JP2020153705A - Shape measuring device and shape measuring method - Google Patents

Shape measuring device and shape measuring method Download PDF

Info

Publication number
JP2020153705A
JP2020153705A JP2019050154A JP2019050154A JP2020153705A JP 2020153705 A JP2020153705 A JP 2020153705A JP 2019050154 A JP2019050154 A JP 2019050154A JP 2019050154 A JP2019050154 A JP 2019050154A JP 2020153705 A JP2020153705 A JP 2020153705A
Authority
JP
Japan
Prior art keywords
stylus
heat insulating
shape measuring
axis direction
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019050154A
Other languages
Japanese (ja)
Other versions
JP7212559B2 (en
Inventor
娜 高
Na Gao
娜 高
宮武 勤
Tsutomu Miyatake
勤 宮武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2019050154A priority Critical patent/JP7212559B2/en
Priority to TW109108763A priority patent/TWI805905B/en
Priority to KR1020200032698A priority patent/KR20200111116A/en
Priority to CN202010190997.7A priority patent/CN111702604A/en
Publication of JP2020153705A publication Critical patent/JP2020153705A/en
Application granted granted Critical
Publication of JP7212559B2 publication Critical patent/JP7212559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B19/00Single-purpose machines or devices for particular grinding operations not covered by any other main group
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/10Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces
    • B24B47/12Drives or gearings; Equipment therefor for rotating or reciprocating working-spindles carrying grinding wheels or workpieces by mechanical gearing or electric power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B47/00Drives or gearings; Equipment therefor
    • B24B47/20Drives or gearings; Equipment therefor relating to feed movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/12Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B51/00Arrangements for automatic control of a series of individual steps in grinding a workpiece
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Abstract

To achieve the highly accurate shape measurement by reducing the influence of external temperature change.SOLUTION: Disclosed is a shape measuring device 40 which measures the surface shape of an object W to be measured by scanning in the scanning direction with three gage heads 41 provided side by side in the scanning direction. Three gage heads 41 are enclosed in a heat insulating member 43. By performing measurement by enclosing three gage heads 41 in an insulating material 43, even when temperature characteristics of individual gage heads 41 are different from each other, the influence of external temperature change is suppressed, thereby capable of performing the shape measurement while maintaining high accuracy.SELECTED DRAWING: Figure 3

Description

本発明は、真直度の測定を行う形状測定装置及び形状測定方法に関する。 The present invention relates to a shape measuring device and a shape measuring method for measuring straightness.

逐次3点法により計測対象物の表面形状を求め、真直度の測定を行う形状測定装置が知られている(例えば、特許文献1参照)。 There is known a shape measuring device that obtains the surface shape of an object to be measured by a sequential three-point method and measures the straightness (see, for example, Patent Document 1).

特開2013−195082号公報Japanese Unexamined Patent Publication No. 2013-195082

上記形状測定装置では、例えば、三つの検出光の受発光部によって走査を行い、検出光の出射方向の変位の検出を行っている。
上記測定においては、高分解能で高精度の変位検出が高く要求されているが、各受発光部の光学系は外部の温度変化の影響を受ける場合があり、これが検出精度の低下を招くおそれがあった。
In the shape measuring device, for example, scanning is performed by three light emitting / receiving units of the detected light to detect the displacement of the detected light in the emission direction.
In the above measurement, high-resolution and high-precision displacement detection is highly required, but the optical system of each light-receiving part may be affected by external temperature changes, which may lead to a decrease in detection accuracy. there were.

本発明は、外部の温度変化の影響を低減することを目的とする。 An object of the present invention is to reduce the influence of an external temperature change.

本発明は、走査方向に並んで設けられた三つの測定子によって前記走査方向に走査して測定対象物の表面形状を計測する形状測定装置であって、前記三つの測定子を断熱材料又は断熱部材に内包した構成としている。 The present invention is a shape measuring device that measures the surface shape of an object to be measured by scanning in the scanning direction with three stylus provided side by side in the scanning direction, and the three stylus is a heat insulating material or heat insulating material. It is configured to be included in the member.

また、本発明は、走査方向に並んで設けられた三つの測定子によって前記走査方向に走査して測定対象物の表面形状を計測する形状測定方法であって、前記三つの測定子を断熱材料又は断熱部材に内包した状態で計測する構成としている。 Further, the present invention is a shape measuring method for measuring the surface shape of an object to be measured by scanning in the scanning direction with three stylus provided side by side in the scanning direction, and the three stylus is used as a heat insulating material. Alternatively, it is configured to measure while being enclosed in a heat insulating member.

本発明によれば、外部の温度変化の影響を低減することが可能となる。 According to the present invention, it is possible to reduce the influence of an external temperature change.

本発明の実施形態に係る形状測定装置を搭載した工作機械を示す斜視図である。It is a perspective view which shows the machine tool equipped with the shape measuring apparatus which concerns on embodiment of this invention. 工作機械の制御系を示すブロック図である。It is a block diagram which shows the control system of a machine tool. 図3(A)は断熱材料からなる断熱部材を除いた状態のヘッドの斜視図、図3(B)は断熱部材を有する状態のヘッドの斜視図である。FIG. 3A is a perspective view of the head excluding the heat insulating member made of the heat insulating material, and FIG. 3B is a perspective view of the head having the heat insulating member. ワークの表面に対する走査を行う場合の概念図である。It is a conceptual diagram in the case of performing scanning on the surface of a work. 図5(A)及び図5(B)はワークの表面までの距離及び曲率の算出の説明図である。5 (A) and 5 (B) are explanatory views for calculating the distance and curvature to the surface of the work. 断熱部材の例を示す断面図である。It is sectional drawing which shows the example of the heat insulating member.

本発明の実施の形態を図面に基づいて説明する。
図1は発明の実施形態としての形状測定装置40を搭載した工作機械1を示す斜視図、図2は工作機械1の制御系を示すブロック図である。図中、X軸方向及びY軸方向はいずれも水平であって互いに直交し、Z軸方向はX軸方向及びY軸方向に直交する鉛直上下方向である。
Embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a perspective view showing a machine tool 1 equipped with a shape measuring device 40 as an embodiment of the invention, and FIG. 2 is a block diagram showing a control system of the machine tool 1. In the figure, the X-axis direction and the Y-axis direction are both horizontal and orthogonal to each other, and the Z-axis direction is a vertical vertical direction orthogonal to the X-axis direction and the Y-axis direction.

[工作機械の概要]
工作機械1は、ワークの一面を研削するいわゆる研削盤であり、基部31a,31b、第一のコラム10、第二のコラム20、クロスレール32、サドル331、砥石頭332、研削装置34、形状測定装置40、ならびに測定対象物としてのワークが配置されるテーブル36及びベッド35、制御装置60を備えている。ワークは、研削が行われる加工対象物である。
[Overview of machine tools]
The machine tool 1 is a so-called grinding machine that grinds one surface of a work, and has bases 31a and 31b, a first column 10, a second column 20, a cross rail 32, a saddle 331, a grindstone head 332, a grinding device 34, and a shape. It includes a measuring device 40, a table 36 and a bed 35 on which a work as a measuring object is arranged, and a control device 60. The work is a work object to be ground.

[ベッド]
ベッド35は、X軸方向に沿った図示しない一対のリニアガイドを備え、テーブル36をX軸方向に沿って移動可能に支持している。また、ベッド35には、テーブル36をX軸方向に沿って搬送する図示しない搬送機構が搭載されている。搬送機構は、動作量を任意に制御可能なテーブル送りモータ351(図2参照)を駆動源としており、テーブル36にワークを保持してX軸方向に搬送することを可能としている。
なお、この搬送機構は、後述する三つの測定子41をワークWに対して走査方向(X軸方向)に沿って相対的に移動させる走査機構としても機能する。
[bed]
The bed 35 includes a pair of linear guides (not shown) along the X-axis direction to movably support the table 36 along the X-axis direction. Further, the bed 35 is equipped with a transport mechanism (not shown) that transports the table 36 along the X-axis direction. The transport mechanism uses a table feed motor 351 (see FIG. 2) whose operating amount can be arbitrarily controlled as a drive source, and can hold the work on the table 36 and transport it in the X-axis direction.
The transport mechanism also functions as a scanning mechanism for moving the three stylus 41, which will be described later, relative to the work W along the scanning direction (X-axis direction).

また、ベッド35のY軸方向の両側には、一対の基部31a,31bが張り出されるように連結装備されている。一方の基部31aには第一のコラム10が載置装備され、他方の基部31bには第二のコラム20が載置装備されており、各コラム10,20の下端部は、ボルトや溶接等の周知の方法で基部31a,31bに固定されている。 Further, on both sides of the bed 35 in the Y-axis direction, a pair of base portions 31a and 31b are connected and equipped so as to project. A first column 10 is mounted on one base 31a, a second column 20 is mounted on the other base 31b, and the lower ends of the columns 10 and 20 are bolted, welded, or the like. It is fixed to the bases 31a and 31b by the well-known method of.

[第一及び第二のコラム]
第一のコラム10及び第二のコラム20はベッド35を挟んでY軸方向に並ぶ配置で立設されている。そして、これらコラム10,20の上端部には、ブラケット32a(第二のコラム20側のブラケットは図示略)を介して、クロスレール32がY軸方向に向けられた状態で固定支持されている。そして、各コラム10,20の上端部は、ボルトや溶接等の周知の方法でクロスレール32に固定されている。
[First and second columns]
The first column 10 and the second column 20 are erected in an arrangement arranged in the Y-axis direction with the bed 35 in between. A crossrail 32 is fixedly supported on the upper ends of the columns 10 and 20 via a bracket 32a (the bracket on the second column 20 side is not shown) in a state of being directed in the Y-axis direction. .. The upper ends of the columns 10 and 20 are fixed to the cross rail 32 by a well-known method such as bolting or welding.

[クロスレール]
クロスレール32は、Y軸方向に長尺であって、その前面側において、図示しないリニアガイドを介してサドル331をY軸方向に移動可能に支持している。
また、クロスレール32には、サドル331をY軸方向に沿って移動位置決めする図示しない搬送機構が搭載されている。この搬送機構は、動作量を任意に制御可能なサドル送りモータ321(図2参照)を駆動源としており、サドル331をY軸方向に沿って任意に移動位置決めすることができる。
[Crossrail]
The cross rail 32 is long in the Y-axis direction, and supports the saddle 331 so as to be movable in the Y-axis direction on the front side thereof via a linear guide (not shown).
Further, the cross rail 32 is equipped with a transport mechanism (not shown) for moving and positioning the saddle 331 along the Y-axis direction. This transfer mechanism uses a saddle feed motor 321 (see FIG. 2) whose operating amount can be arbitrarily controlled as a drive source, and can arbitrarily move and position the saddle 331 along the Y-axis direction.

サドル331は、砥石頭332を支持し、砥石頭332は、研削装置34を支持している。一方、クロスレール32のサドル送りモータ321によるサドル331のY軸方向の移動制御と、ベッド35のテーブル送りモータ351によるワークのX軸方向の移動制御とは協働して行われる。これにより、研削装置34の砥石34aをワークに対して、相対的にX−Y平面の任意の位置に移動位置決めすることができ、ワークの全面又はいずれの位置にも研削加工を行うことができる。 The saddle 331 supports the grindstone head 332, and the grindstone head 332 supports the grinding device 34. On the other hand, the movement control of the saddle 331 in the Y-axis direction by the saddle feed motor 321 of the cross rail 32 and the movement control of the work in the X-axis direction by the table feed motor 351 of the bed 35 are performed in cooperation with each other. As a result, the grindstone 34a of the grinding device 34 can be moved and positioned at an arbitrary position on the XY plane relative to the work, and grinding can be performed on the entire surface of the work or at any position. ..

[砥石頭及びサドル]
砥石頭332は、サドル331を介してクロスレール32によってY軸方向に移動可能に支持され、サドル331によりZ軸方向に沿って昇降可能に支持されている。また、砥石頭332は、下端部に研削装置34を支持している。
[Whetstone head and saddle]
The grindstone head 332 is movably supported in the Y-axis direction by the cross rail 32 via the saddle 331, and is movably supported in the Z-axis direction by the saddle 331. Further, the grindstone head 332 supports the grinding device 34 at the lower end portion.

サドル331は、砥石頭332をZ軸方向に沿って昇降させる役割を担うものである。
このため、サドル331は、図示しないリニアガイドにより砥石頭332をZ軸方向に沿って移動可能に支持している。そして、サドル331には、砥石頭332をZ軸方向に沿って移動位置決めする図示しない搬送機構が搭載されている。この搬送機構は、動作量を任意に制御可能な砥石昇降モータ333を駆動源としており、砥石頭332をZ軸方向に沿って任意に移動位置決めすることができる。
The saddle 331 plays a role of raising and lowering the grindstone head 332 along the Z-axis direction.
Therefore, the saddle 331 supports the grindstone head 332 so as to be movable along the Z-axis direction by a linear guide (not shown). The saddle 331 is equipped with a transfer mechanism (not shown) that moves and positions the grindstone head 332 along the Z-axis direction. This transport mechanism uses a grindstone elevating motor 333 that can arbitrarily control the amount of movement as a drive source, and can arbitrarily move and position the grindstone head 332 along the Z-axis direction.

[研削装置]
研削装置34は、砥石頭332の下端部に支持されている。
この研削装置34は、工具として、Y軸回りに回転駆動される円板状又は円筒状の砥石34aと、砥石34aを回転させる砥石回転モータ341とを有する。砥石34aは、砥石頭332の下端部の右端に配置されている。この砥石34aは、砥石回転モータ341による回転駆動によりその外周をワークに摺接させて研削を行う。
[Grinding device]
The grinding device 34 is supported by the lower end portion of the grindstone head 332.
As a tool, the grinding device 34 has a disc-shaped or cylindrical grindstone 34a that is rotationally driven around the Y-axis, and a grindstone rotation motor 341 that rotates the grindstone 34a. The grindstone 34a is arranged at the right end of the lower end portion of the grindstone head 332. The outer circumference of the grindstone 34a is brought into sliding contact with the work by rotational driving by the grindstone rotation motor 341 to perform grinding.

[形状測定装置]
形状測定装置40は、いわゆる分光干渉計であり、研削装置34によって研削されたワークの研削面に対して、3点法により表面形状を測定する。
形状測定装置40は、三つの測定子41を備えるヘッド42と、三つの光源411と、三つの受光素子412とを備えている。
[Shape measuring device]
The shape measuring device 40 is a so-called spectroscopic interferometer, and measures the surface shape of the ground surface of the workpiece ground by the grinding device 34 by a three-point method.
The shape measuring device 40 includes a head 42 having three stylus 41, three light sources 411, and three light receiving elements 412.

測定子41は、光伝導部材としての光ファイバ413を介して光源411及び受光素子412に接続されている。つまり、光ファイバ413が介在して光源411及び受光素子412は、測定子41から離隔して設けられている。 The stylus 41 is connected to the light source 411 and the light receiving element 412 via an optical fiber 413 as a light conductive member. That is, the light source 411 and the light receiving element 412 are provided apart from the stylus 41 with the optical fiber 413 interposed therebetween.

光源411は、例えば、SLD素子(Super Luminescent Diode)であり、予め定められた複数種類の波長の検出光を出力する。検出光は、光ファイバ413を通じて測定子41に送られる。
測定子41は、透光素子であり、光源411からの検出光をワークに向けられた出力面からワークに向けて投光すると共に、ワークからの反射光を出力面において受光する。
測定子41の内部では、出力面で内部反射した検出光とワークからの反射光との干渉光が発生する。この干渉光は、光ファイバ413を通じて受光素子412に送られる。
受光素子412は、例えば、CCDであり、測定子41からの干渉光を図示しない分光器を介して受光する。分光器は、予め定められた複数種類の波長光に分光し、受光素子412は、各波長光の光強度を個別に検出すると共に制御装置60に入力する。
測定子41は、干渉光の各波長光の光強度から、出力面からワークの表面までのZ軸方向の距離を検出することができる。
The light source 411 is, for example, an SLD element (Super Luminescent Diode), and outputs detection light having a plurality of predetermined wavelengths. The detection light is sent to the stylus 41 through the optical fiber 413.
The stylus 41 is a translucent element, which projects the detection light from the light source 411 from the output surface directed to the work toward the work, and receives the reflected light from the work on the output surface.
Inside the stylus 41, interference light between the detection light internally reflected on the output surface and the reflected light from the work is generated. This interference light is sent to the light receiving element 412 through the optical fiber 413.
The light receiving element 412 is, for example, a CCD, and receives the interference light from the stylus 41 via a spectroscope (not shown). The spectroscope disperses light into a plurality of types of predetermined wavelength light, and the light receiving element 412 individually detects the light intensity of each wavelength light and inputs the light intensity to the control device 60.
The stylus 41 can detect the distance in the Z-axis direction from the output surface to the surface of the work from the light intensity of each wavelength light of the interference light.

図3はヘッド42の斜視図であり、図3(A)は断熱材料からなる断熱部材43を除いた状態、図3(B)は断熱部材43を有する状態を示す。図3におけるX軸方向、Y軸方向及びZ軸方向の記載は、ヘッド42を砥石頭332に取り付けた状態における方向を示している。 3A and 3B are perspective views of the head 42, FIG. 3A shows a state in which the heat insulating member 43 made of a heat insulating material is removed, and FIG. 3B shows a state in which the heat insulating member 43 is provided. The description of the X-axis direction, the Y-axis direction, and the Z-axis direction in FIG. 3 indicates the direction in which the head 42 is attached to the grindstone head 332.

ヘッド42は、図示のように、三つの測定子41と、これらを個別に挟んで保持する固定治具414と、各固定治具414を介して三つの測定子41を一体的に支持する治具421と、治具421に固定装備された支持部材422と、支持部材422を介して各測定子41を支持する基台423と、基台423を砥石頭332の表面に装着する吸着ブロック424とを備えている。 As shown in the figure, the head 42 integrally supports the three stylus 41, the fixing jig 414 that individually sandwiches and holds them, and the three stylus 41 via each fixing jig 414. The tool 421, the support member 422 fixedly mounted on the jig 421, the base 423 that supports each stylus 41 via the support member 422, and the suction block 424 that mounts the base 423 on the surface of the grindstone head 332. And have.

治具421は、長尺な矩形状のブロックであり、底部に設けられた開口部によって出力面を露出させた状態で三つの測定子41が埋め込み装備されている。
治具421は、その長手方向がY軸方向に平行に向けられている。そして、この治具421により、三つの測定子41は、Y軸方向について均一間隔で配置されている。
また、治具421は、いずれも検出光の光軸がZ軸方向に平行となるように三つの測定子41を保持する。
これにより、三つの測定子41は、Z軸方向における距離検出を行うことができる。
The jig 421 is a long rectangular block, and is equipped with three stylus 41 embedded in a state where the output surface is exposed by an opening provided at the bottom.
The longitudinal direction of the jig 421 is oriented parallel to the Y-axis direction. Then, by this jig 421, the three stylus 41 are arranged at uniform intervals in the Y-axis direction.
Further, the jig 421 holds three stylus 41 so that the optical axis of the detection light is parallel to the Z-axis direction.
As a result, the three stylus 41 can detect the distance in the Z-axis direction.

また、治具421は、例えば、スーパーインバー(登録商標)のような、熱膨張率が極めて小さい不変鋼等の金属材料から形成されている。これにより、周囲の環境温度による各測定子41の間隔や出力面の相対的な位置変動を抑制している。 Further, the jig 421 is formed of a metal material such as invariant steel having an extremely small coefficient of thermal expansion, such as Super Invar (registered trademark). As a result, the spacing between the stylus 41 and the relative position fluctuation of the output surface due to the ambient temperature are suppressed.

支持部材422は、台形の板状部材であり、ボルトやネジ止め等の手段により治具421に対して固定的に連結されている。また、支持部材422は治具421から取り外すこともできる。 The support member 422 is a trapezoidal plate-shaped member, and is fixedly connected to the jig 421 by means such as bolts and screws. The support member 422 can also be removed from the jig 421.

基台423は、X−Y平面に沿った平板状の台座と当該台座から垂下された二本のアームからなり、アームの下端部には支持部材422が連結されている。
基台423は、支持部材422をネジと図示しない長穴等の構造によりY軸回りに角度調節可能としている。この角度調節により、支持部材422を介して治具421を回動させることができ、各測定子41の検出光の光軸の向きや各測定子41の出力面のZ軸方向の高さを調整することができる。
The base 423 includes a flat plate-shaped pedestal along the XY plane and two arms hanging from the pedestal, and a support member 422 is connected to the lower end of the arm.
The base 423 has a support member 422 whose angle can be adjusted around the Y-axis by a structure such as a screw and an elongated hole (not shown). By this angle adjustment, the jig 421 can be rotated via the support member 422, and the direction of the optical axis of the detection light of each stylus 41 and the height of the output surface of each stylus 41 in the Z-axis direction can be adjusted. Can be adjusted.

各吸着ブロック424は、永久磁石を内蔵しており、外部に設けられた摘みを回転操作することにより、永久磁石による吸引力の有無を切り替えることができる。
つまり、ヘッド42は、工作機械1に対して着脱可能であり、各吸着ブロック424を用いて、ヘッド42を砥石頭332等の表面の適切な位置に取り付けることができる。
各吸着ブロック424によるヘッド42の取付の際には、治具421及び各測定子41が適正な向き及び配置となるように適度に調整され、基台423−支持部材422間の角度調整によってさらに正確に調整される。
Each suction block 424 has a built-in permanent magnet, and the presence or absence of the attractive force by the permanent magnet can be switched by rotating the knob provided on the outside.
That is, the head 42 can be attached to and detached from the machine tool 1, and the head 42 can be attached to an appropriate position on the surface of the grindstone head 332 or the like by using each suction block 424.
When the head 42 is attached by each suction block 424, the jig 421 and each stylus 41 are appropriately adjusted so as to have an appropriate orientation and arrangement, and further by adjusting the angle between the base 423 and the support member 422. It is adjusted accurately.

また、ヘッド42の三つの測定子41、固定治具414及び治具421には、断熱構造が施されている。
具体的には、図3(B)に示すように、三つの測定子41、固定治具414及び治具421は、断熱部材43に内包された状態となっている。
断熱部材43は、三つの測定子41、固定治具414及び治具421の表面の全体(各測定子41の光ファイバの接続部分を除く)を被覆している。この断熱部材43には、各測定子41の出力面の出射側に検出光の出射又は反射光の入射を行うための開口部431が形成されている。
Further, the three stylus 41 of the head 42, the fixing jig 414 and the jig 421 are provided with a heat insulating structure.
Specifically, as shown in FIG. 3B, the three stylus 41, the fixing jig 414, and the jig 421 are contained in the heat insulating member 43.
The heat insulating member 43 covers the entire surface of the three stylus 41, the fixing jig 414, and the jig 421 (excluding the optical fiber connecting portion of each stylus 41). The heat insulating member 43 is formed with an opening 431 for emitting detected light or incident reflected light on the emitting side of the output surface of each stylus 41.

なお、断熱部材43は、図示のように、ブロック状の断熱部材43の内側に三つの測定子41及び治具421が嵌合する凹部を形成し、当該凹部に三つの測定子41及び治具421に格納する構造としても良いし、シート状の一つの断熱部材43により、三つの測定子41及び治具421の表面全体を包む構造としても良い。この場合、三つの測定子41の間に空間ができるので、同一空間内で各測定子41間の測定環境が平均化され、各測定子41間のバラつきが低減される。
また、発泡性の断熱材料を三つの測定子41及び治具421の表面に吹き付けてもよい。この場合、簡易に測定子41を断熱材料で被覆することができる。
また、図示はしないが測定子41をそれぞれ個別に断熱材料又は断熱部材で包む構造としても良い。ただしこの場合、センサ自体のばらつきを校正した上で計測を行うことが好ましい。
各測定子41を被覆する断熱材料としては、繊維系断熱材であるグラスウール、ロックウール、セルローズファイバー、炭化コルク、羊毛断熱材等や、発泡系断熱材であるウレタンフォーム、フェノールフォーム、ポリスチレンフォーム等のいわゆる断熱材と呼ばれる素材が好ましいが、これらに限られない。例えば、熱伝導率が、5.0[W/mk]以下、好ましくは、1.0[W/mk]以下、より好ましくは0.5[W/mk]以下の他の断熱性の素材を利用しても良い。
As shown in the figure, the heat insulating member 43 forms a recess in which the three stylus 41 and the jig 421 fit inside the block-shaped heat insulating member 43, and the three stylus 41 and the jig are formed in the recess. The structure may be stored in the 421, or the entire surface of the three stylus 41 and the jig 421 may be wrapped by one sheet-shaped heat insulating member 43. In this case, since a space is created between the three stylus 41, the measurement environment between the stylus 41 is averaged in the same space, and the variation between the stylus 41 is reduced.
Further, the foamable heat insulating material may be sprayed on the surfaces of the three stylus 41 and the jig 421. In this case, the stylus 41 can be easily covered with a heat insulating material.
Further, although not shown, the stylus 41 may be individually wrapped with a heat insulating material or a heat insulating member. However, in this case, it is preferable to perform the measurement after calibrating the variation of the sensor itself.
Examples of the heat insulating material for covering each stylus 41 include fiber-based heat insulating materials such as glass wool, rock wool, cellulose fiber, carbonized cork, and wool heat insulating material, and foam-based heat insulating materials such as urethane foam, phenol foam, and polystyrene foam. Materials such as so-called heat insulating materials are preferable, but are not limited to these. For example, another heat insulating material having a thermal conductivity of 5.0 [W / mk] or less, preferably 1.0 [W / mk] or less, more preferably 0.5 [W / mk] or less may be used.

この断熱部材43により、三つの測定子41、固定治具414及び治具421は、外気から断熱され、外部の環境温度から受ける影響の低減が図られている。 By the heat insulating member 43, the three stylus 41, the fixing jig 414, and the jig 421 are heat-insulated from the outside air, and the influence of the external environmental temperature is reduced.

[制御装置]
制御装置60は、工作機械1を全体的に統括制御するための装置であり、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、その他の不揮発メモリ等を備えたコンピュータである。
制御装置60は、図2に示すように、前述したテーブル送りモータ351、サドル送りモータ321、砥石昇降モータ333、砥石回転モータ341と電気的に接続されており、これらの駆動を制御することができる。
また、制御装置60は、形状測定装置40、表示装置61、入力装置62と接続されている。
表示装置61は、各種情報を表示するための装置であり、例えば、液晶ディスプレイ等である。
入力装置62は、工作機械1に各種情報や各種の指令を入力するための入力インターフェイスである。
[Control device]
The control device 60 is a device for controlling the machine tool 1 as a whole, and includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), and other non-volatile memories. It is a equipped computer.
As shown in FIG. 2, the control device 60 is electrically connected to the above-mentioned table feed motor 351 and saddle feed motor 321, the grindstone elevating motor 333, and the grindstone rotation motor 341, and can control the drive thereof. it can.
Further, the control device 60 is connected to the shape measuring device 40, the display device 61, and the input device 62.
The display device 61 is a device for displaying various types of information, such as a liquid crystal display.
The input device 62 is an input interface for inputting various information and various commands to the machine tool 1.

上記制御装置60は、研削制御部63、形状測定処理部64を備えている。
制御装置60は、例えば、研削制御部63及び形状測定処理部64としての機能に対応する各種のプログラムをROMに格納しており、CPUがそれぞれのプログラムを実行することにより、研削制御部63及び形状測定処理部64としての機能を実現させる。なお、研削制御部63、形状測定処理部64としての回路を個別に設けて、ハードウェアにより実現する構成としてもよい。
The control device 60 includes a grinding control unit 63 and a shape measurement processing unit 64.
The control device 60 stores, for example, various programs corresponding to the functions as the grinding control unit 63 and the shape measurement processing unit 64 in the ROM, and the CPU executes the respective programs to execute the grinding control unit 63 and the shape measurement processing unit 64. The function as the shape measurement processing unit 64 is realized. It should be noted that the circuits as the grinding control unit 63 and the shape measurement processing unit 64 may be individually provided so as to be realized by hardware.

研削制御部63は、工作機械1によるワークの研削加工における動作制御を実行する。
例えば、前述した入力装置62により、予め、砥石の回転数、研削深さ、研削範囲等の各種の加工条件が入力されると、研削制御部63は、テーブル送りモータ351、サドル送りモータ321、砥石昇降モータ333、砥石回転モータ341を制御して、入力された加工条件に基づく研削加工を実行する。
The grinding control unit 63 executes operation control in grinding the work by the machine tool 1.
For example, when various machining conditions such as the number of rotations of the grindstone, the grinding depth, and the grinding range are input in advance by the input device 62 described above, the grinding control unit 63 may use the table feed motor 351 and the saddle feed motor 321. The grindstone elevating motor 333 and the grindstone rotation motor 341 are controlled to perform grinding based on the input machining conditions.

形状測定処理部64は、Y軸方向に三つの測定子41を走査したときの検出出力から3点法によりワークの表面形状を測定する処理を行う。
図4はワークWの表面に対する走査を行う場合の概念図、図5(A)及び図5(B)はワークWの表面までの距離及び曲率の算出の説明図である。なお、図4及び図5では三つの測定子41を区別するために、これらの符号を、走査方向上流側(ワークWの搬送方向下流側)から順番に41a,41b,41cとする。
図4〜図5(B)に基づいて形状測定処理部64が実行する測定方法の内容を説明する。
The shape measurement processing unit 64 performs a process of measuring the surface shape of the work by a three-point method from the detection output when the three stylus 41s are scanned in the Y-axis direction.
FIG. 4 is a conceptual diagram when scanning the surface of the work W, and FIGS. 5 (A) and 5 (B) are explanatory views for calculating the distance and curvature to the surface of the work W. In addition, in FIG. 4 and FIG. 5, in order to distinguish the three stylus 41, these symbols are designated as 41a, 41b, 41c in order from the upstream side in the scanning direction (downstream side in the transport direction of the work W).
The contents of the measurement method executed by the shape measurement processing unit 64 will be described with reference to FIGS. 4 to 5 (B).

形状測定処理部64は、図4に示すように、形状測定時において、テーブル送りモータ351を制御して、規定の速度でワークWをY軸方向に沿って搬送する。この状態で、三つの測定子41によって規定の周期で形状測定を実行することにより、ワークWの表面に対する走査が実行される。 As shown in FIG. 4, the shape measurement processing unit 64 controls the table feed motor 351 at the time of shape measurement to convey the work W along the Y-axis direction at a predetermined speed. In this state, scanning of the surface of the work W is performed by performing shape measurement by the three stylus 41 at a predetermined cycle.

測定子41a,41b,41cは、図5(A)に示すように、間隔PでX軸方向に一列に配設されている。このときのワークWの表面上のa点、b点、c点までのZ軸方向の距離を測定する。
測定子41a,41b,41cによって求められる各測定子41a,41b,41cの出力面からワークWの表面までのZ軸方向に沿った距離をそれぞれA,B,Cとすると、b点から線分acまでのZ軸方向に沿った距離(ギャップgとする)は、次式(1)により求められる。
g=B−(A+C)/2 …(1)
As shown in FIG. 5A, the stylus 41a, 41b, 41c are arranged in a row in the X-axis direction at intervals P. At this time, the distances in the Z-axis direction to points a, b, and c on the surface of the work W are measured.
Assuming that the distances along the Z-axis direction from the output surface of each of the stylus 41a, 41b, 41c obtained by the stylus 41a, 41b, 41c to the surface of the work W are A, B, and C, respectively, a line segment from point b. The distance along the Z-axis direction to ac (referred to as the gap g) is obtained by the following equation (1).
g = B- (A + C) / 2 ... (1)

一方、ワークWの表面のb点における変位zの2階微分(dz/dx)は、b点の曲率(1/r)であり、図5(B)に示すように、線分abの傾き(dzab/dx)と、線分bcの傾き(dzbc/dx)との間で次式(2)が成立する。 On the other hand, the second derivative (d 2 z / dx 2 ) of the displacement z at point b on the surface of the work W is the curvature (1 / r) at point b, and is a line segment as shown in FIG. 5 (B). The following equation (2) holds between the slope of ab (dz ab / dx) and the slope of the line segment bc (dz bc / dx).

Figure 2020153705
Figure 2020153705

線分abの傾き(dzab/dx)は次式(3)で求まり、線分bcの傾き(dzbc/dx)は次式(4)で求まる。
従って、上式(2)に次式(3),(4)を代入し、さらに式(1)を代入すると、次式(5)が求まる。従って、変位zの2階微分であるb点の曲率は、ギャップg及び測定子41a,41b,41cの間隔Pから求めることができる。
The slope of the line segment ab (dz ab / dx) can be obtained by the following equation (3), and the slope of the line segment bc (dz bc / dx) can be obtained by the following equation (4).
Therefore, by substituting the following equations (3) and (4) into the above equation (2) and further substituting the equation (1), the following equation (5) can be obtained. Therefore, the curvature of point b, which is the second derivative of the displacement z, can be obtained from the gap g and the interval P of the stylus 41a, 41b, 41c.

Figure 2020153705
Figure 2020153705
Figure 2020153705
Figure 2020153705
Figure 2020153705
Figure 2020153705

測定子41a,41b,41cの間隔Pは既知であり、予め制御装置60のメモリに記録しておくことができる。
形状測定処理部64は、走査時に、各測定子41a,41b,41cによる検出出力から距離A,B,Cを取得し、式(1)に基づいてギャップgを算出する。さらに、メモリから間隔Pの値を読み出すと共に、式(5)に基づいて曲率を算出する。そして、求められた曲率を積分ピッチで2階積分することで、任意のx点における変位zを求めることができる。積分ピッチは、例えば走査時におけるX方向の各測定子41a,41b,41cのデータ取得間隔(走査速度×サンプリング周期)等である。
The distance P between the stylus 41a, 41b, and 41c is known and can be recorded in the memory of the control device 60 in advance.
The shape measurement processing unit 64 acquires the distances A, B, and C from the detection outputs of the transducers 41a, 41b, and 41c at the time of scanning, and calculates the gap g based on the equation (1). Further, the value of the interval P is read from the memory, and the curvature is calculated based on the equation (5). Then, the displacement z at an arbitrary x point can be obtained by second-order integrating the obtained curvature at the integration pitch. The integration pitch is, for example, the data acquisition interval (scanning speed × sampling period) of each of the stylus 41a, 41b, 41c in the X direction during scanning.

[工作機械の動作]
制御装置60は、研削制御部63の制御の下、設定された研削深さとなるように砥石昇降モータ333を駆動し、設定された砥石の回転数で砥石回転モータ341の駆動を実行する。
そして、テーブル送りモータ351により研削装置34の砥石34aをワークに対して相対的にX軸方向に送りつつ研削を実行する。さらに、サドル送りモータ321の駆動により砥石34aを所定の距離単位でY軸方向に移動させながら、X軸方向の研削を繰り返して、ワークWに対して、設定された研削範囲の研削を実行する。
[Machine tool operation]
Under the control of the grinding control unit 63, the control device 60 drives the grindstone elevating motor 333 so as to have a set grinding depth, and drives the grindstone rotation motor 341 at the set rotation speed of the grindstone.
Then, the table feed motor 351 feeds the grindstone 34a of the grinding device 34 relative to the work in the X-axis direction to perform grinding. Further, while moving the grindstone 34a in the Y-axis direction in a predetermined distance unit by driving the saddle feed motor 321, grinding in the X-axis direction is repeated to grind the work W in the set grinding range. ..

次いで、制御装置60は、研削後のワークWに対して、加工面の曲率及び平面度の検出を行う。
即ち、テーブル送りモータ351及びサドル送りモータ321の駆動により、砥石頭332に取り付けられたヘッド42の各測定子41の検出位置がワークWの検索範囲の開始位置となるようにヘッド42とワークWとの相対的な位置決めを行う。また、砥石昇降モータ333を駆動して各測定子41の出力面が規定の高さとなるように調整する。
そして、テーブル送りモータ351によりワークWを所定の速度で搬送し、X軸方向を走査方向として、各測定子41において所定のサンプリング周期でZ軸方向の距離A,B,Cを検出する。これに基づいて、研削範囲の走査方向の全長に渡ってギャップgを算出する。
さらに、サドル送りモータ321の駆動により砥石34aを所定の距離単位でY軸方向に移動させながら、X軸方向の研削範囲全体に渡って曲率及び変位zを求め、研削範囲全体の平面度を測定する。
Next, the control device 60 detects the curvature and flatness of the machined surface with respect to the work W after grinding.
That is, the head 42 and the work W are driven so that the detection positions of the stylus 41 of the head 42 attached to the grindstone head 332 become the start position of the search range of the work W by driving the table feed motor 351 and the saddle feed motor 321. Perform relative positioning with. Further, the grindstone elevating motor 333 is driven to adjust the output surface of each stylus 41 to a specified height.
Then, the work W is conveyed at a predetermined speed by the table feed motor 351, and the distances A, B, and C in the Z-axis direction are detected by each stylus 41 at a predetermined sampling cycle with the X-axis direction as the scanning direction. Based on this, the gap g is calculated over the entire length of the grinding range in the scanning direction.
Further, while moving the grindstone 34a in the Y-axis direction in a predetermined distance unit by driving the saddle feed motor 321, the curvature and displacement z are obtained over the entire grinding range in the X-axis direction, and the flatness of the entire grinding range is measured. To do.

[発明の実施形態の技術的効果]
上記工作機械1は、X軸方向(走査方向)に並んで設けられた三つの測定子41によって走査方向に走査してワークの表面形状としての平面度を計測する形状測定装置40を備えており、当該形状測定装置40の三つの測定子41は、断熱部材43に内包されている。
このため、三つの測定子41は、断熱部材43に内包された状態で計測が行われ、各測定子41に対して、周囲の環境温度変化の影響を低減し、曲率や変位について精度の高い検出を行うことが可能となる。
[Technical Effects of Embodiments of the Invention]
The machine tool 1 includes a shape measuring device 40 that scans in the scanning direction by three stylus 41 provided side by side in the X-axis direction (scanning direction) and measures the flatness as the surface shape of the work. The three stylus 41 of the shape measuring device 40 are included in the heat insulating member 43.
Therefore, the three stylus 41 are measured in a state of being included in the heat insulating member 43, the influence of the ambient temperature change on each stylus 41 is reduced, and the curvature and displacement are highly accurate. It becomes possible to perform detection.

また、形状測定装置40は、三つの測定子41を用いて、3点法によりワークWの表面形状を計測しているので、各測定子41のZ軸方向の運動誤差やピッチング運動誤差を相殺し、精度の高い検出を行うことが可能となる。
さらに、各測定子41の温度特性が個別に異なるような場合であっても、断熱部材43が個々の測定子41の環境温度の影響を低減するので、検出精度の低下を効果的に抑制することが可能となる。
Further, since the shape measuring device 40 measures the surface shape of the work W by the three-point method using three stylus 41, the motion error and the pitching motion error in the Z-axis direction of each stylus 41 are offset. However, it is possible to perform highly accurate detection.
Further, even when the temperature characteristics of each stylus 41 are individually different, the heat insulating member 43 reduces the influence of the environmental temperature of each stylus 41, so that the decrease in detection accuracy is effectively suppressed. It becomes possible.

また、断熱部材43は、三つの測定子41を一体的に支持する治具421をも内包しているので、治具421に対する環境温度変化の影響を低減することができ、さらなる精度の高い検出を行うことが可能となる。
また、断熱部材43は、支持部材422と治具421とをまとめて被覆するので、形状測定装置40全体を覆う場合よりもコストを低減することが可能である。さらに、基台423は断熱部材43により被覆されていないので、先に、支持部材422及び治具421を断熱部材43でまとめて被覆した後に、これらを基台423に接続することができ、形状測定装置40全体を被覆部材43で被覆するよりも簡易に断熱部材43を設置することが可能である。
Further, since the heat insulating member 43 also includes the jig 421 that integrally supports the three stylus 41, the influence of the environmental temperature change on the jig 421 can be reduced, and the detection can be performed with higher accuracy. Can be done.
Further, since the heat insulating member 43 covers the support member 422 and the jig 421 together, the cost can be reduced as compared with the case where the entire shape measuring device 40 is covered. Further, since the base 423 is not covered with the heat insulating member 43, the support member 422 and the jig 421 can be collectively covered with the heat insulating member 43 and then connected to the base 423. It is possible to install the heat insulating member 43 more easily than covering the entire measuring device 40 with the covering member 43.

また、工作機械1は、テーブル送りモータ351によって、三つの測定子41をワークWに対して走査方向に沿って相対的に移動させる搬送機構を有するので、3点法における三つの測定子41の走査を良好に行うことが可能である。 Further, since the machine tool 1 has a transfer mechanism for moving the three stylus 41 relative to the work W along the scanning direction by the table feed motor 351, the three stylus 41 in the three-point method It is possible to perform good scanning.

また、三つの測定子41は、いずれも、光源411が光ファイバ413を介して断熱部材43の外部に離隔して設けられているので、光源411が熱を生じる場合であっても、断熱部材43内の温度の影響を十分に低減することができ、精度の高い検出を行うことが可能である。 Further, in each of the three stylus 41, since the light source 411 is provided at a distance from the outside of the heat insulating member 43 via the optical fiber 413, the heat insulating member even when the light source 411 generates heat. The influence of the temperature in 43 can be sufficiently reduced, and highly accurate detection can be performed.

[その他]
以上、本発明の各実施形態について説明した。しかし、本発明は上記の実施形態に限られない。例えば、工作機械1として研削盤を例示したが、加工後のワークWの表面形状を測定する用途がある他の工作機械にも形状測定装置40は搭載可能である。例えば、切削盤等にも形状測定装置40を搭載可能である。
[Other]
Each embodiment of the present invention has been described above. However, the present invention is not limited to the above embodiment. For example, although the grinding machine 1 is illustrated as a machine tool 1, the shape measuring device 40 can be mounted on another machine tool having an application of measuring the surface shape of the work W after processing. For example, the shape measuring device 40 can be mounted on a cutting machine or the like.

また、例えば、図6に示すように、三つの測定子41や固定治具414及び治具421を複数の断熱部材から構成された断熱構造43Aに内包する構成としても良い。
例えば、断熱構造43Aは、三つの測定子41や固定治具414及び治具421を内部に格納する断熱部材としての内側層432Aと、内側層432Aの全体を内側に格納する断熱部材としての外側層433Aとを有する二層構造とし、内側層432Aと外側層433Aとの間の中空エリアを真空化して真空断熱構造を構成する。また、この場合も、各測定子41の出力面側には、検出光や反射光が通過する開口部431Aを設けることが望ましい。
この場合、内側層432Aと外側層433Aの間に真空層を設けることで外部との効果的な断熱を図ることが可能である。
また、内側層432A及び外側層433Aそのものは断熱材料から形成しなくとも、断熱効果を得ることができる。従って、例えば、内側層432A及び外側層433Aを、加工が容易で強度が得られやすい金属材料で形成しても良い。
これらの構成の場合も、三つの測定子41は、断熱構造43Aにより周囲の環境温度変化の影響を低減し、曲率や変位について精度の高い検出を行うことが可能となる。
Further, for example, as shown in FIG. 6, the three stylus 41, the fixing jig 414, and the jig 421 may be included in the heat insulating structure 43A composed of a plurality of heat insulating members.
For example, the heat insulating structure 43A has an inner layer 432A as a heat insulating member that stores three stylus 41, a fixing jig 414, and a jig 421 inside, and an outer layer 432A as a heat insulating member that stores the entire inner layer 432A inside. A two-layer structure having the layer 433A is formed, and the hollow area between the inner layer 432A and the outer layer 433A is evacuated to form a vacuum heat insulating structure. Further, also in this case, it is desirable to provide an opening 431A through which the detection light and the reflected light pass on the output surface side of each stylus 41.
In this case, by providing a vacuum layer between the inner layer 432A and the outer layer 433A, it is possible to achieve effective heat insulation with the outside.
Further, even if the inner layer 432A and the outer layer 433A themselves are not formed from the heat insulating material, the heat insulating effect can be obtained. Therefore, for example, the inner layer 432A and the outer layer 433A may be formed of a metal material that is easy to process and easily obtains strength.
Also in these configurations, the three stylus 41 can reduce the influence of changes in the ambient temperature due to the heat insulating structure 43A, and can perform highly accurate detection of curvature and displacement.

また、前述したヘッド42では、治具421と支持部材422とが直接的に接触して連結されている場合を例示したが、これらの間にも断熱材料を介挿して、熱伝達を抑制する構成としても良い。 Further, in the above-mentioned head 42, a case where the jig 421 and the support member 422 are directly contacted and connected is illustrated, but a heat insulating material is also inserted between them to suppress heat transfer. It may be configured.

また、各測定子41から光源411及び受光素子412を接続する光ファイバ413も断熱材料等により周囲から断熱を図っても良い。 Further, the optical fiber 413 connecting the light source 411 and the light receiving element 412 from each stylus 41 may also be insulated from the surroundings by a heat insulating material or the like.

1 工作機械
34 研削装置
34a 砥石
35 ベッド
36 テーブル
40 形状測定装置
41 測定子
41a,41b,41c 測定子
42 ヘッド
421 治具
43 断熱部材
43A 断熱構造
60 制御装置
63 研削制御部
64 形状測定処理部
351 テーブル送りモータ
332 砥石頭
411 光源
412 受光素子
413 光ファイバ(光伝導部材)
W ワーク(測定対象物)
1 Machine tool 34 Grinding device 34a Grinding stone 35 Bed 36 Table 40 Shape measuring device 41 Measuring instrument 41a, 41b, 41c Magnometer 42 Head 421 Jig 43 Insulation member 43A Insulation structure 60 Control device 63 Grinding control unit 64 Shape measurement processing unit 351 Table feed motor 332 Grindstone head 411 Light source 412 Light receiving element 413 Optical fiber (photoconducting member)
W work (measurement object)

Claims (7)

走査方向に並んで設けられた三つの測定子によって前記走査方向に走査して測定対象物の表面形状を計測する形状測定装置であって、
前記三つの測定子を断熱材料又は断熱部材に内包した形状測定装置。
A shape measuring device that measures the surface shape of an object to be measured by scanning in the scanning direction with three stylus provided side by side in the scanning direction.
A shape measuring device in which the three stylus are included in a heat insulating material or a heat insulating member.
前記三つの測定子を用いて、3点法により測定対象物の表面形状を計測する請求項1に記載の形状測定装置。 The shape measuring device according to claim 1, wherein the surface shape of an object to be measured is measured by a three-point method using the three stylus. 前記三つの測定子を一体的に支持する治具を備え、
前記三つの測定子を前記治具と共に前記断熱材料又は前記断熱部材に内包した請求項1又は2に記載の形状測定装置。
A jig that integrally supports the three stylus is provided.
The shape measuring device according to claim 1 or 2, wherein the three stylus are included in the heat insulating material or the heat insulating member together with the jig.
前記三つの測定子を、一つの前記断熱部材で覆った請求項1から3のいずれか一項に記載の形状測定装置。 The shape measuring device according to any one of claims 1 to 3, wherein the three stylus is covered with one heat insulating member. 前記三つの測定子を前記測定対象物に対して前記走査方向に沿って相対的に移動させる走査機構を備える請求項1から4のいずれか一項に記載の形状測定装置。 The shape measuring device according to any one of claims 1 to 4, further comprising a scanning mechanism for moving the three stylus relative to the measuring object along the scanning direction. 前記三つの測定子は、いずれも光源が光伝導部材を介して前記断熱材料又は前記断熱部材の外部に離隔して設けられている請求項1から5のいずれか一項に記載の形状測定装置。 The shape measuring device according to any one of claims 1 to 5, wherein the three stylus are all provided with a light source separated from the heat insulating material or the outside of the heat insulating member via a light conductive member. .. 走査方向に並んで設けられた三つの測定子によって前記走査方向に走査して測定対象物の表面形状を計測する形状測定方法であって、
前記三つの測定子を断熱材料又は断熱部材に内包した状態で計測する形状測定方法。
It is a shape measuring method that measures the surface shape of an object to be measured by scanning in the scanning direction with three stylus provided side by side in the scanning direction.
A shape measuring method in which the three stylus is included in a heat insulating material or a heat insulating member.
JP2019050154A 2019-03-18 2019-03-18 Shape measuring device and shape measuring method Active JP7212559B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019050154A JP7212559B2 (en) 2019-03-18 2019-03-18 Shape measuring device and shape measuring method
TW109108763A TWI805905B (en) 2019-03-18 2020-03-17 Shape measuring device and shape measuring method
KR1020200032698A KR20200111116A (en) 2019-03-18 2020-03-17 Apparatus and method for detecting shape
CN202010190997.7A CN111702604A (en) 2019-03-18 2020-03-18 Shape measuring device and shape measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019050154A JP7212559B2 (en) 2019-03-18 2019-03-18 Shape measuring device and shape measuring method

Publications (2)

Publication Number Publication Date
JP2020153705A true JP2020153705A (en) 2020-09-24
JP7212559B2 JP7212559B2 (en) 2023-01-25

Family

ID=72536271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019050154A Active JP7212559B2 (en) 2019-03-18 2019-03-18 Shape measuring device and shape measuring method

Country Status (4)

Country Link
JP (1) JP7212559B2 (en)
KR (1) KR20200111116A (en)
CN (1) CN111702604A (en)
TW (1) TWI805905B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113237459B (en) * 2021-04-12 2022-10-11 机械工业第九设计研究院股份有限公司 Long-term monitoring method and monitoring system for building settlement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103762A (en) * 1993-10-06 1995-04-18 Fujita Corp Cover for optical equipment
JP2008224578A (en) * 2007-03-15 2008-09-25 Okamoto Machine Tool Works Ltd Surface shape measuring method and surface shape measuring device of lengthy object
JP2013140094A (en) * 2012-01-05 2013-07-18 Mitsutoyo Corp Wavelength detector, and contact probe using the same
JP2015227847A (en) * 2014-06-02 2015-12-17 住友ゴム工業株式会社 Measuring method of tread shape of tire and tread shape measurement apparatus using the same
JP2016180751A (en) * 2015-03-23 2016-10-13 住友重機械工業株式会社 Shape measuring device and processing device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6636255B1 (en) * 1998-01-29 2003-10-21 Fuji Photo Optical Co., Ltd. Three-dimensional image scanner and heat-insulating device for optical apparatus
JP2001041718A (en) * 1999-07-27 2001-02-16 Nippon Dejitetsuku:Kk Heat load device of optical shape measuring work and optical shape measuring equipment equipped with heat load device
GB201113715D0 (en) * 2011-08-09 2011-09-21 Renishaw Plc Method and apparatus for inspecting workpieces
JP5855499B2 (en) 2012-03-15 2016-02-09 住友重機械工業株式会社 Geometric amount measuring apparatus and input screen control method
US9041914B2 (en) * 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
JP6352833B2 (en) * 2015-02-26 2018-07-04 住友重機械工業株式会社 Shape measuring device, processing device, and shape measuring method
CN105937886B (en) * 2015-03-04 2020-01-10 住友重机械工业株式会社 Shape measuring device, machining device, and method for correcting shape measuring device
JP6782103B2 (en) * 2016-06-21 2020-11-11 株式会社日本マイクロニクス Probe card, inspection equipment and inspection method
TWI591348B (en) * 2017-01-25 2017-07-11 Cantilever probe card probe tip structure
JP7103762B2 (en) 2017-07-03 2022-07-20 株式会社ナノテコ Luminous body
CN108917647A (en) * 2018-07-26 2018-11-30 洛伦兹(北京)科技有限公司 Solid-state detection device
CN109387154A (en) * 2018-11-29 2019-02-26 中国建筑材料科学研究总院有限公司 Hot procedure on-line measurement system and transparent material dynamic deformation measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07103762A (en) * 1993-10-06 1995-04-18 Fujita Corp Cover for optical equipment
JP2008224578A (en) * 2007-03-15 2008-09-25 Okamoto Machine Tool Works Ltd Surface shape measuring method and surface shape measuring device of lengthy object
JP2013140094A (en) * 2012-01-05 2013-07-18 Mitsutoyo Corp Wavelength detector, and contact probe using the same
JP2015227847A (en) * 2014-06-02 2015-12-17 住友ゴム工業株式会社 Measuring method of tread shape of tire and tread shape measurement apparatus using the same
JP2016180751A (en) * 2015-03-23 2016-10-13 住友重機械工業株式会社 Shape measuring device and processing device

Also Published As

Publication number Publication date
JP7212559B2 (en) 2023-01-25
KR20200111116A (en) 2020-09-28
TWI805905B (en) 2023-06-21
CN111702604A (en) 2020-09-25
TW202040097A (en) 2020-11-01

Similar Documents

Publication Publication Date Title
US10145682B2 (en) Reduction of errors of a rotating device used during the determination of coordinates of a workpiece or during the machining of a workpiece
JP3467063B2 (en) Coordinate measuring device
US4653011A (en) Method of measuring by coordinate measuring instrument and coordinate measuring instrument
JP5674149B2 (en) Cumulative lead error measuring device and measuring method for ball screw shaft
JP5843531B2 (en) Coordinate measuring head unit and coordinate measuring machine
CN106908014B (en) Five-axis measuring device for 3D curved glass
KR20140139297A (en) Lm guide
JPH06320391A (en) Device for real time measurement and correction of straight line deviation for machine tool
JP7212559B2 (en) Shape measuring device and shape measuring method
JP4571256B2 (en) Shape accuracy measuring device by sequential two-point method and laser displacement meter interval measuring method for shape accuracy measurement by sequential two-point method
JP2019060894A (en) Three-dimensional coordinate measurement device
JP5691398B2 (en) Mounting table, shape measuring device, and shape measuring method
JP2008122349A (en) Measuring instrument
JPH0966520A (en) Wire sawing machine
KR20130035907A (en) Measuring touch probe, measuring system, method for laser-optical determination of the height of a strand guide roller, and use of the measuring system
JP2006329795A (en) Shape measuring device
JP6054134B2 (en) Ultra-precision shape measuring device
KR102040979B1 (en) Automation apparatus for calibraion of 3d measuring apparatus
JP2017533104A (en) Position measuring device used in machine tools
JP2015150668A (en) Machine tool and processing method of workpiece
US10101151B2 (en) Device and method for measuring measurement objects
RU2420712C1 (en) Device for active control and measurement of actual dimesions of external surface of item of shell of revolution type
JP2012083275A (en) Calibration method for straightness of workpiece
US11934170B2 (en) Operating method of a numerical-control machine tool and detection device for implementing such method
JP2000091283A (en) Polishing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230113

R150 Certificate of patent or registration of utility model

Ref document number: 7212559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150