JP2005164292A - Probe for near field light scattering, and near field optical microscope using same - Google Patents

Probe for near field light scattering, and near field optical microscope using same Download PDF

Info

Publication number
JP2005164292A
JP2005164292A JP2003400476A JP2003400476A JP2005164292A JP 2005164292 A JP2005164292 A JP 2005164292A JP 2003400476 A JP2003400476 A JP 2003400476A JP 2003400476 A JP2003400476 A JP 2003400476A JP 2005164292 A JP2005164292 A JP 2005164292A
Authority
JP
Japan
Prior art keywords
probe
field
tip
light scattering
tip portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003400476A
Other languages
Japanese (ja)
Inventor
Kenji Takubo
健二 田窪
Masahiro Takebe
雅博 竹部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003400476A priority Critical patent/JP2005164292A/en
Publication of JP2005164292A publication Critical patent/JP2005164292A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe for near field light scattering having high photoelectric field intensifying efficiency. <P>SOLUTION: This probe includes a conical or pyramid-shaped probe main body 13a formed of a dielectric material and having a sharp tip portion; and a metal area 13c formed to cover one-directional side face of the probe main body 13a tip portion, or a spheroid-shaped metal area 13d formed to cover the tip portion of the probe main body 13a and having a major axis along an axial direction of the probe main body 13a. The degree of intensifying energy is thereby increased at a tip end of the probe. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、局所プラズモン共鳴による近接場光を発生するための近接場光散乱用プローブに関し、さらに詳細にはプローブ先端に発生する近接場光の光電場の増強効率を高くすることができる近接場光散乱用プローブに関する。
また、本発明は近接場散乱用プローブを用いて光学測定を行う近接場光学顕微鏡に関する。
The present invention relates to a near-field light scattering probe for generating near-field light by local plasmon resonance, and more specifically, a near-field capable of increasing the enhancement efficiency of the photoelectric field of near-field light generated at the probe tip. The present invention relates to a light scattering probe.
The present invention also relates to a near-field optical microscope that performs optical measurement using a near-field scattering probe.

近年、分子生物学や材料解析など広範な分野において非破壊の高分解能顕微鏡による測定の重要性が高まっている。
一般的な光学顕微鏡は被測定物に対して、非破壊で試料の形状・構造・成分などを比較的短時間で分析することができるという面では優れているが、光の波動性による回折限界のため光の波長以下のサイズでの測定ができず、空間分解能に限界があった。
In recent years, the importance of measurement with a non-destructive high-resolution microscope has increased in a wide range of fields such as molecular biology and material analysis.
A general optical microscope is superior in that it allows non-destructive analysis of the shape, structure, and components of a sample in a relatively short period of time. Therefore, measurement with a size smaller than the wavelength of light could not be performed, and the spatial resolution was limited.

この問題を解決する手法として、近接場光を用いて回折限界による分解能よりも高い分解能を得ることができる近接場プローブを利用した近接場光学顕微鏡が開発され、その応用が期待されている。
近接場光学顕微鏡の基本原理は、被測定物の表面に近接場プローブの尖った先端部分を近づけるとともにレーザー光を照射し、プローブ先端近傍に局在する近接場光を散乱させ、伝播光に変換して検出するものであり、これによって光の波長以下の高分解能での測定を可能としている。
As a technique for solving this problem, a near-field optical microscope using a near-field probe capable of obtaining resolution higher than the resolution due to diffraction limit using near-field light has been developed, and its application is expected.
The basic principle of the near-field optical microscope is that the pointed tip of the near-field probe is brought close to the surface of the object to be measured and laser light is irradiated to scatter near-field light localized near the probe tip and convert it to propagating light. This makes it possible to measure at a high resolution below the wavelength of light.

図4は、近接場光学顕微鏡の構成を示す図である。
この近接場光学顕微鏡10は、試料Aを載置するステージ11、ステージ11をXY方向に移動させてステージ上の試料のXY位置を走査するためのステージXY方向駆動部12、測定部位近傍に先端を接触させて近接場光を散乱させるためのプローブ13(コンタクトモード測定)、プローブ13のXY方向およびZ方向位置を調整するためのプローブXYZ方向駆動部14を備えている。
FIG. 4 is a diagram showing the configuration of the near-field optical microscope.
The near-field optical microscope 10 includes a stage 11 on which the sample A is placed, a stage XY direction driving unit 12 for scanning the XY position of the sample on the stage by moving the stage 11 in the XY direction, and a tip near the measurement site. Is provided with a probe 13 (contact mode measurement) for scattering near-field light and a probe XYZ direction drive unit 14 for adjusting the XY direction and Z direction position of the probe 13.

ステージ11は、透過測定ができるように下方からの励起用レーザー光を試料Aに照射したり、試料Aからの近接場散乱光をステージ11の下方に出射したりすることができるようになっている。   The stage 11 can irradiate the sample A with excitation laser light from below so that transmission measurement can be performed, and can emit near-field scattered light from the sample A below the stage 11. Yes.

ステージ11の下方には対物レンズ15を含む顕微鏡光学系が設けられる。この対物レンズ15の下方にはハーフミラー18が取り付けられており、ハーフミラー18によりレーザー光源16から出射されるレーザー光を試料に照射するための励起光光学系Eと試料Aから出射される検出光を検出するための検出光光学系Pとが結合される。   A microscope optical system including an objective lens 15 is provided below the stage 11. A half mirror 18 is attached below the objective lens 15, and the excitation light optical system E for irradiating the sample with laser light emitted from the laser light source 16 by the half mirror 18 and detection emitted from the sample A are detected. A detection light optical system P for detecting light is coupled.

励起光光学系Eは、レーザー光源16の前方にリング状の窓を設けたマスク17が設けられており、マスク17を通過することによりリング状の光路を有するレーザー光がハーフミラー18を介して対物レンズ15に入射し、対物レンズで屈折した光をプローブ13先端に全反射臨界角以上で集光するように調整されている。   In the excitation light optical system E, a mask 17 having a ring-shaped window is provided in front of the laser light source 16, and laser light having a ring-shaped optical path passes through the mask 17 through the half mirror 18. The light incident on the objective lens 15 and refracted by the objective lens is adjusted so as to be condensed at the tip of the probe 13 at a total reflection critical angle or more.

検出光光学系Pはプローブ13の先端部分で強く散乱された近接場光を対物レンズ15により平行光束にして取り出し、ハーフミラー18を介して検出器19に導くように調整されている。   The detection light optical system P is adjusted so that the near-field light strongly scattered at the tip of the probe 13 is extracted as a parallel light beam by the objective lens 15 and guided to the detector 19 through the half mirror 18.

近接場光を散乱するプローブ13の形状は大きく分類すると、散乱型と開口型に分類することができ、それぞれ一長一短を有しているので、近接場光学顕微鏡に用いる場合、その測定目的に合わせて使い分けられている。このうち散乱型プローブ13は先鋭な先端を有するプローブ13を作りやすいことから、例えば空間分解能をより高くして測定する場合に適している。   The shape of the probe 13 that scatters near-field light can be roughly classified into a scattering type and an aperture type, and each has advantages and disadvantages. Therefore, when used in a near-field optical microscope, it is suitable for its measurement purpose. It is used properly. Among these, the scattering probe 13 is suitable for measurement with higher spatial resolution, for example, because it is easy to make a probe 13 having a sharp tip.

散乱型プローブの一形態として、シリコンや窒化シリコン等を基材とした散乱型近接場プローブを用いられたものが開示されている(例えば非特許文献1参照)。この文献に記載されたプローブは、基材としてシリコン、窒化シリコンなどの誘電体材料を使用したAFM(原子間力顕微鏡)カンチレバーの先端部分全体が(全周囲にわたって)銀の蒸着膜で覆われている。   As one form of the scattering probe, one using a scattering near-field probe based on silicon, silicon nitride, or the like is disclosed (for example, see Non-Patent Document 1). In the probe described in this document, the entire tip of an AFM (atomic force microscope) cantilever using a dielectric material such as silicon or silicon nitride as a substrate is covered with a silver deposition film (over the entire circumference). Yes.

図3は、典型的な散乱型近接場プローブの先端部分の従来例を示す断面図である。プローブ13は、シリコンや窒化シリコンを基材としたプローブ本体13aとその最先端部分および先端周囲を被覆する金属部材13bとから構成される。この金属部材13bは蒸着などの薄膜形成技術を用いてプローブ先端部分の全周囲を覆うようにしてある。   FIG. 3 is a cross-sectional view showing a conventional example of the tip portion of a typical scattering near-field probe. The probe 13 includes a probe main body 13a using silicon or silicon nitride as a base material and a metal member 13b covering the tip and the tip. This metal member 13b covers the entire periphery of the probe tip using a thin film forming technique such as vapor deposition.

そしてプローブ13(カンチレバー)先端を透明試料の表面に接触させて、図4に示したように試料の裏面側から全反射臨界角以上の入射角成分のみを持つ入射光を照射すると、プローブ13先端で強く散乱された近接場光が発生する。この近接場光を検出することにより、プローブ先端径とほぼ同等の空間分解能を持った光学像を得ることができるものである。   Then, when the tip of the probe 13 (cantilever) is brought into contact with the surface of the transparent sample and incident light having only an incident angle component equal to or greater than the total reflection critical angle is irradiated from the back side of the sample as shown in FIG. Near-field light that is strongly scattered at is generated. By detecting this near-field light, an optical image having a spatial resolution substantially equal to the probe tip diameter can be obtained.

N.Hayazawa 他、Optics Communication 183, p.333(2000)N.Hayazawa et al., Optics Communication 183, p.333 (2000)

近接場光学顕微鏡では、高い信号強度を得るために近接場光散乱用プローブ先端での光電場の増強効率を高くすることが望ましい。
特に、局所プラズモン共鳴を起こす金属部材の形状は、信号強度に影響を及ぼすはずであるが、その最適形状については特に考察されずに済まされており、先端形状を先鋭にして金属部材を均一に被覆する形状が、電界集中しやすいものと信じられてきた。
そこで、本発明は、プローブ先端の形状を工夫し、プローブ先端での光電場の増強効率をより高くすることができる近接場光散乱用プローブを提供することを目的とする。
In the near-field optical microscope, it is desirable to increase the enhancement efficiency of the photoelectric field at the tip of the near-field light scattering probe in order to obtain a high signal intensity.
In particular, the shape of the metal member that causes local plasmon resonance should affect the signal intensity, but the optimum shape has not been considered in particular, and the metal member is made uniform by sharpening the tip shape. It has been believed that the shape of the coating is easy to concentrate the electric field.
In view of the above, an object of the present invention is to provide a near-field light scattering probe that can devise the shape of the probe tip and increase the photoelectric field enhancement efficiency at the probe tip.

上記課題を解決するためになされた本発明の近接場光散乱用プローブは、先鋭な先端部分を有する円錐状又は角錐状のプローブ本体と、プローブ本体の先端部分の一方向側面を覆うように形成される金属領域とを備えるようにしている。   The near-field light scattering probe of the present invention made to solve the above problems is formed so as to cover a cone-shaped or pyramid-shaped probe body having a sharp tip portion and one side surface of the tip portion of the probe body. A metal region to be provided.

また、上記課題を解決するためになされた本発明の他の近接場光散乱用プローブは、誘電材料で形成され先鋭な先端部分を有する円錐状又は角錐状のプローブ本体と、プローブ本体の先端部分を覆うように形成され長軸方向がプローブ本体の軸方向である回転楕円体形状の金属領域とを備えるようにしている。   In addition, another near-field light scattering probe of the present invention, which has been made to solve the above-described problems, includes a conical or pyramidal probe body formed of a dielectric material and having a sharp tip portion, and a tip portion of the probe body. And a spheroid-shaped metal region whose major axis direction is the axial direction of the probe main body.

さらに別の観点からなされた本発明の近接場光学顕微鏡は、上述した本発明の近接場光散乱用プローブと、プローブ先端近傍に向けて局所プラズモン共鳴を誘起するための励起光を入射する励起光光学系と、プローブ先端に発する検出光を検出する検出光光学系とを備えるようにしている。   Further, the near-field optical microscope of the present invention, which has been made from another point of view, includes the above-described near-field light scattering probe of the present invention and excitation light that enters the excitation light for inducing local plasmon resonance toward the vicinity of the probe tip. An optical system and a detection light optical system for detecting detection light emitted from the probe tip are provided.

試行錯誤的に種々の形状のプローブを考案し、計算機シミュレーションを行ったところ、エネルギー増強度を高めるためには、これまでのようにプローブ先端部分の全周囲を金属部材とするのではなく、近接場光散乱用プローブ本体の先端部分の一方向側面を覆うように金属領域を形成する場合にエネルギー増強度が高くなることを見出した。   We have devised various types of probes by trial and error and conducted computer simulations. In order to increase the energy enhancement strength, instead of using a metal member around the entire tip of the probe as in the past, close proximity It has been found that when the metal region is formed so as to cover the unidirectional side surface of the tip portion of the field light scattering probe body, the energy enhancement is increased.

また、エネルギー増強度が高くなる第2の形状としてプローブ本体の先端部分において、回転楕円体状の金属領域形成され、その長軸方向がプローブ本体の軸方向となるようにすればよいことを見出した。   Further, it has been found that a spheroid-shaped metal region is formed in the tip portion of the probe body as a second shape that increases energy enhancement, and the major axis direction thereof is the axial direction of the probe body. It was.

そして、これらのいずれかの近接場光散乱用プローブを近接場光学顕微鏡に用いることにより、高い信号強度での測定が可能になる。   By using any one of these near-field light scattering probes for a near-field optical microscope, measurement with high signal intensity becomes possible.

以下、本発明を実施するための形態について図面を用いて説明する。なお、以下に説明する実施例は、一例にすぎず、本発明の要旨を逸脱しない範囲で変形実施することが可能である。   Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The embodiment described below is merely an example, and modifications can be made without departing from the scope of the present invention.

図1は本発明の一実施形態である近接場光散乱用のプローブの構成を示す図である。このものは図1に見られるように、プローブ本体13aの一方向側面にそって金属領域13cが形成される。金属領域13cが形成されたプローブ先端は、マイナスドライバーの先端形状のようになっている。
プローブ本体13aの先端の曲率半径は200nm以下、より好ましくは20〜100nm程度であればよい。
FIG. 1 is a diagram showing a configuration of a near-field light scattering probe according to an embodiment of the present invention. As shown in FIG. 1, a metal region 13c is formed along one side surface of the probe body 13a. The tip of the probe in which the metal region 13c is formed is like the tip of a flathead screwdriver.
The radius of curvature of the tip of the probe body 13a may be 200 nm or less, more preferably about 20 to 100 nm.

プローブ本体13aには、シリコン、窒化シリコンなどの誘電体材料が用いられる。金属領域13cは、蒸着法、スパッタ法など方向性のある製膜技術を用いて一方向からプローブ先端に向けて金属物質を飛ばすことにより形成することができる。金属材料としては銀、金、白金などが好ましい。   A dielectric material such as silicon or silicon nitride is used for the probe main body 13a. The metal region 13c can be formed by flying a metal substance from one direction toward the probe tip using a directional film forming technique such as vapor deposition or sputtering. Silver, gold, platinum and the like are preferable as the metal material.

図2は、本発明の他の一実施形態である近接場光散乱用のプローブの構成を示す図である。図2に見られるように、プローブ本体13aの最先端部分に回転楕円体状の金属領域13dが形成される。金属領域13dはその長軸方向がプローブ本体13aの軸方向となっている。
金属領域13dは、数10nmオーダーの精度での加工が必要であり、先端部分に金属膜を形成した後でフォーカスイオンビーム加工により回転楕円体状の金属領域を形成することができる。
FIG. 2 is a diagram showing a configuration of a near-field light scattering probe which is another embodiment of the present invention. As shown in FIG. 2, a spheroid-shaped metal region 13d is formed at the most distal portion of the probe body 13a. The major axis direction of the metal region 13d is the axial direction of the probe body 13a.
The metal region 13d needs to be processed with an accuracy of the order of several tens of nanometers, and a spheroidal metal region can be formed by focus ion beam processing after forming a metal film at the tip portion.

そして、図1または図2に示した近接場光散乱用のプローブ13を図4に示した近接場光学顕微鏡を用いるようにする。   Then, the near-field optical microscope shown in FIG. 4 is used as the near-field light scattering probe 13 shown in FIG. 1 or FIG.

次に、従来例と本発明にかかる実施例とにおけるプローブ先端のエネルギー密度分布について計算機シミュレーションした結果について説明する。
計算機シミュレーションでは、FDTD法(Finite Difference Time Domain method)により、マックスウェルの方程式を計算した。リング状のレーザビームの入射条件には、収差レンズを通してできる球面波(参照球面)のフレネル積分で得られる電磁界の数値をFDTD解析領域の端面に境界条件として配置し、参照球面上の経度、緯度をそれぞれ20分割するようにした。
Next, the result of computer simulation of the energy density distribution at the probe tip in the conventional example and the embodiment according to the present invention will be described.
In the computer simulation, Maxwell's equations were calculated by the FDTD method (Finite Difference Time Domain method). For the incident condition of the ring-shaped laser beam, the numerical value of the electromagnetic field obtained by Fresnel integration of a spherical wave (reference sphere) generated through the aberration lens is arranged as a boundary condition on the end face of the FDTD analysis region, Each latitude was divided into 20 parts.

図5は各種プローブ先端形状について、計算したエネルギー密度分布およびエネルギー増強度を説明する図であり、図5(a)は図3で示した従来例、図5(b)は図1(実施例1)のもの、図5(c)は図2(実施例2)のものに対応する。また、図5(d)は基準としてプローブがないとき(すなわち近接場光の散乱がないとき)のものである。   FIG. 5 is a diagram for explaining the calculated energy density distribution and energy enhancement for various probe tip shapes. FIG. 5 (a) shows the conventional example shown in FIG. 3, and FIG. 5 (b) shows FIG. 1) and FIG. 5C correspond to those of FIG. 2 (Example 2). FIG. 5D shows a case where there is no probe as a reference (that is, when there is no near-field light scattering).

プローブ無しのときのエネルギー密度を1とすると、従来例のものでは2.4、実施例1のものでは44、実施例2のものでは23であった。   Assuming that the energy density without the probe is 1, it was 2.4 in the conventional example, 44 in the example 1, and 23 in the example 2.

実施例1、実施例2ともに従来例に対してエネルギー増強度が格段に高くなっており、増強度が高いほど図に示すように発光強度が増大している。   In both Example 1 and Example 2, the energy enhancement is significantly higher than the conventional example, and the emission intensity increases as the enhancement increases as shown in the figure.

本発明にかかる近接場光散乱用プローブの利用は近接場光学顕微鏡以外にも近接場リソグラフィ、近接場加工等への応用ができる。
さらに、ラマン散乱分光、赤外吸収分光、蛍光分光、SHG顕微鏡として使用する場合にも局所プラズモン共鳴の光電場増強効果によって励起光強度を局所的に増大することにより、高い光信号量を得るようにすることができる。
The use of the near-field light scattering probe according to the present invention can be applied to near-field lithography, near-field processing and the like in addition to the near-field optical microscope.
Furthermore, even when used as Raman scattering spectroscopy, infrared absorption spectroscopy, fluorescence spectroscopy, or SHG microscope, it is possible to obtain a high optical signal amount by locally increasing the excitation light intensity by the photoelectric field enhancement effect of local plasmon resonance. Can be.

近接場光学顕微鏡の構成図。The block diagram of a near-field optical microscope. 本発明の一実施例である近接場光散乱用プローブの構成を示す図。The figure which shows the structure of the probe for near-field light scattering which is one Example of this invention. 従来からの近接場光散乱用プローブの構成を示す図。The figure which shows the structure of the conventional probe for near-field light scattering. 本発明の他の一実施例である近接場光散乱用プローブの構成を示す図。The figure which shows the structure of the probe for near-field light scattering which is another Example of this invention. 各種プローブ先端形状についての計算したエネルギー密度分布およびエネルギー増強度を説明する図。The figure explaining the energy density distribution and energy increase intensity which were calculated about various probe tip shapes.

符号の説明Explanation of symbols

10:近接場光学顕微鏡
11:ステージ
12:ステージXY方向駆動部
13:近接場散乱光用プローブ
13a:プローブ本体
13b〜d:金属領域
14:プローブXYZ方向駆動部
15:対物レンズ
16:レーザー光源
17:マスク
18:ハーフミラー
19:検出器
10: Near-field optical microscope 11: Stage 12: Stage XY direction drive unit 13: Probe for near-field scattered light 13a: Probe body 13b to d: Metal region 14: Probe XYZ direction drive unit 15: Objective lens 16: Laser light source 17 : Mask 18: Half mirror 19: Detector

Claims (3)

誘電体材料で形成され先鋭な先端部分を有する円錐状又は角錐状のプローブ本体と、プローブ本体の先端部分の一方向側面を覆うように形成される金属領域とを備えたことを特徴とする近接場光散乱用プローブ。 Proximity comprising a conical or pyramidal probe body made of a dielectric material and having a sharp tip portion, and a metal region formed so as to cover one side surface of the tip portion of the probe body Field light scattering probe. 誘電体材料で形成され先鋭な先端部分を有する円錐状又は角錐状のプローブ本体と、プローブ本体の先端部分を覆うように形成され長軸方向がプローブ本体の軸方向である回転楕円体形状の金属領域とを備えたことを特徴とする近接場光散乱用プローブ。 A conical or pyramidal probe body formed of a dielectric material and having a sharp tip portion, and a spheroid-shaped metal formed so as to cover the tip portion of the probe body and whose major axis direction is the axial direction of the probe body And a near-field light scattering probe. 請求項1または請求項2のいずれかに記載の近接場光散乱用プローブと、プローブ先端近傍に向けて局所プラズモン共鳴を誘起するための励起光を入射する励起光光学系と、プローブ先端に発する検出光を検出する検出光光学系とを備えたことを特徴とする近接場光学顕微鏡。
The near-field light scattering probe according to claim 1, an excitation light optical system for injecting excitation light for inducing local plasmon resonance toward the vicinity of the probe tip, and the probe tip A near-field optical microscope comprising: a detection light optical system that detects detection light.
JP2003400476A 2003-11-28 2003-11-28 Probe for near field light scattering, and near field optical microscope using same Pending JP2005164292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003400476A JP2005164292A (en) 2003-11-28 2003-11-28 Probe for near field light scattering, and near field optical microscope using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003400476A JP2005164292A (en) 2003-11-28 2003-11-28 Probe for near field light scattering, and near field optical microscope using same

Publications (1)

Publication Number Publication Date
JP2005164292A true JP2005164292A (en) 2005-06-23

Family

ID=34724738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003400476A Pending JP2005164292A (en) 2003-11-28 2003-11-28 Probe for near field light scattering, and near field optical microscope using same

Country Status (1)

Country Link
JP (1) JP2005164292A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103571A (en) * 2007-10-23 2009-05-14 Canon Inc Near-field light scattering-use probe and method for manufacturing the same
JP2013206519A (en) * 2012-03-29 2013-10-07 Hitachi High-Technologies Corp Heat-assisted magnetic head element inspection method and device therefor
JP2019007756A (en) * 2017-06-21 2019-01-17 株式会社日立製作所 Scanning near-field optical microscope, probe for scanning probe microscope, and sample observation method
CN113406361A (en) * 2021-03-22 2021-09-17 季华实验室 Microscope needle tip for near field region light field regulation and control and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009103571A (en) * 2007-10-23 2009-05-14 Canon Inc Near-field light scattering-use probe and method for manufacturing the same
US8115921B2 (en) 2007-10-23 2012-02-14 Canon Kabushiki Kaisha Probe for near-field light scattering and process for production thereof
JP2013206519A (en) * 2012-03-29 2013-10-07 Hitachi High-Technologies Corp Heat-assisted magnetic head element inspection method and device therefor
JP2019007756A (en) * 2017-06-21 2019-01-17 株式会社日立製作所 Scanning near-field optical microscope, probe for scanning probe microscope, and sample observation method
CN113406361A (en) * 2021-03-22 2021-09-17 季华实验室 Microscope needle tip for near field region light field regulation and control and preparation method thereof
CN113406361B (en) * 2021-03-22 2023-08-15 季华实验室 Microscope needle tip for near field optical field regulation and preparation method thereof

Similar Documents

Publication Publication Date Title
Courjon et al. Near field microscopy and near field optics
Novotny The history of near-field optics
US5894122A (en) Scanning near field optical microscope
US7760364B1 (en) Systems and methods for near-field heterodyne spectroscopy
JP2004533604A (en) Non-aperture near-field scanning Raman microscopy using reflection-scattering geometry
JP2010230687A (en) Method and apparatus for enhanced nano-spectroscopic scanning
Song et al. Identification of single nanoparticles
JP2005321392A (en) Spectrum analysis using evanescent field excitation
US7474397B2 (en) Raman and hyper-Raman excitation using superlensing
JP2019007756A (en) Scanning near-field optical microscope, probe for scanning probe microscope, and sample observation method
JP2005164292A (en) Probe for near field light scattering, and near field optical microscope using same
JP2015155847A (en) Probe positioning method and device in passive type proximity field microscope
JP2006090715A (en) Scattering type near field microscope and its measuring method
KR20080085790A (en) Automated process control using optical metrology with a photonic nanojet
JP2006038774A (en) Apparatus for evaluating near-field light
JP2005181085A (en) Optical trap probe near-field light microscope and near-field optical detection method
Kegel et al. Position dependent plasmonic interaction between a single nanoparticle and a nanohole array
JP4694736B2 (en) Probe aperture manufacturing apparatus and near-field optical microscope using the same
US11555784B2 (en) Methods, systems, and devices for super resolution solid immersion lens microscopy
Fayyaz Enhancing Raman and Fluorescence Spectroscopies with Nanosphere Lithography Platforms
JP7315163B2 (en) OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD
JP3669466B2 (en) Thermal spectrometer
Platkov et al. A scanning near-field infrared microscope based on AgClBr fiber probes
JP2006250623A (en) Photodetection device and photodetection method
Shi Investigation of image characteristics in super-resolution microsphere nanoscope