JP2020153486A - Drive shaft for vehicle - Google Patents

Drive shaft for vehicle Download PDF

Info

Publication number
JP2020153486A
JP2020153486A JP2019054663A JP2019054663A JP2020153486A JP 2020153486 A JP2020153486 A JP 2020153486A JP 2019054663 A JP2019054663 A JP 2019054663A JP 2019054663 A JP2019054663 A JP 2019054663A JP 2020153486 A JP2020153486 A JP 2020153486A
Authority
JP
Japan
Prior art keywords
male spline
intermediate shaft
drive shaft
tooth
spline portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019054663A
Other languages
Japanese (ja)
Inventor
祐一 淺野
Yuichi Asano
祐一 淺野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2019054663A priority Critical patent/JP2020153486A/en
Publication of JP2020153486A publication Critical patent/JP2020153486A/en
Pending legal-status Critical Current

Links

Images

Abstract

To reduce design change other than a drive shaft as much as possible, and to allow a weakest part of the drive shaft to be set to a position capable of preventing the whirling that occurs when the drive shaft is broken, while maintaining production efficiency.SOLUTION: Out of a tooth part 75 of a male spline part 71 provided at an intermediate shaft 70 to be connected by spline fitting to a fixed constant velocity universal joint 10 arranged on a drive wheel side and to a sliding constant velocity universal joint 30 arranged on a differential gear side, in a region 83A in which fitting with a tooth part 19a of a female spline part 19 to be mated in spline fitting is assumed, a cutout part 82 is provided.SELECTED DRAWING: Figure 4

Description

本発明は、車両用ドライブシャフトに関する。 The present invention relates to a vehicle drive shaft.

例えば、車両用のドライブシャフトは、デファレンシャルギヤ(以後、単にデフと称する)から駆動輪へ動力を伝達するためのもので、デフと駆動輪との相対変位を許容しながらデフから出力される回転駆動力を等速に駆動輪に伝達することを可能としている。このドライブシャフトは、通常、駆動輪側に固定式の等速自在継手、デフ側に摺動式の等速自在継手を配置し、これら等速自在継手を中間シャフトで連結することで構成されている。 For example, a drive shaft for a vehicle is for transmitting power from a differential gear (hereinafter, simply referred to as a differential) to a drive wheel, and is a rotation output from the differential while allowing a relative displacement between the differential and the drive wheel. It is possible to transmit the driving force to the driving wheels at a constant speed. This drive shaft is usually configured by arranging a fixed constant velocity universal joint on the drive wheel side and a sliding constant velocity universal joint on the differential side, and connecting these constant velocity universal joints with an intermediate shaft. There is.

ここで、デフと摺動式等速自在継手とは、デフのサイドギヤに設けられたスプライン嵌合孔(雌スプライン部)と、摺動式等速自在継手を構成する外側継手部材のステム部に設けられた雄スプライン部とがスプライン嵌合することにより連結されている。また、摺動式等速自在継手と中間シャフト、及び、固定式等速自在継手と中間シャフトとは、摺動式等速自在継手の内側継手部材又はトラニオンに設けられたスプライン嵌合孔(雌スプライン部)と、中間シャフトの一端に設けられた雄スプライン部、及び、固定式等速自在継手の内側継手部材に設けられたスプライン嵌合孔(雌スプライン部)と、中間シャフトの他端に設けられた雄スプライン部とがスプライン嵌合することによりそれぞれ連結されている。 Here, the differential and the sliding constant velocity universal joint are provided in the spline fitting hole (female spline portion) provided in the side gear of the differential and the stem portion of the outer joint member constituting the sliding constant velocity universal joint. The male spline portion provided is connected by spline fitting. Further, the sliding constant velocity universal joint and the intermediate shaft, and the fixed constant velocity universal joint and the intermediate shaft are spline fitting holes (female) provided in the inner joint member or the tranion of the sliding constant velocity universal joint. Spline portion), a male spline portion provided at one end of the intermediate shaft, a spline fitting hole (female spline portion) provided in the inner joint member of a fixed constant velocity universal joint, and the other end of the intermediate shaft. The male spline portions provided are connected to each other by spline fitting.

ここで、ドライブシャフトについては、他の部品と比較し、許容強度や寸法などを細かく設定しており、車両要求性能に合わせてその仕様を選定すると、ドライブシャフトを含む駆動系の中でドライブシャフトが最弱部となる可能性がある。走行中に万が一ドライブシャフトが破損した場合、当該シャフトが振れ回ることで、周辺部品に損傷を与えるような二次的な被害を招くおそれもある。そこで、例えば特許文献1では、ドライブシャフトのデフ側端部に位置する摺動式等速自在継手の外側継手部材のステム部に、負荷トルクに対する最弱部がデフケース内となるよう、断面V字状の環状溝を設けることが提案されている。 Here, with regard to the drive shaft, the allowable strength and dimensions are set in detail compared to other parts, and if the specifications are selected according to the required performance of the vehicle, the drive shaft will be included in the drive system including the drive shaft. May be the weakest part. If the drive shaft should be damaged during driving, the shaft may swing around, causing secondary damage such as damage to peripheral parts. Therefore, for example, in Patent Document 1, a V-shaped cross section is provided on the stem portion of the outer joint member of the sliding type constant velocity universal joint located at the differential side end of the drive shaft so that the weakest portion with respect to the load torque is inside the differential case. It has been proposed to provide a shaped annular groove.

特開2012−167793号公報Japanese Unexamined Patent Publication No. 2012-167793

しかしながら、上述のようにデフ側端部に位置する摺動式等速自在継手の外側継手部材のステム部に最弱部を設けた場合、当該ステム部がデフケース内で破断した後においても、デフ側の摺動式等速自在継手は摺動することができるために、破断したステム部がデフケースから抜け落ちる可能性があり、好ましくない。そこで、他の手法として、中間シャフトのうちブーツ内に位置する部位を最弱部とすることが考えられる。この構成によれば、万が一中間シャフトがその最弱部で破断してもブーツを介して等速自在継手の外側継手部材と中間シャフトとがつながっているため、破断したシャフト部の振れ回りを可及的に防止することができる。 However, when the weakest portion is provided in the stem portion of the outer joint member of the sliding type constant velocity universal joint located at the end on the differential side as described above, the differential is even after the stem portion is broken in the differential case. Since the sliding type constant velocity universal joint on the side can slide, the broken stem portion may come off from the differential case, which is not preferable. Therefore, as another method, it is conceivable to set the portion of the intermediate shaft located in the boot as the weakest portion. According to this configuration, even if the intermediate shaft breaks at its weakest part, the outer joint member of the constant velocity universal joint and the intermediate shaft are connected via the boot, so that the broken shaft can swing around. It can be prevented.

上述のように、中間シャフトに最弱部を設ける場合においては、負荷形態に応じて最適な部位が変動することを考慮して、最弱部の設定を行うことがある。以下、図7に示すドライブシャフト150を参照して説明する。なお、図7において、符号10で示す要素は、駆動輪(図示は省略)側の等速自在継手110で、符号130で示す要素は、デフ(図示は省略)側の等速自在継手130である。例えば静的又は衝撃的な捩りに対する強度が問題となる場合、上述した等速自在継手110,130を連結するための中間シャフト170のうち断面係数が最も小さくなるブーツ120(139)内の最小平滑部173(174)(図7を参照)を最弱部とすることが考えられ、繰り返し捩りに対する強度(捩り疲労強度)が問題となる場合、断面形状が複雑で応力集中を生じ易い雄スプライン部171(172)(図7を参照)を最弱部とすることが考えられる。 As described above, when the weakest portion is provided on the intermediate shaft, the weakest portion may be set in consideration of the fact that the optimum portion varies depending on the load mode. Hereinafter, the drive shaft 150 shown in FIG. 7 will be referred to for reference. In FIG. 7, the element indicated by reference numeral 10 is the constant velocity universal joint 110 on the drive wheel (not shown) side, and the element indicated by reference numeral 130 is the constant velocity universal joint 130 on the differential (not shown) side. is there. For example, when the strength against static or impact twist is a problem, the minimum smoothness in the boot 120 (139) having the smallest cross-sectional coefficient among the intermediate shafts 170 for connecting the above-mentioned constant velocity universal joints 110 and 130. It is conceivable that the portion 173 (174) (see FIG. 7) is the weakest portion, and when the strength against repeated twisting (torsional fatigue strength) becomes a problem, the male spline portion having a complicated cross-sectional shape and easily causing stress concentration. It is conceivable that 171 (172) (see FIG. 7) is the weakest part.

一方で、中間シャフト170は、必要最小限度の捩り疲労強度を確保する目的で、C(カーボン)量0.35〜0.45%の炭素鋼を焼入れして使用することが多いのに対し、等速自在継手110(130)の外側継手部材113(131)は、トラック溝111(又はローラ案内面135)のうちボール117(又はローラユニット133)との接触部の寿命を確保する目的で、鋼材を焼入れした際に鋼材が潜在的に有する最大硬さが得られるように、中間シャフト170よりもC量を多くした炭素鋼(C量0.45〜0.60%の炭素鋼)を使用することが多い。しかしながら、雄スプライン部171,172,124,143のような複雑な断面形状を有する部位は、トルク負荷時に過大な応力集中部が生じ易く、C量が多くなるほど脆性的に破損し、強度(特に捩り疲労強度)が低下する傾向にある。そのため、同じ形状であれば、中間シャフト170の雄スプライン部171(172)よりもC量が多いステム部123(142)の雄スプライン部124(143)のほうが捩り疲労強度が低い。故に、この場合、ステム部の雄スプライン部が捩り疲労強度についての最弱部とならないように、ステム部123(142)の雄スプライン部124(143)の外径寸法D5を中間シャフト170の雄スプライン部171の外径寸法D4よりも大きくするのが一般的である。 On the other hand, the intermediate shaft 170 is often used by quenching carbon steel having a C (carbon) amount of 0.35 to 0.45% for the purpose of ensuring the minimum necessary torsional fatigue strength. The outer joint member 113 (131) of the constant velocity universal joint 110 (130) has the purpose of ensuring the life of the contact portion of the track groove 111 (or roller guide surface 135) with the ball 117 (or roller unit 133). Carbon steel with a larger C content than the intermediate shaft 170 (carbon steel with a C content of 0.45 to 0.60%) is used so that the maximum hardness that the steel material has when quenching the steel material can be obtained. I often do it. However, parts having a complicated cross-sectional shape such as male spline parts 171, 172, 124, 143 are likely to have excessive stress concentration parts when a torque is applied, and as the amount of C increases, they are brittlely damaged and have strength (particularly). Twist fatigue strength) tends to decrease. Therefore, if the shape is the same, the male spline portion 124 (143) of the stem portion 123 (142) having a larger C amount than the male spline portion 171 (172) of the intermediate shaft 170 has a lower torsional fatigue strength. Therefore, in this case, the outer diameter dimension D5 of the male spline portion 124 (143) of the stem portion 123 (142) is set to the male of the intermediate shaft 170 so that the male spline portion of the stem portion does not become the weakest portion of the torsional fatigue strength. It is generally larger than the outer diameter dimension D4 of the spline portion 171.

ところで、車両の開発においては、例えば等速自在継手の高作動角時における要求強度に応じる目的で、ドライブシャフトの高サイズ化を検討する場合がある。ここで、量産品としての等速自在継手の構成部品は標準化されているので、例えば図8に示すように、高サイズ化された等速自在継手110Bにおいては、その構成部品となる外側継手部材113Bや内側継手部材116Bのサイズも大きくなる。これにより、内側継手部材116Bのスプライン嵌合孔(雌スプライン部119B)とスプライン嵌合する中間シャフト170Bの雄スプライン部171Bの外径寸法D2も大きくなる。その一方で、ドライブシャフト150の周辺部品のサイズはなるべく変えない設計仕様となっているため、等速自在継手110Bのサイズアップに比べてステム部123Bのサイズ(雄スプライン部124Bの外径寸法D1)は低サイズの場合の外径寸法D5(図7を参照)とほとんど変わらない。この結果、ステム部123Bの雄スプライン部124Bよりも中間シャフト170Bの雄スプライン部171Bの捩り疲労強度が大きくなり、当該雄スプライン部171Bが最弱部でなくなる事態が起こり得る。 By the way, in the development of a vehicle, for example, an increase in the size of a drive shaft may be considered for the purpose of meeting the required strength at a high operating angle of a constant velocity universal joint. Here, since the components of the constant velocity universal joint as a mass-produced product are standardized, for example, as shown in FIG. 8, in the high-sized constant velocity universal joint 110B, the outer joint member which is the component is The size of 113B and the inner joint member 116B also increases. As a result, the outer diameter dimension D2 of the male spline portion 171B of the intermediate shaft 170B for spline fitting with the spline fitting hole (female spline portion 119B) of the inner joint member 116B also increases. On the other hand, since the size of the peripheral parts of the drive shaft 150 is designed so as not to change as much as possible, the size of the stem portion 123B (the outer diameter dimension D1 of the male spline portion 124B) is compared with the size increase of the constant velocity universal joint 110B. ) Is almost the same as the outer diameter dimension D5 (see FIG. 7) in the case of the low size. As a result, the torsional fatigue strength of the male spline portion 171B of the intermediate shaft 170B becomes larger than that of the male spline portion 124B of the stem portion 123B, and the male spline portion 171B may not be the weakest portion.

例えば中間シャフト170の最小平滑部173が捩り疲労強度の最弱部になるまで最小平滑部173の外径寸法D3を小さくすれば、ブーツ120内に中間シャフト170の最弱部を設けることができるが、これだと、静的又は衝撃的な捩り強度が大幅に低下するおそれがあり、現実的には採用することができない。よって、ステム部123の雄スプライン部124の外径寸法D5を大きくし、又は中間シャフト170の雄スプライン部171の外径寸法D4を小さくする必要があるが、ステム部123の雄スプライン部124の外径寸法D5を大きくすると、この雄スプライン部124と嵌合するハブベアリングやデフの設計も見直す必要が生じる。これではドライブシャフト150の最弱部設計を満足させるためにドライブシャフト150の周辺部品も含めた大幅な設計変更が必要となり好ましくない。一方、中間シャフト170の雄スプライン部171の外径寸法D4を小さくする場合、内側継手部材116の種類がスプライン嵌合径違いで何種類も増えることになるため、管理工数が増え、これにより生産効率が低下する問題が生じる。また、部品の種類が増えた分だけ誤組付け(誤った組合せの部品同士を組付けるミス)が生じるリスクが高まるため、慎重な作業が必要となり、これによっても生産効率が低下するといった問題が生じる。 For example, if the outer diameter dimension D3 of the minimum smoothing portion 173 is reduced until the minimum smoothing portion 173 of the intermediate shaft 170 becomes the weakest portion of the torsional fatigue strength, the weakest portion of the intermediate shaft 170 can be provided in the boot 120. However, if this is the case, the static or impact torsional strength may be significantly reduced, and it cannot be practically adopted. Therefore, it is necessary to increase the outer diameter dimension D5 of the male spline portion 124 of the stem portion 123 or decrease the outer diameter dimension D4 of the male spline portion 171 of the intermediate shaft 170, but the male spline portion 124 of the stem portion 123 If the outer diameter dimension D5 is increased, it becomes necessary to review the design of the hub bearing and the differential that are fitted to the male spline portion 124. This is not preferable because it requires a large design change including the peripheral parts of the drive shaft 150 in order to satisfy the design of the weakest part of the drive shaft 150. On the other hand, when the outer diameter dimension D4 of the male spline portion 171 of the intermediate shaft 170 is reduced, the number of types of the inner joint member 116 increases due to the difference in the spline fitting diameter, which increases the management man-hours, which results in production. There is a problem of reduced efficiency. In addition, as the number of types of parts increases, the risk of incorrect assembly (misassembly of incorrectly combined parts) increases, so careful work is required, which also reduces production efficiency. Occurs.

以上の実情に鑑み、本明細書では、ドライブシャフト以外の設計変更を極力少なくし、かつ生産効率を維持しながらも、ドライブシャフトの最弱部を、ドライブシャフトの破損時に生じる振れ回りを防止可能な位置に設定可能とすることを、解決すべき技術課題とする。 In view of the above circumstances, in this specification, it is possible to prevent the weakest part of the drive shaft from swinging when the drive shaft is damaged, while minimizing design changes other than the drive shaft and maintaining production efficiency. The technical issue to be solved is to be able to set the position.

前記課題の解決は、本発明に係るドライブシャフトによって達成される。すなわち、このドライブシャフトは、駆動輪側に配置した固定式等速自在継手と、デファレンシャルギヤ側に配置した摺動式等速自在継手とにスプライン嵌合で連結される中間シャフトと、少なくとも何れか一方の等速自在継手と中間シャフトとの連結部を覆うブーツとを備えた車両用ドライブシャフトにおいて、中間シャフトに設けられた雄スプライン部の歯部のうち、スプライン嵌合の相手となる雌スプライン部の歯部との嵌合が想定される領域に切欠き部が設けられる点をもって特徴付けられる。なお、ここでいう「スプライン嵌合の相手となる雌スプライン部の歯部との嵌合が想定される領域」とは、中間シャフトの雄スプライン部の歯部のうち、切欠き部がないとした場合にスプライン嵌合の相手となる雌スプライン部の歯部との嵌合が予想される領域を意味する。 The solution to the above problems is achieved by the drive shaft according to the present invention. That is, this drive shaft is at least one of a fixed constant velocity universal joint arranged on the drive wheel side and an intermediate shaft connected to a sliding constant velocity universal joint arranged on the differential gear side by spline fitting. In a vehicle drive shaft provided with a boot that covers a connecting portion between one constant velocity universal joint and an intermediate shaft, among the teeth of the male spline portion provided on the intermediate shaft, a female spline that is a partner for spline fitting. It is characterized by the fact that a notch is provided in a region where the portion is expected to fit with the tooth portion. In addition, the "region where the female spline portion that is the mating partner of the spline fitting is expected to be fitted with the tooth portion" is defined as the tooth portion of the male spline portion of the intermediate shaft that has no notch. This means a region where the female spline portion, which is the partner of the spline fitting, is expected to be fitted with the tooth portion.

このように、本発明に係るドライブシャフトでは、ドライブシャフトを構成する中間シャフトの雄スプライン部の歯部のうち、スプライン嵌合の相手となる雌スプライン部の歯部との嵌合が想定される領域に切欠き部を設けるようにした。上述した領域に切欠き部を設けることで、雄スプライン部の歯部と雌スプライン部の歯部とが嵌合する面積を小さくして、その分雄スプライン部の歯部の嵌合部位に生じる応力を優先的に高めることができる。そのため、中間シャフトの雄スプライン部の外径寸法が、外側継手部材のステム部に設けられた雄スプライン部の外径寸法と同程度の場合においても、中間シャフトの雄スプライン部をドライブシャフトにおける捩り疲労強度の最弱部にすることができる。これにより、ステム部の雄スプライン部の外径寸法を大きくせずに済むので、この雄スプライン部と嵌合するハブベアリング側やデフ側の雌スプライン部の内径寸法を大きくする必要もなく、これらドライブシャフトの周辺部品に従来設計の部品を使用することができる。また、中間シャフトの側で最弱部の位置を調整することができるので、等速自在継手の内側継手部材又はトラニオンについては部品の共通化を図ることができる。その一方で、中間シャフトは車両に固有(いわば一品一様)の仕様であるため、その形状を個別に調整し易い。よって、本発明のように雄スプライン部の形状を変更したとしても個別調整の範囲内であり、全体としての生産効率、生産コストに大きな影響を与えるおそれもない。もちろん、中間シャフトの雄スプライン部に最弱部を設けることで、万が一当該部位が破損したとしても、等速自在継手の外側継手部材とシャフトとをブーツで連結した状態を保つことができる。そのため、破損後のドライブシャフトの振れ回りを防止することができ、これにより周辺部品に損傷を与えるような二次的な被害を防止することが可能となる。 As described above, in the drive shaft according to the present invention, it is assumed that among the tooth portions of the male spline portion of the intermediate shaft constituting the drive shaft, the tooth portion of the female spline portion which is the partner of the spline fitting is fitted. A notch was provided in the area. By providing the notch in the above-mentioned region, the area where the tooth portion of the male spline portion and the tooth portion of the female spline portion fit is reduced, and the area where the tooth portion of the male spline portion fits is reduced by that amount. The stress can be increased preferentially. Therefore, even when the outer diameter of the male spline portion of the intermediate shaft is about the same as the outer diameter of the male spline portion provided on the stem portion of the outer joint member, the male spline portion of the intermediate shaft is twisted on the drive shaft. It can be the weakest part of fatigue strength. As a result, it is not necessary to increase the outer diameter dimension of the male spline portion of the stem portion, so that it is not necessary to increase the inner diameter dimension of the female spline portion on the hub bearing side or the differential side that fits with the male spline portion. Conventionally designed parts can be used as peripheral parts of the drive shaft. Further, since the position of the weakest portion can be adjusted on the side of the intermediate shaft, it is possible to standardize the parts of the inner joint member or the trunnion of the constant velocity universal joint. On the other hand, since the intermediate shaft has specifications unique to the vehicle (so to speak, one item is uniform), it is easy to adjust the shape individually. Therefore, even if the shape of the male spline portion is changed as in the present invention, it is within the range of individual adjustment, and there is no possibility that the overall production efficiency and production cost will be significantly affected. Of course, by providing the weakest portion in the male spline portion of the intermediate shaft, even if the portion is damaged, the outer joint member of the constant velocity universal joint and the shaft can be maintained in a state of being connected by boots. Therefore, it is possible to prevent the drive shaft from swinging after being damaged, and thereby it is possible to prevent secondary damage such as damage to peripheral parts.

また、本発明に係る車両用ドライブシャフトにおいては、中間シャフトは、雄スプライン部の基端側に位置し外径寸法が先端側から遠ざかるにつれて増大する切上り部を有し、切欠き部が、雄スプライン部の歯部のうち、雌スプライン部の歯部との嵌合が想定される領域の軸方向中央位置よりも切上り部に近い側に設けられてもよい。なお、ここでいう雌スプライン部の歯部との嵌合が想定される領域の「軸方向中央位置」とは、上記領域の軸方向一端までの軸方向距離と上記領域の軸方向他端までの軸方向距離とが等しい軸方向位置を意味する。 Further, in the vehicle drive shaft according to the present invention, the intermediate shaft has a cut-up portion located on the base end side of the male spline portion and increasing as the outer diameter dimension increases from the tip end side, and the notch portion has a notch. Of the teeth of the male spline portion, the female spline portion may be provided closer to the cut-up portion than the central position in the axial direction of the region where the fitting with the tooth portion of the female spline portion is assumed. The "axial center position" of the region where the female spline portion is expected to be fitted with the tooth portion is the axial distance to one end in the axial direction of the region and the other end in the axial direction of the region. Means an axial position equal to the axial distance of.

このように中間シャフトに切上り部を設けることで、雄スプライン部の基端側において応力集中が生じ易くなる。そのため、切欠き部を、上述した雌スプライン部の歯部との嵌合が想定される領域のうち切上り部寄りの位置に設けることによって、雄スプライン部の切上り部側に生じる応力をさらに効果的に高めることが可能となる。 By providing the cut-up portion on the intermediate shaft in this way, stress concentration is likely to occur on the proximal end side of the male spline portion. Therefore, by providing the notch portion at a position closer to the cut-up portion in the region where the female spline portion is expected to fit with the tooth portion described above, the stress generated on the cut-up portion side of the male spline portion is further increased. It is possible to increase it effectively.

また、本発明に係る車両用ドライブシャフトにおいては、雄スプライン部の歯部は、雄スプライン部の中心軸に対して所定の捩れ角を有する向きに延在していてもよい。 Further, in the vehicle drive shaft according to the present invention, the tooth portion of the male spline portion may extend in a direction having a predetermined twist angle with respect to the central axis of the male spline portion.

このように雄スプライン部の歯部に捩れ角を付与することで、この雄スプライン部の歯部は特にその軸方向両端で強く押圧するように雌スプライン部の歯部と当接する。よって、この場合、切欠き部を上述のように雌スプライン部の歯部との嵌合が想定される領域の軸方向中央位置よりも基端側に設けることで、雄スプライン部の基端側に生じる応力をさらに効果的に高めることができる。 By imparting a twist angle to the tooth portion of the male spline portion in this way, the tooth portion of the male spline portion comes into contact with the tooth portion of the female spline portion so as to be strongly pressed at both ends in the axial direction. Therefore, in this case, by providing the notch portion on the proximal end side of the region where the female spline portion is expected to fit with the tooth portion in the axial direction as described above, the proximal end side of the male spline portion is provided. The stress generated in the tooth can be increased more effectively.

また、本発明に係る車両用ドライブシャフトにおいては、切欠き部が、雄スプライン部の歯部のうち、雌スプライン部の歯部との圧接が想定される領域の軸方向中央位置よりも基端側に設けられてもよい。なお、ここでいう「雌スプライン部の歯部との圧接」とは、雄スプライン部の歯部と雌スプライン部の歯部とが互いに相応の面圧で当接した状態を意味し、嵌め合いの定義でいえば、実質的に中間嵌め以上の状態を意味する。また、ここでいう「雌スプライン部の歯部との圧接が想定される領域」とは、中間シャフトの雄スプライン部の歯部のうち、切欠き部がないとした場合にスプライン嵌合の相手となる雌スプライン部の歯部との圧接が予想される領域を意味する。 Further, in the vehicle drive shaft according to the present invention, the notch portion is the base end of the tooth portion of the male spline portion rather than the axial center position of the region where pressure contact with the tooth portion of the female spline portion is assumed. It may be provided on the side. The term "pressure contact of the female spline portion with the tooth portion" as used herein means a state in which the tooth portion of the male spline portion and the tooth portion of the female spline portion are in contact with each other at an appropriate surface pressure, and are fitted together. In terms of the definition of, it means a state of substantially more than an intermediate fit. Further, the "region where pressure contact of the female spline portion with the tooth portion is assumed" referred to here is a spline fitting partner when there is no notch portion in the tooth portion of the male spline portion of the intermediate shaft. It means a region where pressure contact of the female spline portion with the tooth portion is expected.

このように実際のスプライン嵌合においては、雄スプライン部の少なくとも一部が雌スプライン部に圧接された状態で相互に固定される。そのため、雌スプライン部の歯部との嵌合が想定される領域の中でも特に圧接が想定される領域の基端側に切欠き部を設けることで、雄スプライン部の基端側に生じる応力をさらに効果的に高めることができる。特に、雄スプライン部の歯部が上述のように所定の捩れ角を有する場合には、中間シャフトに付与されるトルクの大きさに応じて上記圧接が想定される領域が変動する。よって、想定されるトルクに応じて切欠き部の位置及び範囲(軸方向寸法)を設定することにより、雄スプライン部の捩り疲労強度を適正に調整することが可能となる。 As described above, in the actual spline fitting, at least a part of the male spline portion is fixed to each other in a state of being pressed against the female spline portion. Therefore, by providing a notch on the proximal end side of the region where pressure welding is expected among the regions where the female spline portion is expected to fit with the tooth portion, the stress generated on the proximal end side of the male spline portion can be reduced. It can be enhanced more effectively. In particular, when the tooth portion of the male spline portion has a predetermined twist angle as described above, the region where the pressure welding is assumed varies depending on the magnitude of the torque applied to the intermediate shaft. Therefore, by setting the position and range (axial dimension) of the notch portion according to the assumed torque, it is possible to appropriately adjust the torsional fatigue strength of the male spline portion.

また、本発明に係る車両用ドライブシャフトにおいては、切欠き部が、雄スプライン部の歯部のうち、雌スプライン部の歯部との嵌合が想定される領域であって、雄スプライン部の歯部を軸方向に分割する位置に設けられてもよい。 Further, in the vehicle drive shaft according to the present invention, the notch portion is a region of the tooth portion of the male spline portion that is expected to be fitted with the tooth portion of the female spline portion, and is a region of the male spline portion. It may be provided at a position where the tooth portion is divided in the axial direction.

上記構成によれば、雄スプライン部の歯部の軸方向両端を避けて切欠き部を設けることができる。そのため、上述のように、雄スプライン部の歯部に所定の捩り角を付与した構成をとる場合に、切欠き部を雌スプライン部の歯部との嵌合が想定される領域に設けたとしても、雄スプライン部の歯部の軸方向両端で確実に雌スプライン部との嵌合を図ることができる。よって、切欠き部を設けて雄スプライン部に最弱部を設けつつも、中間シャフトと内側継手部材等の雌スプライン部とのスプライン嵌合部における円周方向のガタを低減することが可能となる。 According to the above configuration, the notch portion can be provided so as to avoid both ends in the axial direction of the tooth portion of the male spline portion. Therefore, as described above, when the tooth portion of the male spline portion is provided with a predetermined twist angle, the notch portion is provided in the region where the female spline portion is expected to be fitted with the tooth portion. However, it is possible to reliably fit the male spline portion with the female spline portion at both ends in the axial direction of the tooth portion. Therefore, it is possible to reduce the backlash in the circumferential direction at the spline fitting portion between the intermediate shaft and the female spline portion such as the inner joint member, while providing the notch portion and providing the weakest portion in the male spline portion. Become.

また、本発明に係る車両用ドライブシャフトにおいては、中間シャフトの雄スプライン部のC量が、スプライン嵌合の相手となる何れか一方の等速自在継手の外側継手部材に設けられたステム部のC量よりも少なくてもよい。 Further, in the vehicle drive shaft according to the present invention, the amount of C of the male spline portion of the intermediate shaft is the stem portion provided on the outer joint member of one of the constant velocity universal joints that is the partner of the spline fitting. It may be less than the amount of C.

本発明に係る車両用ドライブシャフトであれば、中間シャフトの雄スプライン部の外径寸法が外側継手部材のステム部の外径寸法と同程度の外径寸法であっても、中間シャフトの雄スプライン部に最弱部を設けることができる。よって、たとえ外側継手部材のステム部のC量を中間シャフトの雄スプライン部のC量よりも多くした場合であっても、外側継手部材のステム部が捩り疲労負荷に対して優先的に脆性破壊する事態を回避して、最弱部を中間シャフトの雄スプライン部に維持することができる。 In the vehicle drive shaft according to the present invention, even if the outer diameter of the male spline portion of the intermediate shaft is the same as the outer diameter of the stem portion of the outer joint member, the male spline of the intermediate shaft The weakest part can be provided in the part. Therefore, even if the amount of C in the stem portion of the outer joint member is larger than the amount of C in the male spline portion of the intermediate shaft, the stem portion of the outer joint member preferentially brittle fractures with respect to torsional fatigue load. The weakest part can be maintained at the male spline part of the intermediate shaft by avoiding the situation.

また、本発明に係る車両用ドライブシャフトにおいては、中間シャフトの雄スプライン部が転造加工で仕上げられていてもよい。 Further, in the vehicle drive shaft according to the present invention, the male spline portion of the intermediate shaft may be finished by rolling.

本発明に係る切欠き部であれば、例えば転造加工前の段階で、切欠き部に対応する凹部を転造前形状の雄スプライン部の旋削加工時に同時に形成しておき、かつ雄スプライン部の転造加工と同時に上記凹部に転造加工を施すことで、切欠き部が付いた雄スプライン部を容易に形成することができる。雄スプライン部の形成後に切欠き部を切削加工で形成した場合、切削除去の工程が増え、バリが発生し易く、バリ取りの工程が必要となることがある。そのため、雄スプライン部の転造加工前に切欠き部のベースとなる凹部を形成しておく方が、低コストに製作できる。 In the case of the notch portion according to the present invention, for example, at the stage before rolling, a recess corresponding to the notch is formed at the same time as turning the male spline portion having the shape before rolling, and the male spline portion is formed. By rolling the recesses at the same time as the rolling process of the above, a male spline portion having a notch portion can be easily formed. When the notch portion is formed by cutting after the formation of the male spline portion, the step of cutting and removing is increased, burrs are likely to occur, and the step of deburring may be required. Therefore, it is possible to manufacture the male spline portion at a lower cost by forming a concave portion as a base of the notch portion before rolling.

以上述べたように、本発明に係る車両用ドライブシャフトによれば、ドライブシャフト以外の設計変更を極力少なくし、かつ生産効率を維持しながらも、ドライブシャフトの最弱部を、ドライブシャフトの破損時に生じる振れ回りを防止可能な位置に設定することが可能となる。 As described above, according to the vehicle drive shaft according to the present invention, the weakest part of the drive shaft is damaged while the design change other than the drive shaft is minimized and the production efficiency is maintained. It is possible to set the position so that the swing that sometimes occurs can be prevented.

本発明の一実施形態に係るドライブシャフトの断面図である。It is sectional drawing of the drive shaft which concerns on one Embodiment of this invention. 図1に示す固定式等速自在継手の断面図である。It is sectional drawing of the fixed type constant velocity universal joint shown in FIG. 図1に示す中間シャフトの要部拡大図である。It is an enlarged view of the main part of the intermediate shaft shown in FIG. 図3に示す中間シャフトと内側継手部材とのスプライン嵌合状態を示す要部拡大図である。It is an enlarged view of the main part which shows the spline fitting state of the intermediate shaft and the inner joint member shown in FIG. 本発明の他の実施形態に係るドライブシャフトの要部拡大図で、中間シャフトの雄スプライン部の歯部に捩れ角を付与した構成をとる場合の、中間シャフトと内側継手部材とのスプライン嵌合状態を平面視した図である。In the enlarged view of the main part of the drive shaft according to another embodiment of the present invention, spline fitting between the intermediate shaft and the inner joint member in the case where the tooth portion of the male spline portion of the intermediate shaft is provided with a twist angle. It is the figure which viewed the state in a plan view. 図5に示す中間シャフトと内側継手部材とのスプライン嵌合状態を示す要部拡大図である。FIG. 5 is an enlarged view of a main part showing a spline fitting state between the intermediate shaft and the inner joint member shown in FIG. 従来のドライブシャフトの断面図である。It is sectional drawing of the conventional drive shaft. 図7に示す固定式等速自在継手に比べて高サイズ化した固定式等速自在継手の断面図である。FIG. 5 is a cross-sectional view of a fixed constant velocity universal joint having a higher size than the fixed constant velocity universal joint shown in FIG. 7. 本発明に係る切欠き部がないとした場合の中間シャフトと内側継手部材とのスプライン嵌合状態(従来のスプライン嵌合状態)を示す要部拡大図である。It is an enlarged view of the main part which shows the spline fitting state (the conventional spline fitting state) of an intermediate shaft and an inner joint member when there is no notch part which concerns on this invention.

以下、本発明の一実施形態を図面に基づいて説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るドライブシャフト50の一部断面図である。このドライブシャフト50は、駆動輪(図示は省略)側の等速自在継手10と、デフ(図示は省略)側の等速自在継手30と、これら等速自在継手10,30を連結するための中間シャフト70とを備える。ここで、駆動輪側の等速自在継手10は固定式等速自在継手、デフ側の等速自在継手30は摺動式等速自在継手である。また、固定式等速自在継手10を構成する内側継手部材16には、中間シャフト70の一端部70aが連結されると共に、摺動式等速自在継手30を構成する内側継手部材(ここではトリポード部材32のボス36)には、中間シャフト70の他端部70bが連結されている。まず、ドライブシャフト50の駆動輪側に位置する固定式等速自在継手10の構成を説明する。 FIG. 1 is a partial cross-sectional view of a drive shaft 50 according to an embodiment of the present invention. The drive shaft 50 is for connecting the constant velocity universal joint 10 on the drive wheel (not shown) side, the constant velocity universal joint 30 on the differential (not shown) side, and these constant velocity universal joints 10, 30. It includes an intermediate shaft 70. Here, the constant velocity universal joint 10 on the drive wheel side is a fixed constant velocity universal joint, and the constant velocity universal joint 30 on the differential side is a sliding constant velocity universal joint. Further, one end 70a of the intermediate shaft 70 is connected to the inner joint member 16 constituting the fixed constant velocity universal joint 10, and the inner joint member (here, tripod) constituting the sliding constant velocity universal joint 30 is connected. The other end 70b of the intermediate shaft 70 is connected to the boss 36) of the member 32. First, the configuration of the fixed constant velocity universal joint 10 located on the drive wheel side of the drive shaft 50 will be described.

固定式等速自在継手10は、図1に示すように、軸方向に伸びる円弧状のトラック溝11が球面状内周面12の円周方向複数箇所に形成された外側継手部材13と、外側継手部材13のトラック溝11と対をなして軸方向に伸びる円弧状のトラック溝14が球面状外周面15の円周方向複数箇所に形成された内側継手部材16と、外側継手部材13のトラック溝11と内側継手部材16のトラック溝14との間に介在してトルクを伝達するボール17と、外側継手部材13の球面状内周面12と内側継手部材16の球面状外周面15との間に配設されてボール17を保持するケージ18とを備える。 As shown in FIG. 1, the fixed constant velocity universal joint 10 includes an outer joint member 13 in which arcuate track grooves 11 extending in the axial direction are formed at a plurality of locations in the circumferential direction of the spherical inner peripheral surface 12 and an outer side. An inner joint member 16 in which arc-shaped track grooves 14 extending in the axial direction in pairs with the track groove 11 of the joint member 13 are formed at a plurality of locations in the circumferential direction of the spherical outer peripheral surface 15, and a track of the outer joint member 13. A ball 17 that transmits torque interposed between the groove 11 and the track groove 14 of the inner joint member 16, and a spherical inner peripheral surface 12 of the outer joint member 13 and a spherical outer peripheral surface 15 of the inner joint member 16. A cage 18 is provided between the cages 18 for holding the balls 17.

また、この固定式等速自在継手10の内側継手部材16と、中間シャフト70の一端部70aとはスプライン嵌合により相互に連結されている。この場合、内側継手部材16の内周には、嵌合孔としての雌スプライン部19が設けられると共に、中間シャフト70の一端部70aには、雌スプライン部19と嵌まり合う雄スプライン部71が設けられている。 Further, the inner joint member 16 of the fixed constant velocity universal joint 10 and one end 70a of the intermediate shaft 70 are connected to each other by spline fitting. In this case, a female spline portion 19 as a fitting hole is provided on the inner circumference of the inner joint member 16, and a male spline portion 71 that fits with the female spline portion 19 is provided at one end portion 70a of the intermediate shaft 70. It is provided.

固定式等速自在継手10と中間シャフト70との間には、内側継手部材16と中間シャフト70の一端部70aとの連結部を覆うように、ブーツ20が取付けられている。このブーツ20は、固定式等速自在継手10の内部に封入されたグリースなどの潤滑剤の漏れ出しを防止すると共に外部からの異物の侵入を防止する目的で設けられ、その大径側端部21が外側継手部材13の外周面に嵌合固定されると共に、小径側端部22が中間シャフト70の外周面に嵌合固定されている。 A boot 20 is attached between the fixed constant velocity universal joint 10 and the intermediate shaft 70 so as to cover the connecting portion between the inner joint member 16 and one end 70a of the intermediate shaft 70. The boot 20 is provided for the purpose of preventing the leakage of a lubricant such as grease sealed inside the fixed constant velocity universal joint 10 and preventing the intrusion of foreign matter from the outside, and the large diameter side end portion thereof. 21 is fitted and fixed to the outer peripheral surface of the outer joint member 13, and the small diameter side end portion 22 is fitted and fixed to the outer peripheral surface of the intermediate shaft 70.

また、外側継手部材13には、駆動輪側に延びるステム部23が一体的に設けられており、このステム部23に設けられた雄スプライン部24と、駆動輪側の被嵌合部品に設けられた雌スプライン部(図示は省略)とが、スプライン嵌合により相互に連結されている。この雄スプライン部24は、例えばC量0.45%〜0.60%の炭素鋼で形成される。本実施形態のように雄スプライン部24が外側継手部材13の一部として一体的に形成される場合、雄スプライン部24を含む外側継手部材13全体がC量0.45%〜0.60%の炭素鋼で形成される。また、外側継手部材13の全体又は一部(雄スプライン部24)が、高周波焼入れ等の熱処理により表層に熱硬化層を設けたものであってもよい。 Further, the outer joint member 13 is integrally provided with a stem portion 23 extending toward the drive wheel side, and is provided on the male spline portion 24 provided on the stem portion 23 and the fitted component on the drive wheel side. The female spline portions (not shown) are connected to each other by spline fitting. The male spline portion 24 is made of, for example, carbon steel having a C content of 0.45% to 0.60%. When the male spline portion 24 is integrally formed as a part of the outer joint member 13 as in the present embodiment, the entire outer joint member 13 including the male spline portion 24 has a C amount of 0.45% to 0.60%. It is made of carbon steel. Further, the entire or part of the outer joint member 13 (male spline portion 24) may be provided with a thermosetting layer on the surface layer by heat treatment such as induction hardening.

次に、ドライブシャフト50のデフ側に位置する摺動式等速自在継手30の構成を説明する。 Next, the configuration of the sliding constant velocity universal joint 30 located on the differential side of the drive shaft 50 will be described.

摺動式等速自在継手30は、図1に示すように、いわゆるダブルローラタイプのトリポード型等速自在継手であり、外側継手部材31と、トリポード部材32、及びローラユニット33とを主に備える。 As shown in FIG. 1, the sliding constant velocity universal joint 30 is a so-called double roller type tripod type constant velocity universal joint, and mainly includes an outer joint member 31, a tripod member 32, and a roller unit 33. ..

外側継手部材31の内周面には、軸方向に伸びる三本の直線状トラック溝34(図1では一本のトラック溝34のみが表示されている。)が円周方向等間隔に形成される。各トラック溝34は、その内側両壁に互いに対向する一対のローラ案内面35(図1では一方のローラ案内面35のみが表示されている。)を有する。ローラ案内面35は円弧状断面を有し、外側継手部材31の軸線方向に直線状に延びている。 On the inner peripheral surface of the outer joint member 31, three linear track grooves 34 extending in the axial direction (only one track groove 34 is displayed in FIG. 1) are formed at equal intervals in the circumferential direction. To. Each track groove 34 has a pair of roller guide surfaces 35 (only one roller guide surface 35 is displayed in FIG. 1) facing each other on both inner walls thereof. The roller guide surface 35 has an arcuate cross section and extends linearly in the axial direction of the outer joint member 31.

トリポード部材32は、図示は省略するが、円筒状をなすボス36の外周面に、ボス36の半径方向に伸びる三本の脚軸37が円周方向等間隔(120°間隔)で一体的に形成されたものである。脚軸37は、その先端がトラック溝34の底部付近まで半径方向に延在している。ボス36の軸孔には、中間シャフト70の他端部70bがスプライン嵌合により連結されている。この場合、ボス36の軸孔には、嵌合孔としての雌スプライン部38が設けられると共に、中間シャフト70の他端部70bには、雌スプライン部38と嵌まり合う雄スプライン部72が設けられている。 Although not shown, the tripod member 32 has three leg shafts 37 extending in the radial direction of the boss 36 integrally on the outer peripheral surface of the cylindrical boss 36 at equal intervals (120 ° intervals) in the circumferential direction. It was formed. The tip of the leg shaft 37 extends radially to the vicinity of the bottom of the track groove 34. The other end 70b of the intermediate shaft 70 is connected to the shaft hole of the boss 36 by spline fitting. In this case, the shaft hole of the boss 36 is provided with a female spline portion 38 as a fitting hole, and the other end 70b of the intermediate shaft 70 is provided with a male spline portion 72 that fits with the female spline portion 38. Has been done.

上記構成の摺動式等速自在継手30においては、トリポード部材32の脚軸37と外側継手部材31のローラ案内面35とがローラユニット33を介して二軸の回転方向に係合することにより、駆動側から従動側へ回転トルクが等速で伝達される。また、ローラユニット33が脚軸37に対して回転しながらローラ案内面35上を転動することにより、外側継手部材31とトリポード部材32との間の相対的な軸方向変位や角度変位が許容される。 In the sliding constant velocity universal joint 30 having the above configuration, the leg shaft 37 of the tripod member 32 and the roller guide surface 35 of the outer joint member 31 engage with each other in the rotational direction of the two shafts via the roller unit 33. , The rotational torque is transmitted from the drive side to the driven side at a constant speed. Further, since the roller unit 33 rolls on the roller guide surface 35 while rotating with respect to the leg shaft 37, relative axial displacement and angular displacement between the outer joint member 31 and the tripod member 32 are allowed. Will be done.

摺動式等速自在継手30と中間シャフト70との間には、トリポード部材32(ボス36)と中間シャフト70の他端部70bとの連結部を覆うように、ブーツ39が取付けられている。このブーツ39は、摺動式等速自在継手30の内部に封入されたグリースなどの潤滑剤の漏れ出しを防止すると共に外部からの異物の侵入を防止する目的で設けられ、その大径側端部40が外側継手部材31の外周面に嵌合固定されると共に、小径側端部41が中間シャフト70の外周面に嵌合固定されている。 A boot 39 is attached between the sliding constant velocity universal joint 30 and the intermediate shaft 70 so as to cover the connecting portion between the tripod member 32 (boss 36) and the other end 70b of the intermediate shaft 70. .. The boots 39 are provided for the purpose of preventing leakage of a lubricant such as grease sealed inside the sliding constant velocity universal joint 30 and preventing foreign matter from entering from the outside, and the large diameter side end thereof. The portion 40 is fitted and fixed to the outer peripheral surface of the outer joint member 31, and the small diameter side end portion 41 is fitted and fixed to the outer peripheral surface of the intermediate shaft 70.

また、外側継手部材31には、デフ側に延びるステム部42が一体的に設けられており、このステム部42に設けられた雄スプライン部43と、デフ側の被嵌合部品に設けられた雌スプライン部(図示は省略)とが、スプライン嵌合により相互に連結されている。この雄スプライン部43は、例えばC量0.45%〜0.60%の炭素鋼で形成される。本実施形態のように雄スプライン部43が外側継手部材31の一部として一体的に形成される場合、雄スプライン部43を含む外側継手部材31全体がC量0.45%〜0.60%の炭素鋼で形成される。また、外側継手部材31の全体又は一部(雄スプライン部43)が、高周波焼入れ等の熱処理により表層に熱硬化層を設けたものであってもよい。 Further, the outer joint member 31 is integrally provided with a stem portion 42 extending to the differential side, and is provided on the male spline portion 43 provided on the stem portion 42 and the fitting component on the differential side. Female spline portions (not shown) are connected to each other by spline fitting. The male spline portion 43 is made of, for example, carbon steel having a C content of 0.45% to 0.60%. When the male spline portion 43 is integrally formed as a part of the outer joint member 31 as in the present embodiment, the entire outer joint member 31 including the male spline portion 43 has a C amount of 0.45% to 0.60%. It is made of carbon steel. Further, the entire or part of the outer joint member 31 (male spline portion 43) may be provided with a thermosetting layer on the surface layer by heat treatment such as induction hardening.

中間シャフト70は、凡そ軸方向に対称な形状をなすもので、その一端部70aに雄スプライン部71を有すると共に、他端部70bに雄スプライン部72を有する。また、各雄スプライン部71,72よりも中間シャフト70の軸方向中央に近い側には、断面形状が真円形状をなすと共に、中間シャフト70の中で最小の外径寸法を有する最小平滑部73,74が設けられている。本実施形態では、ブーツ20,39によって、各最小平滑部73,74の周囲が覆われている。 The intermediate shaft 70 has a shape substantially symmetrical in the axial direction, and has a male spline portion 71 at one end 70a and a male spline 72 at the other end 70b. Further, on the side closer to the axial center of the intermediate shaft 70 than the male spline portions 71 and 72, the cross-sectional shape is a perfect circular shape, and the minimum smooth portion having the smallest outer diameter dimension in the intermediate shaft 70. 73 and 74 are provided. In this embodiment, the boots 20 and 39 cover the periphery of each of the minimum smoothing portions 73 and 74.

図3は、固定式等速自在継手10と連結する側となる中間シャフト70の一端部70aを拡大して示した図である。図3に示すように、中間シャフト70の一端部70aには、軸方向に延びる複数の歯部75を円周方向の複数箇所に配置してなる雄スプライン部71が設けられている。本実施形態では、各歯部75は、雄スプライン部71の中心軸Xに平行な向きに伸びている。 FIG. 3 is an enlarged view of one end 70a of the intermediate shaft 70 on the side connected to the fixed constant velocity universal joint 10. As shown in FIG. 3, one end 70a of the intermediate shaft 70 is provided with a male spline portion 71 formed by arranging a plurality of axially extending tooth portions 75 at a plurality of locations in the circumferential direction. In the present embodiment, each tooth portion 75 extends in a direction parallel to the central axis X of the male spline portion 71.

円周方向で隣り合う歯部75の間には、軸方向に延びる溝部76が歯部75と同数設けられている。本実施形態では、雄スプライン部71の基端側には、外径寸法が中間シャフト70の先端側から遠ざかるにつれて増大する切上り部77が設けられている。この切上り部77は、例えば円弧状に滑らかに拡径する拡径面78で構成されており、溝部76の基端側の端部と滑らかにつながっている。この場合、各歯部75の基端側の端部75aは切上り部77の基端側の端部にまで延びている。 The same number of groove portions 76 extending in the axial direction are provided between the tooth portions 75 adjacent to each other in the circumferential direction. In the present embodiment, the base end side of the male spline portion 71 is provided with a cut-up portion 77 whose outer diameter dimension increases as the distance from the tip end side of the intermediate shaft 70 increases. The cut-up portion 77 is composed of, for example, an enlarged diameter surface 78 that smoothly expands in diameter in an arc shape, and is smoothly connected to the end portion on the proximal end side of the groove portion 76. In this case, the end portion 75a on the proximal end side of each tooth portion 75 extends to the distal end portion on the proximal end side of the cut-up portion 77.

また、中間シャフト70には、スプライン嵌合の相手となる内側継手部材16と軸方向の基端側で当接する肩部79が設けられると共に、内側継手部材16と軸方向の先端側で当接する止め輪80(図4を参照)を取付けるための取付け溝81が設けられている。よって、図4に示すように、この中間シャフト70の雄スプライン部71を内側継手部材16の内周に設けられた雌スプライン部19に嵌合して止め輪80を取付けた状態では、雄スプライン部71と雌スプライン部19とが嵌合し、かつ肩部79と止め輪80とにより内側継手部材16が中間シャフト70に対して軸方向に位置決め固定された状態となる。 Further, the intermediate shaft 70 is provided with a shoulder portion 79 that abuts on the proximal end side in the axial direction with the inner joint member 16 that is the partner of the spline fitting, and also abuts on the tip end side in the axial direction. A mounting groove 81 for mounting the retaining ring 80 (see FIG. 4) is provided. Therefore, as shown in FIG. 4, in a state where the male spline portion 71 of the intermediate shaft 70 is fitted to the female spline portion 19 provided on the inner circumference of the inner joint member 16 and the retaining ring 80 is attached, the male spline The portion 71 and the female spline portion 19 are fitted, and the inner joint member 16 is positioned and fixed in the axial direction with respect to the intermediate shaft 70 by the shoulder portion 79 and the retaining ring 80.

また、中間シャフト70の雄スプライン部71には、歯部75の一部を切り欠いてなる切欠き部82が形成されている。この切欠き部82は、中間シャフト70の一端部70aと固定式等速自在継手10の内側継手部材16とをスプライン嵌合で連結した状態において、歯部75のうち、内側継手部材16の雌スプライン部19の歯部19aとの嵌合が想定される領域83A(図9において実線のハッチングで示す領域)に設けられる。すなわち、図9に示すように、歯部75のうち、切欠き部82がないと仮定したときに、雄スプライン部71の歯部75が雌スプライン部19の歯部19aの軸方向所定領域(図9では軸方向全域)にわたって嵌合するものと予想される場合、この嵌合が予想される領域83A(図4において二点鎖線のハッチングで示す領域)に切欠き部82が設けられる。 Further, the male spline portion 71 of the intermediate shaft 70 is formed with a notch portion 82 formed by notching a part of the tooth portion 75. The notch 82 is a female of the inner joint member 16 of the tooth portions 75 in a state where one end 70a of the intermediate shaft 70 and the inner joint member 16 of the fixed constant velocity universal joint 10 are connected by spline fitting. The spline portion 19 is provided in a region 83A (a region indicated by solid hatching in FIG. 9) where fitting with the tooth portion 19a is assumed. That is, as shown in FIG. 9, assuming that there is no notch 82 in the tooth portion 75, the tooth portion 75 of the male spline portion 71 is an axially predetermined region of the tooth portion 19a of the female spline portion 19 ( When fitting is expected over the entire axial direction in FIG. 9, a notch 82 is provided in the region 83A (region indicated by hatching of the alternate long and short dash line in FIG. 4) where this fitting is expected.

本実施形態では、切欠き部82は、歯部75の先端側から基端側に向かうにつれて外径寸法が縮小する縮径部82aと、縮径部82aとつながり切欠き部82の中で外径寸法が最小となる底部82bと、底部82bとつながり歯部75の先端側から基端側に向かうにつれて外径寸法が拡大する拡径部82cとで構成される。縮径部82aの先端と拡径部82cの基端はそれぞれ歯部75の頂面75bと連続している。なお、底部82bの外径寸法は溝部76の外径寸法よりも小さく設定されているが、スプライン嵌合の相手となる雌スプライン部19の歯部19aと嵌合(干渉)しない限りにおいて、溝部76よりも底部82bの外径寸法を大きく設定してもかまわない。 In the present embodiment, the notch 82 is connected to the reduced diameter portion 82a and the outer diameter portion 82a whose outer diameter dimension decreases from the tip end side to the proximal end side of the tooth portion 75, and is outside in the notched portion 82. It is composed of a bottom portion 82b having a minimum diameter dimension and an enlarged diameter portion 82c connected to the bottom portion 82b and whose outer diameter dimension increases from the tip end side to the base end side of the tooth portion 75. The tip of the reduced diameter portion 82a and the base end of the enlarged diameter portion 82c are continuous with the top surface 75b of the tooth portion 75, respectively. The outer diameter of the bottom portion 82b is set smaller than the outer diameter of the groove portion 76, but the groove portion is not fitted (interfered) with the tooth portion 19a of the female spline portion 19 which is the partner of the spline fitting. The outer diameter of the bottom 82b may be set larger than that of 76.

また、本実施形態では、切欠き部82が、雄スプライン部71の歯部75のうち、雌スプライン部19の歯部19aとの嵌合が想定される領域83Aの軸方向中央位置Pcよりも切上り部77に近い側に設けられている。具体的には、切欠き部82の底部82b全域が歯部19aとの嵌合が想定される領域83Aの軸方向中央位置Pcよりも切上り部77に近い側に設けられている。一方で、切欠き部82よりも雄スプライン部71の基端側には歯部75が存在している。すなわち、この切欠き部82は、雄スプライン部71の歯部75を軸方向に分割する位置に設けられている。この場合、歯部75は切欠き部82により軸方向の先端側領域75cと、軸方向の基端側領域75dとに分割された状態となる。よって、雌スプライン部19の歯部19aとの嵌合領域83も切欠き部82により軸方向の前後に分割された状態となる。 Further, in the present embodiment, the notch portion 82 is located at the axial center position Pc of the region 83A in which the tooth portion 75 of the male spline portion 71 is expected to be fitted with the tooth portion 19a of the female spline portion 19. It is provided on the side close to the cut-up portion 77. Specifically, the entire bottom portion 82b of the notch portion 82 is provided closer to the cut-up portion 77 than the axial center position Pc of the region 83A where fitting with the tooth portion 19a is assumed. On the other hand, the tooth portion 75 exists on the proximal end side of the male spline portion 71 with respect to the notch portion 82. That is, the notch portion 82 is provided at a position where the tooth portion 75 of the male spline portion 71 is divided in the axial direction. In this case, the tooth portion 75 is divided into a tip end side region 75c in the axial direction and a proximal end side region 75d in the axial direction by the notch portion 82. Therefore, the fitting region 83 of the female spline portion 19 with the tooth portion 19a is also divided into front and rear in the axial direction by the notch portion 82.

なお、本実施形態のように、内側継手部材16を肩部79と止め輪80とで軸方向に位置決め固定する場合、切欠き部82の軸方向寸法(縮径部82aの先端位置から拡径部82cの基端位置までの軸方向距離)は、止め輪80用の取付け溝81の軸方向寸法よりも大きい(図4を参照)。また、当然ながら、取付け溝81は、中間シャフト70の一端部70aのうち雌スプライン部19の歯部19aとの嵌合が想定される領域83Aから外れた位置に設けられている。 When the inner joint member 16 is positioned and fixed in the axial direction by the shoulder portion 79 and the retaining ring 80 as in the present embodiment, the axial dimension of the notch portion 82 (the diameter is expanded from the tip position of the reduced diameter portion 82a). The axial distance to the base end position of the portion 82c) is larger than the axial dimension of the mounting groove 81 for the retaining ring 80 (see FIG. 4). Further, as a matter of course, the mounting groove 81 is provided at a position of one end portion 70a of the intermediate shaft 70 that is out of the region 83A where fitting of the female spline portion 19 with the tooth portion 19a is assumed.

なお、図示は省略するが、必要に応じて、中間シャフト70の他端部70bにも、一端部70aと同様の構成を付与してもよく、またその際、一端部70aの雄スプライン部71に設けられた切欠き部82と同様の構成を成す切欠き部を、他端部70bの雄スプライン部72に設けてもよい。 Although not shown, the other end 70b of the intermediate shaft 70 may be provided with the same configuration as the one end 70a, and at that time, the male spline portion 71 of the one end 70a may be provided. A notch portion having the same structure as the notch portion 82 provided in may be provided in the male spline portion 72 of the other end portion 70b.

上記構成の中間シャフト70、特に雄スプライン部71は、任意の手段で製作することが可能であり、例えば切削、転造などにより中間シャフト70の一端部70aと他端部70bの一方又は双方に、切欠き部82を有する雄スプライン部71,72を形成することが可能である。 The intermediate shaft 70 having the above configuration, particularly the male spline portion 71, can be manufactured by any means, and for example, one end portion 70a and the other end portion 70b of the intermediate shaft 70 can be formed by cutting, rolling, or the like. , It is possible to form male spline portions 71, 72 having a notch portion 82.

以上述べたように、すなわち本発明に係るドライブシャフト50では、ドライブシャフト50を構成する中間シャフト70の雄スプライン部71の歯部75のうち、スプライン嵌合の相手となる雌スプライン部19の歯部19aとの嵌合が想定される領域83Aに切欠き部82を設けるようにした(図4)。上述した領域83Aに切欠き部82を設けることで、雄スプライン部71の歯部75と雌スプライン部19の歯部とが嵌合する面積を小さくして、その分雄スプライン部71の歯部75の嵌合部位、特に基端側領域75dのうち切上り部77に設けられた部分の根元部Sに生じる応力を優先的に高めることができる。そのため、中間シャフト70の雄スプライン部71の外径寸法D2が、外側継手部材13のステム部23の雄スプライン部24の外径寸法D1と同程度の場合においても、中間シャフト70の雄スプライン部71をドライブシャフト50における捩り疲労強度の最弱部にすることができる。これにより、外側継手部材13のステム部23に設けられた雄スプライン部24の外径寸法D1を大きくせずに済むので、この雄スプライン部24と嵌合するハブベアリング側やデフ側の雌スプライン部の内径寸法を大きくする必要もなく、これらドライブシャフト50の周辺部品に従来設計の部品を使用することができる。また、中間シャフト70の側で最弱部の位置を調整することができるので、固定式等速自在継手10の内側継手部材16については部品の共通化を図ることができる。その一方で、中間シャフト70は車両に固有(いわば一品一様)の仕様であるため、その形状を個別に調整し易い。よって、本発明のように雄スプライン部71の形状を変更したとしても個別調整の範囲内であり、全体としての生産効率、生産コストに大きな影響を与えるおそれもない。もちろん、中間シャフト70の雄スプライン部71に最弱部を設けることで、万が一当該部位が破損したとしても、固定式等速自在継手の外側継手部材13と破損した中間シャフト70とをブーツ20で連結した状態を保つことができる。そのため、破損後のドライブシャフト50の振れ回りを防止することができ、これにより周辺部品に損傷を与えるような二次的な被害を防止することが可能となる。 As described above, that is, in the drive shaft 50 according to the present invention, among the teeth 75 of the male spline portion 71 of the intermediate shaft 70 constituting the drive shaft 50, the teeth of the female spline portion 19 which is the partner of the spline fitting. A notch 82 is provided in the region 83A where fitting with the portion 19a is expected (FIG. 4). By providing the notch 82 in the above-mentioned region 83A, the area where the tooth portion 75 of the male spline portion 71 and the tooth portion of the female spline portion 19 fit is reduced, and the tooth portion of the male spline portion 71 is reduced by that amount. It is possible to preferentially increase the stress generated in the fitting portion of the 75, particularly the root portion S of the portion provided in the cut-up portion 77 in the proximal end side region 75d. Therefore, even when the outer diameter dimension D2 of the male spline portion 71 of the intermediate shaft 70 is about the same as the outer diameter dimension D1 of the male spline portion 24 of the stem portion 23 of the outer joint member 13, the male spline portion of the intermediate shaft 70 71 can be the weakest part of the torsional fatigue strength of the drive shaft 50. As a result, it is not necessary to increase the outer diameter dimension D1 of the male spline portion 24 provided on the stem portion 23 of the outer joint member 13, so that the female spline on the hub bearing side or the differential side that fits with the male spline portion 24 does not need to be increased. It is not necessary to increase the inner diameter of the portion, and conventionally designed parts can be used as peripheral parts of the drive shaft 50. Further, since the position of the weakest portion can be adjusted on the side of the intermediate shaft 70, it is possible to standardize the parts of the inner joint member 16 of the fixed constant velocity universal joint 10. On the other hand, since the intermediate shaft 70 has specifications unique to the vehicle (so to speak, one item is uniform), its shape can be easily adjusted individually. Therefore, even if the shape of the male spline portion 71 is changed as in the present invention, it is within the range of individual adjustment, and there is no possibility that the overall production efficiency and production cost will be significantly affected. Of course, by providing the weakest portion in the male spline portion 71 of the intermediate shaft 70, even if the portion is damaged, the outer joint member 13 of the fixed constant velocity universal joint and the damaged intermediate shaft 70 are connected by the boot 20. It can be kept connected. Therefore, it is possible to prevent the drive shaft 50 from swinging after being damaged, and thereby it is possible to prevent secondary damage such as damage to peripheral parts.

また、本実施形態では、中間シャフト70に、雄スプライン部71の基端側に位置し外径寸法が先端側から遠ざかるにつれて増大する切上り部77を設けると共に、切欠き部82を、雄スプライン部71の歯部75のうち、雌スプライン部19の歯部19aとの嵌合が想定される領域83Aの軸方向中央位置Pcよりも切上り部77に近い側に設けるようにした(図4)。上述のように中間シャフト70に切上り部77を設けることで、雄スプライン部71の基端側において応力集中が生じ易くなる。そのため、切欠き部82を、上述した雌スプライン部19の歯部19aとの嵌合が想定される領域83Aのうち切上り部77寄りの位置に設けることによって、雄スプライン部71の切上り部77側に生じる応力をさらに効果的に高めることが可能となる。 Further, in the present embodiment, the intermediate shaft 70 is provided with a cut-up portion 77 located on the base end side of the male spline portion 71 and increasing as the outer diameter dimension increases away from the tip side, and the notch portion 82 is provided with the male spline portion 82. Of the tooth portions 75 of the portion 71, the female spline portion 19 is provided closer to the cut-up portion 77 than the axial center position Pc of the region 83A where fitting with the tooth portion 19a is assumed (FIG. 4). ). By providing the cut-up portion 77 on the intermediate shaft 70 as described above, stress concentration is likely to occur on the proximal end side of the male spline portion 71. Therefore, by providing the cutout portion 82 at a position closer to the cut-up portion 77 in the region 83A where the fitting of the female spline portion 19 with the tooth portion 19a is expected, the cut-up portion of the male spline portion 71 is provided. It is possible to more effectively increase the stress generated on the 77 side.

以上、本発明の一実施形態に係る車両用ドライブシャフトについて説明したが、この車両用ドライブシャフトは、本発明の要旨を逸脱しない範囲で適宜の変更を施すことが可能である。 The vehicle drive shaft according to the embodiment of the present invention has been described above, but the vehicle drive shaft can be appropriately modified without departing from the gist of the present invention.

図5は、本発明の他の実施形態に係る車両用ドライブシャフトの要部拡大図を示しており、詳細には、当該ドライブシャフトを構成する中間シャフトの雄スプライン部71Cの歯部75に所定の捩れ角を付与した構成をとる場合の、中間シャフトと内側継手部材16とのスプライン嵌合状態を平面視した図を示している。この図に示すように、本実施形態に係る中間シャフトにおいては、雄スプライン部71Cの歯部75Cが所定の捩れ角を有する。そのため、中間シャフト70に所定のトルクが作用した場合、雄スプライン部71Cの歯部75Cは主にその軸方向両端で雌スプライン部19の歯部19aと当接し、歯部19aからそれぞれ反力Fa,Fbを受ける。この場合、雄スプライン部71Cの基端側は中間シャフトの先端と反対の側であり、また切上り部77(図6を参照)が設けられていることもあって、基端側で受ける反力Fbのほうが先端側で受ける反力Faよりも大きい。よって、歯部75Cの基端側においては、実質的に雄スプライン部71Cの歯部75Cと雌スプライン部19の歯部19aとが圧接した状態にある。 FIG. 5 shows an enlarged view of a main part of the drive shaft for a vehicle according to another embodiment of the present invention, and more specifically, the tooth portion 75 of the male spline portion 71C of the intermediate shaft constituting the drive shaft is defined. A plan view of the spline fitting state of the intermediate shaft and the inner joint member 16 in the case where the twist angle of the above is given is shown. As shown in this figure, in the intermediate shaft according to the present embodiment, the tooth portion 75C of the male spline portion 71C has a predetermined twist angle. Therefore, when a predetermined torque is applied to the intermediate shaft 70, the tooth portions 75C of the male spline portion 71C mainly come into contact with the tooth portions 19a of the female spline portion 19 at both ends in the axial direction, and the reaction force Fa from each of the tooth portions 19a. , Receives Fb. In this case, the base end side of the male spline portion 71C is the side opposite to the tip end of the intermediate shaft, and the cut-up portion 77 (see FIG. 6) is provided, so that the reaction received on the base end side is received. The force Fb is larger than the reaction force Fa received on the tip side. Therefore, on the base end side of the tooth portion 75C, the tooth portion 75C of the male spline portion 71C and the tooth portion 19a of the female spline portion 19 are substantially in pressure contact with each other.

このように、雄スプライン部71Cの基端側の一部が雌スプライン部19の歯部19aと圧接した状態で相互に固定される場合、雌スプライン部19の歯部19aとの嵌合が想定される領域83A(図4を参照)の中でも特に圧接が想定される領域84A(図6)に切欠き部82を設けることで、より好ましくは圧接が想定される領域84Aの基端側に切欠き部82を設けることで、雄スプライン部71Cの基端側に生じる応力をさらに効果的に高めることができる。特に、雄スプライン部71Cの歯部75Cが図5に示すように所定の捩れ角を有する場合には、中間シャフトに付与されるトルクの大きさに応じて上記圧接が想定される領域84Aの位置及び範囲が変動する。よって、想定されるトルクに応じて切欠き部82の位置及び範囲(軸方向寸法)を設定することにより、雄スプライン部71Cの捩り疲労強度を適正に調整することが可能となる。 In this way, when a part of the base end side of the male spline portion 71C is fixed to each other in a state of being in pressure contact with the tooth portion 19a of the female spline portion 19, it is assumed that the female spline portion 19 is fitted with the tooth portion 19a. By providing the notch 82 in the region 84A (FIG. 6) where pressure welding is expected, among the regions 83A (see FIG. 4), the region 84A where pressure welding is expected is more preferably cut to the proximal end side of the region 84A where pressure welding is expected. By providing the notch portion 82, the stress generated on the proximal end side of the male spline portion 71C can be further effectively increased. In particular, when the tooth portion 75C of the male spline portion 71C has a predetermined twist angle as shown in FIG. 5, the position of the region 84A where the pressure welding is assumed is assumed according to the magnitude of the torque applied to the intermediate shaft. And the range fluctuates. Therefore, by setting the position and range (axial dimension) of the notch portion 82 according to the assumed torque, the torsional fatigue strength of the male spline portion 71C can be appropriately adjusted.

また、本実施形態のように、切欠き部82を、雄スプライン部71Cの歯部75Cを軸方向に分割(先端側領域75Ccと基端側領域75Cdとに分割)する位置に設けるようにすれば、雄スプライン部71Cの歯部75Cの軸方向両端を避けて切欠き部82を設けることができる。そのため、上述のように、雄スプライン部71Cの歯部75Cに所定の捩り角を付与した構成をとる場合に、切欠き部82を雌スプライン部19の歯部19aとの嵌合が想定される領域83A、特に圧接が想定される領域84Aに設けたとしても、雄スプライン部71Cの歯部75Cの少なくとも一部(基端側領域75Cd)で確実に雌スプライン部との圧接を図ることができる(この場合、歯部75Cの基端側領域75Cdと歯部19aとの間に圧接領域84が形成される)。よって、本構成によれば、切欠き部82を設けて雄スプライン部71Cに最弱部を設けつつも、中間シャフトと内側継手部材16の雌スプライン部19とのスプライン嵌合部における円周方向のガタを低減することが可能となる。 Further, as in the present embodiment, the notch portion 82 is provided at a position where the tooth portion 75C of the male spline portion 71C is divided in the axial direction (divided into a tip end side region 75Cc and a proximal end side region 75Cd). For example, the notch 82 can be provided so as to avoid both ends in the axial direction of the tooth portion 75C of the male spline portion 71C. Therefore, as described above, when the tooth portion 75C of the male spline portion 71C is provided with a predetermined twist angle, it is assumed that the notch portion 82 is fitted with the tooth portion 19a of the female spline portion 19. Even if it is provided in the region 83A, particularly in the region 84A where pressure welding is expected, at least a part of the tooth portion 75C of the male spline portion 71C (base end side region 75Cd) can be reliably pressure-welded to the female spline portion. (In this case, a pressure contact region 84 is formed between the base end side region 75Cd of the tooth portion 75C and the tooth portion 19a). Therefore, according to this configuration, while providing the notch portion 82 and providing the weakest portion in the male spline portion 71C, the circumferential direction in the spline fitting portion between the intermediate shaft and the female spline portion 19 of the inner joint member 16. It is possible to reduce the backlash of.

なお、以上の説明では、切欠き部82を、縮径部82aと、底部82bと、拡径部82cとで構成した場合を例示したが、もちろんこの形態には限られない。雌スプライン部19の歯部19aとの干渉を回避可能な限りにおいて、様々な形態の切欠き部を採用することが可能である。また、切欠き部82は雄スプライン部71(71C)の全ての歯部75(75C)に必ずしも設ける必要はなく、例えば円周方向に配置して成る複数の歯部75(75C)の一つおきに切欠き部82を設けてもよい。要は、雌スプライン部19の歯部19aとの嵌合が想定される領域83Aに一つ以上の切欠き部82が設けられていれば、その形態及び個数、配置態様は任意である。 In the above description, the case where the notch portion 82 is composed of the reduced diameter portion 82a, the bottom portion 82b, and the enlarged diameter portion 82c has been illustrated, but of course, the present invention is not limited to this form. As long as interference with the tooth portion 19a of the female spline portion 19 can be avoided, various forms of notch portions can be adopted. Further, the notch portion 82 does not necessarily have to be provided in all the tooth portions 75 (75C) of the male spline portion 71 (71C), and is one of a plurality of tooth portions 75 (75C) arranged in the circumferential direction, for example. A notch 82 may be provided every other time. In short, as long as one or more notches 82 are provided in the region 83A where the female spline portion 19 is expected to be fitted with the tooth portion 19a, the form, the number, and the arrangement mode are arbitrary.

10,10B 固定式等速自在継手
13,13B 外側継手部材
16,16B 内側継手部材
17 ボール
18 ケージ
19,19B 雌スプライン部(内側継手部材)
19a 歯部
20,39 ブーツ
23,23B,42 ステム部
24,24B,43 雄スプライン部(ステム部)
30 摺動式等速自在継手
31 外側継手部材
32 トリポード部材
33 ローラユニット
38 雌スプライン部(トリポード部材)
50 ドライブシャフト
70,70B 中間シャフト
71,71B,71C,72 雄スプライン部(中間シャフト)
73,74 最小平滑部
75,75C 歯部
75d,75Cd 基端側領域
76 溝部
77 切上り部
79 肩部
80 止め輪
81 取付け溝
82 切欠き部
82a 縮径部
82b 底部
82c 拡径部
83 嵌合領域
83A 雌スプライン部の歯部との嵌合が想定される領域
84 圧接領域
84A 雌スプライン部の歯部との圧接が想定される領域
D1,D5 外径寸法(ステム部の雄スプライン部)
D2,D4 外径寸法(中間シャフトの雄スプライン部)
D3 外径寸法(中間シャフトの最小平滑部)
Fa,Fb 反力
Pc 軸方向中央位置
S 根元部
X 中心軸
10,10B Fixed constant velocity universal joint 13,13B Outer joint member 16,16B Inner joint member 17 Ball 18 Cage 19, 19B Female spline part (inner joint member)
19a Tooth part 20, 39 Boot 23, 23B, 42 Stem part 24, 24B, 43 Male spline part (stem part)
30 Sliding constant velocity universal joint 31 Outer joint member 32 Tripod member 33 Roller unit 38 Female spline part (tripod member)
50 Drive shaft 70, 70B Intermediate shaft 71, 71B, 71C, 72 Male spline part (intermediate shaft)
73,74 Minimum smoothing part 75,75C Tooth part 75d, 75Cd Base end side area 76 Groove part 77 Cut-up part 79 Shoulder part 80 Stop ring 81 Mounting groove 82 Notch part 82a Reduced diameter part 82b Bottom part 82c Enlarged part 83 Fitting Area 83A Area where the female spline part is expected to fit with the tooth part 84 Pressure contact area 84A Area where pressure contact of the female spline part with the tooth part is expected D1, D5 Outer diameter dimensions (male spline part of the stem part)
D2, D4 outer diameter dimensions (male spline part of intermediate shaft)
D3 outer diameter dimension (minimum smoothing part of intermediate shaft)
Fa, Fb Reaction force Pc Axial center position S Root X Central axis

Claims (7)

駆動輪側に配置した固定式等速自在継手と、デファレンシャルギヤ側に配置した摺動式等速自在継手とにスプライン嵌合で連結される中間シャフトと、前記少なくとも何れか一方の等速自在継手と前記中間シャフトとの連結部を覆うブーツとを備えた車両用ドライブシャフトにおいて、
前記中間シャフトに設けられた雄スプライン部の歯部のうち、前記スプライン嵌合の相手となる雌スプライン部の歯部との嵌合が想定される領域に切欠き部が設けられることを特徴とする車両用ドライブシャフト。
An intermediate shaft connected to a fixed constant velocity universal joint arranged on the drive wheel side and a sliding constant velocity universal joint arranged on the differential gear side by spline fitting, and at least one of the above constant velocity universal joints. In a vehicle drive shaft provided with boots covering the joint with the intermediate shaft.
Among the tooth portions of the male spline portion provided on the intermediate shaft, a notch portion is provided in a region where fitting with the tooth portion of the female spline portion to be fitted with the spline is expected. Drive shaft for vehicles.
前記中間シャフトは、前記雄スプライン部の基端側に位置し外径寸法が前記中間シャフトの先端側から遠ざかるにつれて増大する切上り部を有し、
前記切欠き部が、前記雄スプライン部の歯部のうち、前記雌スプライン部の歯部との嵌合が想定される領域の軸方向中央位置よりも前記切上り部に近い側に設けられる請求項1に記載の車両用ドライブシャフト。
The intermediate shaft has a cut-up portion located on the proximal end side of the male spline portion and increasing in outer diameter as the distance from the distal end side of the intermediate shaft increases.
A claim in which the notch portion is provided on a side of the tooth portion of the male spline portion closer to the cut-up portion than the axial center position of the region where the female spline portion is expected to be fitted with the tooth portion. The vehicle drive shaft according to item 1.
前記雄スプライン部の歯部は、前記雄スプライン部の中心軸に対して所定の捩れ角を有する向きに延在している請求項1又は2に記載の車両用ドライブシャフト。 The vehicle drive shaft according to claim 1 or 2, wherein the tooth portion of the male spline portion extends in a direction having a predetermined twist angle with respect to the central axis of the male spline portion. 前記切欠き部が、前記雄スプライン部の歯部のうち、前記雌スプライン部の歯部との圧接が想定される領域の軸方向中央位置よりも基端側に設けられる請求項1〜3の何れか一項に記載の車両用ドライブシャフト。 Claims 1 to 3 in which the notch portion is provided on the proximal end side of the tooth portion of the male spline portion with respect to the axial center position of the region where pressure contact with the tooth portion of the female spline portion is assumed. The vehicle drive shaft according to any one of the items. 前記切欠き部が、前記雄スプライン部の歯部のうち、前記雌スプライン部の歯部との嵌合が想定される領域であって、前記雄スプライン部の歯部を軸方向に分割する位置に設けられる請求項1〜4の何れか一項に記載の車両用ドライブシャフト。 The notch portion is a region of the tooth portion of the male spline portion that is expected to be fitted with the tooth portion of the female spline portion, and is a position at which the tooth portion of the male spline portion is divided in the axial direction. The vehicle drive shaft according to any one of claims 1 to 4 provided in the above. 前記中間シャフトの前記雄スプライン部のC量が、前記スプライン嵌合の相手となる前記何れか一方の等速自在継手の外側継手部材に設けられたステム部のC量よりも少ない請求項1〜5の何れか一項に記載の車両用ドライブシャフト。 Claims 1 to 1 in which the C amount of the male spline portion of the intermediate shaft is smaller than the C amount of the stem portion provided on the outer joint member of any one of the constant velocity universal joints to be fitted with the spline. The vehicle drive shaft according to any one of 5. 前記中間シャフトの前記雄スプライン部が転造加工で仕上げられている請求項1〜6の何れか一項に記載の車両用ドライブシャフト。 The vehicle drive shaft according to any one of claims 1 to 6, wherein the male spline portion of the intermediate shaft is finished by rolling.
JP2019054663A 2019-03-22 2019-03-22 Drive shaft for vehicle Pending JP2020153486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019054663A JP2020153486A (en) 2019-03-22 2019-03-22 Drive shaft for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019054663A JP2020153486A (en) 2019-03-22 2019-03-22 Drive shaft for vehicle

Publications (1)

Publication Number Publication Date
JP2020153486A true JP2020153486A (en) 2020-09-24

Family

ID=72558394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019054663A Pending JP2020153486A (en) 2019-03-22 2019-03-22 Drive shaft for vehicle

Country Status (1)

Country Link
JP (1) JP2020153486A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043097A1 (en) * 2022-08-24 2024-02-29 Ntn株式会社 Wheel bearing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024043097A1 (en) * 2022-08-24 2024-02-29 Ntn株式会社 Wheel bearing device

Similar Documents

Publication Publication Date Title
EP1311771B1 (en) Wheel drive unit
JP5318535B2 (en) Fixed constant velocity universal joint, method of manufacturing the same, and drive wheel bearing unit using the fixed constant velocity universal joint
EP3453906B1 (en) Joint for torque transmission and electric power steering device
WO2016175267A1 (en) Joint for torque transmission and worm reduction gear
JPWO2018030358A1 (en) Torque transmission joint and electric power steering apparatus
JP6911892B2 (en) Torque transmission joint and worm reducer
JP2011002030A (en) Wheel bearing
JP5214336B2 (en) Fixed constant velocity universal joint
JP5377908B2 (en) Manufacturing method of tripod type constant velocity universal joint
JP2020153486A (en) Drive shaft for vehicle
JP4191878B2 (en) Spline shaft fitting structure for constant velocity joint
JP4245106B2 (en) Manufacturing method and fitting structure of spline shaft for constant velocity joint
JP2007333154A (en) Constant-velocity universal joint
JP5020750B2 (en) Tripod type constant velocity universal joint
JP2008256022A (en) Constant velocity universal joint
JP2008051222A (en) Two member connecting structure
JP2011185346A (en) Constant velocity universal joint
KR101696907B1 (en) Wheel bearing and manufacturing method of the same
JP2021148185A (en) Power transmission shaft
JP5372364B2 (en) Tripod type constant velocity universal joint
WO2023189289A1 (en) Tripod-type constant-velocity universal joint
WO2023068018A1 (en) Tripod-type constant-velocity universal joint
JP2008051221A (en) Two member connecting structure
JP2007247771A (en) Torque-transmitting mechanism
JP2021143716A (en) Rotation transmission slide spline shaft and constant velocity universal joint