デバイスを使用すると、Feのピークと、励起光である532[nm]の波長の光に対応するピークとが得られることが確認できた。このとき、Fe及び励起光に対応するピークの強度(Intensity)を、I(Fe)及びI(532[nm])として読み取り、下記(1)式にて強度比を算出した。
強度比[−]=I(Fe)/I(532[nm])…(1)
From this result, it was confirmed that when the optical device according to Example 2 was used, a peak of Fe 2 O 3 and a peak corresponding to the excitation light having a wavelength of 532 [nm] could be obtained. At this time, the intensity of the peak corresponding to Fe 2 O 3 and the excitation light is read as I (Fe 2 O 3 ) and I (532 [nm]), and the intensity ratio is calculated by the following equation (1). did.
Intensity ratio [-] = I (Fe 2 O 3 ) / I (532 [nm]) ... (1)

実施例2〜4及び比較例2,3に係る光学デバイスそれぞれについて、(1)式にて強度比を算出し、その結果を図11に示した。図11は、実施例2〜4及び比較例2,3に係る光学デバイスの基材の第2面の算術平均粗さRaと、強度比との関係を示すグラフである。当該強度比は、各光学デバイスによって増強された表面増強ラマン散乱光の検出感度の高さを示す。 For each of the optical devices according to Examples 2 to 4 and Comparative Examples 2 and 3, the intensity ratio was calculated by the equation (1), and the result is shown in FIG. FIG. 11 is a graph showing the relationship between the arithmetic mean roughness Ra of the second surface of the base material of the optical device according to Examples 2 to 4 and Comparative Examples 2 and 3 and the intensity ratio. The intensity ratio indicates the high detection sensitivity of the surface-enhanced Raman scattered light enhanced by each optical device.

この結果より、基材の第2面が粗面である実施例2〜4に係る光学デバイスを使用すると、検出感度の高さを示す強度比が0.95以上と高く、試料からのラマン散乱光を表面プラズモンにより更に増強でき、より高感度で表面増強ラマン散乱光の測定を実現できることが確認できた。更に、実施例2〜4の結果を比較すると、基材の第2面の算術平均粗さRaが高いほど、更に高感度で表面増強ラマン散乱光を測定できる光学デバイスが得られると確認できた。 From this result, when the optical device according to Examples 2 to 4 in which the second surface of the base material is a rough surface is used, the intensity ratio indicating the high detection sensitivity is as high as 0.95 or more, and Raman scattering from the sample. It was confirmed that the light can be further enhanced by the surface plasmon, and the surface-enhanced Raman scattered light can be measured with higher sensitivity. Furthermore, by comparing the results of Examples 2 to 4, it was confirmed that the higher the arithmetic mean roughness Ra of the second surface of the base material, the more sensitive the optical device capable of measuring the surface-enhanced Raman scattered light can be obtained. ..

1…分析装置、2…光源、4…ハーフミラー(導光手段)、5…ピエゾアクチュエータ(焦点移動手段)、6…対物レンズ、7…光学デバイス、12…基台(焦点移動手段)、16…撮像手段、21…基材、21a…第1面、21b…第2面、22…金属ナノ粒子、S…試料、P…表面プラズモン 1 ... Analyzer, 2 ... Light source, 4 ... Half mirror (light guide means), 5 ... Piezo actuator (focus moving means), 6 ... Objective lens, 7 ... Optical device, 12 ... Base (focus moving means), 16 ... Imaging means, 21 ... Base material, 21a ... First surface, 21b ... Second surface, 22 ... Metal nanoparticles, S ... Sample, P ... Surface plasmon

Claims (9)

表面増強ラマン散乱光を測定して試料分析を行う分析装置に使用され、
第1面と、前記第1面とは反対側の第2面とを有する基材を備え、
前記第2面は、少なくとも一部の領域が粗面であり、前記粗面の少なくとも凸部先端には複数の金属ナノ粒子が固着される光学デバイス。
Used in analyzers that measure surface-enhanced Raman scattered light for sample analysis
A base material having a first surface and a second surface opposite to the first surface is provided.
An optical device in which at least a part of the second surface is a rough surface, and a plurality of metal nanoparticles are fixed to at least the tip of a convex portion of the rough surface.
前記基材は光が透過可能な材料によって形成される、請求項1に記載の光学デバイス。 The optical device according to claim 1, wherein the base material is formed of a material capable of transmitting light. 前記第2面は、前記第1面側とは反対方向に向かう凸面形状に湾曲しており、前記少なくとも一部の領域は前記凸面形状の突出先端を含む領域である、請求項1又は2に記載の光学デバイス。 The second surface is curved in a convex shape facing in the direction opposite to the first surface side, and at least a part of the region is a region including a protruding tip of the convex shape, according to claim 1 or 2. The optical device described. 前記基材は平板状である、請求項1又は2に記載の光学デバイス。 The optical device according to claim 1 or 2, wherein the base material is a flat plate. 前記粗面の算術平均粗さRaは、0.25[μm]以上、1.0[μm]以下である、請求項1〜4のいずれか1項に記載の光学デバイス。 The optical device according to any one of claims 1 to 4, wherein the arithmetic average roughness Ra of the rough surface is 0.25 [μm] or more and 1.0 [μm] or less. 前記基材は、石英又はサファイアから形成される、請求項1〜5のいずれか1項に記載の光学デバイス。 The optical device according to any one of claims 1 to 5, wherein the base material is formed of quartz or sapphire. 前記金属ナノ粒子は、Ag、Au、Cu、Pd、Pt、Al及び誘電率の実部が負の金属のいずれかを含む、請求項1〜6のいずれか1項に記載の光学デバイス。 The optical device according to any one of claims 1 to 6, wherein the metal nanoparticles include any of Ag, Au, Cu, Pd, Pt, Al and a metal having a negative real part of the dielectric constant. 請求項1〜7のいずれか1項の光学デバイスと、
励起光を発する光源と、
撮像手段と、
前記励起光を、前記光学デバイスを透過後に前記試料に照射させるか、又は前記試料を透過後に前記光学デバイスに照射させ、前記試料から放出された表面増強ラマン散乱光を、前記撮像手段まで導く導光手段と、
を備える分析装置。
The optical device according to any one of claims 1 to 7.
A light source that emits excitation light and
Imaging means and
The excitation light is transmitted to the sample after being transmitted through the optical device, or the optical device is irradiated with the excitation light after being transmitted through the sample, and the surface-enhanced Raman scattered light emitted from the sample is guided to the imaging means. Light means and
An analyzer equipped with.
第1面と、前記第1面とは反対側の第2面とを有する基材を備え、前記第2面は、少なくとも一部の領域が粗面であり、前記粗面には複数の金属ナノ粒子が固着される、表面増強ラマン散乱光を測定して試料分析を行う分析装置に使用される光学デバイスの製造方法であって、
前記基材の前記第2面の前記一部の領域を含む領域にサンドブラスト処理を施して、前記粗面を形成する工程と、
前記粗面に金属をスパッタリングして、前記粗面に前記金属ナノ粒子を固着させる工程と、
を含む光学デバイスの製造方法。
A base material having a first surface and a second surface opposite to the first surface is provided, the second surface has at least a part of a rough surface, and the rough surface has a plurality of metals. A method for manufacturing an optical device used in an analyzer that measures surface-enhanced Raman scattered light to which nanoparticles are fixed and performs sample analysis.
A step of sandblasting a region including a part of the second surface of the base material to form the rough surface.
A step of sputtering a metal on the rough surface to fix the metal nanoparticles on the rough surface, and
A method of manufacturing an optical device including.
JP2019054280A 2019-03-22 2019-03-22 OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD Active JP7315163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019054280A JP7315163B2 (en) 2019-03-22 2019-03-22 OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054280A JP7315163B2 (en) 2019-03-22 2019-03-22 OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD

Publications (2)

Publication Number Publication Date
JP2020153892A true JP2020153892A (en) 2020-09-24
JP7315163B2 JP7315163B2 (en) 2023-07-26

Family

ID=72558670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054280A Active JP7315163B2 (en) 2019-03-22 2019-03-22 OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD

Country Status (1)

Country Link
JP (1) JP7315163B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167756A (en) * 2004-03-31 2008-07-24 Canon Inc Gold-binding protein
US20090229972A1 (en) * 2008-03-13 2009-09-17 Sankaran R Mohan Method and apparatus for producing a feature having a surface roughness in a substrate
US20110128536A1 (en) * 2009-12-02 2011-06-02 Bond Tiziana C Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
WO2014097886A1 (en) * 2012-12-18 2014-06-26 学校法人早稲田大学 Optical device and analysis apparatus
JP2015105838A (en) * 2013-11-28 2015-06-08 学校法人早稲田大学 Optical device and analyzer
JP2018072018A (en) * 2016-10-25 2018-05-10 学校法人早稲田大学 Optical device and method for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008167756A (en) * 2004-03-31 2008-07-24 Canon Inc Gold-binding protein
US20090229972A1 (en) * 2008-03-13 2009-09-17 Sankaran R Mohan Method and apparatus for producing a feature having a surface roughness in a substrate
US20110128536A1 (en) * 2009-12-02 2011-06-02 Bond Tiziana C Nanoscale array structures suitable for surface enhanced raman scattering and methods related thereto
WO2014097886A1 (en) * 2012-12-18 2014-06-26 学校法人早稲田大学 Optical device and analysis apparatus
JP2015105838A (en) * 2013-11-28 2015-06-08 学校法人早稲田大学 Optical device and analyzer
JP2018072018A (en) * 2016-10-25 2018-05-10 学校法人早稲田大学 Optical device and method for manufacturing the same

Also Published As

Publication number Publication date
JP7315163B2 (en) 2023-07-26

Similar Documents

Publication Publication Date Title
US7529158B2 (en) Optical near-field generator and recording apparatus using the optical near-field generator
JP6461904B2 (en) Defect detection using surface-enhanced electric fields
US7511808B2 (en) Analyte stages including tunable resonant cavities and Raman signal-enhancing structures
JP2004533604A (en) Non-aperture near-field scanning Raman microscopy using reflection-scattering geometry
JP6179905B2 (en) Optical device and analyzer
US9488583B2 (en) Molecular analysis device
JP5848013B2 (en) Photoelectric field enhancement device and measuring apparatus equipped with the device
US20140242573A1 (en) Optical element, analysis device, analysis method and electronic apparatus
US20140242571A1 (en) Optical element, analysis equipment, analysis method and electronic apparatus
US20130271841A1 (en) Raman scattering light enhancing device
US10877065B2 (en) Near field scanning probe microscope, probe for scanning probe microscope, and sample observation method
KR101108022B1 (en) Method and apparatus for enhanced nano-spectroscopic scanning
Bulgarevich et al. Apertureless tip-enhanced Raman microscopy with confocal epi-illumination/collection optics
US7474397B2 (en) Raman and hyper-Raman excitation using superlensing
JP4498081B2 (en) Scattering near-field microscope and measuring method thereof
JP7315163B2 (en) OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD
Ueno et al. Nano-structured materials in plasmonics and photonics
JP2015105837A (en) Optical device and analyzer
JP2006329699A (en) Micromachined cantilever and near field spectroscope using it
JP2021025995A (en) Cantilever, scan probe microscope, and measurement method by scan probe microscope
WO2021019861A1 (en) Cantilever, scanning probe microscope, and measurement method using scanning probe microscope
KR101064515B1 (en) Dark field microscope and method for detecting scattered light using the same
JP2005164292A (en) Probe for near field light scattering, and near field optical microscope using same
WO2014050133A1 (en) Optical electric field amplification device and manufacturing method therefor, and measurement device using same
JP2015105838A (en) Optical device and analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7315163

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150