WO2014097886A1 - Optical device and analysis apparatus - Google Patents

Optical device and analysis apparatus Download PDF

Info

Publication number
WO2014097886A1
WO2014097886A1 PCT/JP2013/082578 JP2013082578W WO2014097886A1 WO 2014097886 A1 WO2014097886 A1 WO 2014097886A1 JP 2013082578 W JP2013082578 W JP 2013082578W WO 2014097886 A1 WO2014097886 A1 WO 2014097886A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
optical device
metal nanoparticles
metal nanoparticle
excitation light
Prior art date
Application number
PCT/JP2013/082578
Other languages
French (fr)
Japanese (ja)
Inventor
本間 敬之
雅広 柳沢
美紀子 齋藤
Original Assignee
学校法人早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人早稲田大学 filed Critical 学校法人早稲田大学
Priority to JP2014553069A priority Critical patent/JP6179905B2/en
Publication of WO2014097886A1 publication Critical patent/WO2014097886A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • the present invention relates to an optical device and an analysis apparatus, and is suitable for application to an analysis apparatus that performs sample analysis by measuring surface-enhanced Raman scattered light, for example.
  • SERS Surface-enhanced Raman scattering
  • SERS Surface Enhanced Raman Scattering
  • the surface plasmon is a close-packed wave of free electrons in the metal that is excited when the metal is irradiated with light.
  • SERS has been applied to a measurement method in the vicinity of a sample surface, and has been proposed as a surface-enhanced Raman spectroscopy that can increase the measurement sensitivity of Raman scattered light by about two orders of magnitude or more.
  • Patent Document 1 An analyzer using such surface-enhanced Raman spectroscopy is disclosed in Japanese Patent Application Laid-Open No. 2008-281530 (Patent Document 1).
  • Patent Document 1 a plurality of metal particles formed in a spherical shape are dispersed inside the probe, and the plurality of metal particles are exposed on the surface of the probe.
  • An analyzer using such a probe makes incident light incident on the probe with the probe tip close to the sample, and excites the electric field of the surface plasmon by the incident light to cause surface-enhanced Raman scattering from the sample. It can measure light.
  • the conventional analyzer having such a configuration has a problem that although the surface plasmon is excited on the probe, the Raman scattered light from the sample cannot be sufficiently enhanced by the surface plasmon.
  • an object of the present invention is to propose an optical device and an analysis apparatus that can surely enhance Raman scattered light from a sample by surface plasmons as compared with the conventional case.
  • An optical device includes a device body that is capable of transmitting excitation light, and one or more metal nanoparticles having a surface exposed on one surface of the device body and having a flat surface formed thereon, When the metal nanoparticles are brought close to a sample and the excitation light is incident from the other surface of the device body, surface plasmons are excited on the proximity surface of the metal nanoparticles that are brought close to the sample, and the surface plasmons The surface-enhanced Raman scattered light is generated by enhancing the Raman scattered light from the sample.
  • the sample is irradiated with the optical device according to any one of claims 1 to 13 and the excitation light emitted from the light source via the optical device, and the excitation light is applied to the sample.
  • a light guide unit that guides the surface-enhanced Raman scattered light emitted from the sample to the imaging unit by irradiating the sample.
  • the analyzer according to claim 15 further includes an objective lens that collects the excitation light emitted from the light source and irradiates the sample through the optical device, and the electric field gradient in the vicinity of the focal point of the objective lens is the surface plasmon. It is characterized by strengthening.
  • the optical device according to claim 1 and the analyzer according to claim 14 of the present invention, surface plasmons are excited on a proximity surface close to the sample of metal nanoparticles by forming a flat surface on the metal nanoparticles.
  • the Raman scattered light from the sample can be surely enhanced by the surface plasmon, and the sensitivity of the surface enhanced Raman scattered light can be improved as compared with the prior art.
  • the electric field gradient near the focal point of the objective lens can be enhanced by the surface plasmon, and the depth resolution in the depth direction of the sample can be improved.
  • FIG. 4A is a schematic diagram showing an excited state of surface plasmons when hemispherical metal nanoparticles are brought into point contact with the sample surface
  • FIG. 4B shows surface plasmons when spherical metal nanoparticles are used.
  • FIG. 7A is a schematic diagram for explaining the principle that the depth resolution is improved when the optical device is applied
  • FIG. 7B is a graph showing the electric field gradient of the surface plasmon from the surface of the optical device.
  • It is the schematic which shows the excitation light electric field enhanced by the electric field of surface plasmon, and the excitation light electric field before enhancement.
  • It is the schematic which shows the excitation light electric field at the time of moving the focus position of excitation light. It is the schematic where it uses for description when the molecular structure of HOPG is analyzed using the analyzer.
  • reference numeral 1 denotes an analytical apparatus according to the present invention, which has a light source 2 that emits excitation light L1, and the excitation light L1 emitted from the light source 2 is a half mirror 3 and an objective lens 4. And it is comprised so that it can inject into the sample S through the optical device 5 sequentially.
  • the optical device 5 has a device body 6 that can transmit light, and one surface of the device body 6 is close to (in contact with and close to) the surface S1 of the sample S to be analyzed (also simply referred to as the sample surface). In an arranged state, the excitation light L1 can be incident from the other surface of the device body 6.
  • the excitation light L1 incident from the other surface of the device body 6 is transmitted, and the sample S can be irradiated and condensed with the excitation light L1.
  • a plurality of metal nanoparticles (described later) are arranged on one surface of the device body 6, and surface plasmons can be excited on a proximity surface of the metal nanoparticles close to the sample surface S 1.
  • Raman scattered light is generated from the sample S by the excitation light L1
  • the intensity of the Raman scattered light of molecules existing in the sample S is increased by several orders of magnitude due to the electric field generated by the surface plasmon P excited by the optical device 5.
  • SERS surface enhanced Raman scattering
  • the analyzer 1 is provided with an imaging optical system of a pinhole 13, an optical filter 14, and an imaging means 15, and the imaging optical system and the light source 2 are orthogonal to each other about the half mirror 3. Are arranged.
  • the analyzer 1 irradiates the half mirror 3 through the objective lens 4 with the reflected light L2 including the surface enhanced Raman scattered light L3 generated in the sample S, and reflects the surface enhanced Raman scattered light L3 by the half mirror 3.
  • the imaging means 15 such as a CCD via the optical filter 14.
  • the analyzing apparatus 1 is capable of spectroscopically measuring the Raman spectrum from the image obtained by the imaging means 15 and specifying the molecular structure of the sample S from the intensity of the Raman spectrum.
  • the analyzer 1 includes a base 12 on which the sample S is placed, and excitation light irradiated on the sample S when the base 12 moves in three axial directions.
  • the focal point F of L1 can be adjusted in the depth direction z and the surface direction of the sample S (the x-axis direction and the y-axis direction orthogonal to the depth direction z).
  • the base 12 includes a first piezo stage 10 that moves in the x-axis direction in the plane direction and the y-axis direction in the same plane direction orthogonal to the x-axis direction, and in the x-axis direction and the y-axis direction.
  • a second piezo stage 11 that moves in the orthogonal depth direction z, and the first and second piezo stages 10 and 11 position the focal position in angstroms in the surface direction and the depth direction z. It can be adjusted.
  • the focal point F of the excitation light L1 collected by the objective lens 4 is changed in the plane direction of the sample S by moving the base 12 on which the sample S is placed in three axes.
  • the base on which the sample S is placed is fixed, and the objective lens 4 is moved in the surface direction and the depth direction z. It may be configured to be movable, and the focal point F of the excitation light L1 collected by the objective lens 4 may be moved in the surface direction and the depth direction z of the sample S.
  • the electric field of the excitation light L1 narrowed down by the objective lens 4 (hereinafter referred to as the excitation light electric field) is enhanced by the surface plasmon P.
  • the focal position of the excitation light L1 is moved in the depth direction z of the sample S, and the focal position is aligned with the predetermined interface S2 in the sample S, for example, to the focal position (interface S2).
  • the device main body 6 constituting the optical device 5 includes a base body 7 on which the other surface is irradiated with the excitation light L1, and a metal nanoparticle installation portion 8 disposed on one surface of the base body 7.
  • the substrate 7 is made of, for example, a transparent member such as quartz and has a structure formed in a disk shape having a thickness, and has a metal nanoparticle installation portion 8 made of a transparent member such as quartz on a flat surface.
  • the metal nanoparticle installation part 8 has a surface 8b facing the other surface 8a formed in a curved shape, and a plurality of metal nanoparticles 9 are installed along the surface 8b.
  • the metal nanoparticles 9 swelled from can be arranged so as to be close to the sample surface S1.
  • the metal nanoparticles 9 are made of any of Ag, Au, Cu, Pd, and Pt, and are formed in a hemispherical shape having a curved surface.
  • the metal nanoparticles 9 can be arranged such that a flat surface is fixed to the one surface 8b of the metal nanoparticle placement portion 8 by surface contact and a curved surface is close to the sample surface S1.
  • FIG. 3A is a photograph showing the optical device 5 made of quartz actually produced
  • FIG. 3B is an SEM image of one surface 8b of the metal nanoparticle installation portion 8 in the optical device 5.
  • a plurality of fine metal nanoparticles 9 can be arranged on the one surface 8b of the metal nanoparticle installation portion 8 at predetermined intervals as needed.
  • the metal nanoparticles 9 as shown in FIG. 3B are formed on one surface 8b of the metal nanoparticle installation portion 8 made of a transparent member such as quartz by, for example, sputtering, metal plating, vapor deposition, CVD (Chemical Vapor Deposition), or the like. More than one can be formed.
  • the metal nanoparticle 9 provided in the optical device 5 of the present invention has a hemispherical shape obtained by cutting off a spherical base portion, and a flat flat surface is one surface 8b of the metal nanoparticle installation portion 8. It is fixed to.
  • the excitation light L1 is directed toward the sample S from the other surface side of the metal nanoparticle installation portion (not shown) as in FIG. 4A. Even if is incident perpendicularly, the surface plasmon P is not excited on the adjacent surface close to the sample surface S1, and the surface plasmon P is excited on both side surfaces of the metal nanoparticle 100 corresponding to the electric field vibration direction. The surface-enhanced Raman scattering light cannot be obtained without enhancing the Raman scattering light from the molecules.
  • the metal nanoparticle 9 of the present invention does not require the adjacent metal nanoparticle 9, Even with the isolated metal nanoparticles 9, surface enhanced Raman scattered light L3 from the sample S can be obtained. Accordingly, a high spatial resolution corresponding to the diameter of the metal nanoparticles 9 can be realized.
  • the hemispherical metal nanoparticles 9 having a flat surface are provided on the one surface 8b of the metal nanoparticle installation portion 8 so as to bulge from the one surface 8b.
  • Surface plasmon P can be surely excited at the apex of the curved surface (proximity surface) close to sample S of metal nanoparticle 9 and thus Raman scattered light is excited by sample surface S1 and surface plasmon P excited in sample S.
  • Surface-enhanced Raman scattered light L3 having an intensity increased by several orders of magnitude is obtained, and the sensitivity of the surface-enhanced Raman scattered light L3 can be increased in the imaging means 15.
  • the bulging-type metal nanoparticle 9 having a flat surface fixed to one surface 8b of the metal nanoparticle installation portion 8 has a curved surface vertex that is a proximity surface in a plane with respect to the sample surface S1.
  • the plasmon electric field P is excited in the vicinity of the sample surface S1, and strong surface-enhanced Raman light L3 from the sample S can be obtained.
  • the intensity of the plasmon electric field is such that the metal nanoparticles 9 are spotted on the sample surface S1, as shown in FIG. 4A. It was found to be about 3 times as compared with the case of contact.
  • the diameter of the hemispherical metal nanoparticles 9 is a diameter when assuming a spherical shape, and the measurement position of the electric field of the surface plasmon P is the apex of the curved surface of the metal nanoparticles 9. Therefore, the metal nanoparticles 9 can enhance the electric field of the surface plasmon by selecting the diameter of 5 to 100 [nm], and in particular, the surface can be further increased by selecting the diameter of 16 to 60 [nm].
  • the electric field of plasmon can be increased 1000 times or more, and the corresponding Raman scattered light intensity is amplified 10 12 times or more, which is a great practical advantage.
  • the metal nanoparticle placement unit 8 it is desirable to arrange such fine metal nanoparticles 9 in an island shape.
  • FIG. 7A the magnitude of the electric field of the excitation light L1 (excitation light electric field) with respect to the distance from the surface of the optical device 5 is calculated, and the magnitude of this excitation light electric field and the positional relationship between the optical device 5 and the sample S are calculated. It is the shown schematic.
  • the excitation light electric field is maximized at the focal position narrowed down by the objective lens 4, but when the excitation light L1 is irradiated to the sample S without passing through the optical device 5 of the present invention, the focal position is centered.
  • the gradient of the excitation electric field is very small (4 ⁇ 10 ⁇ 8 per 0.1 [nm]), and the depth resolution is about a micron.
  • the surface of the optical device 5 of the present invention provided with the metal nanoparticles 9, when the sample surface S1 and the surface of the optical device 5 are installed in the vicinity of the focal point, the surface of the optical device 5
  • the electric field gradient of the excitation light electric field E1 near the metal nanoparticles 9 increases from 10 ⁇ 4 to 10 ⁇ 3 per 0.1 [nm] due to the electric field enhancement effect of the surface plasmon. Since it is known that the intensity of the surface-enhanced Raman scattered light L3 (Raman intensity) is proportional to the fourth power of the electric field, it is possible to capture changes in Raman intensity with a difference of about 0.1 [nm] with high sensitivity. Become. In the analyzer 1 of the present invention, the change in Raman intensity in the depth direction z (focal direction) can be measured by moving the base 12 on which the sample S is placed.
  • the distance at which the intensity of the electric field of the surface plasmon P is reduced to 1 / e is about 3 [nm], but this also varies depending on the shape of the optical device 5, and therefore the optical device 5
  • the detection region of the surface-enhanced Raman scattered light L3 in the depth direction z can be widened by increasing the particle size or by forming a structure having a large plasmon electric field at the interface such as an inverted conical shape.
  • the excitation light may be a long wavelength (for example, 532 [nm] to 1500 [nm], preferably 785 [nm] or 1060 [nm]), or the plasmon wavelength may be increased from Ag to Au having a different dielectric constant.
  • the detection region of the surface enhanced Raman scattered light L3 in the depth direction z can be expanded.
  • the sensitivity of the surface-enhanced Raman scattered light L3 by the imaging means 15 is lowered at a location away from the surface of the optical device 5 by a predetermined distance or more, the enhancement of the Raman spectrum can be obtained from the surface of the optical device 5.
  • Up to about 100 [nm] in the depth direction z is preferable.
  • the electric field gradient of the surface plasmon P is maximized at a position close to the surface of the optical device 5, and this is assumed that one metal nanoparticle 9 is in point contact with the sample surface S1.
  • the electric field of the surface plasmon P is gentle due to variations in the particle size of the plurality of metal nanoparticles 9 formed on the surface of the optical device 5 and variations in the contact gap between the metal nanoparticles 9 and the sample surface S1. It is presumed that the slope is a simple gradient (indicated by a dotted line in FIG. 7B).
  • FIG. 8 shows an excitation light electric field (indicated as “enhanced electric field (Raman intensity)” in FIG. 8) E1 enhanced by the electric field of the surface plasmon P excited by the optical device 5 of the present invention,
  • the electric field E2 before the enhancement is schematically shown.
  • the excitation light electric field E1 becomes maximum at the focal position of the excitation light L1 collected by the objective lens 4 (indicated as “0” on the horizontal axis in FIG. 8), and becomes a steep electric field gradient around the focal position. Since the electric field strength before and after F decreases rapidly, a high depth resolution can be obtained.
  • FIGS. 9A to 9C are schematic diagrams showing the positional relationship between the interface between the optical device 5 and the sample S and the focal position of the excitation light L1, and the enhanced excitation light electric field distribution.
  • FIG. 9B when the focal position coincides with the interface between the optical device 5 and the sample S, the intensity of the excitation light electric field E1 becomes maximum (that is, the intensity of the surface enhanced Raman scattered light L3 becomes maximum). ).
  • the analyzer 1 thus moves the focal position in the depth direction z, and the Raman spectrum of the surface-enhanced Raman scattered light L3 obtained based on the high gradient intensity change of the excitation light electric field E1 generated in the vicinity of the focal point. Can be measured. Then, the analyzer 1 can specify the change in the molecular structure in the depth direction z of the sample S based on the change in the intensity of the Raman spectrum obtained along the depth direction z.
  • highly oriented pyrolytic graphite (Highly Oriented Pyrolytic Graphite: HOPG) is prepared as a sample S, and the molecular structure of the HOPG in the depth direction z is actually measured using the analyzer 1 of the present invention shown in FIG. Analysis was carried out.
  • the metal nanoparticle installation part 8 is arranged so that the metal nanoparticle 9 comes into contact with the surface of the sample S (HOPG), and the excitation light L1 is installed on the metal nanoparticle.
  • the sample 8 was irradiated from the other surface 8a side of the part 8 toward the sample S.
  • the HOPG used as the sample S has a structure in which a plurality of crystal structure A layers and B layers are alternately stacked one after another (in FIG. 10, only the crystal structure A layer, the B layer, and the A layer are briefly described.
  • the lattice constant indicating the distance between the crystal structure A layer and the B layer is about 0.7 [nm].
  • the focal position of the excitation light L1 along the depth direction z from the outside to the inside of the sample S is set to, for example, 0.05 [nm] (stage drift correction).
  • the correction value was corrected by one).
  • the surface-enhanced Raman scattered light L3 emitted from the HOPG is imaged by the imaging means 15 of the analyzer 1, and the cross-sectional profile along the depth direction z of the peak intensity (1582 [cm ⁇ 1 ]) of the HOPG G band. was measured, and the result as shown in FIG. 11A was obtained.
  • FIG. 11B is a graph showing a result of measuring the G band intensity of HOPG from the surface enhanced Raman scattered light L3 obtained along the depth direction z.
  • FIG. 11A and 11B shows the external position of the sample S, (b) shows the surface (outermost surface) position of the sample S, and (c) shows the internal position of the sample S.
  • the crystal structure A layer and the B layer in HOPG appear as a periodic change in the depth direction z, and the distance between the peaks of the A layer or the B layer is HOPG lattice constant 0.7 [nm]. Therefore, it was confirmed that the molecular structure in the depth direction z of HOPG could be specified.
  • the optical device 5 has a configuration in which a plurality of metal nanoparticles 9 having a flat surface are exposed on one surface of the device body 6, the metal nanoparticles 9 are brought close to the sample S, and the device body 6
  • the excitation light L1 is incident from the other surface
  • the surface plasmon P is excited on the near surface of the metal nanoparticle 9 close to the sample S, and this surface plasmon P enhances the Raman scattered light from the sample S.
  • the surface enhanced Raman scattered light L3 was obtained.
  • the optical device 5 by forming a flat surface on the metal nanoparticle 9, the surface plasmon P can be excited on a surface close to the sample S of the metal nanoparticle 9, and thus the Raman from the sample S can be excited.
  • the scattered light can be surely enhanced by the surface plasmon P as compared with the conventional case.
  • the optical device 5 can improve the sensitivity of the surface-enhanced Raman scattered light L3 as much as the Raman scattered light can be enhanced. Can also improve.
  • the analyzer 1 is configured so that the optical device 5 is irradiated with the excitation light L1 and the focal position can be adjusted in the depth direction z of the sample S of the excitation light L1, so that the steepness is focused on the focal position.
  • a sample analysis can be performed from a change in Raman intensity that varies along the depth direction z by moving the excitation light electric field E1 that has an electric field gradient in the depth direction z of the sample S.
  • the case where a plurality of metal nanoparticles 9 having a flat surface are provided on one surface of the device body 6 has been mainly described.
  • FIG. 4A it is not necessary to enhance the electric field by resonance between adjacent metal nanoparticles 100 as in the case of a spherical metal nanoparticle 100, and as shown in FIG. 4A, the surface plasmon can be reliably generated on the sample surface S1.
  • the surface-enhanced Raman scattered light L3 can be reliably obtained.
  • the surface plasmon P is difficult to excite on the adjacent surface of the metal nanoparticle 9 close to the sample S, and the Raman scattered light from the sample S is The surface plasmon P cannot be sufficiently enhanced, and the sensitivity of the surface-enhanced Raman scattered light is lowered.
  • the excitation light L1 that vibrates in the direction of electric field oscillation toward the sample S is incident on the sample S perpendicularly via the metal nanoparticles 9.
  • the surface plasmon P can be reliably excited on the proximity surface of the metal nanoparticle 9 close to the sample S, and thus the Raman scattered light from the sample S can be surely enhanced by the surface plasmon P, and the surface-enhanced Raman The sensitivity of the scattered light L3 can be improved.
  • the present invention is not limited to the above-described embodiments.
  • the present invention is not limited, and various modifications can be made within the scope of the present invention.
  • the flat surface of the hemispherical metal nanoparticles 9 is arranged in surface contact on the one surface 8b of the metal nanoparticle installation portion 8, and the metal nanoparticles 9 are formed from the one surface 8b.
  • the present invention is not limited to this, and the present invention is not limited to this, and the proximity of the surface of the metal nanoparticles close to the sample surface S1 is described. If the surface plasmon P can be excited, the shape of the metal nanoparticles may be conical, pyramidal, semi-elliptical, and other various shapes, and these metal nanoparticles are embedded in the metal nanoparticle installation part. May be.
  • FIG. 12 is a schematic diagram showing the result of calculating the position where the surface plasmon is excited by changing the shape of the metal nanoparticle and the arrangement form of the metal nanoparticle on the metal nanoparticle installation portion. It is.
  • the buried metal nanoparticles 9a have a hemispherical shape obtained by cutting off a spherical base portion, and a flat surface extends along one surface 8b of the metal nanoparticle installation portion 8.
  • the curved surface may be embedded in the metal nanoparticle installation part 8 and only a flat surface may be exposed from the one surface 8b of the metal nanoparticle installation part 8.
  • the excitation light L1 corresponding to the electric field oscillation direction is irradiated from the other surface side of the metal nanoparticle installation portion 8 to the one surface 8b
  • the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9a is irradiated.
  • the surface plasmon P can be excited, and thus the Raman scattered light from the sample S can be enhanced by the surface plasmon P. Therefore, as shown in FIG. 13A, as another optical device 5a, such buried hemispherical metal nanoparticles 9a may be arranged at a predetermined interval. The intervals between the metal nanoparticles 9a may be regular.
  • the other buried metal nanoparticles 9b are arranged so that the shape thereof is conical and the flat surface is exposed along one surface 8b of the metal nanoparticle installation portion 8.
  • the apex may be embedded in the metal nanoparticle installation part 8, and only the flat surface may be exposed from the one surface 8b of the metal nanoparticle installation part 8.
  • the surface plasmon P is excited on the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9b.
  • the surface plasmon P can enhance the Raman scattered light from the sample S.
  • such buried conical metal nanoparticles 9b may be arranged at a predetermined interval.
  • the intervals between the metal nanoparticles 9b may be regular.
  • the adjacent metal nanoparticles 9b are unnecessary, a single particle can be obtained with high resolution.
  • the intensity of the Raman scattered light becomes weaker as the density of the metal nanoparticles is smaller, the intensity of the Raman scattered light is related to the SN of the signal.
  • (2-2) Optical Device Provided with Coating Film As another embodiment, one surface 8b of the metal nanoparticle installation portion 8 provided with the metal nanoparticles 9 as in the optical device 17 shown in FIG. Alternatively, a coating film 18 made of a material different from that of the metal nanoparticle placement part 8 may be formed, and the metal nanoparticles 9 may be covered with the coating film 18. Further, as shown in FIG. 15A, another optical device 5c has a configuration in which the flat surface of the hemispherical metal nanoparticles 9a is arranged on the surface of the coating film 18 and the curved surface is buried in the coating film 18. Only the flat surfaces of the metal nanoparticles 9a may be exposed from the surface of the coating film 18.
  • the surface plasmon P is applied to the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9a.
  • the Raman scattered light from the sample S can be enhanced by the surface plasmon P.
  • another optical device 5d has a configuration in which the flat surface of the conical metal nanoparticles 9b is arranged on the surface of the coating film 18 and the apex is buried in the coating film 18. Only the flat surface of the metal nanoparticles 9b may be exposed from the surface of the coating film 18. Even in this case, when the coating film 18 is irradiated with the excitation light L1 from the other surface side of the metal nanoparticle installation part 8, the surface plasmon P is applied to the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9b. Thus, the Raman scattered light from the sample S can be enhanced by the surface plasmon P.
  • the coating film 18 described above is preferably formed of diamond having higher wear resistance and higher refractive index than the metal nanoparticle installation portion 8 made of, for example, quartz.
  • Other materials for forming the coating film 18 may be formed of TiO 2 , Si, Ge, or the like having a higher refractive index than that of the metal nanoparticle placement portion 8, and further formed of a transparent conductive film (ITO). May be.
  • the coating film 18 is formed of a material having higher wear resistance than the metal nanoparticle installation portion 8. As a result, even if the surfaces of the optical devices 17, 5c, 5d are brought into contact with the sample S, they are not easily worn and durability can be improved. Further, in the optical device 17, 5c, 5d in which the metal nanoparticles 9, 9a, 9b are buried in the coating film 18, the coating film 18 is formed of a material having a higher refractive index than the metal nanoparticle installation portion 8. The enhancement rate of Raman scattered light can be improved, high sensitivity can be obtained, and electric field distribution can be easily controlled.
  • an optical device in which metal nanoparticles are embedded in the device main body or the coating film 18 for example, nanoimprint or EB exposure and etching etc. Then, a metal thin film is formed on the recess by plating filling or the like, and the metal thin film other than the recess is removed by a CMP method, ion etching, or the like, so that metal nanoparticles can be formed only in the recess. Further, after the metal nanoparticles are deposited on the surface of the device body by vapor deposition or sputtering, a coating film 18 is formed, and the coating film 18 is polished to expose the metal nanoparticles from the coating film 18. Alternatively, a flat surface of the metal nanoparticles may be formed on the surface of the coating film 18.
  • 16A and 16B are Comparative Example 1, and spherical metal nanoparticles 100 formed of Ag were attached to one surface of a metal nanoparticle installation portion 8 (denoted as a lens in FIG. 16A) made of SiO 2 .
  • the composition (denoted as adherent spherical particles) was used, and the Raman intensity at this time was examined.
  • FIGS. 16A and 16B when the spherical metal nanoparticles 100 were attached to one surface of the metal nanoparticle installation portion 8, the maximum electric field on the analysis surface was 0.7. In Comparative Example 1, it was confirmed that the sensitivity of Raman intensity was low.
  • FIG. 17A and FIG. 17B are comparative examples 2 in which spherical metal nanoparticles 100 formed of Ag are embedded in a metal nanoparticle installation portion 8 (denoted as a lens in FIG. 17A) made of SiO 2 ( It is expressed as embedded spherical particles), and the Raman intensity at this time was examined.
  • a metal nanoparticle installation portion 8 denoted as a lens in FIG. 17A
  • SiO 2 It is expressed as embedded spherical particles
  • Example 1 shows Example 1, in which the flat surface of the hemispherical metal nanoparticles 9a formed of Ag is one surface of the metal nanoparticle installation portion 8 (referred to as a lens in FIG. 18A) made of SiO 2 . Accordingly, the structure in which the metal nanoparticles 9a are embedded in the metal nanoparticle installation portion 8 (denoted as embedded hemispherical particles) is used, and the Raman intensity at this time is examined. As shown in FIGS. 18A and 18B, when the flat surface of the hemispherical metal nanoparticles 9a was embedded in one surface of the metal nanoparticle installation portion 8, the maximum electric field on the analysis surface was 2.0. In Example 1, it was confirmed that the sensitivity of Raman intensity was increased.
  • Example 2 in which the flat surface of the conical metal nanoparticles 9b formed of Ag is the one surface of the metal nanoparticle installation portion 8 (denoted as a lens in FIG. 19A) made of SiO 2 . Accordingly, the structure in which the metal nanoparticles 9b are embedded in the metal nanoparticle installation portion 8 (denoted as embedded cone particles) is examined, and the Raman intensity at this time is examined. As shown in FIGS. 19A and 19B, when the flat surface of the conical metal nanoparticle 9b was embedded in one surface of the metal nanoparticle installation portion 8, the maximum electric field on the analysis surface was 8.0. In Example 2, it was confirmed that the sensitivity of Raman intensity was further increased.
  • Example 3 shows Example 3, in which a flat surface of conical metal nanoparticles 9b formed of Ag is formed on a coating film 18 (denoted as a lens in FIG. 20A) made of high refractive index diamond.
  • the metal nanoparticles 9b are embedded in the coating film 18 (denoted as embedded cone particles in a high refractive index material), and the Raman intensity at this time was examined.
  • FIG. 20A and FIG. 20B when the flat surface of the conical metal nanoparticles 9b was embedded in one surface of the coating film 18, the maximum electric field on the analysis surface was 10.3. In such Example 3, it was confirmed that the sensitivity of the Raman intensity was further increased.
  • the convex lens-shaped optical device 5 is provided, and the piezo control analyzing apparatus 1
  • the optical device 25 having the configuration of the present invention may be applied to a cantilever type analyzer 21 as shown in FIG. 21A.
  • this analyzer 21 includes an optical device 25 in which a triangular pyramid-shaped device body 6 whose apex protrudes toward the sample S is supported by a cantilever 26 (denoted as Si cantilever in FIG. 21A).
  • the excitation light L1 can be irradiated from the other surface of the device body 6 toward the apex.
  • the analyzer 21 irradiates the other surface of the device body 6 with control light (gap control light) from an LD (laser diode) 22 disposed obliquely above the optical device 25 and reflects it on the device body 6.
  • the control light is detected by a four-divided PD (photodiode) 23, and the light detection outputs from the four light-receiving portions of the four-divided PD 23 are compared, and these are kept in a constant state. It is comprised so that the space
  • one or a plurality of hemispherical metal nanoparticles 9 bulge the curved surface at the apex and the side facing the sample S of the device main body 6 with a predetermined interval.
  • the surface plasmon P can be excited on the proximity surface adjacent to the sample S of the metal nanoparticles 9 by being irradiated with the excitation light L1.
  • the surface plasmon P is excited on the proximity surface close to the sample S of the metal nanoparticle 9 by forming a flat surface on the metal nanoparticle 9 as in the above-described embodiment.
  • the Raman scattered light from the sample S can be surely enhanced by the surface plasmon P, and the sensitivity of the surface enhanced Raman scattered light L3 can be improved as compared with the prior art.
  • the molecular structure in the depth direction z of the sample S can be obtained by focusing the excitation light L1 near the interface between the metal nanoparticle 9 and the sample S by the objective lens 4. It can be measured with high depth resolution.
  • FIG. 22A is a schematic view showing an optical device 25a according to another embodiment provided with a cantilever 26.
  • this optical device 25a has a device main body 28 formed in a trapezoidal cross section, and has a configuration in which conical metal nanoparticles 9a are buried on one surface close to the sample S.
  • the metal nanoparticle 9a is embedded in the device body 28 with a flat surface coinciding with one surface of the device body 28, and the flat surface exposed from one surface of the device body 28 becomes a proximity surface close to the sample S. obtain.
  • the surface plasmon P is excited on the flat surface of the metal nanoparticle 9a, and the Raman scattered light of the sample S can be enhanced by the electric field enhancement effect of the surface plasmon P.
  • the objective lens 4 is used to focus the excitation light L1 in the vicinity of the interface between the metal nanoparticles 9a and the sample S, thereby increasing the molecular structure in the depth direction z of the sample S to a high depth. It can be measured with resolution.
  • FIG. 21B shows a tuning fork type analyzing device 31 according to another embodiment, which is an optical device comprising a fiber-like device body.
  • the optical device 33 is fixed to the tuning fork 32.
  • the analyzer 31 can control the interval between the one end surface of the optical device 33 and the sample S to a constant interval of 1 [nm] or less by maintaining the vibration frequency of the tuning fork 32 at the resonance frequency.
  • the excitation light L1 is placed near the interface between the metal nanoparticles placed at the tip of the device body and the sample S by the objective lens 4 installed in the fiber-like device body.
  • the molecular structure in the depth direction z of the sample S can be measured with high depth resolution.
  • hemispherical single or a plurality of metal nanoparticles 9 are regularly arranged on one end face as necessary, and the excitation light L1 from the other end face.
  • the surface plasmon P is excited on the proximity surface of the metal nanoparticle 9 that is close to the sample S, and the Raman scattered light of the sample S can be enhanced, and the same effect as in the above-described embodiment can be obtained. be able to.
  • FIG. 22B is a schematic view showing a fiber-like optical device 33 provided with buried metal nanoparticles 9a.
  • this fiber-shaped optical device 33 is formed in a columnar shape, has a device body with an objective lens 4 inside, and has conical metal nanoparticles 9a on one surface close to the sample S.
  • the configuration is provided.
  • the metal nanoparticles 9a are embedded in the device body such that the flat surface coincides with one surface of the device body, and the exposed flat surface can be a proximity surface close to the sample S.
  • the surface plasmon P is excited on the flat surface of the metal nanoparticle 9a, and the Raman scattered light of the sample S can be enhanced by the electric field enhancement effect of the surface plasmon P.
  • FIG. 21C shows a tuning fork type analyzing apparatus 41 according to another embodiment.
  • a convex lens-shaped optical device 43 is provided, and a waveguide 42 is fixed to the tuning fork 32.
  • the analyzer 41 maintains the vibration frequency of the tuning fork 32 at the resonance frequency, thereby reducing the distance between one end surface of the optical device 43 provided at the tip of the waveguide 42 and the sample S to 1 [nm] or less. Can be controlled at regular intervals.
  • the shape of the optical device 43 is a convex lens shape at the tip, and the excitation light L1 is focused in the vicinity of the interface between the metal nanoparticles and the sample S.
  • the molecular structure in the depth direction z can be measured with high depth resolution.
  • hemispherical single or plural metal nanoparticles 9 are regularly arranged on one side as necessary, and from the waveguide 42 to the other side.
  • the excitation light L1 is incident toward the side, the surface plasmon P is excited on the proximity surface of the metal nanoparticle 9 that is close to the sample S, and the Raman scattered light of the sample S can be enhanced. The same effect as the form can be obtained.
  • FIG. 22C is a schematic diagram showing a waveguide thin film type optical device 44 having another configuration.
  • this waveguide thin film type optical device 44 has a device body formed in a columnar shape, and has a configuration in which conical metal nanoparticles 9a are provided on one surface close to the sample S.
  • the metal nanoparticles 9a are embedded in the device body so that the flat surface coincides with one surface of the device body, and the exposed flat surface can be a proximity surface close to the sample S.
  • the surface plasmon P is excited on the flat surface of the metal nanoparticle 9a, and the Raman scattered light of the sample S can be enhanced by the electric field of the surface plasmon P.
  • the molecular structure in the depth direction z of the sample S is obtained by focusing the excitation light L1 near the interface between the metal nanoparticle 9a and the sample S by the objective lens 4 provided outside. Can be measured with high depth resolution.
  • each optical device may be a configuration in which a coating film is provided as in the configuration of FIG.
  • the present invention is not limited to this, and the objective lens 4 is provided by providing a focus moving means.
  • the focal point of the objective lens 4 may be freely moved in the depth direction z of the sample S by moving the sample S.
  • the analyzer 1 of the present invention as shown in FIG. 1 is used for a catalytic reaction used in fuel cells, Li ion batteries, plating, etc. It can also be used for analysis. Further, the analyzer 1 can also be used for structural analysis of thin film devices such as solar cells, EL elements, and liquid crystal displays. Further, the analyzer 1 can measure the molecular structure and distribution of a thin film having a sub-nanometer thickness, and can be used, for example, for analysis of a protective film or a lubricating film of a magnetic disk medium (HDD: Hard Disc Drive). Can do.
  • HDD Hard Disc Drive
  • FIG. 23 is a graph showing an analysis result obtained by analyzing a protective film of a magnetic disk medium using the analyzer 1 of the present invention shown in FIG.
  • the protective film diamond-like carbon (DLC) film
  • the analyzer 1 of the present invention As shown in FIG.
  • the Raman spectrum of was observed well.
  • FIG. 23C shows a histogram of the G band intensity that can be measured by the analyzer 1.
  • FIG. 23B is a Raman spectrum observed by an analyzer that does not have the optical device of the present invention, and it can be confirmed that the D band and G band cannot be specified as in the case of using the analyzer 1 of the present invention. It was.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

Proposed are an optical device and an analysis apparatus which are capable of reliably enhancing Raman scattered light from a sample by a surface plasmon and improving the sensitivity of surface enhanced Raman scattered light compared to conventional ones. In this optical device (5), a surface plasmon (P) can be excited on the proximity surface in proximity to a sample (S) of a metallic nanoparticle (9) by forming a flat surface in the metallic nanoparticle (9), thereby making it possible to reliably enhance Raman scattered light from the sample (S) by the surface plasmon (P) and improve the sensitivity of surface enhanced Raman scattered light (L3) compared to conventional ones. Further, the molecular structure in the depth direction (z) of the sample (S) can be measured with high depth resolution by providing the focus of excitation light (L1) in the vicinity of an interface between the metallic nanoparticle (9) and the sample (S) by an objective lens (4).

Description

光学デバイスおよび分析装置Optical device and analyzer
 本発明は光学デバイスおよび分析装置に関し、例えば表面増強ラマン散乱光を測定して試料分析を行う分析装置に適用して好適なものである。 The present invention relates to an optical device and an analysis apparatus, and is suitable for application to an analysis apparatus that performs sample analysis by measuring surface-enhanced Raman scattered light, for example.
 表面増強ラマン散乱(以下、SERS(Surface Enhanced Raman Scattering)という)は、金属表面に励起された表面プラズモンによる電界により、金属表面に存在する分子のラマン散乱光の強度が数桁増強される現象である。表面プラズモンとは、金属に光を照射したときに励起される金属中の自由電子の粗密波である。このようなSERSは、試料表面近傍の測定方法に応用されており、ラマン散乱光の測定感度を約2桁以上上昇させることができる表面増強ラマン分光法として提案されている。 Surface-enhanced Raman scattering (hereinafter referred to as SERS (Surface Enhanced Raman Scattering)) is a phenomenon in which the intensity of Raman scattered light of molecules existing on a metal surface is enhanced by several orders of magnitude by an electric field generated by surface plasmons excited on the metal surface. is there. The surface plasmon is a close-packed wave of free electrons in the metal that is excited when the metal is irradiated with light. Such SERS has been applied to a measurement method in the vicinity of a sample surface, and has been proposed as a surface-enhanced Raman spectroscopy that can increase the measurement sensitivity of Raman scattered light by about two orders of magnitude or more.
 このような表面増強ラマン分光法を用いた分析装置としては、特開2008-281530号公報(特許文献1)がある。特許文献1では、球状に形成された複数の金属粒子がプローブの内部に分散し、プローブの表面に複数の金属粒子が露出した構成を有している。このようなプローブを用いた分析装置は、プローブ先端部を試料に近接させた状態で、当該プローブに入射光を入射し、当該入射光によって表面プラズモンの電界を励起させて試料から表面増強ラマン散乱光を測定し得るものである。 An analyzer using such surface-enhanced Raman spectroscopy is disclosed in Japanese Patent Application Laid-Open No. 2008-281530 (Patent Document 1). In Patent Document 1, a plurality of metal particles formed in a spherical shape are dispersed inside the probe, and the plurality of metal particles are exposed on the surface of the probe. An analyzer using such a probe makes incident light incident on the probe with the probe tip close to the sample, and excites the electric field of the surface plasmon by the incident light to cause surface-enhanced Raman scattering from the sample. It can measure light.
特開2008-281530号公報JP 2008-281530 A
 しかしながら、かかる構成でなる従来の分析装置では、プローブに表面プラズモンが励起されているものの、表面プラズモンによって試料からのラマン散乱光を十分に増強できていなかったという問題があった。 However, the conventional analyzer having such a configuration has a problem that although the surface plasmon is excited on the probe, the Raman scattered light from the sample cannot be sufficiently enhanced by the surface plasmon.
 そこで、本発明は以上の点を考慮してなされたもので、試料からのラマン散乱光を表面プラズモンにより従来よりも確実に増強し得る光学デバイスおよび分析装置を提案することを目的とする。 Therefore, the present invention has been made in consideration of the above points, and an object of the present invention is to propose an optical device and an analysis apparatus that can surely enhance Raman scattered light from a sample by surface plasmons as compared with the conventional case.
 本発明の請求項1における光学デバイスでは、励起光が透過可能なデバイス本体と、前記デバイス本体の一面に表面が露出し、平坦面が形成された1つまたは複数の金属ナノ粒子とを備え、前記金属ナノ粒子を試料に近接させ、前記デバイス本体の他面から前記励起光が入射されると、前記金属ナノ粒子の前記試料に近接させた近接面に表面プラズモンが励起し、前記表面プラズモンにより前記試料からのラマン散乱光を増強させて表面増強ラマン散乱光を生成することを特徴とする。 An optical device according to claim 1 of the present invention includes a device body that is capable of transmitting excitation light, and one or more metal nanoparticles having a surface exposed on one surface of the device body and having a flat surface formed thereon, When the metal nanoparticles are brought close to a sample and the excitation light is incident from the other surface of the device body, surface plasmons are excited on the proximity surface of the metal nanoparticles that are brought close to the sample, and the surface plasmons The surface-enhanced Raman scattered light is generated by enhancing the Raman scattered light from the sample.
 また、本発明の請求項14における分析装置では、請求項1~13のうちいずれかの光学デバイスと、光源から発した励起光を、前記光学デバイスを介し試料に照射し、前記励起光を前記試料に照射することにより該試料から発した表面増強ラマン散乱光を撮像手段まで導く導光手段とを備えることを特徴とする。 In the analyzer according to claim 14 of the present invention, the sample is irradiated with the optical device according to any one of claims 1 to 13 and the excitation light emitted from the light source via the optical device, and the excitation light is applied to the sample. And a light guide unit that guides the surface-enhanced Raman scattered light emitted from the sample to the imaging unit by irradiating the sample.
 また、請求項15における分析装置では、前記光源から発した励起光を集光して前記光学デバイスを介し前記試料に照射する対物レンズを備え、前記対物レンズの焦点近傍の電界勾配を前記表面プラズモンにより増強させることを特徴とする。 The analyzer according to claim 15 further includes an objective lens that collects the excitation light emitted from the light source and irradiates the sample through the optical device, and the electric field gradient in the vicinity of the focal point of the objective lens is the surface plasmon. It is characterized by strengthening.
 本発明の請求項1記載の光学デバイスおよび請求項14記載の分析装置によれば、金属ナノ粒子に平坦面を形成したことにより、金属ナノ粒子の試料に近接した近接面に表面プラズモンを励起させることができ、かくして試料からのラマン散乱光を表面プラズモンにより確実に増強し得、従来よりも表面増強ラマン散乱光の感度を向上し得る。 According to the optical device according to claim 1 and the analyzer according to claim 14 of the present invention, surface plasmons are excited on a proximity surface close to the sample of metal nanoparticles by forming a flat surface on the metal nanoparticles. Thus, the Raman scattered light from the sample can be surely enhanced by the surface plasmon, and the sensitivity of the surface enhanced Raman scattered light can be improved as compared with the prior art.
 また、請求項15における分析装置によれば、対物レンズの焦点近傍の電界勾配を表面プラズモンにより増強させることができ、試料の深さ方向に対する深さ分解能を向上させることができる。 Further, according to the analyzer of the fifteenth aspect, the electric field gradient near the focal point of the objective lens can be enhanced by the surface plasmon, and the depth resolution in the depth direction of the sample can be improved.
本発明の分析装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of the analyzer of this invention. 光学デバイスの詳細構成を示す概略図である。It is the schematic which shows the detailed structure of an optical device. 実際に作製した光学デバイスの構成を示す写真と、金属ナノ粒子設置部の一面の構成を示すSEM像である。It is the photograph which shows the structure of the optical device actually produced, and the SEM image which shows the structure of the one surface of a metal nanoparticle installation part. 図4Aは、半球状の金属ナノ粒子を試料表面に対して点接触させたときの表面プラズモンの励起状態を示す概略図であり、図4Bは、球状の金属ナノ粒子を用いた際の表面プラズモンの励起状態を示す概略図である。FIG. 4A is a schematic diagram showing an excited state of surface plasmons when hemispherical metal nanoparticles are brought into point contact with the sample surface, and FIG. 4B shows surface plasmons when spherical metal nanoparticles are used. It is the schematic which shows the excited state of. 半球状の金属ナノ粒子を試料表面に対して面接触させたときの表面プラズモンの励起状態を示す概略図である。It is the schematic which shows the excitation state of a surface plasmon when hemispherical metal nanoparticles are surface-contacted with the sample surface. 金属ナノ粒子の直径と、表面増強ラマン散乱光のラマン強度との関係を示すグラフである。It is a graph which shows the relationship between the diameter of a metal nanoparticle, and the Raman intensity of surface enhancement Raman scattered light. 図7Aは、光学デバイスを適用したときに深さ分解能が向上する原理の説明に供する概略図であり、図7Bは、光学デバイスの表面からの表面プラズモンの電界勾配を示すグラフである。FIG. 7A is a schematic diagram for explaining the principle that the depth resolution is improved when the optical device is applied, and FIG. 7B is a graph showing the electric field gradient of the surface plasmon from the surface of the optical device. 表面プラズモンの電界によって増強された励起光電界と、増強前の励起光電界を示す概略図である。It is the schematic which shows the excitation light electric field enhanced by the electric field of surface plasmon, and the excitation light electric field before enhancement. 励起光の焦点位置を移動した際の励起光電界を示す概略図である。It is the schematic which shows the excitation light electric field at the time of moving the focus position of excitation light. 分析装置を用いてHOPGの分子構造を分析したときの説明に供する概略図である。It is the schematic where it uses for description when the molecular structure of HOPG is analyzed using the analyzer. HOPGのGバンドのピーク強度の深さ方向に沿った断面プロファイルの写真と、深さ方向に沿って得られたHOPGのGバンド強度の測定結果を示すグラフである。It is a graph which shows the measurement result of the G band intensity of the HOPG obtained along the photograph of the cross-sectional profile along the depth direction of the peak intensity of the HOPG G band. 曲面が金属ナノ粒子設置部から膨出した金属ナノ粒子と、金属ナノ粒子設置部に埋め込まれた金属ナノ粒子の構成を示す概略図である。It is the schematic which shows the structure of the metal nanoparticle which the curved surface swelled from the metal nanoparticle installation part, and the metal nanoparticle embedded in the metal nanoparticle installation part. 半球状または円錐状でなる複数の金属ナノ粒子が金属ナノ粒子設置部に埋め込まれた構成を示す概略図である。It is the schematic which shows the structure by which the several metal nanoparticle which becomes hemispherical or conical shape was embedded in the metal nanoparticle installation part. 金属ナノ粒子が被覆膜で覆われた構成を示す概略図である。It is the schematic which shows the structure by which the metal nanoparticle was covered with the coating film. 半球状または円錐状の金属ナノ粒子を被覆膜で覆った構成を示す概略図である。It is the schematic which shows the structure which covered the hemispherical or conical metal nanoparticle with the coating film. 付着球状粒子のラマン強度を示す写真とグラフである。It is the photograph and graph which show the Raman intensity | strength of an adhesion spherical particle. 埋め込み球状粒子のラマン強度を示す写真とグラフである。It is the photograph and graph which show the Raman intensity | strength of an embedding spherical particle. 埋め込み半球粒子のラマン強度を示す写真とグラフである。It is the photograph and graph which show the Raman intensity of an embedding hemisphere particle. 埋め込み円錐粒子のラマン強度を示す写真とグラフである。It is the photograph and graph which show the Raman intensity | strength of an embedded cone particle. 高屈折率材中埋め込み円錐粒子のラマン強度を示す写真とグラフである。It is the photograph and graph which show the Raman intensity | strength of the conical particle embedded in a high refractive index material. 他の実施の形態による分析装置の構成を示す概略図である。It is the schematic which shows the structure of the analyzer by other embodiment. 他の実施の形態による光学デバイスの構成を示す概略図である。It is the schematic which shows the structure of the optical device by other embodiment. 磁気ディスク媒体の保護膜の分析結果を示す各種グラフである。It is various graphs which show the analysis result of the protective film of a magnetic disc medium.
 以下図面に基づいて本発明の実施の形態を詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 (1)本発明の分析装置
 図1において1は本発明による分析装置を示し、励起光L1を照射する光源2を有し、光源2から照射された励起光L1がハーフミラー3、対物レンズ4および光学デバイス5を順次介して試料Sに入射し得るように構成されている。光学デバイス5は、光が透過可能なデバイス本体6を有しており、デバイス本体6の一面が分析対象となる試料Sの表面(単に、試料表面とも呼ぶ)S1に近接(接触、および近傍に配置)された状態で、デバイス本体6の他面から励起光L1が入射され得る。
(1) Analytical apparatus of the present invention In FIG. 1, reference numeral 1 denotes an analytical apparatus according to the present invention, which has a light source 2 that emits excitation light L1, and the excitation light L1 emitted from the light source 2 is a half mirror 3 and an objective lens 4. And it is comprised so that it can inject into the sample S through the optical device 5 sequentially. The optical device 5 has a device body 6 that can transmit light, and one surface of the device body 6 is close to (in contact with and close to) the surface S1 of the sample S to be analyzed (also simply referred to as the sample surface). In an arranged state, the excitation light L1 can be incident from the other surface of the device body 6.
 光学デバイス5では、デバイス本体6の他面から入射された励起光L1が透過し、当該励起光L1を試料Sに照射および集光し得るようになされている。光学デバイス5は、デバイス本体6の一面に複数の金属ナノ粒子(後述する)が配置されており、当該金属ナノ粒子の試料表面S1に近接した近接面に表面プラズモンが励起し得る。この際、試料Sからは、励起光L1によりラマン散乱光が生じ、光学デバイス5により励起された表面プラズモンPによる電界により、試料Sに存在する分子のラマン散乱光の強度が数桁増強されるSERS(表面増強ラマン散乱)が発生し、表面増強ラマン散乱光L3を発する。 In the optical device 5, the excitation light L1 incident from the other surface of the device body 6 is transmitted, and the sample S can be irradiated and condensed with the excitation light L1. In the optical device 5, a plurality of metal nanoparticles (described later) are arranged on one surface of the device body 6, and surface plasmons can be excited on a proximity surface of the metal nanoparticles close to the sample surface S 1. At this time, Raman scattered light is generated from the sample S by the excitation light L1, and the intensity of the Raman scattered light of molecules existing in the sample S is increased by several orders of magnitude due to the electric field generated by the surface plasmon P excited by the optical device 5. SERS (surface enhanced Raman scattering) occurs, and surface enhanced Raman scattered light L3 is emitted.
 ここで、この分析装置1には、ピンホール13、光学フィルタ14および撮像手段15の結像光学系が設けられており、これら結像光学系と光源2とがハーフミラー3を中心に直交して配置されている。分析装置1は、試料Sにて発生した表面増強ラマン散乱光L3を含む反射光L2を、対物レンズ4を介してハーフミラー3に照射させ、当該ハーフミラー3によって表面増強ラマン散乱光L3を反射させてピンホール13に導き、光学フィルタ14を介してCCD等の撮像手段15まで到達させ得る。なお、結像光学系では、ピンホール13を通過した光を光学フィルタ14にてフィルタリングして反射光L2の中から表面増強ラマン散乱光L3だけを撮像手段15に到達させ得る。このようにして、分析装置1は、撮像手段15にて得られた画像からラマンスペクトルを分光測定し、ラマンスペクトルの強度から試料Sの分子構造を特定し得るようになされている。 Here, the analyzer 1 is provided with an imaging optical system of a pinhole 13, an optical filter 14, and an imaging means 15, and the imaging optical system and the light source 2 are orthogonal to each other about the half mirror 3. Are arranged. The analyzer 1 irradiates the half mirror 3 through the objective lens 4 with the reflected light L2 including the surface enhanced Raman scattered light L3 generated in the sample S, and reflects the surface enhanced Raman scattered light L3 by the half mirror 3. Thus, it can be guided to the pinhole 13 and can reach the imaging means 15 such as a CCD via the optical filter 14. In the imaging optical system, the light that has passed through the pinhole 13 can be filtered by the optical filter 14 so that only the surface-enhanced Raman scattered light L3 from the reflected light L2 can reach the imaging means 15. In this way, the analyzing apparatus 1 is capable of spectroscopically measuring the Raman spectrum from the image obtained by the imaging means 15 and specifying the molecular structure of the sample S from the intensity of the Raman spectrum.
 かかる構成に加えて、この分析装置1は、試料Sが載置される基台12を備えており、当該基台12が3軸方向に移動することで試料Sに対して照射される励起光L1の焦点Fを試料Sの深さ方向zおよび面方向(深さ方向zと直交するx軸方向およびy軸方向)に位置調整し得るようになされている。実際上、この基台12は、面方向のx軸方向と、このx軸方向と直交する同じく面方向のy軸方向とに移動する第1ピエゾステージ10と、x軸方向およびy軸方向に直交する深さ方向zに移動する第2ピエゾステージ11とを有し、これら第1ピエゾステージ10および第2ピエゾステージ11により焦点位置を面方向および深さ方向zにÅ(オングストローム)単位で位置調整し得るようになされている。 In addition to this configuration, the analyzer 1 includes a base 12 on which the sample S is placed, and excitation light irradiated on the sample S when the base 12 moves in three axial directions. The focal point F of L1 can be adjusted in the depth direction z and the surface direction of the sample S (the x-axis direction and the y-axis direction orthogonal to the depth direction z). In practice, the base 12 includes a first piezo stage 10 that moves in the x-axis direction in the plane direction and the y-axis direction in the same plane direction orthogonal to the x-axis direction, and in the x-axis direction and the y-axis direction. A second piezo stage 11 that moves in the orthogonal depth direction z, and the first and second piezo stages 10 and 11 position the focal position in angstroms in the surface direction and the depth direction z. It can be adjusted.
 なお、この実施の形態の場合においては、試料Sが載置される基台12を3軸方向に移動させることにより、対物レンズ4により集光した励起光L1の焦点Fを試料Sの面方向および深さ方向zに移動させるようにした場合について述べたが、本発明はこれに限らず、試料Sが載置される基台を固定し、対物レンズ4を面方向および深さ方向zに移動可能に構成し、対物レンズ4により集光した励起光L1の焦点Fを試料Sの面方向および深さ方向zに移動させるようにしてもよい。 In the case of this embodiment, the focal point F of the excitation light L1 collected by the objective lens 4 is changed in the plane direction of the sample S by moving the base 12 on which the sample S is placed in three axes. Although the present invention is not limited to this, the base on which the sample S is placed is fixed, and the objective lens 4 is moved in the surface direction and the depth direction z. It may be configured to be movable, and the focal point F of the excitation light L1 collected by the objective lens 4 may be moved in the surface direction and the depth direction z of the sample S.
 ここで、対物レンズ4により絞られた励起光L1の電界(以下、励起光電界と呼ぶ)は、表面プラズモンPにより増強され、例えば焦点Fが試料S内にある場合、焦点位置で最大となり、かつ焦点位置を中心に急峻な電界勾配となり得る(後述する)。そこで、この分析装置1では、励起光L1の焦点位置を試料Sの深さ方向zに移動し、例えば試料S内の所定の界面S2に焦点位置を合わせることで、焦点位置(界面S2)にて最大の表面増強ラマン散乱光L3を得、界面S2から得られた表面増強ラマン散乱光L3からラマンスペクトルを分光測定し、ラマンスペクトルの強度から試料S中の界面S2の分子構造を特定し得るようになされている。 Here, the electric field of the excitation light L1 narrowed down by the objective lens 4 (hereinafter referred to as the excitation light electric field) is enhanced by the surface plasmon P. For example, when the focal point F is in the sample S, the electric field becomes maximum at the focal position. In addition, a steep electric field gradient centering on the focal position can be obtained (described later). Therefore, in this analyzer 1, the focal position of the excitation light L1 is moved in the depth direction z of the sample S, and the focal position is aligned with the predetermined interface S2 in the sample S, for example, to the focal position (interface S2). The largest surface-enhanced Raman scattered light L3 is obtained, the Raman spectrum is spectroscopically measured from the surface-enhanced Raman scattered light L3 obtained from the interface S2, and the molecular structure of the interface S2 in the sample S can be identified from the intensity of the Raman spectrum. It is made like that.
 実際上、この光学デバイス5を構成するデバイス本体6は、他面に励起光L1が照射される基体7と、基体7の一面に配置された金属ナノ粒子設置部8とを有する。基体7は、例えば石英等の透明部材からなり、厚みを有した円盤状に形成された構成を有するとともに、平坦な一面に同じく石英等の透明部材からなる金属ナノ粒子設置部8を有する。 Actually, the device main body 6 constituting the optical device 5 includes a base body 7 on which the other surface is irradiated with the excitation light L1, and a metal nanoparticle installation portion 8 disposed on one surface of the base body 7. The substrate 7 is made of, for example, a transparent member such as quartz and has a structure formed in a disk shape having a thickness, and has a metal nanoparticle installation portion 8 made of a transparent member such as quartz on a flat surface.
 図2に示すように、金属ナノ粒子設置部8は、他面8aと対向する一面8bが湾曲状に形成されており、当該一面8bに沿って複数の金属ナノ粒子9が設置され、一面8bから膨出した金属ナノ粒子9が試料表面S1に近接し得るように配置され得る。実際上、金属ナノ粒子9は、Ag、Au、Cu、Pd、Ptのいずれかからなり、曲面を有した半球状に形成されている。金属ナノ粒子9は、金属ナノ粒子設置部8の一面8bに平坦面が面接触にて固着され、試料表面S1に曲面が近接するように配置され得る。これにより金属ナノ粒子9は、金属ナノ粒子設置部8の他面8a側から一面8b側へ向けて励起光L1が照射されると、試料表面S1の近傍に表面プラズモンが励起し、この表面プラズモンの電界(単に、プラズモン電界とも呼ぶ)により試料Sから表面増強ラマン散乱光L3を得る。 As shown in FIG. 2, the metal nanoparticle installation part 8 has a surface 8b facing the other surface 8a formed in a curved shape, and a plurality of metal nanoparticles 9 are installed along the surface 8b. The metal nanoparticles 9 swelled from can be arranged so as to be close to the sample surface S1. In practice, the metal nanoparticles 9 are made of any of Ag, Au, Cu, Pd, and Pt, and are formed in a hemispherical shape having a curved surface. The metal nanoparticles 9 can be arranged such that a flat surface is fixed to the one surface 8b of the metal nanoparticle placement portion 8 by surface contact and a curved surface is close to the sample surface S1. As a result, when the metal nanoparticle 9 is irradiated with the excitation light L1 from the other surface 8a side to the one surface 8b side of the metal nanoparticle installation portion 8, the surface plasmon is excited in the vicinity of the sample surface S1, and this surface plasmon Surface-enhanced Raman scattered light L3 is obtained from the sample S by the electric field (also simply referred to as plasmon electric field).
 ここで、図3Aは、実際に作製した石英からなる光学デバイス5を示す写真であり、図3Bは光学デバイス5における金属ナノ粒子設置部8の一面8bのSEM像である。図3Bに示すように、金属ナノ粒子設置部8の一面8bには、微粒子状の複数の金属ナノ粒子9が、必要に応じ所定間隔を空けて配置され得る。図3Bに示すような金属ナノ粒子9は、例えば、スパッタ法や金属めっき法、蒸着法、CVD(Chemical Vapor Deposition)法等により、石英等の透明部材でなる金属ナノ粒子設置部8の一面8bに複数形成し得る。 Here, FIG. 3A is a photograph showing the optical device 5 made of quartz actually produced, and FIG. 3B is an SEM image of one surface 8b of the metal nanoparticle installation portion 8 in the optical device 5. As shown in FIG. 3B, a plurality of fine metal nanoparticles 9 can be arranged on the one surface 8b of the metal nanoparticle installation portion 8 at predetermined intervals as needed. The metal nanoparticles 9 as shown in FIG. 3B are formed on one surface 8b of the metal nanoparticle installation portion 8 made of a transparent member such as quartz by, for example, sputtering, metal plating, vapor deposition, CVD (Chemical Vapor Deposition), or the like. More than one can be formed.
 次に、表面プラズモンの励起について、図4Aに示すように半球状の金属ナノ粒子9を用いた場合と、図4Bに示すように球状の金属ナノ粒子100を用いた場合と比較して説明する。本発明の光学デバイス5に設けた金属ナノ粒子9は、図4Aに示すように、球状の根元部分を切って取り除いた半球状でなり、平坦な平坦面が金属ナノ粒子設置部8の一面8bに固着されている。金属ナノ粒子9は、曲面を試料表面S1に近接させた状態で金属ナノ粒子設置部8の他面8a側から試料Sに向けて電界振動方向に振動する励起光L1が垂直に入射されると、試料表面S1と近接した近接面に表面プラズモンPが励起し、この表面プラズモンPの電界によって、試料Sの分子からのラマン散乱光の強度が数桁増強されるSERS(表面増強ラマン散乱)が発生し、表面増強ラマン散乱光L3が得られる。 Next, the excitation of surface plasmons will be described in comparison with the case of using hemispherical metal nanoparticles 9 as shown in FIG. 4A and the case of using spherical metal nanoparticles 100 as shown in FIG. 4B. . As shown in FIG. 4A, the metal nanoparticle 9 provided in the optical device 5 of the present invention has a hemispherical shape obtained by cutting off a spherical base portion, and a flat flat surface is one surface 8b of the metal nanoparticle installation portion 8. It is fixed to. When the metal nanoparticle 9 is perpendicularly incident with excitation light L1 that vibrates in the direction of electric field oscillation from the other surface 8a side of the metal nanoparticle installation portion 8 toward the sample S in a state where the curved surface is close to the sample surface S1 Then, surface plasmon P is excited in a proximity surface close to sample surface S1, and SERS (surface enhanced Raman scattering) in which the intensity of Raman scattered light from molecules of sample S is enhanced by several orders of magnitude by the electric field of surface plasmon P. And surface enhanced Raman scattered light L3 is obtained.
 これに対し、図4Bに示すような比較例となる球状の金属ナノ粒子100では、図4Aと同様に金属ナノ粒子設置部(図示せず)の他面側から試料Sに向けて励起光L1が垂直に入射されても、試料表面S1と近接した近接面に表面プラズモンPが励起せず、電界振動方向に相当する金属ナノ粒子100の両側面に表面プラズモンPが励起してしまい、試料Sの分子からのラマン散乱光が増強されずに表面増強ラマン散乱光が得られない。また金属ナノ粒子100の場合は、プラズモン共鳴を起こすために隣に別の金属ナノ粒子100が存在する必要があるが、本発明の金属ナノ粒子9では隣接する金属ナノ粒子9が不要なため、孤立した金属ナノ粒子9であっても試料Sからの表面増強ラマン散乱光L3が得られる。従って、金属ナノ粒子9の直径に相当する高い空間分解能を実現することができる。 On the other hand, in the spherical metal nanoparticle 100 as a comparative example as shown in FIG. 4B, the excitation light L1 is directed toward the sample S from the other surface side of the metal nanoparticle installation portion (not shown) as in FIG. 4A. Even if is incident perpendicularly, the surface plasmon P is not excited on the adjacent surface close to the sample surface S1, and the surface plasmon P is excited on both side surfaces of the metal nanoparticle 100 corresponding to the electric field vibration direction. The surface-enhanced Raman scattering light cannot be obtained without enhancing the Raman scattering light from the molecules. In the case of the metal nanoparticles 100, it is necessary to have another metal nanoparticle 100 next to cause plasmon resonance, but the metal nanoparticle 9 of the present invention does not require the adjacent metal nanoparticle 9, Even with the isolated metal nanoparticles 9, surface enhanced Raman scattered light L3 from the sample S can be obtained. Accordingly, a high spatial resolution corresponding to the diameter of the metal nanoparticles 9 can be realized.
 このように、本発明による光学デバイス5では、金属ナノ粒子設置部8の一面8bに、平坦面を有した半球状の金属ナノ粒子9を、一面8bから膨出させるように設けたことで、金属ナノ粒子9の試料Sと近接した曲面頂点(近接面)に表面プラズモンPを確実に励起させることができ、かくして試料表面S1や試料S内にて励起された表面プラズモンPによってラマン散乱光の強度を数桁増強させた表面増強ラマン散乱光L3が得られ、撮像手段15において表面増強ラマン散乱光L3の感度を高めることができる。 Thus, in the optical device 5 according to the present invention, the hemispherical metal nanoparticles 9 having a flat surface are provided on the one surface 8b of the metal nanoparticle installation portion 8 so as to bulge from the one surface 8b. Surface plasmon P can be surely excited at the apex of the curved surface (proximity surface) close to sample S of metal nanoparticle 9 and thus Raman scattered light is excited by sample surface S1 and surface plasmon P excited in sample S. Surface-enhanced Raman scattered light L3 having an intensity increased by several orders of magnitude is obtained, and the sensitivity of the surface-enhanced Raman scattered light L3 can be increased in the imaging means 15.
 さらに、図5に示すように、金属ナノ粒子設置部8の一面8bに平坦面が固着された膨出型の金属ナノ粒子9は、近接面となる曲面頂点を試料表面S1に対し平面で面接触(近接)させた場合も、試料表面S1近傍でプラズモン電界Pが励起され、試料Sからの強い表面増強ラマン光L3を得ることができる。なお、このように金属ナノ粒子9を試料表面S1に対して面接触させた場合(図5)、プラズモン電界の強度は、図4Aに示したように、金属ナノ粒子9を試料表面S1に点接触させた場合に比べ、約3倍になることが分かった。 Further, as shown in FIG. 5, the bulging-type metal nanoparticle 9 having a flat surface fixed to one surface 8b of the metal nanoparticle installation portion 8 has a curved surface vertex that is a proximity surface in a plane with respect to the sample surface S1. Even in the case of contact (proximity), the plasmon electric field P is excited in the vicinity of the sample surface S1, and strong surface-enhanced Raman light L3 from the sample S can be obtained. When the metal nanoparticles 9 are brought into surface contact with the sample surface S1 in this way (FIG. 5), the intensity of the plasmon electric field is such that the metal nanoparticles 9 are spotted on the sample surface S1, as shown in FIG. 4A. It was found to be about 3 times as compared with the case of contact.
 次に、図4Aおよび図5に示した膨出型の金属ナノ粒子9の直径と、表面プラズモンPの電界との関係を調べたところ、図6に示すような結果が得られた。なお、ここで半球状の金属ナノ粒子9の直径としては、球状と仮定したときの直径であり、また、表面プラズモンPの電界の測定位置としては金属ナノ粒子9の曲面頂点とした。このことから金属ナノ粒子9は、直径を5~100[nm]に選定することで、表面プラズモンの電界を増強させることができ、特に直径を16~60[nm]に選定することで更に表面プラズモンの電界を1000倍以上に増強させることができ、これに相当するラマン散乱光の強度を1012倍以上に増幅することから実用上大きな利点となる。なお、金属ナノ粒子設置部8では、このような微細な金属ナノ粒子9は、アイランド状に配置させることが望ましい。 Next, when the relationship between the diameter of the bulging-type metal nanoparticles 9 shown in FIGS. 4A and 5 and the electric field of the surface plasmon P was examined, the results shown in FIG. 6 were obtained. Here, the diameter of the hemispherical metal nanoparticles 9 is a diameter when assuming a spherical shape, and the measurement position of the electric field of the surface plasmon P is the apex of the curved surface of the metal nanoparticles 9. Therefore, the metal nanoparticles 9 can enhance the electric field of the surface plasmon by selecting the diameter of 5 to 100 [nm], and in particular, the surface can be further increased by selecting the diameter of 16 to 60 [nm]. The electric field of plasmon can be increased 1000 times or more, and the corresponding Raman scattered light intensity is amplified 10 12 times or more, which is a great practical advantage. In the metal nanoparticle placement unit 8, it is desirable to arrange such fine metal nanoparticles 9 in an island shape.
 次に、図7Aを用いて、本発明の光学デバイス5を適用したときに深さ方向zの分解能(以下、深さ分解能ともいう)が向上する原理について以下説明する。図7Aは、光学デバイス5の表面からの距離に対する励起光L1の電界(励起光電界)の大きさを計算で求め、この励起光電界の大きさと、光学デバイス5および試料Sの位置関係とを示した概略図である。 Next, the principle of improving the resolution in the depth direction z (hereinafter also referred to as depth resolution) when the optical device 5 of the present invention is applied will be described below with reference to FIG. 7A. In FIG. 7A, the magnitude of the electric field of the excitation light L1 (excitation light electric field) with respect to the distance from the surface of the optical device 5 is calculated, and the magnitude of this excitation light electric field and the positional relationship between the optical device 5 and the sample S are calculated. It is the shown schematic.
 通常、励起光電界は、対物レンズ4によって絞られた焦点位置にて最大となるものの、本発明の光学デバイス5を介さずに励起光L1を試料Sに照射した場合、焦点位置を中心にした励起電界の勾配が非常に小さく(0.1[nm]あたり4×10-8)、深さ分解能はミクロン程度となる。 Normally, the excitation light electric field is maximized at the focal position narrowed down by the objective lens 4, but when the excitation light L1 is irradiated to the sample S without passing through the optical device 5 of the present invention, the focal position is centered. The gradient of the excitation electric field is very small (4 × 10 −8 per 0.1 [nm]), and the depth resolution is about a micron.
 これに対して、図7Aに示すように、金属ナノ粒子9を設けた本発明の光学デバイス5では、試料表面S1と光学デバイス5の表面とを焦点近傍に設置した場合、光学デバイス5の表面の金属ナノ粒子9(例えばAg)近傍での励起光電界E1の電界勾配が、表面プラズモンの電界増強効果により0.1[nm]あたり10-4から10-3へ増加する。表面増強ラマン散乱光L3の強度(ラマン強度)は電界の4乗に比例することが知られているので、0.1[nm]程度の距離の差におけるラマン強度の変化を感度よく捉えることが可能となる。なお、本発明の分析装置1では、試料Sを載置した基台12を移動させることで、深さ方向z(焦点方向)でのラマン強度の変化を測定し得る。 On the other hand, as shown in FIG. 7A, in the optical device 5 of the present invention provided with the metal nanoparticles 9, when the sample surface S1 and the surface of the optical device 5 are installed in the vicinity of the focal point, the surface of the optical device 5 The electric field gradient of the excitation light electric field E1 near the metal nanoparticles 9 (for example, Ag) increases from 10 −4 to 10 −3 per 0.1 [nm] due to the electric field enhancement effect of the surface plasmon. Since it is known that the intensity of the surface-enhanced Raman scattered light L3 (Raman intensity) is proportional to the fourth power of the electric field, it is possible to capture changes in Raman intensity with a difference of about 0.1 [nm] with high sensitivity. Become. In the analyzer 1 of the present invention, the change in Raman intensity in the depth direction z (focal direction) can be measured by moving the base 12 on which the sample S is placed.
 この分析装置1では、図7Bに示すように、励起光波長532nmにおける光学デバイス5の表面からの表面プラズモンPの電界(図7B中、単に「電界」と表記)が急激に減衰することから、深さ方向zでの測定点以外からの信号の影響を少なくできるという利点がある。なお、図7Bにおいて表面プラズモンPの電界の強度が1/eに減少する距離は、3[nm]程度となっているが、これは光学デバイス5の形状によっても変わることから、当該光学デバイス5の形状を、例えば、粒径を大きくするか、逆円錐形等の界面でプラズモン電界の大きな構造とすることで、深さ方向zにおける表面増強ラマン散乱光L3の検出領域を広げることもできる。また、励起光を長波長(例えば532[nm]から1500[nm]、好ましくは785[nm]あるいは1060[nm])としたり、或いは誘電率の異なるAgからAuとしてプラズモン波長を長くしても、深さ方向zにおける表面増強ラマン散乱光L3の検出領域を広げることができる。 In this analyzer 1, as shown in FIG. 7B, the electric field of the surface plasmon P from the surface of the optical device 5 at the excitation light wavelength of 532 nm (simply expressed as “electric field” in FIG. 7B) is rapidly attenuated. There is an advantage that the influence of signals from other than the measurement points in the depth direction z can be reduced. In FIG. 7B, the distance at which the intensity of the electric field of the surface plasmon P is reduced to 1 / e is about 3 [nm], but this also varies depending on the shape of the optical device 5, and therefore the optical device 5 For example, the detection region of the surface-enhanced Raman scattered light L3 in the depth direction z can be widened by increasing the particle size or by forming a structure having a large plasmon electric field at the interface such as an inverted conical shape. Further, the excitation light may be a long wavelength (for example, 532 [nm] to 1500 [nm], preferably 785 [nm] or 1060 [nm]), or the plasmon wavelength may be increased from Ag to Au having a different dielectric constant. In addition, the detection region of the surface enhanced Raman scattered light L3 in the depth direction z can be expanded.
 しかしながら、光学デバイス5の表面から所定距離以上離れた箇所では、撮像手段15による表面増強ラマン散乱光L3の感度が落ちてしまうことから、ラマンスペクトルの増強が得られるのは光学デバイス5の表面から深さ方向zへ100[nm]程度までが好ましい。 However, since the sensitivity of the surface-enhanced Raman scattered light L3 by the imaging means 15 is lowered at a location away from the surface of the optical device 5 by a predetermined distance or more, the enhancement of the Raman spectrum can be obtained from the surface of the optical device 5. Up to about 100 [nm] in the depth direction z is preferable.
 なお、図7Bでは、光学デバイス5の表面に近い位置で表面プラズモンPの電界勾配が最大になっているが、これは1つの金属ナノ粒子9が試料表面S1に点接触していると仮定したときの計算値である。実際には、光学デバイス5の表面に形成された複数の金属ナノ粒子9の粒径のばらつきや、金属ナノ粒子9と試料表面S1との接触隙間のばらつき等により、表面プラズモンPの電界はゆるやかな勾配になっていると推測される(図7B中、点線で示す)。 In FIG. 7B, the electric field gradient of the surface plasmon P is maximized at a position close to the surface of the optical device 5, and this is assumed that one metal nanoparticle 9 is in point contact with the sample surface S1. When calculated. Actually, the electric field of the surface plasmon P is gentle due to variations in the particle size of the plurality of metal nanoparticles 9 formed on the surface of the optical device 5 and variations in the contact gap between the metal nanoparticles 9 and the sample surface S1. It is presumed that the slope is a simple gradient (indicated by a dotted line in FIG. 7B).
 ここで、図8は、本発明の光学デバイス5により励起された表面プラズモンPの電界によって増強された励起光電界(図8中、「増強された電界(ラマン強度)と表記」)E1と、増強前の電界E2とを概略的に示したものである。励起光電界E1は、対物レンズ4により集光した励起光L1の焦点位置(図8中、横軸に「0」と表記)で最大になり、焦点位置を中心に急峻な電界勾配になり焦点Fの前後の電界強度が急激に減少していることから、高い深さ分解能が得られる。 Here, FIG. 8 shows an excitation light electric field (indicated as “enhanced electric field (Raman intensity)” in FIG. 8) E1 enhanced by the electric field of the surface plasmon P excited by the optical device 5 of the present invention, The electric field E2 before the enhancement is schematically shown. The excitation light electric field E1 becomes maximum at the focal position of the excitation light L1 collected by the objective lens 4 (indicated as “0” on the horizontal axis in FIG. 8), and becomes a steep electric field gradient around the focal position. Since the electric field strength before and after F decreases rapidly, a high depth resolution can be obtained.
 図9A~図9Cは、光学デバイス5および試料S間の界面と、励起光L1の焦点位置との位置関係を示すとともに、増強された励起光電界分布を示す概略図である。図9Bに示すように、光学デバイス5および試料S間の界面に、焦点位置が一致したときには、励起光電界E1の強度が最大となる(すなわち、表面増強ラマン散乱光L3の強度が最大となる)。 9A to 9C are schematic diagrams showing the positional relationship between the interface between the optical device 5 and the sample S and the focal position of the excitation light L1, and the enhanced excitation light electric field distribution. As shown in FIG. 9B, when the focal position coincides with the interface between the optical device 5 and the sample S, the intensity of the excitation light electric field E1 becomes maximum (that is, the intensity of the surface enhanced Raman scattered light L3 becomes maximum). ).
 一方、図9Aに示すように、焦点位置が試料Sの外部に移ったときには、表面プラズモンPの電界による増強効果が弱まり、励起光電界E1の強度が減少する(すなわち、表面増強ラマン散乱光L3の強度が減少する)。また、図9Cに示すように、焦点Fの位置が試料Sの内部に移ってゆくに従って、表面プラズモンPの電界による増強効果が弱まってゆき、焦点位置での励起光電界E1の強度が減少してゆく(すなわち、表面増強ラマン散乱光L3の強度が減少してゆく)。しかし電界勾配の変化は少ないので、高い深さ分解能は維持される。 On the other hand, as shown in FIG. 9A, when the focal position moves outside the sample S, the enhancement effect by the electric field of the surface plasmon P is weakened, and the intensity of the excitation light electric field E1 is reduced (that is, the surface enhanced Raman scattered light L3 Decreases in strength). Further, as shown in FIG. 9C, as the position of the focal point F moves into the sample S, the enhancement effect due to the electric field of the surface plasmon P is weakened, and the intensity of the excitation light electric field E1 at the focal point decreases. (That is, the intensity of the surface-enhanced Raman scattered light L3 decreases). However, since the change in the electric field gradient is small, a high depth resolution is maintained.
 分析装置1は、このように焦点位置を深さ方向zへ移動させてゆき、焦点近傍に生じる励起光電界E1の高勾配の強度変化を基に得られた表面増強ラマン散乱光L3のラマンスペクトルを測定し得る。そして、分析装置1は、深さ方向zに沿って得られたこのラマンスペクトルの強度変化を基に試料Sの深さ方向zにおける分子構造の変化を特定し得る。 The analyzer 1 thus moves the focal position in the depth direction z, and the Raman spectrum of the surface-enhanced Raman scattered light L3 obtained based on the high gradient intensity change of the excitation light electric field E1 generated in the vicinity of the focal point. Can be measured. Then, the analyzer 1 can specify the change in the molecular structure in the depth direction z of the sample S based on the change in the intensity of the Raman spectrum obtained along the depth direction z.
 次に、高配向熱分解グラファイト(Highly Oriented Pyrolytic Graphite:HOPG)を試料Sとして用意し、実際に、図1に示した本発明の分析装置1を用いてHOPGの深さ方向zについて分子構造の分析を行った。実際上、この検証試験では、図10に示すように、試料S(HOPG)の表面に金属ナノ粒子9が接触するように金属ナノ粒子設置部8を配置し、励起光L1を金属ナノ粒子設置部8の他面8a側から試料Sに向けて照射した。なお、試料Sとして用いたHOPGは、結晶構造A層とB層とが順次交互に複数層積層した構成を有するものであり(図10では結晶構造A層、B層、およびA層だけ簡潔に表記している)、結晶構造A層とB層との距離を示す格子定数が約0.7[nm]である。 Next, highly oriented pyrolytic graphite (Highly Oriented Pyrolytic Graphite: HOPG) is prepared as a sample S, and the molecular structure of the HOPG in the depth direction z is actually measured using the analyzer 1 of the present invention shown in FIG. Analysis was carried out. Actually, in this verification test, as shown in FIG. 10, the metal nanoparticle installation part 8 is arranged so that the metal nanoparticle 9 comes into contact with the surface of the sample S (HOPG), and the excitation light L1 is installed on the metal nanoparticle. The sample 8 was irradiated from the other surface 8a side of the part 8 toward the sample S. Note that the HOPG used as the sample S has a structure in which a plurality of crystal structure A layers and B layers are alternately stacked one after another (in FIG. 10, only the crystal structure A layer, the B layer, and the A layer are briefly described. The lattice constant indicating the distance between the crystal structure A layer and the B layer is about 0.7 [nm].
 この際、基台12を深さ方向zに移動させることにより、試料Sの外部から内部へと深さ方向zに沿って励起光L1の焦点位置を、例えば0.05[nm](ステージのドリフト補正を行ったときの補正値)ずつずらしていった。そして、このときHOPGから発する表面増強ラマン散乱光L3を分析装置1の撮像手段15によって撮像し、HOPGのGバンドのピーク強度(1582[cm-1])の深さ方向zに沿った断面プロファイルを測定したところ、図11Aに示すような結果が得られた。また、図11Bは、深さ方向zに沿って得られた表面増強ラマン散乱光L3からHOPGのGバンド強度を測定した結果を示すグラフである。 At this time, by moving the base 12 in the depth direction z, the focal position of the excitation light L1 along the depth direction z from the outside to the inside of the sample S is set to, for example, 0.05 [nm] (stage drift correction). The correction value was corrected by one). At this time, the surface-enhanced Raman scattered light L3 emitted from the HOPG is imaged by the imaging means 15 of the analyzer 1, and the cross-sectional profile along the depth direction z of the peak intensity (1582 [cm −1 ]) of the HOPG G band. Was measured, and the result as shown in FIG. 11A was obtained. FIG. 11B is a graph showing a result of measuring the G band intensity of HOPG from the surface enhanced Raman scattered light L3 obtained along the depth direction z.
 図11Aおよび図11Bにおいて、(a)は試料Sの外部位置を示し、(b)は試料Sの表面(最表面)位置を示し、(c)は試料Sの内部位置を示す。図11Aおよび図11Bでは、HOPGにおける結晶構造A層とB層が、深さ方向zの周期変化として表れており、またA層またはB層のピーク間の距離もHOPGの格子定数0.7[nm]に一致していることから、HOPGの深さ方向zの分子構造を特定できていることが確認できた。 11A and 11B, (a) shows the external position of the sample S, (b) shows the surface (outermost surface) position of the sample S, and (c) shows the internal position of the sample S. In FIG. 11A and FIG. 11B, the crystal structure A layer and the B layer in HOPG appear as a periodic change in the depth direction z, and the distance between the peaks of the A layer or the B layer is HOPG lattice constant 0.7 [nm]. Therefore, it was confirmed that the molecular structure in the depth direction z of HOPG could be specified.
 以上の構成において、光学デバイス5では、平坦面を有した複数の金属ナノ粒子9がデバイス本体6の一面に露出した構成を有しており、金属ナノ粒子9を試料Sに近接させ、デバイス本体6の他面から励起光L1が入射されることで、金属ナノ粒子9の試料Sに近接した近接面に表面プラズモンPが励起し、この表面プラズモンPにより試料Sからのラマン散乱光を増強させて表面増強ラマン散乱光L3を得るようにした。 In the above configuration, the optical device 5 has a configuration in which a plurality of metal nanoparticles 9 having a flat surface are exposed on one surface of the device body 6, the metal nanoparticles 9 are brought close to the sample S, and the device body 6 When the excitation light L1 is incident from the other surface, the surface plasmon P is excited on the near surface of the metal nanoparticle 9 close to the sample S, and this surface plasmon P enhances the Raman scattered light from the sample S. Thus, the surface enhanced Raman scattered light L3 was obtained.
 このように光学デバイス5では、金属ナノ粒子9に平坦面を形成したことにより、金属ナノ粒子9の試料Sに近接した近接面に表面プラズモンPを励起させることができ、かくして試料Sからのラマン散乱光を表面プラズモンPにより従来よりも確実に増強し得る。また、この光学デバイス5では、ラマン散乱光を増強できた分だけ表面増強ラマン散乱光L3の感度を従来よりも向上し得ることから、種々の試料分析が行えるようになり従来よりも汎用性をも向上し得る。 As described above, in the optical device 5, by forming a flat surface on the metal nanoparticle 9, the surface plasmon P can be excited on a surface close to the sample S of the metal nanoparticle 9, and thus the Raman from the sample S can be excited. The scattered light can be surely enhanced by the surface plasmon P as compared with the conventional case. In addition, the optical device 5 can improve the sensitivity of the surface-enhanced Raman scattered light L3 as much as the Raman scattered light can be enhanced. Can also improve.
 また、分析装置1では、光学デバイス5に励起光L1を照射するともに、励起光L1の試料Sの深さ方向zに焦点位置を調整し得るように構成したことにより、焦点位置を中心に急峻な電界勾配になる励起光電界E1を試料Sの深さ方向zに移動させて深さ方向zに沿って変化するラマン強度の変化から試料分析を行うことができる。 In addition, the analyzer 1 is configured so that the optical device 5 is irradiated with the excitation light L1 and the focal position can be adjusted in the depth direction z of the sample S of the excitation light L1, so that the steepness is focused on the focal position. A sample analysis can be performed from a change in Raman intensity that varies along the depth direction z by moving the excitation light electric field E1 that has an electric field gradient in the depth direction z of the sample S.
 この際、この分析装置1では、励起光電界E1が焦点位置を中心に急峻な電界勾配になり焦点Fの前後からのラマン散乱光が減少していることから、高い深さ分解能を得ることができる。 At this time, in this analyzer 1, since the excitation light electric field E1 has a steep electric field gradient centered on the focal position and the Raman scattered light from before and after the focal point F is reduced, a high depth resolution can be obtained. it can.
 また、本発明による光学デバイス5では、平坦面を有した複数の金属ナノ粒子9をデバイス本体6の一面に設けるようにした場合について主として述べたが、本発明では、図4Bに示すような従来からある球状の金属ナノ粒子100のように隣接した金属ナノ粒子100間の共鳴による電界増強が不要となり、図4Aに示すように1つの金属ナノ粒子9だけでも試料表面S1に表面プラズモンを確実に励起させることができ、かくして、確実に表面増強ラマン散乱光L3を得ることができる。 In the optical device 5 according to the present invention, the case where a plurality of metal nanoparticles 9 having a flat surface are provided on one surface of the device body 6 has been mainly described. As shown in FIG. 4A, it is not necessary to enhance the electric field by resonance between adjacent metal nanoparticles 100 as in the case of a spherical metal nanoparticle 100, and as shown in FIG. 4A, the surface plasmon can be reliably generated on the sample surface S1. Thus, the surface-enhanced Raman scattered light L3 can be reliably obtained.
 因みに、励起光を試料Sに対して斜め方向から入射させた場合には、金属ナノ粒子9の試料Sに近接した近接面に、表面プラズモンPが励起し難く、試料Sからのラマン散乱光を表面プラズモンPによって十分に増強し得ず、表面増強ラマン散乱光の感度が低下してしまう。これに対して、この実施の形態による光学デバイス5では、試料Sに向けて電界振動方向に振動する励起光L1を、当該試料Sに対し金属ナノ粒子9を介して垂直に入射させていることから、金属ナノ粒子9の試料Sに近接した近接面に、表面プラズモンPを確実に励起させることができ、かくして試料Sからのラマン散乱光を表面プラズモンPにより確実に増強し得、表面増強ラマン散乱光L3の感度を向上し得る。 Incidentally, when the excitation light is incident on the sample S from an oblique direction, the surface plasmon P is difficult to excite on the adjacent surface of the metal nanoparticle 9 close to the sample S, and the Raman scattered light from the sample S is The surface plasmon P cannot be sufficiently enhanced, and the sensitivity of the surface-enhanced Raman scattered light is lowered. On the other hand, in the optical device 5 according to this embodiment, the excitation light L1 that vibrates in the direction of electric field oscillation toward the sample S is incident on the sample S perpendicularly via the metal nanoparticles 9. Thus, the surface plasmon P can be reliably excited on the proximity surface of the metal nanoparticle 9 close to the sample S, and thus the Raman scattered light from the sample S can be surely enhanced by the surface plasmon P, and the surface-enhanced Raman The sensitivity of the scattered light L3 can be improved.
 (2)他の実施の形態
 (2-1)光学デバイスの形状と、金属ナノ粒子設置部への金属ナノ粒子の配置形態に関する他の実施の形態
 なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。上述した実施の形態においては、図12Aに示すように、金属ナノ粒子設置部8の一面8bに半球状の金属ナノ粒子9の平坦面を面接触で配置させるとともに、一面8bから金属ナノ粒子9の曲面を膨出させ、曲面の頂点を近接面として表面プラズモンPを励起させるようにした場合について述べたが、本発明はこれに限らず、金属ナノ粒子において試料表面S1と近接する近接面に表面プラズモンPを励起できれば、金属ナノ粒子の形状を円錐状や角錐状、半楕円状等その他種々の形状にしてもよく、また、これら金属ナノ粒子を金属ナノ粒子設置部に埋没させるように形成してもよい。
(2) Other Embodiments (2-1) Other Embodiments Related to Shape of Optical Device and Arrangement Mode of Metal Nanoparticles on Metal Nanoparticle Placement Section The present invention is not limited to the above-described embodiments. The present invention is not limited, and various modifications can be made within the scope of the present invention. In the above-described embodiment, as shown in FIG. 12A, the flat surface of the hemispherical metal nanoparticles 9 is arranged in surface contact on the one surface 8b of the metal nanoparticle installation portion 8, and the metal nanoparticles 9 are formed from the one surface 8b. However, the present invention is not limited to this, and the present invention is not limited to this, and the proximity of the surface of the metal nanoparticles close to the sample surface S1 is described. If the surface plasmon P can be excited, the shape of the metal nanoparticles may be conical, pyramidal, semi-elliptical, and other various shapes, and these metal nanoparticles are embedded in the metal nanoparticle installation part. May be.
 ここで、図12は、金属ナノ粒子の形状と、金属ナノ粒子設置部への金属ナノ粒子の配置形態を変えたことにより、表面プラズモンが励起される位置を計算で求めた結果を示す概略図である。例えば、図12Bに示すように、埋没型の金属ナノ粒子9aとしては、その形状が球状の根元部分を切って取り除いた半球状でなり、平坦面が金属ナノ粒子設置部8の一面8bに沿って露出するように配置され、曲面が金属ナノ粒子設置部8に埋没された構成を有し、平坦面のみが金属ナノ粒子設置部8の一面8bから露出するようにしてもよい。この場合、金属ナノ粒子設置部8の他面側から一面8bへ、電界振動方向に相当する励起光L1が照射されると、金属ナノ粒子9aにおいて試料Sと近接した平坦面(近接面)に表面プラズモンPを励起させることができ、かくして当該表面プラズモンPにより試料Sからのラマン散乱光を増強し得る。よって、図13Aに示すように、他の光学デバイス5aとしては、このような埋没した半球状の金属ナノ粒子9aを、所定間隔を空けて配置させるようにしてもよい。なお、これら金属ナノ粒子9aの間隔は規則的であってもよい。 Here, FIG. 12 is a schematic diagram showing the result of calculating the position where the surface plasmon is excited by changing the shape of the metal nanoparticle and the arrangement form of the metal nanoparticle on the metal nanoparticle installation portion. It is. For example, as shown in FIG. 12B, the buried metal nanoparticles 9a have a hemispherical shape obtained by cutting off a spherical base portion, and a flat surface extends along one surface 8b of the metal nanoparticle installation portion 8. Alternatively, the curved surface may be embedded in the metal nanoparticle installation part 8 and only a flat surface may be exposed from the one surface 8b of the metal nanoparticle installation part 8. In this case, when the excitation light L1 corresponding to the electric field oscillation direction is irradiated from the other surface side of the metal nanoparticle installation portion 8 to the one surface 8b, the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9a is irradiated. The surface plasmon P can be excited, and thus the Raman scattered light from the sample S can be enhanced by the surface plasmon P. Therefore, as shown in FIG. 13A, as another optical device 5a, such buried hemispherical metal nanoparticles 9a may be arranged at a predetermined interval. The intervals between the metal nanoparticles 9a may be regular.
 また、図12Cに示すように、他の埋没型の金属ナノ粒子9bとしては、その形状が円錐状でなり、平坦面が金属ナノ粒子設置部8の一面8bに沿って露出するように配置され、頂点が金属ナノ粒子設置部8に埋没された構成を有し、平坦面のみが金属ナノ粒子設置部8の一面8bから露出するようにしてもよい。この場合でも、金属ナノ粒子設置部8の他面側から一面8bへ励起光L1が照射されると、金属ナノ粒子9bにおいて試料Sと近接した平坦面(近接面)に表面プラズモンPを励起させることができ、かくして当該表面プラズモンPにより試料Sからのラマン散乱光を増強し得る。よって、図13Bに示すように、他の光学デバイス5bとしては、このような埋没した円錐状の金属ナノ粒子9bを、所定間隔を空けて配置させるようにしてもよい。なお、これら金属ナノ粒子9bの間隔は規則的であってもよい。さらに隣接する金属ナノ粒子9bが不要なので、単粒子にして高い分解能を得ることができる。ただし、ラマン散乱光の強度は金属ナノ粒子の密度が小さいほど弱くなるので、信号のSNとのかねあいとなる。 Further, as shown in FIG. 12C, the other buried metal nanoparticles 9b are arranged so that the shape thereof is conical and the flat surface is exposed along one surface 8b of the metal nanoparticle installation portion 8. Alternatively, the apex may be embedded in the metal nanoparticle installation part 8, and only the flat surface may be exposed from the one surface 8b of the metal nanoparticle installation part 8. Even in this case, when the excitation light L1 is irradiated from the other surface side of the metal nanoparticle installation part 8 to the one surface 8b, the surface plasmon P is excited on the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9b. Thus, the surface plasmon P can enhance the Raman scattered light from the sample S. Therefore, as shown in FIG. 13B, as another optical device 5b, such buried conical metal nanoparticles 9b may be arranged at a predetermined interval. The intervals between the metal nanoparticles 9b may be regular. Furthermore, since the adjacent metal nanoparticles 9b are unnecessary, a single particle can be obtained with high resolution. However, since the intensity of the Raman scattered light becomes weaker as the density of the metal nanoparticles is smaller, the intensity of the Raman scattered light is related to the SN of the signal.
 (2-2)被覆膜を設けた光学デバイス
 また、他の実施の形態としては、図14に示す光学デバイス17のように、金属ナノ粒子9を設けた金属ナノ粒子設置部8の一面8bに、金属ナノ粒子設置部8と異なる材料からなる被覆膜18を形成し、当該被覆膜18によって金属ナノ粒子9を覆うような構成としてもよい。また、図15Aに示すように、他の光学デバイス5cとしては、半球状の金属ナノ粒子9aの平坦面を被覆膜18の表面に配置し、曲面を被覆膜18に埋没させた構成とし、金属ナノ粒子9aの平坦面のみが被覆膜18の表面から露出するようにしてもよい。この場合でも、金属ナノ粒子設置部8の他面側から被覆膜18へ励起光L1が照射されると、金属ナノ粒子9aにおいて試料Sと近接した平坦面(近接面)に表面プラズモンPを励起させることができ、かくして当該表面プラズモンPにより試料Sからのラマン散乱光を増強し得る。
(2-2) Optical Device Provided with Coating Film As another embodiment, one surface 8b of the metal nanoparticle installation portion 8 provided with the metal nanoparticles 9 as in the optical device 17 shown in FIG. Alternatively, a coating film 18 made of a material different from that of the metal nanoparticle placement part 8 may be formed, and the metal nanoparticles 9 may be covered with the coating film 18. Further, as shown in FIG. 15A, another optical device 5c has a configuration in which the flat surface of the hemispherical metal nanoparticles 9a is arranged on the surface of the coating film 18 and the curved surface is buried in the coating film 18. Only the flat surfaces of the metal nanoparticles 9a may be exposed from the surface of the coating film 18. Even in this case, when the coating film 18 is irradiated with the excitation light L1 from the other surface side of the metal nanoparticle installation part 8, the surface plasmon P is applied to the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9a. Thus, the Raman scattered light from the sample S can be enhanced by the surface plasmon P.
 また、図15Bに示すように、他の光学デバイス5dとしては、円錐状の金属ナノ粒子9bの平坦面を被覆膜18の表面に配置し、頂点を被覆膜18に埋没させた構成とし、金属ナノ粒子9bの平坦面のみが被覆膜18の表面から露出するようにしてもよい。この場合でも、金属ナノ粒子設置部8の他面側から被覆膜18へ励起光L1が照射されると、金属ナノ粒子9bにおいて試料Sと近接した平坦面(近接面)に表面プラズモンPを励起させることができ、かくして当該表面プラズモンPにより試料Sからのラマン散乱光を増強し得る。 Further, as shown in FIG. 15B, another optical device 5d has a configuration in which the flat surface of the conical metal nanoparticles 9b is arranged on the surface of the coating film 18 and the apex is buried in the coating film 18. Only the flat surface of the metal nanoparticles 9b may be exposed from the surface of the coating film 18. Even in this case, when the coating film 18 is irradiated with the excitation light L1 from the other surface side of the metal nanoparticle installation part 8, the surface plasmon P is applied to the flat surface (proximal surface) close to the sample S in the metal nanoparticle 9b. Thus, the Raman scattered light from the sample S can be enhanced by the surface plasmon P.
 ここで上述した被覆膜18は、例えば石英でなる金属ナノ粒子設置部8よりも耐摩耗性が高く、屈折率も高いダイヤモンドにより形成することが好ましい。また被覆膜18を形成するその他の材料としては、金属ナノ粒子設置部8よりも屈折率の高いTiOや、Si、Ge等により形成してもよく、さらに透明導電膜(ITO)によって形成してもよい。 Here, the coating film 18 described above is preferably formed of diamond having higher wear resistance and higher refractive index than the metal nanoparticle installation portion 8 made of, for example, quartz. Other materials for forming the coating film 18 may be formed of TiO 2 , Si, Ge, or the like having a higher refractive index than that of the metal nanoparticle placement portion 8, and further formed of a transparent conductive film (ITO). May be.
 このような被覆膜18に金属ナノ粒子9,9a,9bが埋没した光学デバイス17,5c,5dでは、被覆膜18を金属ナノ粒子設置部8よりも耐摩耗性の高い材料により形成することで、光学デバイス17,5c,5dの表面を試料Sに接触させても摩耗し難く、耐久性を向上させることができる。また、被覆膜18に金属ナノ粒子9,9a,9bが埋没した光学デバイス17,5c,5dでは、金属ナノ粒子設置部8よりも屈折率の高い材料により被覆膜18を形成することで、ラマン散乱光の増強率を向上し得、高い感度を得ることができ、また、電界分布の制御を容易に行え得る。 In the optical device 17, 5c, 5d in which the metal nanoparticles 9, 9a, 9b are buried in such a coating film 18, the coating film 18 is formed of a material having higher wear resistance than the metal nanoparticle installation portion 8. As a result, even if the surfaces of the optical devices 17, 5c, 5d are brought into contact with the sample S, they are not easily worn and durability can be improved. Further, in the optical device 17, 5c, 5d in which the metal nanoparticles 9, 9a, 9b are buried in the coating film 18, the coating film 18 is formed of a material having a higher refractive index than the metal nanoparticle installation portion 8. The enhancement rate of Raman scattered light can be improved, high sensitivity can be obtained, and electric field distribution can be easily controlled.
 因みに、デバイス本体や、被覆膜18に金属ナノ粒子を埋没させた光学デバイスの製造方法としては、例えばナノインプリント、または、EB露光及びエッチング等により、デバイス本体や、被覆膜18に多数の凹部を形成し、この凹部上にめっき充填等により金属薄膜を形成し、凹部以外の金属薄膜をCMP法やイオンエッチングなどにより除去することで凹部内にのみ金属ナノ粒子を形成し得る。また、デバイス本体の表面に金属ナノ粒子を蒸着やスパッタリング等により付着させた後に被覆膜18を形成し、この被覆膜18を研磨して、金属ナノ粒子を被覆膜18から露出させるとともに、被覆膜18の表面に金属ナノ粒子の平坦面を形成するようにしてもよい。 Incidentally, as a method of manufacturing an optical device in which metal nanoparticles are embedded in the device main body or the coating film 18, for example, nanoimprint or EB exposure and etching etc. Then, a metal thin film is formed on the recess by plating filling or the like, and the metal thin film other than the recess is removed by a CMP method, ion etching, or the like, so that metal nanoparticles can be formed only in the recess. Further, after the metal nanoparticles are deposited on the surface of the device body by vapor deposition or sputtering, a coating film 18 is formed, and the coating film 18 is polished to expose the metal nanoparticles from the coating film 18. Alternatively, a flat surface of the metal nanoparticles may be formed on the surface of the coating film 18.
 (2-3)金属ナノ粒子の形状等を変えたときのラマン強度について
 ここで、金属ナノ粒子の形状等を変えたときにラマン強度がどのように変わるかをシミュレーションにより調べたところ、図16~図20に示すような結果が得られた。なお、分析面の最大電界は、FDTD(有限差分時間領域法:Finite Difference Time Domain method)(マクスウエル方程式をもとに光の電磁界を計算する方法)により求めた。
(2-3) Raman intensity when the shape or the like of the metal nanoparticles is changed Here, when the shape or the like of the metal nanoparticles is changed, the Raman intensity is changed by simulation. A result as shown in FIG. 20 was obtained. The maximum electric field on the analysis surface was determined by FDTD (Finite Difference Time Domain method) (a method for calculating the electromagnetic field of light based on Maxwell's equations).
 図16Aおよび図16Bは、比較例1であり、Agにより形成した球状の金属ナノ粒子100を、SiOでなる金属ナノ粒子設置部8(図16A中、レンズと表記)の一面に付着させた構成(付着球状粒子と表記)とし、このときのラマン強度を調べたものである。図16Aおよび図16Bに示すように、球状の金属ナノ粒子100を金属ナノ粒子設置部8の一面に付着させた場合、分析面の最大電界は、0.7となった。このような比較例1ではラマン強度の感度が低くなることが確認できた。 16A and 16B are Comparative Example 1, and spherical metal nanoparticles 100 formed of Ag were attached to one surface of a metal nanoparticle installation portion 8 (denoted as a lens in FIG. 16A) made of SiO 2 . The composition (denoted as adherent spherical particles) was used, and the Raman intensity at this time was examined. As shown in FIGS. 16A and 16B, when the spherical metal nanoparticles 100 were attached to one surface of the metal nanoparticle installation portion 8, the maximum electric field on the analysis surface was 0.7. In Comparative Example 1, it was confirmed that the sensitivity of Raman intensity was low.
 図17Aおよび図17Bは、比較例2であり、Agにより形成した球状の金属ナノ粒子100を、SiOでなる金属ナノ粒子設置部8(図17A中、レンズと表記)内に埋め込んだ構成(埋め込み球状粒子と表記)とし、このときのラマン強度を調べたものである。図17Aおよび図17Bに示すように、球状の金属ナノ粒子100全体を金属ナノ粒子設置部8に埋め込んだ場合、分析面の最大電界は、0.8となった。このような比較例2でもラマン強度の感度が低くなることが確認できた。 FIG. 17A and FIG. 17B are comparative examples 2 in which spherical metal nanoparticles 100 formed of Ag are embedded in a metal nanoparticle installation portion 8 (denoted as a lens in FIG. 17A) made of SiO 2 ( It is expressed as embedded spherical particles), and the Raman intensity at this time was examined. As shown in FIGS. 17A and 17B, when the entire spherical metal nanoparticle 100 was embedded in the metal nanoparticle installation part 8, the maximum electric field on the analysis surface was 0.8. It was confirmed that even in Comparative Example 2 as described above, the sensitivity of the Raman intensity was lowered.
 図18Aおよび図18Bは、実施例1であり、Agにより形成した半球状の金属ナノ粒子9aの平坦面を、SiOでなる金属ナノ粒子設置部8(図18A中、レンズと表記)の一面に合わせて、金属ナノ粒子9aを金属ナノ粒子設置部8に埋め込んだ構成(埋め込み半球状粒子と表記)とし、このときのラマン強度を調べたものである。図18Aおよび図18Bに示すように、半球状の金属ナノ粒子9aの平坦面を金属ナノ粒子設置部8の一面に合わせて埋め込んだ場合、分析面の最大電界は、2.0となった。このような実施例1ではラマン強度の感度が高くなることが確認できた。 18A and 18B show Example 1, in which the flat surface of the hemispherical metal nanoparticles 9a formed of Ag is one surface of the metal nanoparticle installation portion 8 (referred to as a lens in FIG. 18A) made of SiO 2 . Accordingly, the structure in which the metal nanoparticles 9a are embedded in the metal nanoparticle installation portion 8 (denoted as embedded hemispherical particles) is used, and the Raman intensity at this time is examined. As shown in FIGS. 18A and 18B, when the flat surface of the hemispherical metal nanoparticles 9a was embedded in one surface of the metal nanoparticle installation portion 8, the maximum electric field on the analysis surface was 2.0. In Example 1, it was confirmed that the sensitivity of Raman intensity was increased.
 図19Aおよび図19Bは、実施例2であり、Agにより形成した円錐状の金属ナノ粒子9bの平坦面を、SiOでなる金属ナノ粒子設置部8(図19A中、レンズと表記)の一面に合わせて、金属ナノ粒子9bを金属ナノ粒子設置部8に埋め込んだ構成(埋め込み円錐粒子と表記)とし、このときのラマン強度を調べたものである。図19Aおよび図19Bに示すように、円錐状の金属ナノ粒子9bの平坦面を金属ナノ粒子設置部8の一面に合わせて埋め込んだ場合、分析面の最大電界は、8.0となった。このような実施例2ではラマン強度の感度が更に高くなることが確認できた。 19A and 19B are Example 2, in which the flat surface of the conical metal nanoparticles 9b formed of Ag is the one surface of the metal nanoparticle installation portion 8 (denoted as a lens in FIG. 19A) made of SiO 2 . Accordingly, the structure in which the metal nanoparticles 9b are embedded in the metal nanoparticle installation portion 8 (denoted as embedded cone particles) is examined, and the Raman intensity at this time is examined. As shown in FIGS. 19A and 19B, when the flat surface of the conical metal nanoparticle 9b was embedded in one surface of the metal nanoparticle installation portion 8, the maximum electric field on the analysis surface was 8.0. In Example 2, it was confirmed that the sensitivity of Raman intensity was further increased.
 図20Aおよび図20Bは、実施例3であり、Agにより形成した円錐状の金属ナノ粒子9bの平坦面を、高屈折率のダイヤモンドでなる被覆膜18(図20A中、レンズと表記)の一面に合わせて、金属ナノ粒子9bを被覆膜18に埋め込んだ構成(高屈折率材料中埋め込み円錐粒子と表記)とし、このときのラマン強度を調べたものである。図20Aおよび図20Bに示すように、円錐状の金属ナノ粒子9bの平坦面を被覆膜18の一面に合わせて埋め込んだ場合、分析面の最大電界は、10.3となった。このような実施例3ではラマン強度の感度が更に一段と高くなることが確認できた。 20A and 20B show Example 3, in which a flat surface of conical metal nanoparticles 9b formed of Ag is formed on a coating film 18 (denoted as a lens in FIG. 20A) made of high refractive index diamond. In accordance with one surface, the metal nanoparticles 9b are embedded in the coating film 18 (denoted as embedded cone particles in a high refractive index material), and the Raman intensity at this time was examined. As shown in FIG. 20A and FIG. 20B, when the flat surface of the conical metal nanoparticles 9b was embedded in one surface of the coating film 18, the maximum electric field on the analysis surface was 10.3. In such Example 3, it was confirmed that the sensitivity of the Raman intensity was further increased.
 (2-4)他の分析装置について
 (2-4-1)カンチレバー方式の分析装置
 なお、上述した実施の形態の場合においては、凸レンズ状の光学デバイス5を設け、ピエゾ制御方式の分析装置1について適用した場合について述べたが、本発明はこれに限らず、図21Aに示すように、本発明の構成でなる光学デバイス25をカンチレバー方式の分析装置21に適用するようにしてもよい。実際上、この分析装置21は、試料Sに向けて頂点が突出した三角錘形状のデバイス本体6がカンチレバー(図21A中、Siカンチレバーと表記)26により支持された光学デバイス25を備えており、デバイス本体6の他面から頂点に向けて励起光L1が照射され得る。
(2-4) Other Analyzing Apparatus (2-4-1) Cantilever Analyzing Apparatus In the case of the above-described embodiment, the convex lens-shaped optical device 5 is provided, and the piezo control analyzing apparatus 1 Although the present invention is not limited to this, the optical device 25 having the configuration of the present invention may be applied to a cantilever type analyzer 21 as shown in FIG. 21A. In practice, this analyzer 21 includes an optical device 25 in which a triangular pyramid-shaped device body 6 whose apex protrudes toward the sample S is supported by a cantilever 26 (denoted as Si cantilever in FIG. 21A). The excitation light L1 can be irradiated from the other surface of the device body 6 toward the apex.
 また、この分析装置21は、光学デバイス25の斜め上方に配置されたLD(レーザダイオード)22からデバイス本体6の他面に制御光(隙間制御光)が照射され、当該デバイス本体6で反射された制御光を4分割PD(フォトダイオード)23によって検出しており、4分割PD23の4つの受光部からの光検出出力を比較し、これらを一定の状態に保つことにより、光学デバイス25と試料Sとの間の間隔を一定に保つように構成されている。 In addition, the analyzer 21 irradiates the other surface of the device body 6 with control light (gap control light) from an LD (laser diode) 22 disposed obliquely above the optical device 25 and reflects it on the device body 6. The control light is detected by a four-divided PD (photodiode) 23, and the light detection outputs from the four light-receiving portions of the four-divided PD 23 are compared, and these are kept in a constant state. It is comprised so that the space | interval between S may be kept constant.
 この場合でも、光学デバイス25には、デバイス本体6の試料Sと対向する頂点および側面に、1つまたは複数の半球状の金属ナノ粒子9が曲面を膨出させるようにして所定間隔を空けて配置されており、励起光L1が照射されることで、金属ナノ粒子9の試料Sと近接する近接面に表面プラズモンPが励起し得るようになされている。かくして、この分析装置21でも、上述した実施の形態と同様に、金属ナノ粒子9に平坦面を形成したことにより、金属ナノ粒子9の試料Sに近接した近接面に表面プラズモンPを励起させることができ、かくして試料Sからのラマン散乱光を表面プラズモンPにより確実に増強し得、従来よりも表面増強ラマン散乱光L3の感度を向上し得る。また、このようなカンチレバー方式の分析装置21でも、対物レンズ4により、金属ナノ粒子9と試料Sの界面近傍に励起光L1の焦点をもうけることにより、試料Sの深さ方向zの分子構造を高い深さ分解能で測定することができる。 Even in this case, in the optical device 25, one or a plurality of hemispherical metal nanoparticles 9 bulge the curved surface at the apex and the side facing the sample S of the device main body 6 with a predetermined interval. The surface plasmon P can be excited on the proximity surface adjacent to the sample S of the metal nanoparticles 9 by being irradiated with the excitation light L1. Thus, in this analyzer 21 as well, the surface plasmon P is excited on the proximity surface close to the sample S of the metal nanoparticle 9 by forming a flat surface on the metal nanoparticle 9 as in the above-described embodiment. Thus, the Raman scattered light from the sample S can be surely enhanced by the surface plasmon P, and the sensitivity of the surface enhanced Raman scattered light L3 can be improved as compared with the prior art. In addition, even in such a cantilever type analyzer 21, the molecular structure in the depth direction z of the sample S can be obtained by focusing the excitation light L1 near the interface between the metal nanoparticle 9 and the sample S by the objective lens 4. It can be measured with high depth resolution.
 なお、図22Aは、カンチレバー26を備えた他の実施の形態による光学デバイス25aを示す概略図である。図22Aに示すように、この光学デバイス25aは、断面台形状に形成されたデバイス本体28を有し、試料Sと近接する一面に円錐状の金属ナノ粒子9aを埋没させた構成を有する。この場合、金属ナノ粒子9aは、平坦面がデバイス本体28の一面と一致させてデバイス本体28内に埋め込まれており、デバイス本体28の一面から露出した平坦面が試料Sと近接する近接面となり得る。このような光学デバイス25aでも、金属ナノ粒子9aの平坦面に表面プラズモンPが励起し、当該表面プラズモンPの電界増強効果によって試料Sのラマン散乱光を増強し得る。また、このような光学デバイス25aでも、対物レンズ4により、金属ナノ粒子9aと試料Sの界面近傍に励起光L1の焦点をもうけることにより、試料Sの深さ方向zの分子構造を高い深さ分解能で測定することができる。 22A is a schematic view showing an optical device 25a according to another embodiment provided with a cantilever 26. FIG. As shown in FIG. 22A, this optical device 25a has a device main body 28 formed in a trapezoidal cross section, and has a configuration in which conical metal nanoparticles 9a are buried on one surface close to the sample S. In this case, the metal nanoparticle 9a is embedded in the device body 28 with a flat surface coinciding with one surface of the device body 28, and the flat surface exposed from one surface of the device body 28 becomes a proximity surface close to the sample S. obtain. Even in such an optical device 25a, the surface plasmon P is excited on the flat surface of the metal nanoparticle 9a, and the Raman scattered light of the sample S can be enhanced by the electric field enhancement effect of the surface plasmon P. Also in such an optical device 25a, the objective lens 4 is used to focus the excitation light L1 in the vicinity of the interface between the metal nanoparticles 9a and the sample S, thereby increasing the molecular structure in the depth direction z of the sample S to a high depth. It can be measured with resolution.
 (2-4-2)ファイバ状の光学デバイスを用いたチューニングフォーク方式の分析装置
 図21Bは、他の実施の形態であるチューニングフォーク方式の分析装置31を示し、ファイバ状のデバイス本体からなる光学デバイス33を用い、光学デバイス33がチューニングフォーク32に固定されている。分析装置31は、チューニングフォーク32の振動周波数を共振周波数に維持することにより、光学デバイス33の一端面と試料Sとの間の間隔を、1[nm]以下の一定の間隔に制御し得る。また、このようなチューニングフォーク方式の分析装置31でも、ファイバ状のデバイス本体中に設置した対物レンズ4により、デバイス本体先端に配置した金属ナノ粒子と、試料Sとの界面近傍に、励起光L1の焦点をもうけることにより、試料Sの深さ方向zの分子構造を高い深さ分解能で測定することができる。
(2-4-2) Tuning Fork Type Analyzing Device Using Fiber-Shaped Optical Device FIG. 21B shows a tuning fork type analyzing device 31 according to another embodiment, which is an optical device comprising a fiber-like device body. Using the device 33, the optical device 33 is fixed to the tuning fork 32. The analyzer 31 can control the interval between the one end surface of the optical device 33 and the sample S to a constant interval of 1 [nm] or less by maintaining the vibration frequency of the tuning fork 32 at the resonance frequency. Further, even in such a tuning fork type analyzer 31, the excitation light L1 is placed near the interface between the metal nanoparticles placed at the tip of the device body and the sample S by the objective lens 4 installed in the fiber-like device body. The molecular structure in the depth direction z of the sample S can be measured with high depth resolution.
 この光学デバイス33でも、上述したように、例えば半球状の単独または複数の金属ナノ粒子9(図示せず)が一端面に必要に応じて規則的に配置されており、他端面から励起光L1が入射されることで、金属ナノ粒子9において試料Sに近接された近接面に表面プラズモンPが励起し、試料Sのラマン散乱光を増強し得、上述した実施の形態と同様の効果を得ることができる。 Also in this optical device 33, as described above, for example, hemispherical single or a plurality of metal nanoparticles 9 (not shown) are regularly arranged on one end face as necessary, and the excitation light L1 from the other end face. , The surface plasmon P is excited on the proximity surface of the metal nanoparticle 9 that is close to the sample S, and the Raman scattered light of the sample S can be enhanced, and the same effect as in the above-described embodiment can be obtained. be able to.
 ここで、図22Bは、埋没型の金属ナノ粒子9aを設けたファイバ状の光学デバイス33を示す概略図である。図22Bに示すように、このファイバ状の光学デバイス33は、柱状に形成され、内部に対物レンズ4を備えたデバイス本体を有し、試料Sと近接する一面に円錐状の金属ナノ粒子9aを設けた構成を有する。この場合、金属ナノ粒子9aは、平坦面がデバイス本体の一面と一致するようにしてデバイス本体内に埋め込まれており、露出した平坦面が試料Sと近接する近接面となり得る。このようなファイバ状の光学デバイス33でも、金属ナノ粒子9aの平坦面に表面プラズモンPが励起し、当該表面プラズモンPの電界増強効果によって試料Sのラマン散乱光を増強し得る。 Here, FIG. 22B is a schematic view showing a fiber-like optical device 33 provided with buried metal nanoparticles 9a. As shown in FIG. 22B, this fiber-shaped optical device 33 is formed in a columnar shape, has a device body with an objective lens 4 inside, and has conical metal nanoparticles 9a on one surface close to the sample S. The configuration is provided. In this case, the metal nanoparticles 9a are embedded in the device body such that the flat surface coincides with one surface of the device body, and the exposed flat surface can be a proximity surface close to the sample S. Even in such a fiber-like optical device 33, the surface plasmon P is excited on the flat surface of the metal nanoparticle 9a, and the Raman scattered light of the sample S can be enhanced by the electric field enhancement effect of the surface plasmon P.
 (2-4-3)導波管に光学デバイスを設けたチューニングフォーク方式の分析装置
 図21Cは、他の実施の形態であるチューニングフォーク方式の分析装置41を示し、導波管42の先端に凸レンズ状の光学デバイス43が設けられており、導波管42がチューニングフォーク32に固定されている。分析装置41は、チューニングフォーク32の振動周波数を共振周波数に維持することにより、導波管42の先端に設けた光学デバイス43の一端面と試料Sとの間の間隔を、1[nm]以下の一定の間隔に制御し得る。また、このようなチューニングフォーク方式の分析装置41では、光学デバイス43の形状を先端凸状レンズ形状とし、金属ナノ粒子と試料Sの界面近傍に励起光L1の焦点をもうけることにより、試料Sの深さ方向zの分子構造を高い深さ分解能で測定することができる。
(2-4-3) Tuning Fork Type Analyzing Apparatus with Optical Device in Waveguide FIG. 21C shows a tuning fork type analyzing apparatus 41 according to another embodiment. A convex lens-shaped optical device 43 is provided, and a waveguide 42 is fixed to the tuning fork 32. The analyzer 41 maintains the vibration frequency of the tuning fork 32 at the resonance frequency, thereby reducing the distance between one end surface of the optical device 43 provided at the tip of the waveguide 42 and the sample S to 1 [nm] or less. Can be controlled at regular intervals. Also, in such a tuning fork type analyzer 41, the shape of the optical device 43 is a convex lens shape at the tip, and the excitation light L1 is focused in the vicinity of the interface between the metal nanoparticles and the sample S. The molecular structure in the depth direction z can be measured with high depth resolution.
 この光学デバイス43でも、上述したように、例えば半球状の単独または複数の金属ナノ粒子9(図示せず)が一面に必要に応じて規則的に配置されており、導波管42から他面側に向けて励起光L1が入射されることで、金属ナノ粒子9において試料Sに近接された近接面に表面プラズモンPが励起し、試料Sのラマン散乱光を増強し得、上述した実施の形態と同様の効果を得ることができる。 Also in this optical device 43, as described above, for example, hemispherical single or plural metal nanoparticles 9 (not shown) are regularly arranged on one side as necessary, and from the waveguide 42 to the other side. When the excitation light L1 is incident toward the side, the surface plasmon P is excited on the proximity surface of the metal nanoparticle 9 that is close to the sample S, and the Raman scattered light of the sample S can be enhanced. The same effect as the form can be obtained.
 ここで、図22Cは、他の構成の導波路薄膜型の光学デバイス44を示す概略図である。図22Cに示すように、この導波路薄膜型の光学デバイス44は、柱状に形成されたデバイス本体を有し、試料Sと近接する一面に円錐状の金属ナノ粒子9aを設けた構成を有する。この場合、金属ナノ粒子9aは、平坦面がデバイス本体の一面と一致するようにデバイス本体内に埋め込まれており、露出した平坦面が試料Sと近接する近接面となり得る。このような導波路薄膜型の光学デバイス44でも、金属ナノ粒子9aの平坦面に表面プラズモンPが励起し、当該表面プラズモンPの電界によって試料Sのラマン散乱光を増強し得る。また、このような光学デバイス44でも、外部にもうけた対物レンズ4により、金属ナノ粒子9aと試料Sの界面近傍に励起光L1の焦点をもうけることにより、試料Sの深さ方向zの分子構造を高い深さ分解能で測定することができる。 Here, FIG. 22C is a schematic diagram showing a waveguide thin film type optical device 44 having another configuration. As shown in FIG. 22C, this waveguide thin film type optical device 44 has a device body formed in a columnar shape, and has a configuration in which conical metal nanoparticles 9a are provided on one surface close to the sample S. In this case, the metal nanoparticles 9a are embedded in the device body so that the flat surface coincides with one surface of the device body, and the exposed flat surface can be a proximity surface close to the sample S. Even in such a waveguide thin film type optical device 44, the surface plasmon P is excited on the flat surface of the metal nanoparticle 9a, and the Raman scattered light of the sample S can be enhanced by the electric field of the surface plasmon P. Further, in such an optical device 44, the molecular structure in the depth direction z of the sample S is obtained by focusing the excitation light L1 near the interface between the metal nanoparticle 9a and the sample S by the objective lens 4 provided outside. Can be measured with high depth resolution.
 なお、上述した「(2-4-1)カンチレバー方式の分析装置」、「(2-4-2)ファイバ状の光学デバイスを用いたチューニングフォーク方式の分析装置」および「(2-4-3)導波管に光学デバイスを設けたチューニングフォーク方式の分析装置」においては、各光学デバイスの構成として、図14や、図15等の構成のように被覆膜を設けた構成としてもよい。 The above-mentioned “(2-4-1) cantilever type analyzer”, “(2-4-2) Tuning fork type analyzer using fiber optical device” and “(2-4-3 In the “tuned fork type analyzer provided with an optical device in a waveguide”, the configuration of each optical device may be a configuration in which a coating film is provided as in the configuration of FIG.
 また、上述した図21A、図21B、図22A~図22Cにおいては、固定した対物レンズ4を適用した場合について述べたが、本発明はこれに限らず、焦点移動手段を設けて対物レンズ4を移動させ、試料Sの深さ方向zに対物レンズ4の焦点を自由に移動可能な構成としてもよい。 In FIGS. 21A, 21B, and 22A to 22C described above, the case where the fixed objective lens 4 is applied has been described. However, the present invention is not limited to this, and the objective lens 4 is provided by providing a focus moving means. The focal point of the objective lens 4 may be freely moved in the depth direction z of the sample S by moving the sample S.
 (2-4-4)本発明の分析装置による磁気ディスク媒体の保護膜の分析
 図1に示すような本発明の分析装置1は、燃料電池、Liイオン電池、めっき等において使用される触媒反応の解析にも用いることができる。また、この分析装置1は、太陽電池、EL素子、液晶ディスプレイ等の薄膜デバイス等の構造分析にも用いることができる。さらに、この分析装置1は、サブナノメー卜ル厚の薄膜の分子構造及び分布の測定を行うことができ、例えば、磁気ディスク媒体(HDD:Hard Disc Drive)の保護膜や潤滑膜の分析に用いることができる。
(2-4-4) Analysis of protective film of magnetic disk medium by analyzer of the present invention The analyzer 1 of the present invention as shown in FIG. 1 is used for a catalytic reaction used in fuel cells, Li ion batteries, plating, etc. It can also be used for analysis. Further, the analyzer 1 can also be used for structural analysis of thin film devices such as solar cells, EL elements, and liquid crystal displays. Further, the analyzer 1 can measure the molecular structure and distribution of a thin film having a sub-nanometer thickness, and can be used, for example, for analysis of a protective film or a lubricating film of a magnetic disk medium (HDD: Hard Disc Drive). Can do.
 例えば、図23は、図1に示した本発明の分析装置1を用いて、磁気ディスク媒体の保護膜を分析した分析結果を示すグラフである。本発明の分析装置1により、磁気ディスク媒体の厚さ2[nm]の保護膜(ダイヤモンド状炭素(DLC:Diamond Like Carbon)膜)を分析すると、図23Aに示すように、Dバンド及びGバンドのラマンスペクトルが良好に観測された。図23Cは、分析装置1により測定できたGバンド強度のヒストグラムを示している。図23Bは、本発明の光学デバイスを設置していない分析装置により観測されたラマンスペクトルであり、本発明の分析装置1を用いたときのようなDバンド及びGバンドが特定できないことが確認できた。 For example, FIG. 23 is a graph showing an analysis result obtained by analyzing a protective film of a magnetic disk medium using the analyzer 1 of the present invention shown in FIG. When the protective film (diamond-like carbon (DLC) film) having a thickness of 2 [nm] of the magnetic disk medium is analyzed by the analyzer 1 of the present invention, as shown in FIG. The Raman spectrum of was observed well. FIG. 23C shows a histogram of the G band intensity that can be measured by the analyzer 1. FIG. 23B is a Raman spectrum observed by an analyzer that does not have the optical device of the present invention, and it can be confirmed that the D band and G band cannot be specified as in the case of using the analyzer 1 of the present invention. It was.
 1,21,31,41 分析装置
 3 ハーフミラー(導光手段)
 4 対物レンズ
 5,17,5a,5b,5c,5d,25a,33,43,44 光学デバイス
 6 デバイス本体
 9,9a,9b 金属ナノ粒子
 12 基台(焦点移動手段)
 18 被覆膜
1,21,31,41 Analyzer 3 Half mirror (light guide)
4 Objective lens 5,17,5a, 5b, 5c, 5d, 25a, 33,43,44 Optical device 6 Device body 9,9a, 9b Metal nanoparticle 12 base (focus moving means)
18 Coating film

Claims (16)

  1.  励起光が透過可能なデバイス本体と、
     前記デバイス本体の一面に表面が露出し、平坦面が形成された1つまたは複数の金属ナノ粒子とを備え、
     前記金属ナノ粒子を試料に近接させ、前記デバイス本体の他面から前記励起光が入射されると、前記金属ナノ粒子の前記試料に近接させた近接面に表面プラズモンが励起し、前記表面プラズモンにより前記試料からのラマン散乱光を増強させて表面増強ラマン散乱光を生成する
     ことを特徴とする光学デバイス。
    A device body capable of transmitting excitation light; and
    One or more metal nanoparticles having a surface exposed on one surface of the device body and a flat surface formed thereon,
    When the metal nanoparticles are brought close to a sample and the excitation light is incident from the other surface of the device body, surface plasmons are excited on the proximity surface of the metal nanoparticles that are brought close to the sample, and the surface plasmons A surface-enhanced Raman scattered light is generated by enhancing the Raman scattered light from the sample.
  2.  前記金属ナノ粒子は、前記平坦面が前記デバイス本体の一面に沿って配置されており、前記デバイス本体の一面から膨出、または前記デバイス本体内に埋没している
     ことを特徴とする請求項1記載の光学デバイス。
    The said metal nanoparticle has the said flat surface arrange | positioned along one surface of the said device main body, it swells from one surface of the said device main body, or is embedded in the said device main body. The optical device described.
  3.  前記デバイス本体の一面から膨出している前記金属ナノ粒子は、前記平坦面が前記デバイス本体の一面と面接触している
     ことを特徴とする請求項2記載の光学デバイス。
    The optical device according to claim 2, wherein the flat surface of the metal nanoparticles bulging from one surface of the device body is in surface contact with one surface of the device body.
  4.  前記デバイス本体内に埋没している前記金属ナノ粒子は、前記平坦面が前記デバイス本体の一面に沿って露出している
     ことを特徴とする請求項2記載の光学デバイス。
    The optical device according to claim 2, wherein the metal nanoparticle embedded in the device body has the flat surface exposed along one surface of the device body.
  5.  前記金属ナノ粒子を球状と仮定したときの直径が5~100[nm]であり、
     前記平坦面は、球状の前記金属ナノ粒子の一部が切り取り除かれたように該金属ナノ粒子に形成されている
     ことを特徴とする請求項3記載の光学デバイス。
    When the metal nanoparticles are assumed to be spherical, the diameter is 5 to 100 [nm],
    The optical device according to claim 3, wherein the flat surface is formed on the metal nanoparticle so that a part of the spherical metal nanoparticle is cut off.
  6.  前記金属ナノ粒子は、半球状または円錐状でなる
     ことを特徴とする請求項1~4のうちいずれか1項記載の光学デバイス。
    The optical device according to any one of claims 1 to 4, wherein the metal nanoparticles are hemispherical or conical.
  7.  前記金属ナノ粒子は、Ag、Au、Cu、Pd、Ptのいずれかである
     ことを特徴とする請求項1~6のうちいずれか1項記載の光学デバイス。
    The optical device according to any one of claims 1 to 6, wherein the metal nanoparticles are any one of Ag, Au, Cu, Pd, and Pt.
  8.  前記デバイス本体は、前記試料側に向けて膨出した凸レンズ形状でなる
     ことを特徴とする請求項1~6のうちいずれか1項記載の光学デバイス。
    The optical device according to any one of claims 1 to 6, wherein the device main body has a convex lens shape that bulges toward the sample side.
  9.  前記デバイス本体は、前記試料側に突出された錘形状を有し、カンチレバーにより支持されている
     ことを特徴とする請求項1~7のうちいずれか1項記載の光学デバイス。
    The optical device according to any one of claims 1 to 7, wherein the device body has a weight shape protruding toward the sample side and is supported by a cantilever.
  10.  前記デバイス本体は、ファイバ状に形成されている
     ことを特徴とする請求項1~7のうちいずれか1項記載の光学デバイス。
    The optical device according to any one of claims 1 to 7, wherein the device body is formed in a fiber shape.
  11.  前記金属ナノ粒子は、
     前記デバイス本体よりも耐摩耗性の高い材料により形成された被覆膜で覆われている
     ことを特徴とする請求項1~10のうちいずれか1項記載の光学デバイス。
    The metal nanoparticles are
    The optical device according to any one of claims 1 to 10, wherein the optical device is covered with a coating film formed of a material having higher wear resistance than that of the device body.
  12.  前記金属ナノ粒子は、
     前記デバイス本体よりも屈折率の高い材料により形成された被覆膜で覆われている
     ことを特徴とする請求項1~10のうちいずれか1項記載の光学デバイス。
    The metal nanoparticles are
    The optical device according to any one of claims 1 to 10, wherein the optical device is covered with a coating film formed of a material having a refractive index higher than that of the device body.
  13.  前記金属ナノ粒子は、前記平坦面が前記被覆膜の表面に配置され、該平坦面が外部に露出している
     ことを特徴とする請求項11または12記載の光学デバイス。
    The optical device according to claim 11 or 12, wherein the metal nanoparticle has the flat surface disposed on a surface of the coating film, and the flat surface is exposed to the outside.
  14.  請求項1~13のうちいずれかの光学デバイスと、
     光源から発した励起光を、前記光学デバイスを介し試料に照射し、前記励起光を前記試料に照射することにより該試料から発した表面増強ラマン散乱光を撮像手段まで導く導光手段と
     を備えることを特徴とする分析装置。
    An optical device according to any one of claims 1 to 13;
    A light guide means for irradiating the sample with excitation light emitted from a light source and guiding the surface-enhanced Raman scattered light emitted from the sample to the imaging means by irradiating the sample with the excitation light. An analyzer characterized by that.
  15.  前記光源から発した励起光を集光して前記光学デバイスを介し前記試料に照射する対物レンズを備え、
     前記対物レンズの焦点近傍の電界勾配を表面プラズモンにより増強させる
     ことを特徴とする請求項14記載の分析装置。
    An objective lens that collects excitation light emitted from the light source and irradiates the sample through the optical device;
    The analyzer according to claim 14, wherein the electric field gradient near the focal point of the objective lens is enhanced by surface plasmon.
  16.  前記試料の深さ方向に前記対物レンズの焦点を移動させる焦点移動手段を備え、
     前記焦点移動手段によって前記焦点を前記試料内にて移動させることにより、前記表面プラズモンにより増強された前記電界勾配を前記試料の深さ方向に移動させる
     ことを特徴とする請求項15記載の分析装置。
    A focal point moving means for moving the focal point of the objective lens in the depth direction of the sample;
    The analyzer according to claim 15, wherein the electric field gradient enhanced by the surface plasmon is moved in a depth direction of the sample by moving the focus within the sample by the focus moving unit. .
PCT/JP2013/082578 2012-12-18 2013-12-04 Optical device and analysis apparatus WO2014097886A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014553069A JP6179905B2 (en) 2012-12-18 2013-12-04 Optical device and analyzer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-275793 2012-12-18
JP2012275793 2012-12-18

Publications (1)

Publication Number Publication Date
WO2014097886A1 true WO2014097886A1 (en) 2014-06-26

Family

ID=50978221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/082578 WO2014097886A1 (en) 2012-12-18 2013-12-04 Optical device and analysis apparatus

Country Status (2)

Country Link
JP (1) JP6179905B2 (en)
WO (1) WO2014097886A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053703A (en) * 2015-09-09 2017-03-16 学校法人 東洋大学 Measuring instrument and measuring method
JP2020153892A (en) * 2019-03-22 2020-09-24 学校法人早稲田大学 Optical device, analyzer, and method of manufacturing optical device
CN111796410A (en) * 2020-06-28 2020-10-20 哈尔滨工业大学 Solid-state sample multidimension degree precision revolving stage of micro-raman imaging
CN112683419A (en) * 2020-12-21 2021-04-20 山东大学 Method for accurately detecting temperature based on surface enhanced Raman scattering effect

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020067509A1 (en) 2018-09-27 2020-04-02 Toto株式会社 Sanitary facility member
TWI714284B (en) 2018-09-27 2020-12-21 日商Toto股份有限公司 Faucet metal parts
US20230012781A1 (en) 2020-03-31 2023-01-19 Toto Ltd. Sanitary equipment part

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696157B1 (en) * 2000-03-05 2004-02-24 3M Innovative Properties Company Diamond-like glass thin films
JP2006071448A (en) * 2004-09-02 2006-03-16 Sii Nanotechnology Inc Probe for near-field microscope, its manufacturing method, and scanning probe microscope using the probe
JP2006089788A (en) * 2004-09-22 2006-04-06 Fuji Photo Film Co Ltd Fine structural body and its production method
JP2009145320A (en) * 2007-11-21 2009-07-02 Hitachi High-Technologies Corp Photometric analysis instrument
WO2009110157A1 (en) * 2008-03-05 2009-09-11 株式会社日立製作所 Scanning probe microscope and method of observing sample using the same
JP2011506916A (en) * 2007-11-14 2011-03-03 スリーエム イノベイティブ プロパティズ カンパニー Microarray fabrication method
JP2011232220A (en) * 2010-04-28 2011-11-17 Waseda Univ Surface enhanced raman spectroscopy
JP2012052848A (en) * 2010-08-31 2012-03-15 Canon Inc Scattering near-field optical probe and near-field optical microscope including the same
WO2013157233A1 (en) * 2012-04-18 2013-10-24 セイコーエプソン株式会社 Sample analysis element and detection device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696157B1 (en) * 2000-03-05 2004-02-24 3M Innovative Properties Company Diamond-like glass thin films
JP2006071448A (en) * 2004-09-02 2006-03-16 Sii Nanotechnology Inc Probe for near-field microscope, its manufacturing method, and scanning probe microscope using the probe
JP2006089788A (en) * 2004-09-22 2006-04-06 Fuji Photo Film Co Ltd Fine structural body and its production method
JP2011506916A (en) * 2007-11-14 2011-03-03 スリーエム イノベイティブ プロパティズ カンパニー Microarray fabrication method
JP2009145320A (en) * 2007-11-21 2009-07-02 Hitachi High-Technologies Corp Photometric analysis instrument
WO2009110157A1 (en) * 2008-03-05 2009-09-11 株式会社日立製作所 Scanning probe microscope and method of observing sample using the same
JP2011232220A (en) * 2010-04-28 2011-11-17 Waseda Univ Surface enhanced raman spectroscopy
JP2012052848A (en) * 2010-08-31 2012-03-15 Canon Inc Scattering near-field optical probe and near-field optical microscope including the same
WO2013157233A1 (en) * 2012-04-18 2013-10-24 セイコーエプソン株式会社 Sample analysis element and detection device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017053703A (en) * 2015-09-09 2017-03-16 学校法人 東洋大学 Measuring instrument and measuring method
JP2020153892A (en) * 2019-03-22 2020-09-24 学校法人早稲田大学 Optical device, analyzer, and method of manufacturing optical device
JP7315163B2 (en) 2019-03-22 2023-07-26 学校法人早稲田大学 OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD
CN111796410A (en) * 2020-06-28 2020-10-20 哈尔滨工业大学 Solid-state sample multidimension degree precision revolving stage of micro-raman imaging
CN112683419A (en) * 2020-12-21 2021-04-20 山东大学 Method for accurately detecting temperature based on surface enhanced Raman scattering effect
CN112683419B (en) * 2020-12-21 2021-12-24 山东大学 Method for accurately detecting temperature based on surface enhanced Raman scattering effect

Also Published As

Publication number Publication date
JPWO2014097886A1 (en) 2017-01-12
JP6179905B2 (en) 2017-08-23

Similar Documents

Publication Publication Date Title
JP6179905B2 (en) Optical device and analyzer
US7529158B2 (en) Optical near-field generator and recording apparatus using the optical near-field generator
US8836946B2 (en) Optical device and detection device
EP2718694B1 (en) Efficient fluorescence detection in diamond spin systems
US9057697B2 (en) Optical device with propagating and localized surface plasmons and detection apparatus
US8424111B2 (en) Near-field optical microscope, near-field optical probe, and sample observation method
US9488583B2 (en) Molecular analysis device
JP2010197208A (en) Scanning probe microscope and sample observation method using same
CN1815197A (en) Photon crystal optical-fiber probe sensor based on nano grain surface increasing Raman spectrum
TWI571625B (en) Fiber sensor and sensing device
US20140242571A1 (en) Optical element, analysis equipment, analysis method and electronic apparatus
US20120218550A1 (en) Nanohole array biosensor
US10877065B2 (en) Near field scanning probe microscope, probe for scanning probe microscope, and sample observation method
JP5014441B2 (en) Electric field enhancing structure including dielectric particles, apparatus including the electric field enhancing structure, and method of using the same
JP3802860B2 (en) Apparatus and method for measuring aperture of optical probe for near field
CN109374928B (en) Near-field scanning probe based on plasma focusing
JP2015105837A (en) Optical device and analyzer
JP7315163B2 (en) OPTICAL DEVICE, ANALYZER, AND OPTICAL DEVICE MANUFACTURING METHOD
JP2018072018A (en) Optical device and method for manufacturing the same
JP5242336B2 (en) Non-contact measuring probe
JP2015105838A (en) Optical device and analyzer
JP2015212625A (en) Analytical method
JP4957398B2 (en) Sample measurement board for near-field spectroscopy
Coenen et al. Angle-Resolved Cathodoluminescence Spectroscopy of Plasmonic Nanoantennas
JP2013231639A (en) Substrate for fluorescence measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13866301

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2014553069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13866301

Country of ref document: EP

Kind code of ref document: A1