JP2007333154A - Constant-velocity universal joint - Google Patents

Constant-velocity universal joint Download PDF

Info

Publication number
JP2007333154A
JP2007333154A JP2006167826A JP2006167826A JP2007333154A JP 2007333154 A JP2007333154 A JP 2007333154A JP 2006167826 A JP2006167826 A JP 2006167826A JP 2006167826 A JP2006167826 A JP 2006167826A JP 2007333154 A JP2007333154 A JP 2007333154A
Authority
JP
Japan
Prior art keywords
shaft
joint member
diameter
inner ring
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006167826A
Other languages
Japanese (ja)
Other versions
JP5283832B2 (en
Inventor
Zenichi Fukumura
善一 福村
Hisaaki Kura
久昭 藏
Makoto Tomoue
真 友上
Akira Nakagawa
亮 中川
Yuichi Asano
祐一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006167826A priority Critical patent/JP5283832B2/en
Priority to US12/308,103 priority patent/US8128504B2/en
Priority to EP07741528.9A priority patent/EP2031262B1/en
Priority to PCT/JP2007/058092 priority patent/WO2007145019A1/en
Priority to CN200780021311.4A priority patent/CN101466958B/en
Publication of JP2007333154A publication Critical patent/JP2007333154A/en
Application granted granted Critical
Publication of JP5283832B2 publication Critical patent/JP5283832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To connect firmly an inner ring to a shaft by preventing the generation of backlash to the utmost. <P>SOLUTION: In a fitting structure between the inner ring and the shaft installed in this constant-velocity universal joint, and equipped with the inner ring 20 for transferring torque, while allowing angle displacement between itself and an outer ring, and the shaft 50 pressed into an axial hole inner diameter 26 of the inner ring 20, the axial hole inner diameter 26 of the inner ring 20 is in an uncured state, and a spline 54 as an irregular part along the circumferential direction is formed at an axial end outer diameter 52 of the shaft 50, and a cured layer n is formed at the axial end outer diameter 52, and the axial end outer diameter 52 of the shaft 50 is pressed into the axial hole inner diameter 26 of the inner ring 20, to thereby plastically couple the shaft 50 with the inner ring 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車や各種産業機械の動力伝達系において使用され、例えばFF車や4WD車、FR車などで使用されるドライブシャフトやプロペラシャフトに組み込まれる固定式あるいは摺動式等速自在継手の内側継手部材とシャフトの嵌合構造に関する。   The present invention is used in power transmission systems of automobiles and various industrial machines. For example, fixed or sliding constant velocity universal joints incorporated in drive shafts and propeller shafts used in FF cars, 4WD cars, FR cars, etc. The present invention relates to a fitting structure between an inner joint member and a shaft.

例えば、自動車のドライブシャフトは、シャフトの一方の軸端に摺動式等速自在継手を装着し、他方の軸端に固定式等速自在継手を装着した構造を具備する。   For example, a drive shaft of an automobile has a structure in which a sliding constant velocity universal joint is attached to one shaft end of the shaft and a fixed constant velocity universal joint is attached to the other shaft end.

このドライブシャフトの連結用継手として使用されている摺動式等速自在継手の一つであるトリポード型等速自在継手(TJ)は、内周面に三本のトラック溝が軸方向に形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材(外輪)と、半径方向に突出した三本の脚軸を有する内側継手部材(トリポード部材)と、その内側継手部材の脚軸と外側継手部材のローラ案内面との間に回転自在に収容された転動体(ローラ)とを主要な部材として構成される。   A tripod type constant velocity universal joint (TJ), which is one of the sliding type constant velocity universal joints used as a coupling for drive shafts, has three track grooves formed in the axial direction on the inner peripheral surface. The outer joint member (outer ring) having an axial roller guide surface on each side of each track groove, the inner joint member (tripod member) having three leg shafts projecting in the radial direction, and the inner joint member A rolling element (roller) rotatably accommodated between the leg shaft and the roller guide surface of the outer joint member is configured as a main member.

また、固定式等速自在継手の一つであるバーフィールド型等速自在継手(BJ)は、内球面に複数のトラック溝を円周方向等間隔に軸方向に沿って形成した外側継手部材(外輪)と、外球面に外側継手部材のトラック溝と対をなす複数のトラック溝を円周方向等間隔に軸方向に沿って形成した内側継手部材(内輪)と、外側継手部材のトラック溝と内側継手部材のトラック溝間に介在してトルクを伝達する複数のボールと、外側継手部材の内球面と内側継手部材の外球面との間に介在してボールを保持するケージとを主要な部材として構成される。   In addition, a Barfield type constant velocity universal joint (BJ), which is one of fixed type constant velocity universal joints, is an outer joint member in which a plurality of track grooves are formed along the axial direction at equal intervals in the circumferential direction on the inner spherical surface ( An outer ring, an inner joint member (inner ring) formed on the outer spherical surface along the axial direction with a plurality of track grooves paired with the track grooves of the outer joint member, and a track groove of the outer joint member; The main members are a plurality of balls that transmit torque by being interposed between the track grooves of the inner joint member, and a cage that is interposed between the inner spherical surface of the outer joint member and the outer spherical surface of the inner joint member. Configured as

これら摺動式等速自在継手あるいは固定式等速自在継手とシャフトとの連結構造には、内側継手部材の軸孔内径にシャフトの軸端を圧入する構造が採用されている。この内側継手部材の軸孔内径に軸方向に沿う凹凸として雌スプラインを形成すると共に、シャフトの軸端外径にも雄スプラインを形成する。   A structure in which the shaft end of the shaft is press-fitted into the inner diameter of the shaft hole of the inner joint member is employed as a connection structure between the sliding constant velocity universal joint or the fixed constant velocity universal joint and the shaft. A female spline is formed as irregularities along the axial direction on the inner diameter of the shaft hole of the inner joint member, and a male spline is also formed on the outer diameter of the shaft end of the shaft.

これら雌スプラインが形成された内側継手部材の軸孔内径と、雄スプラインが形成されたシャフトの軸端外径には、例えば高周波焼き入れあるいは浸炭焼入れにより硬化処理が施されて硬化層が形成されている。この硬化層の形成により内側継手部材の軸孔内径およびシャフトの軸端外径の強度を確保するようにしている。   The inner hole of the inner joint member in which the female spline is formed and the outer diameter of the shaft end of the shaft in which the male spline is formed are hardened by, for example, induction hardening or carburizing hardening to form a hardened layer. ing. By forming this hardened layer, the strength of the inner diameter of the shaft hole of the inner joint member and the outer diameter of the shaft end of the shaft is ensured.

シャフトの軸端外径を内側継手部材の軸孔内径に圧入して雄スプラインと雌スプラインを噛み合わせることにより、シャフトを内側継手部材に嵌合させている。このシャフトと内側継手部材のスプライン嵌合により両者間でトルクを伝達可能としている(例えば、特許文献1の図2参照)。   The shaft is fitted to the inner joint member by press-fitting the shaft end outer diameter of the shaft into the shaft hole inner diameter of the inner joint member and meshing the male spline and the female spline. Torque can be transmitted between the shaft and the inner joint member by spline fitting (see, for example, FIG. 2 of Patent Document 1).

また、このような内側継手部材とシャフトとの連結構造では、シャフトの軸端部に取り付けられた断面丸形の止め輪を、内側継手部材に設けられた係止面に当接させることにより抜け止めとしたものがある(例えば、特許文献2参照)。
特開2003−314580号公報 特開平8−68426号公報
Further, in such a connection structure of the inner joint member and the shaft, the retaining ring having a round cross section attached to the shaft end portion of the shaft comes into contact with a locking surface provided on the inner joint member. Some have been stopped (see, for example, Patent Document 2).
JP 2003-314580 A JP-A-8-68426

ところで、前述した等速自在継手の内側継手部材とシャフトとの嵌合構造では、内側継手部材の軸孔内径に硬化処理された雌スプラインを形成し、シャフトの軸端外径に硬化処理された雄スプラインを形成することにより、シャフトの軸端外径を内側継手部材の軸孔内径に圧入してスプライン嵌合させるようにしている。   By the way, in the fitting structure of the inner joint member of the constant velocity universal joint and the shaft, a female spline that has been hardened is formed on the inner diameter of the shaft hole of the inner joint member, and the outer end diameter of the shaft is hardened. By forming the male spline, the shaft end outer diameter of the shaft is press-fitted into the shaft hole inner diameter of the inner joint member to be fitted with the spline.

しかしながら、これら内側継手部材とシャフトとの嵌合構造は、硬化処理された雌スプラインと硬化処理された雄スプラインとによる凹凸嵌合であるため、ガタが発生し易いという問題があり、このようなガタがあると、回転トルクを確実に伝達することが困難になると共に、異音が発生するおそれがあった。   However, since the fitting structure between the inner joint member and the shaft is a concave-convex fitting between the hardened female spline and the hardened male spline, there is a problem that rattling is likely to occur. When there is play, it is difficult to reliably transmit the rotational torque, and there is a possibility that abnormal noise may be generated.

また、内側継手部材とシャフトの連結構造に止め輪による抜け止めを設けた場合、内側継手部材に係止面を形成する工程が必要であり、工数が増加すると共に、止め輪が必要なことから、部品点数も多くなり、製品のコストアップを招く。等速自在継手の組み立て工程においても、止め輪を組み付ける工程が必要であり、この点でも製品のコストアップを招くと共にサイクルタイムが余分に必要となる。   In addition, when a retaining structure with a retaining ring is provided in the connecting structure of the inner joint member and the shaft, a process of forming a locking surface on the inner joint member is necessary, and the number of steps is increased and a retaining ring is necessary. The number of parts increases, resulting in an increase in product cost. In the process of assembling the constant velocity universal joint, a process of assembling a retaining ring is necessary, which also increases the cost of the product and requires an extra cycle time.

そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、ガタを発生しにくくし、内側継手部材とシャフトを堅固に連結し得る等速自在継手の内側継手部材とシャフトの嵌合構造を提供することにある。   Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to prevent the occurrence of rattling and to provide an inner joint of a constant velocity universal joint that can firmly connect the inner joint member and the shaft. The object is to provide a fitting structure between a member and a shaft.

前述の目的を達成するための技術的手段として、本発明は、等速自在継手に装備され、外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とその内側継手部材の軸孔内径に圧入されたシャフトとを備え、内側継手部材の軸孔内径を未硬化とし、かつ、シャフトの軸端外径に円周方向に沿う凹凸部を形成すると共にその軸端外径に硬化層を形成し、シャフトの軸端を内側継手部材の軸孔内径に圧入してシャフトと内側継手部材とを塑性結合させたことを特徴とする。なお、内側継手部材の軸孔内径は、冷間鍛造仕上げにより形成されていることが好ましい。   As technical means for achieving the above-mentioned object, the present invention provides an inner joint member that is provided in a constant velocity universal joint and transmits torque while allowing angular displacement with the outer joint member, and the inner joint member. A shaft press-fitted into the inner diameter of the shaft hole, the inner diameter of the inner joint member is uncured, and the shaft end outer diameter of the shaft is formed with a concavo-convex portion along the circumferential direction. A hardened layer is formed on the shaft, and the shaft end of the shaft is press-fitted into the inner diameter of the shaft hole of the inner joint member to plastically connect the shaft and the inner joint member. In addition, it is preferable that the shaft hole inner diameter of the inner joint member is formed by cold forging finishing.

本発明では、内側継手部材の内径を未硬化とし、かつ、シャフトの軸端外径に円周方向に沿う凹凸部を形成すると共にその軸端外径に硬化層を形成する。シャフトの軸端を内側継手部材の軸孔内径に圧入すると、硬化層が形成されたシャフトの軸端外径の凹凸部が、未硬化の内側継手部材の軸孔内径に食い込んでその内側継手部材の軸孔内径を塑性変形させる。   In the present invention, the inner diameter of the inner joint member is uncured, and an uneven portion along the circumferential direction is formed on the shaft end outer diameter of the shaft, and a hardened layer is formed on the shaft end outer diameter. When the shaft end of the shaft is press-fitted into the shaft hole inner diameter of the inner joint member, the uneven portion of the shaft end outer diameter of the shaft on which the hardened layer is formed bites into the shaft hole inner diameter of the uncured inner joint member and the inner joint member The inner diameter of the shaft hole is plastically deformed.

このようにしてシャフトと内側継手部材とを塑性結合させたことによりシャフトと内側継手部材とが一体化されることで、両者間のガタをなくし、シャフトと内側継手部材とを堅固に連結することができる。   In this way, the shaft and the inner joint member are integrated with each other by plastically connecting the shaft and the inner joint member, thereby eliminating backlash between the two and firmly connecting the shaft and the inner joint member. Can do.

前述の構成において、シャフトの軸端外径の凹凸部は、軸方向の少なくとも一部に軸方向に沿う凹凸部を有する構造とすることが望ましい。この軸方向に沿う凹凸部は、軸方向の少なくとも一部に形成されていればよい。つまり、軸方向の先端部分、根元部分あるいはそれらの中間部分のいずれかに形成されていればよく、軸方向の全体に形成されていてもよい。   In the above-described configuration, it is desirable that the concavo-convex part of the shaft end outer diameter of the shaft has a concavo-convex part along the axial direction in at least a part of the axial direction. The concavo-convex portion along the axial direction may be formed in at least a part of the axial direction. That is, it may be formed at any of the tip portion, the root portion, or the intermediate portion in the axial direction, and may be formed in the entire axial direction.

このように軸方向に沿う凹凸部を有することにより、内側継手部材の軸孔内径に対するシャフトの軸端外径の抜け止めとなり、シャフトと内側継手部材とをより一層堅固に連結することができる。なお、前述した軸方向に沿う凹凸部としては、鋸歯状に形成した構造が好適である。   Thus, by having the uneven | corrugated | grooved part along an axial direction, it becomes a retaining prevention of the shaft end outer diameter of the shaft with respect to the axial hole internal diameter of an inner joint member, and a shaft and an inner joint member can be connected still more firmly. In addition, as an uneven | corrugated | grooved part along the axial direction mentioned above, the structure formed in sawtooth shape is suitable.

また、シャフトの軸端外径の凹凸部は、軸端外径の先端に形成された切り欠きを有する構造とすることが望ましい。このようにすれば、切り欠き端部を内側継手部材の端面に係止させることができ、その内側継手部材に対するシャフトの抜け止めとすることが可能である。   Further, it is desirable that the concavo-convex portion of the shaft end outer diameter of the shaft has a notch formed at the tip of the shaft end outer diameter. If it does in this way, a notch edge part can be latched to the end surface of an inner joint member, and it can be set as the fall-off prevention of the shaft to the inner joint member.

本発明によれば、内側継手部材の軸孔内径を未硬化とし、かつ、シャフトの軸端外径に円周方向に沿う凹凸部を形成すると共にその軸端外径に硬化層を形成し、シャフトの軸端を内側継手部材の軸孔内径に圧入してシャフトと内側継手部材とを塑性結合させたことにより、シャフトと内側継手部材とが一体化されることで、両者間のガタをなくし、シャフトと内側継手部材とを堅固に連結することができる。その結果、剛性の高い等速自在継手を提供することができる。また、従来のように内側継手部材の軸孔内径に、スプライン形成や硬化処理を施す必要がなくなるため、コスト低減化が図れる。   According to the present invention, the shaft hole inner diameter of the inner joint member is uncured, and an uneven portion along the circumferential direction is formed on the shaft end outer diameter of the shaft and a hardened layer is formed on the shaft end outer diameter, By pressing the shaft end of the shaft into the inner diameter of the shaft hole of the inner joint member and plastically connecting the shaft and the inner joint member, the shaft and the inner joint member are integrated to eliminate backlash between the two. The shaft and the inner joint member can be firmly connected. As a result, a constant velocity universal joint having high rigidity can be provided. Further, since it is not necessary to perform spline formation or hardening treatment on the inner diameter of the shaft hole of the inner joint member as in the prior art, the cost can be reduced.

本発明の実施形態を以下に詳述する。なお、以下の実施形態は、固定式(バーフィールド型)等速自在継手(BJ)に適用した場合を例示するが、他の固定式等速自在継手、例えばアンダーカットフリー型等速自在継手(UJ)に適用可能であり、さらに、摺動式等速自在継手、例えば、クロスグルーブ型等速自在継手(LJ)やダブルオフセット型等速自在継手(DOJ)にも適用可能である。   Embodiments of the present invention are described in detail below. In addition, although the following embodiment illustrates the case where it applies to a fixed type (Burfield type) constant velocity universal joint (BJ), other fixed type constant velocity universal joints, for example, an undercut free type constant velocity universal joint ( UJ), and also applicable to a sliding type constant velocity universal joint such as a cross groove type constant velocity universal joint (LJ) and a double offset type constant velocity universal joint (DOJ).

図5はバーフィールド型等速自在継手の全体構成を例示する。この等速自在継手は、外側継手部材としての外輪10と、外輪10の内側に配された内側継手部材としての内輪20と、外輪10と内輪20との間に介在してトルクを伝達する複数のボール30と、外輪10と内輪20との間に介在してボール30を保持するケージ40とを主要な部材として構成される。この固定式等速自在継手をドライブシャフトに適用する場合、外輪10を車輪軸受装置(図示せず)に結合させ、内輪20に後述の嵌合構造でもってシャフト50を結合させることにより、外輪10と内輪20の回転軸が角度をなした状態でも等速でトルクを伝達するようになっている。   FIG. 5 illustrates the overall configuration of a barfield type constant velocity universal joint. The constant velocity universal joint includes an outer ring 10 as an outer joint member, an inner ring 20 as an inner joint member disposed inside the outer ring 10, and a plurality of torque transmissions interposed between the outer ring 10 and the inner ring 20. The ball 30 and the cage 40 that is interposed between the outer ring 10 and the inner ring 20 and holds the ball 30 are configured as main members. When this fixed type constant velocity universal joint is applied to a drive shaft, the outer ring 10 is coupled to a wheel bearing device (not shown), and the inner ring 20 is coupled to a shaft 50 with a fitting structure described later, whereby the outer ring 10 is coupled. Torque is transmitted at a constant speed even when the rotation axis of the inner ring 20 forms an angle.

外輪10はマウス部16とステム部18とからなり、ステム部18にて車輪軸受装置とトルク伝達可能に結合する。マウス部16は一端にて開口した椀状で、その内球面12に、軸方向に延びた複数のトラック溝14が円周方向等間隔に形成されている。そのトラック溝14はマウス部16の開口端まで延びている。内輪20は、その外球面22に、軸方向に延びた複数のトラック溝24が円周方向等間隔に形成されている。そのトラック溝24は内輪20の軸方向に切り通されている。   The outer ring 10 includes a mouse portion 16 and a stem portion 18, and is coupled to the wheel bearing device at the stem portion 18 so that torque can be transmitted. The mouse portion 16 has a bowl shape opened at one end, and a plurality of track grooves 14 extending in the axial direction are formed on the inner spherical surface 12 at equal intervals in the circumferential direction. The track groove 14 extends to the open end of the mouse portion 16. In the inner ring 20, a plurality of track grooves 24 extending in the axial direction are formed on the outer spherical surface 22 at equal intervals in the circumferential direction. The track groove 24 is cut in the axial direction of the inner ring 20.

外輪10のトラック溝14と内輪20のトラック溝24とは対をなし、各対のトラック溝14,24で構成されるボールトラックに1個ずつ、トルク伝達要素としてのボール30が転動可能に組み込んである。ボール30は外輪10のトラック溝14と内輪20のトラック溝24との間に介在してトルクを伝達する。ケージ40は外輪10と内輪20との間に摺動可能に介在し、外球面42にて外輪10の内球面12と接し、内球面44にて内輪20の外球面22と接する。   The track groove 14 of the outer ring 10 and the track groove 24 of the inner ring 20 make a pair, and a ball 30 as a torque transmitting element can roll on each ball track constituted by the pair of track grooves 14, 24. It is incorporated. The ball 30 is interposed between the track groove 14 of the outer ring 10 and the track groove 24 of the inner ring 20 to transmit torque. The cage 40 is slidably interposed between the outer ring 10 and the inner ring 20, is in contact with the inner spherical surface 12 of the outer ring 10 at the outer spherical surface 42, and is in contact with the outer spherical surface 22 of the inner ring 20 at the inner spherical surface 44.

前述した内輪20はその軸孔内径26にシャフト50の軸端52を圧入することによりシャフト50とトルク伝達可能に結合されている。この内輪20の軸孔内径26は、冷間鍛造仕上げにより形成されているが、旋削、研磨仕上げにより形成されていてもよい。内輪20とシャフト50との嵌合構造は以下のとおりである。   The inner ring 20 described above is coupled to the shaft 50 so that torque can be transmitted by press-fitting the shaft end 52 of the shaft 50 into the inner diameter 26 of the shaft hole. The inner diameter 20 of the inner ring 20 is formed by cold forging, but may be formed by turning or polishing. The fitting structure between the inner ring 20 and the shaft 50 is as follows.

図1は内輪20とシャフト50を連結する前の状態、図2は内輪20とシャフト50を連結した後の状態をそれぞれ示す。また、図3(a)は図1のA−A線に沿う断面、同図(b)はB−B線に沿う断面、図4は図2のC−C線に沿う断面である。   FIG. 1 shows a state before the inner ring 20 and the shaft 50 are connected, and FIG. 2 shows a state after the inner ring 20 and the shaft 50 are connected. 3A is a cross section taken along line AA in FIG. 1, FIG. 3B is a cross section taken along line BB, and FIG. 4 is a cross section taken along line CC in FIG.

内輪20は、トラック溝24およびそのトラック溝24間の外球面22に高周波焼入れにより硬化層m(図1のクロスハッチング部分)が形成され、その軸孔内径26を未硬化としている。つまり、内輪20の軸孔内径26については、高周波焼入れによる硬化処理がなされていない。なお、内輪20における硬化層mの形成については、高周波焼入れ以外に浸炭焼入れにより行うことも可能である。この場合、軸孔内径26における未硬化については、防炭処理により行うことが可能である。   In the inner ring 20, a hardened layer m (cross-hatched portion in FIG. 1) is formed by induction hardening on the track groove 24 and the outer spherical surface 22 between the track grooves 24, and the inner diameter 26 of the shaft hole is not hardened. That is, the shaft hole inner diameter 26 of the inner ring 20 is not hardened by induction hardening. In addition, about formation of the hardened layer m in the inner ring | wheel 20, it is also possible to carry out by carburizing quenching other than induction hardening. In this case, uncured in the shaft hole inner diameter 26 can be performed by a carbon-proof treatment.

一方、シャフト50の外径にはその軸方向全周に亘って高周波焼入れにより硬化層n(図1のクロスハッチング部分)が形成されている。また、シャフト50の軸端外径52には円周方向に沿う凹凸部としてスプライン54が形成されている。その結果、シャフト50の軸端外径52には、高周波焼入れにより硬化処理されたスプライン54が形成されている。   On the other hand, a hardened layer n (cross-hatched portion in FIG. 1) is formed on the outer diameter of the shaft 50 by induction hardening over the entire circumference in the axial direction. Further, a spline 54 is formed on the shaft end outer diameter 52 of the shaft 50 as an uneven portion along the circumferential direction. As a result, a spline 54 that has been hardened by induction hardening is formed on the shaft end outer diameter 52 of the shaft 50.

以上のように、内輪20の軸孔内径26は硬化処理がなされていない状態であり、シャフト50の軸端外径52は硬化処理されたスプライン54が形成された状態である。また、内輪20の軸孔内径寸法dは、シャフト50の軸端外径52のスプライン54における最大径dと最小径dとの間になるように規定されている。 As described above, the shaft hole inner diameter 26 of the inner ring 20 is not hardened, and the shaft end outer diameter 52 of the shaft 50 is a state in which a hardened spline 54 is formed. Further, the inner diameter d 1 of the shaft hole of the inner ring 20 is defined to be between the maximum diameter d 2 and the minimum diameter d 3 in the spline 54 of the shaft end outer diameter 52 of the shaft 50.

図2に示すように、このシャフト50の軸端外径52を内輪20の軸孔内径26に圧入する。この圧入により、硬化層nが形成されたシャフト50の軸端外径52のスプライン54が、図4に示すように未硬化の内輪20の軸孔内径26に食い込んでその内輪20の軸孔内径26を塑性変形させる。このようにしてシャフト50と内輪20とを塑性結合させることによりシャフト50と内輪20とが一体化されることで、両者間のガタをなくし、シャフト50と内輪20とを堅固に連結することができる。   As shown in FIG. 2, the shaft end outer diameter 52 of the shaft 50 is press-fitted into the shaft hole inner diameter 26 of the inner ring 20. By this press-fitting, the spline 54 of the shaft end outer diameter 52 of the shaft 50 on which the hardened layer n is formed bites into the shaft hole inner diameter 26 of the uncured inner ring 20 as shown in FIG. 26 is plastically deformed. In this way, the shaft 50 and the inner ring 20 are plastically coupled to each other so that the shaft 50 and the inner ring 20 are integrated, thereby eliminating looseness between them and firmly connecting the shaft 50 and the inner ring 20 together. it can.

以上で説明した第一の実施形態では、シャフト50の軸端外径52に円周方向に沿う凹凸部であるスプライン54のみを形成した構造について説明したが、本発明はこれに限定されることなく、このスプライン54に軸方向に沿う凹凸部を付加した構造としてもよい。前述した第一の実施形態と同様、図6、図8、図10、図12および図15は内輪20とシャフト50を連結する前の状態、図7、図9、図11、図13および図16は内輪20とシャフト50を連結した後の状態をそれぞれ示し、図1および図2に示す第一の実施形態と同一又は相当部分には同一参照符号を付して重複説明は省略する。   In the first embodiment described above, the structure in which only the spline 54 that is the concavo-convex portion along the circumferential direction is formed on the shaft end outer diameter 52 of the shaft 50 has been described, but the present invention is limited to this. Alternatively, the spline 54 may have a structure in which an uneven portion along the axial direction is added. Similar to the first embodiment described above, FIGS. 6, 8, 10, 12 and 15 show the state before the inner ring 20 and the shaft 50 are connected, FIGS. 7, 9, 11, 13, and 15. FIG. Reference numeral 16 denotes a state after the inner ring 20 and the shaft 50 are connected to each other. The same or corresponding parts as those in the first embodiment shown in FIG. 1 and FIG.

図6に示す第二の実施形態では、シャフト50の軸端外径52のスプライン54に軸方向に沿う凹凸部として鋸歯56を形成する。つまり、スプライン54を構成する凸状歯部を軸方向に沿う鋸歯状に形成する。   In the second embodiment shown in FIG. 6, the sawtooth 56 is formed as an uneven portion along the axial direction on the spline 54 of the shaft end outer diameter 52 of the shaft 50. That is, the convex tooth portion constituting the spline 54 is formed in a sawtooth shape along the axial direction.

図7に示すように、シャフト50の軸端外径52を内輪20の軸孔内径26に圧入すれば、硬化層nが形成されたシャフト50の軸端外径52のスプライン54が、未硬化の内輪20の軸孔内径26に食い込んでその内輪20の軸孔内径26を円周方向に沿って塑性変形させるだけでなく、鋸歯56が未硬化の内輪20の軸孔内径26に食い込んでその内輪20の軸孔内径26を軸方向に沿っても塑性変形させる。   As shown in FIG. 7, when the shaft end outer diameter 52 of the shaft 50 is press-fitted into the shaft hole inner diameter 26 of the inner ring 20, the spline 54 of the shaft end outer diameter 52 of the shaft 50 on which the hardened layer n is formed becomes uncured. The inner ring 20 bites into the shaft hole inner diameter 26 and plastically deforms the inner ring 20 shaft hole inner diameter 26 along the circumferential direction, and the saw-tooth 56 bites into the uncured inner ring 20 shaft hole inner diameter 26. The inner diameter 26 of the inner ring 20 is also plastically deformed along the axial direction.

このように軸方向に沿う鋸歯56を形成したことにより、内輪20に対するシャフト50の抜け止めとして機能することから、従来のような抜け止め構造としての止め輪が不要となり、部品点数の低減化が図れ、内輪20に対する加工も不要となるため、コストアップを招くことはない。この鋸歯56による抜け止めでもって、シャフト50と内輪20とをより一層堅固に連結することができる。   Since the saw-tooth 56 along the axial direction is formed in this way, it functions as a retaining stopper for the shaft 50 with respect to the inner ring 20, so that a retaining ring as a conventional retaining structure is not required, and the number of parts can be reduced. As a result, it is not necessary to process the inner ring 20, so that the cost is not increased. The shaft 50 and the inner ring 20 can be more firmly connected with the retaining by the saw blade 56.

このスプライン54の凸状歯部を軸方向に沿う鋸歯状に形成する部位は、前述の第二の実施形態のようにスプライン54の軸方向全体に亘って形成する以外に、例えば図8および図9に示す第三の実施形態のようにスプライン54の根元部分のみであってもよく、その他、図10および図11に示す第四の実施形態のようにスプライン54の先端部分や、図12および図13に示す第五の実施形態のように先端部分と根元部分との間の中間部分のみであってもよい。   The portion where the convex tooth portion of the spline 54 is formed in a sawtooth shape along the axial direction is formed over the entire axial direction of the spline 54 as in the second embodiment, for example, FIG. 8 and FIG. 9 may be only the root portion of the spline 54 as in the third embodiment, and in addition to the tip portion of the spline 54 as in the fourth embodiment shown in FIGS. As in the fifth embodiment shown in FIG. 13, only an intermediate portion between the tip portion and the root portion may be used.

また、これらの鋸歯56は、スプライン54における円周方向に沿う多数の凸状歯部の全てに必ずしも設ける必要はなく、円周方向に沿う多数の凸状歯部のうちの一部に設けるようにしてもよい。例えば図14(a)(b)に示す例では、スプライン54における4つの凸状歯部に鋸歯56〔図14(b)の四箇所〕に設けている。   Further, these saw teeth 56 are not necessarily provided on all of the many convex tooth portions along the circumferential direction in the spline 54, but are provided on a part of the many convex tooth portions along the circumferential direction. It may be. For example, in the example shown in FIGS. 14 (a) and 14 (b), four convex teeth in the spline 54 are provided at saw teeth 56 (four locations in FIG. 14 (b)).

また、図15に示す第六の実施形態のように、スプライン54の先端部分に切り欠き58を形成するようにしてもよい。このように切り欠き58を形成すれば、シャフト50の軸端外径52を内輪20の軸孔内径26に圧入した場合、図16に示すようにその切り欠き58の端部を内輪20の端面に係止させることができ、その内輪20に対するシャフト50の抜け止めとなり、内輪20とシャフト50の嵌合構造がより一層強固となる。これは、前述した第二の実施形態(図6および図7参照)と第四の実施形態(図10および図11参照)のように鋸歯56をスプライン54の先端部分を含む部位に形成する場合にも同様の作用効果が得られる。   Moreover, you may make it form the notch 58 in the front-end | tip part of the spline 54 like 6th embodiment shown in FIG. If the notch 58 is formed in this way, when the shaft end outer diameter 52 of the shaft 50 is press-fitted into the shaft hole inner diameter 26 of the inner ring 20, the end of the notch 58 becomes the end surface of the inner ring 20 as shown in FIG. 16. The shaft 50 is prevented from coming off from the inner ring 20 and the fitting structure between the inner ring 20 and the shaft 50 is further strengthened. This is the case where the saw blade 56 is formed in a portion including the tip portion of the spline 54 as in the second embodiment (see FIGS. 6 and 7) and the fourth embodiment (see FIGS. 10 and 11). A similar effect can be obtained.

なお、以上の各実施形態では、ドライブシャフトの等速自在継手に適用した場合について説明したが、本発明はこれに限定されることなく、プロペラシャフトの等速自在継手にも適用可能である。   In each of the above embodiments, the case where the present invention is applied to a constant velocity universal joint of a drive shaft has been described. However, the present invention is not limited to this, and can also be applied to a constant velocity universal joint of a propeller shaft.

本発明は前述した実施形態に何ら限定されるものではなく、本発明の要旨を逸脱しない範囲内において、さらに種々なる形態で実施し得ることは勿論のことであり、本発明の範囲は、特許請求の範囲によって示され、さらに特許請求の範囲に記載の均等の意味、および範囲内のすべての変更を含む。   The present invention is not limited to the above-described embodiments, and can of course be implemented in various forms without departing from the gist of the present invention. It includes the equivalent meanings recited in the claims and the equivalents recited in the claims, and all modifications within the scope.

本発明の第一の実施形態で、内輪とシャフトを連結する前の状態を示す断面図である。It is sectional drawing which shows the state before connecting an inner ring | wheel and a shaft in 1st embodiment of this invention. 本発明の第一の実施形態で、内輪とシャフトを連結した後の状態を示す断面図である。In 1st embodiment of this invention, it is sectional drawing which shows the state after connecting an inner ring | wheel and a shaft. (a)は図1のA−A線に沿う断面図、(b)は図1のB−B線に沿う断面図である。(A) is sectional drawing which follows the AA line of FIG. 1, (b) is sectional drawing which follows the BB line of FIG. 図2のC−C線に沿う断面図である。It is sectional drawing which follows the CC line of FIG. 固定式等速自在継手(バーフィールド型等速自在継手)の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of a fixed type constant velocity universal joint (Burfield type constant velocity universal joint). 本発明の第二の実施形態で、内輪とシャフトを連結する前の状態を示す断面図である。It is sectional drawing which shows the state before connecting an inner ring | wheel and a shaft in 2nd embodiment of this invention. 本発明の第二の実施形態で、内輪とシャフトを連結した後の状態を示す断面図である。It is sectional drawing which shows the state after connecting an inner ring | wheel and a shaft in 2nd embodiment of this invention. 本発明の第三の実施形態で、内輪とシャフトを連結する前の状態を示す断面図である。In 3rd embodiment of this invention, it is sectional drawing which shows the state before connecting an inner ring | wheel and a shaft. 本発明の第三の実施形態で、内輪とシャフトを連結した後の状態を示す断面図である。In 3rd embodiment of this invention, it is sectional drawing which shows the state after connecting an inner ring | wheel and a shaft. 本発明の第四の実施形態で、内輪とシャフトを連結する前の状態を示す断面図である。It is sectional drawing which shows the state before connecting an inner ring | wheel and a shaft in 4th embodiment of this invention. 本発明の第四の実施形態で、内輪とシャフトを連結した後の状態を示す断面図である。It is sectional drawing which shows the state after connecting an inner ring | wheel and a shaft in 4th embodiment of this invention. 本発明の第五の実施形態で、内輪とシャフトを連結する前の状態を示す断面図である。It is sectional drawing which shows the state before connecting an inner ring | wheel and a shaft in 5th embodiment of this invention. 本発明の第五の実施形態で、内輪とシャフトを連結した後の状態を示す断面図である。It is sectional drawing which shows the state after connecting an inner ring | wheel and a shaft in 5th embodiment of this invention. シャフトの軸端外径のスプラインに鋸歯を設ける変形例で、(a)はシャフトの軸端外径を示す部分正面図、(b)は(a)のD−D線に沿う断面図である。FIG. 4 is a modification example in which saw teeth are provided on a spline having a shaft end outer diameter of a shaft, (a) is a partial front view showing the shaft end outer diameter of the shaft, and (b) is a cross-sectional view taken along the line D-D of (a). . 本発明の第六の実施形態で、内輪とシャフトを連結する前の状態を示す断面図である。It is sectional drawing which shows the state before connecting an inner ring | wheel and a shaft in 6th embodiment of this invention. 本発明の第六の実施形態で、内輪とシャフトを連結した後の状態を示す断面図である。It is sectional drawing which shows the state after connecting an inner ring | wheel and a shaft in 6th embodiment of this invention.

符号の説明Explanation of symbols

10 外側継手部材(外輪)
20 内側継手部材(内輪)
26 軸孔内径
50 シャフト
52 軸端外径
54 円周方向に沿う凹凸部(スプライン)
56 軸方向に沿う凹凸部(鋸歯)
58 切り欠き
m、n 硬化層
10 Outer joint member (outer ring)
20 Inner joint member (inner ring)
26 Shaft Bore Inner Diameter 50 Shaft 52 Shaft End Outer Diameter 54 Irregularities (Splines) along the Circumferential Direction
56 Concavity and convexity along the axial direction (sawtooth)
58 Notch m, n Hardened layer

Claims (6)

等速自在継手に装備され、外側継手部材との間で角度変位を許容しながらトルクを伝達する内側継手部材とその内側継手部材の軸孔内径に圧入されたシャフトとを備え、前記内側継手部材の軸孔内径を未硬化とし、かつ、前記シャフトの軸端外径に円周方向に沿う凹凸部を形成すると共にその軸端外径に硬化層を形成し、前記シャフトの軸端を内側継手部材の軸孔内径に圧入してシャフトと内側継手部材とを塑性結合させたことを特徴とする等速自在継手の内側継手部材とシャフトの嵌合構造。   An inner joint member that is mounted on a constant velocity universal joint and transmits torque while allowing angular displacement with the outer joint member; and a shaft that is press-fitted into the inner diameter of the shaft hole of the inner joint member. The shaft hole inner diameter of the shaft is uncured, and an uneven portion along the circumferential direction is formed on the shaft end outer diameter of the shaft and a hardened layer is formed on the shaft end outer diameter, and the shaft end of the shaft is connected to the inner joint. A fitting structure between an inner joint member of a constant velocity universal joint and a shaft, wherein the shaft and the inner joint member are plastically coupled by press-fitting into the inner diameter of the shaft hole of the member. 前記内側継手部材の軸孔内径は、冷間鍛造仕上げにより形成されている請求項1に記載の等速自在継手の内側継手部材とシャフトの嵌合構造。   The inner joint member of the constant velocity universal joint according to claim 1, wherein the inner diameter of the shaft hole of the inner joint member is formed by cold forging finishing. 前記内側継手部材の軸孔内径寸法をシャフトの軸端外径の凹凸部における最大径と最小径間に規定した請求項1又は2に記載の等速自在継手の内側継手部材とシャフトの嵌合構造。   The inner joint member of the constant velocity universal joint according to claim 1 or 2, wherein the shaft hole inner diameter dimension of the inner joint member is defined between the maximum diameter and the minimum diameter of the uneven portion of the shaft end outer diameter of the shaft. Construction. 前記シャフトの軸端外径の凹凸部は、軸方向の少なくとも一部に軸方向に沿う凹凸部を有する請求項1〜3のいずれか一項に記載の等速自在継手の内側継手部材とシャフトの嵌合構造。   The inner joint member and the shaft of the constant velocity universal joint according to any one of claims 1 to 3, wherein the uneven portion of the shaft end outer diameter of the shaft has an uneven portion along the axial direction in at least a part of the axial direction. Fitting structure. 前記シャフトの軸方向に沿う凹凸部を鋸歯状に形成した請求項4に記載の等速自在継手の内側継手部材とシャフトの嵌合構造。   5. The fitting structure between the inner joint member of the constant velocity universal joint and the shaft according to claim 4, wherein the uneven portion along the axial direction of the shaft is formed in a sawtooth shape. 前記シャフトの軸方向に沿う凹凸部は、その軸端外径の先端に形成された切り欠きを有する請求項1〜3のいずれか一項に記載の等速自在継手の内側継手部材とシャフトの嵌合構造。   The uneven portion along the axial direction of the shaft has a notch formed at the tip of the outer diameter of the shaft end, and the inner joint member of the constant velocity universal joint according to any one of claims 1 to 3 and the shaft. Mating structure.
JP2006167826A 2006-06-16 2006-06-16 Constant velocity universal joint Expired - Fee Related JP5283832B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006167826A JP5283832B2 (en) 2006-06-16 2006-06-16 Constant velocity universal joint
US12/308,103 US8128504B2 (en) 2006-06-16 2007-04-12 Constant velocity universal joint
EP07741528.9A EP2031262B1 (en) 2006-06-16 2007-04-12 Constant velocity universal joint
PCT/JP2007/058092 WO2007145019A1 (en) 2006-06-16 2007-04-12 Constant velocity universal joint
CN200780021311.4A CN101466958B (en) 2006-06-16 2007-04-12 Constant-velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167826A JP5283832B2 (en) 2006-06-16 2006-06-16 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2007333154A true JP2007333154A (en) 2007-12-27
JP5283832B2 JP5283832B2 (en) 2013-09-04

Family

ID=38932806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167826A Expired - Fee Related JP5283832B2 (en) 2006-06-16 2006-06-16 Constant velocity universal joint

Country Status (2)

Country Link
JP (1) JP5283832B2 (en)
CN (1) CN101466958B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010224213A (en) * 2009-03-24 2010-10-07 Fuji Xerox Co Ltd Fixing belt, fixing device and image forming apparatus
KR101186212B1 (en) 2012-05-08 2012-10-09 주식회사 지에스피엠 Connecting structure of shaft and rotor and bearing
US8506202B2 (en) * 2007-01-17 2013-08-13 Ntn Corporation Constant velocity universal joint
WO2016114050A1 (en) * 2015-01-15 2016-07-21 Ntn株式会社 Constant-velocity universal joint
CN113412572A (en) * 2019-02-14 2021-09-17 Gkn汽车有限公司 Drive assembly with electric drive and gear mechanism

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389229A (en) * 1986-10-02 1988-04-20 Riken Corp End blocking method for hollow assembling member shaft
JPH0469407A (en) * 1990-07-06 1992-03-04 Seiko Epson Corp Power driving gear
JPH08270409A (en) * 1995-03-31 1996-10-15 Isuzu Motors Ltd Assembly of prefablicated cam shaft
JP2001018605A (en) * 1999-07-06 2001-01-23 Ntn Corp Bearing device for driving wheel
JP2003314580A (en) * 2002-04-23 2003-11-06 Toyoda Mach Works Ltd Constant velocity joint
JP2004028143A (en) * 2002-06-21 2004-01-29 Ntn Corp Wheel bearing device
JP2005009615A (en) * 2003-06-20 2005-01-13 Ntn Corp Spline fitting structure of power transmitting member
JP2005193757A (en) * 2004-01-06 2005-07-21 Ntn Corp Bearing apparatus for driving wheel
JP2005534876A (en) * 2002-07-31 2005-11-17 バーグラー,ロバート Press-fit hub and camshaft
JP2005337306A (en) * 2004-05-24 2005-12-08 Ntn Corp Constant velocity universal joint

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389229A (en) * 1986-10-02 1988-04-20 Riken Corp End blocking method for hollow assembling member shaft
JPH0469407A (en) * 1990-07-06 1992-03-04 Seiko Epson Corp Power driving gear
JPH08270409A (en) * 1995-03-31 1996-10-15 Isuzu Motors Ltd Assembly of prefablicated cam shaft
JP2001018605A (en) * 1999-07-06 2001-01-23 Ntn Corp Bearing device for driving wheel
JP2003314580A (en) * 2002-04-23 2003-11-06 Toyoda Mach Works Ltd Constant velocity joint
JP2004028143A (en) * 2002-06-21 2004-01-29 Ntn Corp Wheel bearing device
JP2005534876A (en) * 2002-07-31 2005-11-17 バーグラー,ロバート Press-fit hub and camshaft
JP2005009615A (en) * 2003-06-20 2005-01-13 Ntn Corp Spline fitting structure of power transmitting member
JP2005193757A (en) * 2004-01-06 2005-07-21 Ntn Corp Bearing apparatus for driving wheel
JP2005337306A (en) * 2004-05-24 2005-12-08 Ntn Corp Constant velocity universal joint

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8506202B2 (en) * 2007-01-17 2013-08-13 Ntn Corporation Constant velocity universal joint
JP2010224213A (en) * 2009-03-24 2010-10-07 Fuji Xerox Co Ltd Fixing belt, fixing device and image forming apparatus
KR101186212B1 (en) 2012-05-08 2012-10-09 주식회사 지에스피엠 Connecting structure of shaft and rotor and bearing
WO2016114050A1 (en) * 2015-01-15 2016-07-21 Ntn株式会社 Constant-velocity universal joint
JP2016133127A (en) * 2015-01-15 2016-07-25 Ntn株式会社 Constant velocity universal joint
CN113412572A (en) * 2019-02-14 2021-09-17 Gkn汽车有限公司 Drive assembly with electric drive and gear mechanism
JP2022520619A (en) * 2019-02-14 2022-03-31 ジーケーエヌ オートモーティブ リミテッド Drive unit with electric drive and transmission
JP7267440B2 (en) 2019-02-14 2023-05-01 ジーケーエヌ オートモーティブ リミテッド Drive unit with electric drive and transmission
CN113412572B (en) * 2019-02-14 2024-04-16 Gkn汽车有限公司 Drive assembly with electric drive and transmission

Also Published As

Publication number Publication date
CN101466958B (en) 2012-12-12
CN101466958A (en) 2009-06-24
JP5283832B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US8128504B2 (en) Constant velocity universal joint
JP5349756B2 (en) Constant velocity universal joint
JP4474774B2 (en) Wheel drive unit
CN104271358A (en) Bearing device for wheel
JP5283832B2 (en) Constant velocity universal joint
JP2007032760A (en) Constant velocity universal joint and its inside member
JP2010047059A (en) Wheel bearing device and axle module
JP2007069704A (en) Bearing device for driving wheel
JP2008051222A (en) Two member connecting structure
JP2008051221A (en) Two member connecting structure
JP2007333155A (en) Constant-velocity universal joint
JP2009185872A (en) Shaft connection structure for constant velocity joint
JP2008286308A (en) Constant velocity universal joint
JP2008247274A (en) Wheel bearing device
JP5349762B2 (en) Constant velocity universal joint
JP2007225025A (en) Fitting structure between inner joint member and shaft of constant velocity universal joint
JP2009079690A (en) Constant velocity universal joint
JP2015200377A (en) constant velocity joint assembly
WO2016114050A1 (en) Constant-velocity universal joint
WO2022202440A1 (en) Vehicle wheel bearing device
JP2017166576A (en) Constant velocity universal joint
JP2007170423A (en) Constant velocity universal joint and its inner member
JP2007247769A (en) Torque-transmitting mechanism
JP2007002943A (en) Constant velocity universal joint and its inner member
JP2007247771A (en) Torque-transmitting mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121004

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130529

R150 Certificate of patent or registration of utility model

Ref document number: 5283832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees